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Abstract Recent advances in storage and processing have provided the possibility of auto-
matic gathering of information, which in turn leads to fast and continuous flows of data.
The data which are produced and stored in this way are called data streams. Data streams
are produced in large size, and much dynamism and have some unique properties which
make them applicable to model many real data mining applications. The main challenge of
streaming data is the occurrence of concept drift. In addition, regarding the costs of label-
ing of instances, it is often assumed that only a small fraction of instances are labeled. In
this paper, we propose an ensemble algorithm to classify instances of non-stationary data
streams in a semi-supervised environment. Furthermore, this method is intended to recognize
recurring concept drifts of data streams. In the proposed algorithm, a pool of classifiers is
maintained by the algorithm with each classifier being representative of one single concept.
At first, a batch of instances is classified by the algorithm. Thereafter, some of these instances
are labeled and this partially labeled batch is used to update the classifiers in the pool. This
process repeats for consecutive batches of the streams. The main advantage of the algorithm
is that it uses unlabeled instances as well as labeled ones in the learning task. Experimental
results show the effectiveness of the proposed algorithm over the state-of-the-art methods,
in different aspects.
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1 Introduction

Streaming data are produced in the form of high-speed infinite flows. Examples include huge
amount of daily information gathered by web services, financial transactions of credit cards,
data stored by sensors, and network intrusions information [1]. According to three specific
characteristics of streaming data, streammining is distinguished from stationary data mining.
First, the very large amount of information makes it impossible to store all of it as a whole in
currently available memories. Second, data streams are produced in high speed. This means
that they should be processed in real time. Thus, algorithms that require many passes on the
whole data to build a classifier may be of no use in these environments. Third, data streams
often experience concept drift, i.e. the distribution of data is not stationary and changes over
the time. Hence, learning algorithms should be able to make their models consistent with the
most recent data. It is important to note that independent and identical distribution (I.I.D)
condition is not valid in the streams in which concept drift occurs, but it is rational to assume
that sufficiently small size batches of data satisfy the I.I.D condition [17]. Going through a
real world example helps make the problem clearer. Suppose that an e-mail service user can
label each of his e-mails as spam or ham, based on his interests in reading them. However,
due to large number of e-mails he receives every day, which could be referred to as a stream
of e-mails, it is rather impossible for him to manage all of them. He labels only a few of them
and needs the help of an automatic classification system to detect which e-mails are spam
and which are ham. On the other hand, interests of the user might change over time. For
example, during presidential elections, he loves to follow political newsletters receiving via
e-mails. After the election, however, the user may not be interested in political news anymore.
Hence, those political e-mails that were previously ham seem to be spam now.Here comes the
problem of concept drift. The underlying concept based on which the instances are classified,
may change for any reason. The labeling system for this e-mail service should be designed
in a way that it can handle concept drifts as well.

Drift may occur in four structural forms of sudden, gradual, incremental, and recurring,
as shown in Fig. 1. In sudden concept drift, the distribution of data changes instantaneously.
It is the most simply detectable among other types of concept drifts. In gradual concept drift,
there is a non-deterministic stage in which data are driven from two different distributions. In
this non-deterministic period, the distribution of data cannot be identified. As time passes, the
probability of sampling from one distribution decreases while the probability of sampling
from the other one increases. There is a generalized form of gradual concept drift, also
referred to as incremental or stepwise drift. In this type of drift, data are derived from more
than two distributions; however, there are slight differences between them. In fact, drift is
noticeable only if longer time period of observation is considered. Last type of concept drift
is called recurring concept. In this type, it is potential that the distribution of data reoccurs
after an unknown while [41]. Returning to the example of e-mail classification, it is probable
that for next presidential elections, the user again shows an interest in reading political news.
Therefore, in addition to detecting concept drifts, the learner should cope with the difficulties
of detecting and learning recurring concepts aswell. In overall, detecting drift is a challenging
task, especially for that sometimes it cannot be distinguished from noise.

Another challenge in dealing with data streams is that in most real cases, not all of the
data are labeled. In practice, only a small proportion of data is likely to be labeled while
the majority is left unlabeled. This is due to the fact that labeling process is expensive and
time consuming. It requires experts’ supervision, special equipment or costly experiments.
The great speed of coming data makes it even more difficult to label all data in a stream
[37,40]. For instance, in our e-mail classification example, most of the instances are left
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Fig. 1 Four structural types of concept drift [41]

unlabeled because of the large number of e-mails and limited time of the user. So, the
task of the classification system is to predict the label of endlessly coming new e-mails
based on a model that is trained on partially labeled ones. This is known as semi-supervised
learning task and techniques developed for learning under such circumstances are called
semi-supervised learning methods. There are only a few stream classification algorithms that
are semi-supervised, i.e. capable of appropriate use of unlabeled instances along with labeled
ones in the learning process [28]. Algorithms that cope with the evolutionary characteristics
of data streams can be generally divided into two main groups, based on the number of
classifiers they use. First group, single model classification techniques, generally works by
incrementally updating the trained model upon receiving new data. Second group, namely
ensemble methods, works by either iteratively constructing base classifiers, which can be
produced by weak learners, and then adding them to the current ensemble or updating the
existing classifiers of their ensemble. It is well known that such algorithms are performing
gradient descent of an error function [3]. In stationary learning of data, ensemble learning
is advantageous mostly because it is able to boost weak learners that may be only slightly
better than random prediction to strong learners with very high accuracy. Generally, an
ensemble method acts effectively if the base learners are diverse so that all types of data
can be covered by them [39]. In streaming data, ensemble learning is more applicable since
different classifiers can be used to describe different concepts of the environment. Unlike
single model methods, ensemble approaches often do not require complex operations and
thus have the ability to adapt to changes in speedy data streams. This is why they are highly
capable of being exploited in these environments; however, dealing with numerous classifiers
may decrease the speed of learning.

In this paper, we propose a new algorithm called semi-supervised pool and accuracy-
based stream classification (SPASC), or simply SPASC, for non-stationary learning of data
streams using ensemble of classifiers. As stated, the reason behind using ensemble learning
approach is that ensemble methods have the ability to be updated efficiently, so they can be
easily adapted to the changes in the stream [27]. The SPASC algorithm maintains a pool
of classifiers in which every classifier determines a specific concept. A chunk of the stream
that can be stored in memory is called a batch. Each instance in an upcoming batch is firstly

123



570 M. J. Hosseini et al.

classified by the pool of classifiers. After classifying an instance, its true labelmay be revealed
to the algorithm. Then, the batch along with its existing true labels is exploited to update
the pool. In updating process, the most similar classifier to the underlying concept of the
given batch is identified. If the similarity is greater than a predefined threshold, then the
classifier will be updated according to the members of the batch. Otherwise, a new classifier
will be trained and added to the pool. The overall infrastructure of the algorithm is similar
to PASC algorithm [19]; however, several modifications are performed to make it feasible
for semi-supervised environment. In addition, a classifier named cluster-based classifier is
proposed to cope with semi-supervised stream of data. In this setting, base classifiers of
the pool are cluster based, i.e. each classifier maintains its concept in the form of a number
of clusters. Using these classifiers instead of the base classifier of PASC helps to exploit
unlabeled instances along with labeled ones in the classification task.

One major contribution of SPASC is its ability of detecting recurring concepts using
ensemble of classifiers in non-stationary data streams. This type of drift can exist simul-
taneously with other types of drift. If we investigate recurring concepts of data streams,
results can improved significantly, since adaptation to concept drift can be achieved more
quickly; nevertheless, most of stream classification algorithms ignore intrinsic recurring
concepts of datasets. An ensemble classifier is often a good choice while dealing with
recurring concepts, because each classifier in the ensemble can be used to describe one
concept of the environment. SPASC applies ensemble techniques to the problem of learning
of semi-supervised time-changing data streams. Using an ensemble of classifiers, SPASC
is capable of dealing with virtual and real concept drifts, since it can use a new clas-
sifier to handle a new concept, no matter the type of the drift is virtual or real. To the
best of our knowledge, there is no such algorithm that exploits the detection of recur-
ring concepts using ensemble methods for classification of non-stationary data streams.
However, there exits some semi-supervised algorithms that use single classifier method
to detect recurring concepts or ensemble classification of data streams. For example, the
algorithm given in [25] build a decision tree for the task of detecting recurring concepts
in semi-supervised datasets and the algorithm given in [28] uses ensemble techniques for
semi-supervised classification of data streams; however, it is incapable of detecting recurring
concepts.

Furthermore, base classifiers in SPASC are cluster based. It means that each classifier
maintains a set of clusters that are formed based on received labeled and unlabeled data and
will be updated continuously. Exploiting the cluster assumption for semi-supervised data
[7], these clusters tend to have high intra-cluster similarity and inter-cluster dissimilarity
besides being relatively pure according to the labels of their instances. They are updated by
expectation maximization (EM) algorithm. The derivation of the algorithm leads to a simple
and efficient updating rule, similar to that of K-means algorithm.

Last but not least, experimental results show the practicality of thework and its ability to be
used in empirical cases. The algorithm is evaluated on a number of standard streamingdatasets
and compared to state-of-the-art methods. Comparisons show that SPASC outperforms other
methods on all used datasets. Moreover, it is shown via experiments that the accuracy of
SPASC does not deteriorate considerably when the ratio of unlabeled data to the whole data
becomes low. This leads to the conclusion that SPASC effectively uses unlabeled data in the
learning process.

The rest of the paper is organized as follows. Related works are reviewed in Sect. 2. The
semi-supervised proposed algorithm including the cluster-based classifiers is described in
Sect. 3. In Sect. 4, experimental results are reported. Finally, Sect. 5 concludes the discussion
and introduces some future work.
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2 Related work

In the context of learning data streams, some proposed algorithms are capable of dealing
with gradual concept drift [23], some can handle abrupt concept drift [4,6,12,13,31], and
some have the potential to cope with both types [36]. However, most of these methods are
appropriate only for supervised environments in which the labels of data are fully known.
Some single model classification techniques for data streams are proposed in [9,15,20,21].
Because they are building incrementally, they usually utilize only the most recent data.
This means that the previous data are forgotten despite of the fact that they might still be
consistent with the current or future concept. This has negative influence on accuracy of the
refined model. Ensemble methods, on the other hand, have shown higher accuracy compared
with single models and are discussed in [10,14,22,24,33–35,37]. All these algorithms are
related to our work in that they try to build an ensemble of classifiers in order to learn data
streams.

As pointed out previously, most real cases of data streams have only a small portion
of their data labeled, while the majority is unlabeled. A diverse range of methods, known
as semi-supervised learning, have been suggested to make the most of unlabeled data as
well as exploiting labeled ones [27,38]. Two techniques have been widely used in semi-
supervised classification of non-stationary data streams: EM and predicting the labels of
unlabeled instances. In the former, when a concept drift is detected, using an EM algorithm,
labels of unlabeled instances are tuned in the expectation step and the model is updated in
the Maximization step. In the latter, labels of unlabeled instances are estimated first and then,
they are used in updating the model along with labeled ones. One group of methods in this
category is clustering algorithms that identify label of an instance based on the cluster in
which it falls.The method proposed in [11] is an example of a semi-supervised method for
drifting data streams using a decision tree. When a new batch is received, the amount of
loss of the tree on the batch is calculated. If the loss is greater than an experimentally set
threshold, the tree is updated to decrease the loss amount. A subset of unlabeled instances
then is selected and their label is estimated. These instances are used to update the leaves
of the tree. Updating process may lead either the leaf to extend or its class distributions to
change.

In [27], a method called “semi-supervised stream clustering” denoted by “SmSCluster” is
proposed. The streaming data are split into chunks and a classification model is formed for
each chunk. A semi-supervised clustering algorithm is introduced to create K clusters from
the partially labeled training data. The clustering algorithm uses EM to produce clusters
with both minimizing intra-cluster dispersion and at the same time the impurity of each
cluster regarding its labels. A summary of the statistics of the instances belonging to each
cluster is saved as a “micro-cluster”. The micro-clusters are served as a classification model.
Classification is performed with K-nearest neighbor algorithm, which identifies Q-nearest
clusters. The most frequent label in these clusters will be the predicted label of an instance.
In order to cope with the stream evolution, an ensemble of L such models is used. Whenever
a new model is built from a new data chunk, we update the ensemble by choosing the best
L models from the L + 1 models (previous L models and the new model), based on their
individual accuracies on the labeled training data of the new data chunk.

In [28], the ReaSC method is proposed. We have used this method for our comparison. It
is an extension of SmSCluster with some improvements. In SmSCluster, it is assumed that
labeled instances are randomly distributed in the stream, while ReaSC does not require this
assumption. In both methods, an ensemble of models is used to label instances. When at
least P% of instances are classified, they are used to generate K clusters using a constraint-
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based clustering algorithm. After the clustering procedure is done, instances are discarded
and information about clusters is stored in micro-cluster format. Finally, labeled micro-
clusters are used to label others. This new model is added to the ensemble to amend it.
The number of classifiers in the pool is a constant number in order to elegantly address
the infinite length problem. This algorithm and SPASC are similar in that they both use
cluster-based classifiers and use EM algorithm to exploit unlabeled instances along with
labeled ones. They also both try to produce clusters that are pure according to their labels.
This is done with different formulations and assumptions. In ReaSC, K-means formulation
is extended to have a term for cluster impurity, while our method starts from assuming
Gaussian distribution for data and also some assumptions about the labels of each clus-
ter. However, the most important difference is that in SPASC, the recurring concepts are
taken into account. The reason that we maintain and use previously identified concepts is
that in many real applications, maintaining models just based on their performance on the
last chunk of data will have two disadvantages: (a) It is sensitive to noise in data, (b) it
will gradually forget previously seen data and cannot cope with concepts that reoccur over
time.

Also in [8,29], semi-supervised classification of streams is done using ensemble methods.
In these approaches, labeled data are employed to build classifiers and unlabeled data are
used to determine classifiers votingweights. In [2], an ensemble learningmethod is proposed.
The majority vote of the classifiers is used to label the unlabeled instances. It is shown that
their classifier is PAC learnable, even if the labeling process is noisy.

While some forms of concept drift such as gradual or abrupt drifts have been extensively
explored, research on recurring concepts has gained attention only recently and much of the
work is done for supervised classification of data streams.Awindow-based framework, called
conceptual clustering and prediction (CCP), for detecting recurring concepts is proposed in
[22]. It extracts a conceptual vector for each window using a transformation function. The
algorithm preserves a classifier for each concept in a pool which is updated as time passes.
A clustering algorithm is used to detect recurring concepts. Clustering is done on conceptual
vectors such that if the distance of a new conceptual vector to the conceptual vector of its
nearest concept available in the pool is less than a threshold or the pool is full and does not have
additional space, the classifier corresponding to that conceptwill be updated; otherwise, a new
classifier and concept will be created. Euclidean distance between the conceptual vectors is
used as the differencemeasure. Onemajor shortcoming of this framework, however, is how to
determine the threshold, since it is a problem specific parameter and should be tuned through
trial and error. PASC [17,19] is an extension of the CCP framework method. It introduces
some new similarity measures. It also decreases the dependency on the threshold of the CCP
framework method and handles larger data sets. PMRCD also uses similar approach to CCP.
This method maintains a pool of classifiers and manages it by merge and split operations
so that there is no need to set the threshold parameter for this method. One other research
[32] inspires context space model to extract concepts for each classifier [16]. N-tuple of form
R = (

aR
1 , aR

2 , . . . , aR
N

)
is a context space, where aR

i shows the acceptable regions of feature
ai. The classifier and its corresponding context space are maintained in the pool. However,
all these ensemble methods to detect recurring concepts are only applicable to fully labeled
data streams and cannot handle semi-supervised datasets.

REDLLA [25] is an algorithm for semi-supervised classification of data streams with
recurring concept drifts and limited labeled data. It grows a decision tree of which each
leaf uses a clustering algorithm based on K-means to produce concept clusters. Then, the
majority-class method is used to label unlabeled data. All concept clusters generated over
the previous data chunks are maintained in a set of history concept clusters. In order to detect
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recurring concepts, the deviation between two concept clusters is measured based on their
radius and distance. If rnew, rlast show the radius of new cluster and previous one, respectively,
and dist(a, b) denotes the distance between their centers, then condition dist (a, b) > ra + rb
shows a concept drift. If the deviation between this new cluster and the clusters in history
is less than a threshold, it is a recurring concept. One problem with REDLLA is that it only
considers numerical attributes and cannot handle categorical or mixed attributes.

3 The proposed semi-supervised learning algorithm

In this section, a semi-supervised classification algorithm for classification of data streams is
proposed. The proposed algorithm is based on ensemble classification approach and is called
SPASC. The goal of SPASC is to classify non-stationary data streams when only a small
portion of data is labeled. It is based on detection of recurring concepts and tries to exploit
the information about the previously known concepts if they are repeated throughout the
stream. The algorithm keeps a limited number of classifiers in a set, referred to as pool, for
its classification task. In SPASC algorithm, it is assumed that instances of data are received
and classified in the form of a stream. For instance, in the e-mail classification example,
which was provided in the introduction, e-mails are received and classified continuously.
After classification of each instance, a user may reveal its true label to the algorithm. In the
e-mail example, a user may send a feedback after reading an e-mail and specify whether it is
spam or ham. For example, after reading a spam e-mail, the user may state that this instance
has been classified incorrectly.

The pseudo-code of SPASC is given in Procedure 1.The overall framework of SPASC
algorithm is as follows: instances of data arrive continuously in the form of batches. It is
assumed that the stream is divided into equal and fixed size batches of data. The algorithm
consists of two phases. In phase one (line 4 of the pseudo-code and will be discussed in Sect.
3.1), each instance in the received batch is classified by using the pool of classifiers. We
use an adaptive weighted scheme for classification. Once the classification of one instance
is done, an expert user probably reveals its true label to the algorithm. Those labels are used
for adapting the weights of classifiers and also will form a partially labeled batch as an input
to the second phase. Phase two (line 5 of the pseudo-code and will be discussed in Sect. 3.2)
involves updating the pool using this partially labeled batch. This update is done either by
updating one of the pre-existing classifiers or adding a new classifier, which is built based on
the new batch.

In the proposed method, we need a classifier that can handle partially labeled data. In
particular, the classifier needs to be updatable based on partially labeled instances. We have
proposed a classifier for our purpose andwill be discussed in Sect. 3.3. The proposed classifier
maintains a number of clusters. Each cluster is consisted of labeled and unlabeled data.
These clusters tend to be pure as possible, i.e. containing instances with the same label. Also
they will be formed such that they have the highest intra-cluster similarity and inter-cluster
dissimilarity. Clusters of the classifier are built and updated using EM algorithm.

Concretely, the algorithm is provided by Bt = (
xt1, x

t
2, . . . , xtl

)
as labeled instances such

that xti (1 ≤ i ≤ l) is i th instance in the t th batch with Lt = (
lt1, l

t
2, . . . , ltl

)
showing their

labels, respectively, and B ′
t = (xtl+1, x

t
l+2, . . . , x

t
k) as unlabeled instances, where k is the

size of batch. In order to simplify notations, it is assumed that all labeled instances appear
prior to unlabeled ones. This assumption has no effect on accuracy of the algorithm and can
be removed in practice.
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The algorithm starts with some initializations: an empty pool is created; the first batch of
data is received; a cluster-based classifier, called C1 is built with the first batch; the weight
of this classifier, denoted by w1, is set to 1; C1 is added to the empty pool. As mentioned
earlier, there is an iterative process at the heart of the algorithm containing two major phases.
Lines 4 and 5 show these phases. The two phases of the algorithm are discussed in Sects.
3.1 and 3.2. While going through these phases, the details of cluster based classifiers are not
required. Hence, we postpone the discussion about this classifier to Sect. 3.3. Finally, in Sect.
3.4, we bring a toy example of the execution of the proposed method.

3.1 Phase 1: classifying the batch

Classification of a batch is done by classifying its instances one after another. For classification
task, a classifier from the pool should be selected. In order to be able to adjust to potential
concept drifts, an adaptive approach is suggested to select the most suitable classifier from
the pool. In this approach, a positive weight in interval (0,1] is assigned to each classifier.
These weights are computed according to the performance of the classifiers on each instance
of a batch and being used for classification of the next instance in that batch. Furthermore, at
the end of each iteration, these weights are updated in order to be used in the next iteration
(updating weights at the end of iterations will be discussed in Sect. 3.2). For the first iteration,
the weight of the first classifier of the pool is initialized to 1.

For i th instance in the t th batch denoted by xti , the classifier with the maximum associated
weight is selected and classification task is done. If xti is an unlabeled instance, it would not
have any role in updating classifiers weights and the algorithm continues with classifying
the next instance, xti+1, but if x

t
i is a labeled instance, its true label is revealed right after

classification and the instances alongwith their true labels is used to update classifiersweights.
For this task, xti is given not only to the classifier that has classified it but also to all other
classifiers of the pool to see whether they classify it correctly or not. Based on the accuracy
of each classifier on instance xti , its weight will be updated. The updated weights are used
for classifying the next instance denoted by xti+1.

Figure 2 shows a sample scenario of classifying a batch. Upon receiving instance xti ,
selector selects the classifier in the pool that has the maximum weight. The SPASC classifier
predicts the label of the received instance. Besides, this predicted label along with the true
label of xti (if any), which is given by the expert user, is used to update the weights of
classifiers. The updating rule aims to increase the chance of selection of classifiers that
predict the labels of labeled instances correctly. These classifiers tend to describe the current
concepts of the environment from which new instances are produced. The rule for updating
the weights is:

w′
j = F

(
w j , M

(
j, xti

))
, (1)
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where w j and w′
j are the current and new weights of the j th classifier, respectively, and

M( j, xti )will be 0 if j th classifier classifies the instance x
t
i correctly and will be 1 otherwise.

Function F could be any function that outputs higher values if the classifier classifies the
instance correctly than the case of incorrect output. We have used the following function in
our experiments:

F
(
w j , M

(
j, xti

)) = w j × βM( j,xti ), (2)

where β is a constant parameter in interval [0,1). It is shown that this function will produce
near optimal classification results [17]. The algorithm for updating weights of classifiers is
shown in Procedure 2.

3.2 Phase 2: updating the pool

When classification of a batch is finished and the labels of all labeled instances are received,
the partially labeled batch will be used to update the pool. The pool contains a number of
classifiers, each of them describing one single concept. The number of allowed classifiers
in the pool are limited and controlled by parameter maxC. The newly arrived batch is either
driven from a concept of one of the pre-existing classifiers or is described by a new concept.
Hence, as Fig. 3 shows, updating the pool is done either by (a) updating one of the pre-existing
classifiers or (b) adding a new classifier built based on the new batch. In order to determine
the classifier that will be updated in case (a), a method called batch assignment is proposed

Fig. 3 Phase 2 of SPASC: updating the classifiers pool
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which will be discussed later in this section. In the proposed batch assignment method, a
similarity measure is defined between a batch of instances and an existing classifier. The
classifier that has the highest similarity to the batch is selected with the batch assignment
method.

The overall algorithm for updating the pool is given in Procedure 3. As a new batch arrives,
the most similar classifier of the pool, namely best_classifier, is identified in line 1. If the
similarity between the most similar classifier to the current batch, denoted bymax_similarity,
is higher than a given threshold θ1 or the pool is full, the classifier will be updated in line
3. Otherwise, a new classifier is built and added to the pool as shown in lines 5 and 6. We
propose two semi-supervised batch assignment methods: semi-Bayesian and semi-heuristic.
These batch assignment methods are explained in Sects. 3.2.1 and 3.2.2, respectively. Finally,
after updating an existing classifier or adding a new one, the weights of the classifier should
be updated before performing the next iteration. This is done in lines 8–11 and is discussed
in Sect. 3.2.3.

3.2.1 Semi-supervised Bayesian method for batch assignment

In this batch assignment method, the similarity measure between a batch and the concept of
i th classifier,Ci , is defined as the probability that the concept fromwhich the batch is derived
is the same as the concept of that classifier, called hi . In other words, it is the probability that
hi describes Bt , B ′

t and Lt :

P
(
hi |Bt , B

′
t , Lt

)

We compute this probability with two simplifying assumptions:

Assumption 1 The probability that an instance x takes a label l given x is drawn from an
arbitrary concept hi is independent of other instances driven from hi and their labels. This
means that

P
(
l|x, B, B ′, L , hi

) = p(l|x, hi ), (3)

where B, B ′ and L refers to an arbitrary partially labeled batch.

Assumption 2 The probability that an instance x is driven from an arbitrary concept hi is
independent of other instances that are driven from hi .

P (x |B, hi ) = P (x |hi ) , (4)

where B refers to an arbitrary batch of instances.
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According to the Bayes Theorem, the probability that hypothesis hi describes the concept
of Bt , B ′

t and Lt is:

P
(
hi | Bt , B ′

t , Lt
) = P

(
Bt , B ′

t , Lt | hi
) × P (hi )

P
(
Bt , B ′

t , Lt
) (5)

So the best concept, which we call it h∗, is the one that maximizes the numerator of the
right-hand side, because the best concept is independent of the probabilities of Bt , B ′

t and
Lt . Thus we have

h∗ = argmaxi P
(
hi | Bt , B ′

t , Lt
) = argmaxi

(
P

(
Bt , B ′

t , Lt | hi
) × P (hi )

)
. (6)

Since we do not have any prior knowledge about different concepts, we use the uniform
distribution for hi , hence P(hi ) = P(h j ) for all i and j and hence h∗ will become:

h∗ = argmaxi P
(
hi | Bt , B ′

t , Lt
) = argmaxi P

(
Bt , B ′

t , Lt | hi
)

(7)

So the goal is to calculate P
(
Bt , B ′

t , Lt | hi
)
which is equal to the following equation:

P
(
Bt , B ′

t , Lt | hi
) = P(Lt | Bt , B ′

t , hi ) × P
(
Bt , B ′

t | hi
)

(8)

Using Assumption 1, we have:

P(Lt | Bt , B ′
t , hi ) = P(Lt | Bt , hi ) (9)

and thus, Eq. (8) can be rewritten as:

P
(
Bt , B ′

t , Lt | hi
) = P(Lt | Bt , hi ) × P

(
Bt , B ′

t | hi
)
. (10)

As a result, the two probabilities on the right-hand side of the Eq. (10) should be estimated.
Following the Assumption 1, the first term can be estimated easily:

P(Lt |Bt , hi ) =
l∏

j=1

P(ltj |xtj , hi ) (11)

The term P(ltj |xtj , hi ) shows the probability that the label of instance xtj equals to ltj and
can be calculated using the i th classifier. In the rest of this section, we will show how to
estimate the second term of equation (10), i.e., P

(
Bt , B ′

t | hi
)
. Considering Assumption 2,

it can be inferred that:

P(Bt , B ′
t | hi ) =

k∏

j=1

P(xtj | hi ). (12)

P(xtj |hi ) can be rewritten as:

P(xtj |hi ) =
P

(
hi |xtj

)
× P

(
xtj

)

P (hi )
. (13)

The goal of this estimation is to determine the best concept h∗ which is independent of

P
(
xtj

)
(1 ≤ j ≤ k). In addition, P (hi ) is assumed to be equal for all concepts. Therefore,

we can use Eq. (14) instead of Eq. (12):

P(Bt , B ′
t | hi ) ∝

k∏

j=1

P
(
hi |xtj

)
. (14)
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In order to calculate the posterior probabilities of concepts hi given instances, we create
and use a classifier named raw data classifier (RDC). RDCpredicts that withwhat probability
one batch of instances is associated with one concept.

Each batch of data is assumed to be one unit and serves as one training instance for this
classifier. The label of each instance (i.e. one batch) is the index of the most related concept
to that instance. RDC receives all instances of a batch, whether or not they are labeled, along
with the index of the concept that describes that batch. It is assumed that all members of a
batch are derived from one single concept, i.e. the concept drift does not occur in batches.
This describing concept has been determined through the batch assignment method, which
assigns the batch to the most similar classifier (equally, the most similar concept) in the pool.
As we know each classifier is associated with exactly one concept, the concept related to
that classifier is the one describing the batch. For example, if a batch containing Bt and B ′

t
is assigned to hi , RDC should be trained by all instances xtj , 1 ≤ j ≤ k with index i as

their label. For this purpose, it is assumed that P
(
hi |xtj

)
is equal for all instances xtj and

we call it pti . Then, the batch is converted into a vector and this vector is given to RDC as

training instance with the index i as its label. The equality assumption for P
(
hi |xtj

)
and

also using one vector to describe the whole batch is done in order to increase the efficiency
of the method. We use the average value of the features of all instances in Bt and B ′

t as the
desired vector describing the whole batch. Finally, the posterior probability of class i of RDC
is used to estimatepti . Therefore, we can use the following as estimation for the second term
of Eq. (10).

P
(
Bt , B

′
t |hi

) ∝ P
(
hi |Bt , B

′
t

) ∝ pt
k

i (15)

Substituting (11) and (15) into (10) gives:

h∗ = argmaxi P
(
hi | Bt , B ′

t , Lt
) = argmaxi

⎛

⎝
l∏

j=1

P(lt, j |xt, j , hi ) × pti
k

⎞

⎠ (16)

It is straightforward to conclude that:

h∗ = argmaxi

⎛

⎝
l∑

j=1

log P
(
ltj |xtj , hi

)
+ (

k × log pti
)
⎞

⎠ (17)

Finally, the best classifier can be obtained by (10) and algorithm of semi-Bayesian method
for updating the pool, using a new batch (Bt , B ′

t , Lt ), can be seen in Procedure 4.

3.2.2 Semi-supervised heuristic method for batch assignment

In this approach, the similarity measure between a batch of instances and a classifier of
the pool is defined as the accuracy of that classifier on the labeled instances of that batch.
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Therefore, the accuracy of all classifiers in the pool on Bt and Lt is calculated and the
classifier with the highest accuracy is determined. If the accuracy of this classifier is more
than a predefined threshold, denoted by θ2, then it is selected for update; otherwise, a new
classifier will be built and added to the pool. The reason is that the higher the accuracy of
a classifier on a batch is, the more probable the classifier is related to that batch. In other
words, intuitively a classifier or concept that describes a batch will have high accuracy on
it. It is important to note that the accuracy can be computed only for the labeled data, so the
unlabeled portion of the batch, B ′

t , is not used in this method.
In order to have a comparison between the heuristic method and the Bayesian method

described in the previous subsection, we should note that the heuristic method is similar to
the first term of Eq. (17), i.e. the summation on the logarithm of the posterior probabilities
of classification. However, it does not use the logarithm and the probabilities are either 0 or
1. Therefore, the main difference is that the Bayesian method uses the posterior probabilities
instead of just the classification results and it also uses the unlabeled instances to assign the
batch

3.2.3 Updating the classifiers weights

As it is aforementioned, the algorithm is iterative. At the end of iterations, the weights of the
classifiers are required to be tuned for the next iteration. While classifying a new batch, if all
classifiers have equal weights, then proper classifier may not be chosen for the first instances
of that batch until some classifiers make enough mistakes so that their weights are decreased.
On the other hand, if no tuning is done for the next batch of instances, weights could be very
low for some classifiers as they may not be the correct classifier for a long time. This way,
reaction to concept drifts will not be as fast as required. Hence, we suggest a tuning process
to alleviate this problem. For this purpose, labeled instances, Bt , Lt , are used to tune the
weights according to last four lines of Procedure 3. As stated in Sect. 3.1, β is a constant
parameter in the interval [0,1). The reason behind the formula in line 10 of this procedure
is that classifiers with higher errors should be given lower weights at the beginning of the
next iteration. We use this equation in our experiments; nevertheless, any other equation with
similar properties can be used as well.

3.3 Cluster-based classifiers

In this section, we propose a method for building the base classifiers of the pool, namely
cluster-based classifiers. Each of these classifiers is firstly trained by a single batch of
instances. Afterward, they are updated given new batches of data. In the following sub-
sections, the overall structure of the classifiers, the approach for constructing a cluster-based
classifier from a single batch of instances, incrementally updating the classifier according to
new batches of instances, and finally classifying instances and finding posterior probability
distributions for them are discussed.

3.3.1 The overall structure of cluster-based classifier

Each classifier is consisted of Q clusters, where Q is a parameter of the algorithm. Partially
labeled batches of instances are used to build and update these classifiers. In each cluster,
there are both labeled and unlabeled data. The final purpose of constructing these clusters
is to obtain clusters that are pure according to labels of their instances. This means that it
is preferred that most instances of each cluster have the same label. Unlabeled instances
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are exploited to shape clusters more accurately. Constructing and updating of clusters of
a classifier are done based on the two following assumptions regarding clusters and their
instances:

Assumption 3 (Distribution of data within a cluster) The data which fall into the qth cluster
are assumed to be derived from a Normal distribution with the mean of μq and covariance
matrix of

∑
q = ε In , where In is an n-dimensional identity matrix and ε ∈ R

+ and ε →
0. This condition on ε leads to intra-cluster similarity and inter-cluster dissimilarity. This
assumption is what is exactly done in K-means algorithm [26].

Assumption 4 (Distribution of labels) The probability that an unlabeled instance, xi in
cluster q, gets label c j is given by:

P(li = c j |xi ∈ q) =
{
pi, j,q if c j = argmaxc′

j

(
NLq,c′

j

)

δ ∈ R
+ otherwise

, (18)

such that δ � ε and pi, j,q is a positive real number. NLq,c j shows the number of instances
in cluster q that have the label c j . The sum of the probabilities P(li = c j |xi ∈ q) for all
possible values of c j should be equal to 1. Therefore from the condition that δ → 0, it can
be inferred that pi, j,q → 1. The supportive reason behind this assumption is to obtain pure
clusters during constructing and updating clusters.

3.3.2 The approach for constructing a cluster-based classifier from a single batch of
instances

In what follows, we discuss how cluster-based classifiers are trained with a single batch of
instances. Training a classifier means building and updating its data clusters. Suppose a batch
of data containing Bt , B ′

t and Lt is received. The aim of our training algorithm is to build
Q clusters based on Bt , B ′

t and Lt . In order to build clusters, we need to first determine the
cluster that each instance belongs to and then compute the means of all clusters; however,
neither the assignment of instances to clusters nor the means of clusters are known. Hence,
the problem is to determine the means of Q clusters based on some known variables, i.e.
Bt , B ′

t and Lt , and some unknown variables, i.e. assignment of instances to clusters. We
use EM algorithm to solve this problem. As it was discussed, the assignment of instances to
clusters, either labeled or unlabeled, are the unknown variables of the problem. We define
the set of unknown variables as:

Z = {Zi | 1 ≤ i ≤ k} , (19)

where each Zi is a binary vector with length Q indicating the assignment of the i th instance
to each cluster. Thus, Zi can be defined as:

Zi = {
Zi,q ∈ {0, 1} |1 ≤ q ≤ Q

}
, (20)

such that:

Zi,q =
{
1 if xi ∈ q
0 otherwise

. (21)

In order to assign instances to clusters and find their means, it is now sufficient to specify
the steps of the EM algorithm [30]. Considering Zi,qas latent variables, Bt , B ′

t and Lt as
observed data, the set of means of clusters, {μq | 1 ≤ q ≤ Q}, is the parameter to be
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estimated. Initialization, expectation and maximization steps, and the stopping criterion of
the EM algorithm are discussed in the following. After the initializing step, expectation and
maximization steps are performed iteratively until a stopping criterion is satisfied.

Initializations Instances are assigned to clusters randomly and for each cluster q, μq will
be the mean of its members.

Expectation step In the expectation step, the probability of unknownvariables given known
variables and the means of clusters estimated in the previous iteration should be calculated.
This probability can be stated as P(Z |Bt , B ′

t , Lt , μold) , whereμold denotes the set of mean
values of clusters in the previous iteration of the algorithm.We calculate this probability using
a simplifying I.I.D assumption between individual assignment probabilities for different
instances to clusters. Consequently:

P
(
Z |Bt , B

′
t , Lt , μold) =

∏l

i=1
P

(
Zi |xti , lti , μold) ×

∏k

i=l+1
P

(
Zi |xti , μold) . (22)

Now the task is to compute the two probabilities P
(
Zi |xti , μold

)
for unlabeled instances

and P
(
Zi |xti , lti , μold

)
for labeled ones. The only possible assignment of instances to clusters

is that each instance xti is assigned to exactly one cluster q. Therefore, it is sufficient to find
the two sets of probabilities in Eq. (22) for Zi = Iq = (0, 0, . . . , 1, 0, . . . , 0), i.e. a
binary vector with value 1 only in the qth element. Then, we have the following equation for
unlabeled instances:

P
(
Zi = Iq |xti , μold) = P

(
xti , μ

old|Zi = Iq
) ∗P (

Zi = Iq
)

∑Q
j=1 P

(
xtj , μ

old|Z j = Iq
)

∗P (
Zi = Iq

) . (23)

Substituting the right-hand side probability values from Assumption 3, which states that
members of a cluster form a Normal distribution, we obtain:

P
(
Zi = Iq |xti , μold) =

πqexp

{
−‖xti −μold

q ‖2
2ε

}

∑Q
j=1 π jexp

{−‖xti −μold
j ‖2

2ε

} , (24)

where π j shows the prior probability of assigning an instance to cluster j and ‖xti − μold
j ‖2

denotes the Euclidean distance between instance xti and center of cluster j, i.e.μ
old
j . Since we

do not have any prior knowledge about clusters, π j is assumed to be equal for all clusters and
thus can be omitted from the equation. According to the assumption of ε → 0, we obtain

P
(
Zi = Iq |xti , μold) =

{
1 if q = argmin j=1..Q‖xt,i − μold

q ‖2
0 otherwise

. (25)

The relation states that an unlabeled instance belongs to a cluster with probability 1 provided
that the cluster mean has the minimum distance to it, and this probability will be 0 for other
clusters. In order to calculate P

(
Zi = Iq |xti , lti , μold

)
, we first state Lemma 1 regarding the

assignment of instances to clusters and then calculate the probability according to this lemma.

Lemma 1 Considering Assumptions 3 and 4 and assuming that each cluster center has a
distance from xt,i which is different from that of other means of clusters, there exists only
one target cluster, namely q, for each labeled instance to be assigned to. This means that
P

(
Zi = Iq |xti , lti , μold

) = 1 and P
(
Zi = Iq ′ |xti , lti , μold

) = 0 for all q ′ 
= q.
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Proof First of all, we show that for each two different clusters q1 and q2, either

P
(
Zi = Iq2 |xti , μold

q2

)
/P(Zi = Iq1 |xti , μold

q1 ) → 0 (26)

or

P
(
Zi = Iq1 |xti , μold

q1

)
/P(Zi = Iq2 |xti , μold

q2 ) → 0. (27)

For a labeled instance, P
(
Zi = Iq |xti , lti , μold

)
could be written as:

P
(
Zi = Iq |xti , lti , μold) = P

(
lti |Zi = Iq , x

t
i , μ

old) × P
(
Zi = Iq |xti , μold) . (28)

It is obvious that the sum of (28) over different possible values of Zi equals to 1, because
instance xti will be assigned to only one of the clusters. Having an instance x

t
i and two clusters

q1 and q2, without loss of generality, assume that q1 is nearer to xti than q2. This means that

P
(
Zi = Iq2 |xti , μold

q2

)
/P(Zi = Iq1 |xti , μold

q1 ) → 0. (29)

Now, we will prove the lemma statement. Based on the majority label of the instances in
these two clusters, three situations are likely to happen:

1) Major label of q1 is lti . In this case, according to equations (28) and (29) and Assumption
4, whatever the major label of q2 is, we have

P
(
Zi = Iq2 |xti , lti , μold

q2

)
/P(Zi = Iq1 |xti , lti , μold

q1 ) → 0. (30)

2) Major label of q1 is not lti while major label of q2 is lti . Thus,

P
(
lti |xti , μold

q1

)
/P(lti |xti , μold

q2 ) → 0. (31)

Therefore, we have

P
(
Zi = Iq1 |xti , lti , μold

)

P
(
Zi = Iq2 |xti , lti , μold

) =
P

(
lti |xti , μold

q1

)

P(lti |xti , μold
q2 )

× P(Zi = Iq1 |xti , μold
q1 )

P
(
Zi = Iq2 |xti , μold

q2

) . (32)

The computation of ratio given in Eq. (32) might not seem simple at the first glance as the
first term in right-hand side converges to 0, while the second term goes to infinity. However,
recalling Assumption 4, we have δ � ε which means that first term predominates the second
one and consequently, the probability that q1 is the target cluster for the instance is much
less than that of q2. In other words, we have

P
(
Zi = Iq2 |xti , lti , μold

q2

)
/P(Zi = Iq1 |xti , lti , μold

q1 ) → 0. (33)

3) None of q1 and q2 has lti as their major label. In this case, similar to the first one, q1 has
more chance to be assigned to the instance, which means Eq. (30) holds again.

Finally, generalizing this argument for all clusters brings us to a total ordering among
clusters regarding the assignment of each instance xti to them. Therefore, the probability of
assigning xti to only one of the clusters, namely q, equals to 1. This probability for other
clusters will be 0, which completes the proof of this lemma. ��
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From lemma1, the assignment probability can be formulated bydefining a set L , consisting
of clusters with label lt,i :

L = {1 ≤ q ≤ Q|argmaxc′
j

(
NLq,c′

j

)
= lt,i } (34)

Here, NLq,c j ′ shows the number of instances that have label c′
j in cluster q. concretely,

set L contains all clusters in which label lt,i is the majority. With the help of L , the above
arguments can be summarized as:

P
(
Zi = Iq |xt,i , lt,i , μold) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if
(
L = ∅ andq = argmin j=1..Qdist

(
xt,i , μold

j

))

or
(
L 
= ∅ andq = argmin j∈Ldist

(
xt,i , μold

j

))

0 otherwise
(35)

Equation (35) is interpreted as follows: with probability 1, an instance will be assigned
to a cluster if that cluster has the minimum distance to the instance among all of the clusters
that have the majority label equal to the label of that instance. If no cluster has the majority
label equal to the instance’s label, which shows the set L is empty, then the instance will be
assigned to the nearest cluster with probability 1. The probability of assigning to all other
clusters is 0.

Maximization step In this phase, the means of clusters are to be calculated for the next
iteration of the algorithm. Regarding the maximization step of the EM algorithm, we have:

μnew = argmaxμφ
(
μ,μold) , (36)

where φ
(
μ,μold

)
is defined as:

φ
(
μ,μold) = EZ |θold,Bt ,B′

t ,Lt

[
ln

(
P

(
Bt , B

′
t , Lt , Z |μ))]

=
∑

Z

P
(
Z |Bt , B

′
t , Lt , μ

old) ln
(
P

(
Bt , B

′
t , Lt , Z |μ))

=
∑

Z

P
(
Z |Bt , B

′
t , Lt , μ

old) ln
[(
P

(
Bt , B

′
t , Z |μ)) × P

(
Lt |Bt , B

′
t , Z , μ

)]

=
∑

Z

P
(
Z |Bt , B

′
t , Lt , μ

old) ln
(
P

(
Bt , B

′
t , Z |μ))

+
∑

Z

P
(
Z |Bt , B

′
t , Lt , μ

old) ln
(
P

(
Lt |Bt , B

′
t , Z , μ

))
(37)

It can be assumed that P
(
Lt |Bt , B ′

t , Z , μ
)
is independent of themeans of clusters. Indeed,

based on Assumption 4 and assuming independence among the labels of different instances,
the information of assigning instances to clusters is sufficient for calculating the probability
of their labels. Thus to maximize φ

(
μ,μold

)
, the second term of Eq. (37) could be discarded.

That is:
argmaxμφ

(
μ,μold) = argmaxμ

∑

Z

P
(
Z |Bt , B

′
t

)
(38)

Assuming independence assumption for different instances, it can be shown that:

argmaxμφ
(
μ,μold) = argmaxμ

k∑

i=1

Q∑

q=1

Zi,q lnP
(
xt,i , Zi,q |μq

)
. (39)
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The probability of one instance belonging to a cluster q is a Normal distribution with the
mean μq and covariance matrix ε In . So, we have

argmaxμφ
(
μ,μold) = argmaxμ

−1

2

⎛

⎝
k∑

i=1

Q∑

q=1

Zi,q‖xt,i − μq‖2
⎞

⎠ . (40)

Consequently, φ
(
μ,μold

)
takes its maximum value if:

μq = 1

Nq

k∑

i=1

Zi,q xt,i , (41)

where Nq denotes the number of instances (either labeled or unlabeled) of cluster q, respec-
tively. The relation simply states that the mean of a cluster is the arithmetic average of its
members. The stopping criterion for algorithm is whether it converges to a solution or it has
been run a specified number of iterations.

3.3.3 Incremental updating of cluster-based classifiers

In the previous subsection, the cluster formation and updating based on a new batch of data
were discussed. Here, we focus on incremental updating of the classifiers as it is one of the
crucial characteristics for classifiers of the pool. In the incremental version, the expectation
and maximization steps are performed iteratively to update the clusters. The assignment
of the instances is done similar to the initial construction of clusters which was discussed
in Sect. 3.3.2 and according to the means of the existing clusters and previous and newly
labeled instances of the clusters. After assigning phase is completed, new means for clusters
are recalculated based on these new members. This process is repeated until the stopping
criterion, which is the same as given before, is reached.

3.3.4 Instance classification

In order to classify a new instance, the nearest cluster to it has to be identified, firstly. In that
cluster then, the majority of labels of members will be the predicted label for the instance. In
addition, the posterior probabilities are calculated by finding the percentage of labels in the
nearest cluster that are identical to the desired label.

3.4 Example of execution of the proposed method

In this subsection, we bring an example of execution of the algorithm, which will help
understand different parts of the proposed method. In our e-mail classification example,
assume that the batch size is 100. The system is working for a user, named Alice, and she
receives 100 e-mails per week. The e-mails are represented with bag-of-word features such
as tf-idf weights. The label of e-mails can be spam or ham. After receiving any e-mail, Alice
may reveal its true label to the system. In the first week, there is no learnt concept and the
system will classify all e-mails as ham. Alice receives three spam e-mails with the content:
“congratulations! YOU HAVE WON £1,000,000.00. Kindly read the attachment”. She tags
these e-mails as spam. She also responds to 20 of her e-mails, which we interpret as a signal
that they are ham. Out of these 20 e-mails, five of them are from different dealerships offering
deals on cars. This is because Alice is buying a car and has given her e-mail to dealerships.
Therefore, 23 e-mails are considered as labeled instances and the rest are unlabeled. At the
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end of the first week, a cluster-based classifier will be built based on 100 partially labeled
e-mails. Assume that Q = 5, i.e., there are five clusters. The clusters are found based on
partially labeled instances and each of the e-mails will fall into one cluster. Note that the
cluster-based classifiers are designed to have clusters that are as pure as possible. Therefore,
some of these clusters will have e-mails that are mostly spam and the others will have mostly
ham e-mails. Finally, RDC is built using the average of the feature vectors of the first batch
and label equal to the index of the first concept, which is one. In the second week, the system
classifies e-mails. The distance of each e-mail tomean of each cluster is computed. The e-mail
will be labeled as the majority label of the nearest cluster. Alice responds to 25 e-mails that
will be considered as ham. She also buys her car at the end of the second week. The similarity
of the second partially labeled batch to the only classifier of the pool is computed. Based on
Eq. (17), the similarity is computed using RDC and also the cluster-based classifiers of the
pool. In this iteration, there is only one cluster-based classifier in the pool. Therefore, it will
be the optimal classifier for the second batch. It turns out that the similarity is higher than
the predefined threshold. Therefore, the cluster-based classifier will be updated based on the
second batch. RDCwill also be updated similar to the previous batch. In the third week, Alice
receives 100 e-mails and the system predicts their labels. She responds only to 15 of them.
Among these e-mails, 10 of them are from dealerships. Since she is not interested anymore
in buying cars, she tags four of them as spam. This will provide 19 labeled e-mails. At the
end of the third week, the similarity of the third partially labeled batch to the only classifier
of the pool is computed. This similarity is lower than the predefined threshold. Therefore,
a new cluster-based classifier will be built and added to the classifier’s pool. RDC will also
be updated with the average of the feature vectors of the third batch and label equal to two.
The weights of these classifiers will also be estimated based on their performance on the last
batch, and the system is ready to process e-mails of the fourth week.

4 Experimental results

In order to evaluate the performance of the proposed algorithm, the computer experiments
are conducted. These experiments on a number of standard datasets are conducted in order to
evaluate the performance of the proposedmethod. In the following sections, datasets onwhich
the experiments were performed are introduced, firstly. All datasets contain concept drifts or
recurring concepts. Parameter tunings are discussed next. Finally, the performance of SPASC
is compared to that of ReaSC [30]. The comparison of thismethod to our previousworks is not
practical, since they are all supervised algorithms. Being founded on a theoretically powerful
idea, ReaSC is one of the most successful methods proposed in the field of semi-supervised
classification of non-stationary data streams. ReaSC is similar to SPASC in several ways,
including the use of ensemble classifiers and the cluster assumption for data; however, it has
some differences that are explained in Sect. 2. According to experimental results, SPASC
shows higher performance over ReaSC.

4.1 Datasets

Two real and one artificial datasets are used in experiments:
KDDCup99This real dataset contains TCP connection records from twoweeks of network

traffic in MIT Lincoln laboratory. Each instance is labeled as either normal, or an attack,
with exactly one of 22 identified attack types. Therefore, there are possibly 23 labels in the
dataset. Each instance consists of 41 attributes. A 10% subset of all data is extracted for our
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experiments, which has the total size of 490,000 instances. This dataset contains gradual or
sudden concept drifts and has been used in several researches including [28].

Spam filtering This real dataset is the base that our e-mail classification example was
derived from and is obtained from e-mail messages of Spam Assassin Collection [28]. Each
e-mail is classified as either spam or ham. Only 20% of instances are spam. This dataset
contains 9,324 instances with 500 attributes for each. Attributes are words derived after
applying feature selection with χ2 measure. The characteristics of spam messages in this
dataset gradually change as time passes, that is they show gradual concept drift [22].

Moving hyperplanes This synthetic dataset is used for modeling the problem of predicting
the label of a rotating hyperplane. A decision boundary of a hyperplane in an n-dimensional
space is denoted by g (x) = �w. �x = 0, where �w is the direction of the hyperplane and �x is
an instance. Instances for which g (x) > 0 are labeled as positive and instances for which
g (x) < 0 are labeled as negative. For simulating time-changing concepts, the orientation and
position of the hyperplane could be changed in a smoothmanner by changing the relative size
of the weights [20]. This artificial dataset is generated in MOA environment [5] and consists
of 8000 instances and 30 attributes. After each 2,000 instances, a drift occurs. Moreover,
there are two concepts from which these instances are derived. They recur after the first
4,000 instances. Thus, both sudden concept drifts and recurring concepts are embedded in
this dataset.

4.2 Parameter tuning

We used the following parameter setting in the experiments. The number of clusters, Q, is
set to 5 for all datasets. In addition, the percent of labeled instances varies from 20% of the
whole data in all datasets.Window size is set to 50 for spamfiltering, 500 for hyperplanes, and
1,000 for KDD99 datasets. The window size parameter was set by trial and error method and
according to the properties of the datasets. This size should not be very small, as the batchmay
not contain sufficient instances to describe a concept. Very large values for this parameter will
also lead to batches which may contain concept drifts. The number of concepts is set to 10 for
all experiments. Thresholds, θ1 and θ2 are (k + l)log (0.65) and 0.95, respectively where k is
the window size and l is the number of labeled instances. As stated in Sects. 3.2.1 and 3.2.2,
these are threshold parameters used in batch assignment methods. Threshold θ1controls the
similarity of a batch to a classifier in semi-Bayesian approach. The idea behind setting θ1 to
(k + l)log (0.65) is that Eq. (17), which calculates the similarity measure between a batch of
instances and a concept for semi-Bayesian approach contains logarithm of (k+ l) probability
values. Using this threshold, if none of these probabilities is more than 0.65, the similarity
between the batch and the corresponding concept will not be high enough so that the batch
can be assigned to that concept. Threshold θ2 controls the accuracy of a classifier on a batch
in semi-heuristic approach. Setting θ2 to 0.95 means that if the accuracy of a classifier on a
batch is more than 0.95, the similarity of the concept described by the classifier to the batch
will be high enough to assign the batch to that classifier. Finally, β is set to 0.1 for all datasets
using trial and error method. According to our experiments, value of β does not have much
effect on the result of the algorithm.

To make a fair comparison, parameters of ReaSC are tuned either similar to those of
SPASC or according to described configurations of [28]. Specifically, the number of clusters,
the ratio of labeled instances to whole data and the number of basic concepts (models) are
set equal to those of SPASC. ReaSC algorithm includes one extra parameter, called injection
probability which is set to 20%.
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4.3 Accuracy of algorithms

In this section, the results of running both algorithms on all datasets will be compared.
Figures 4, 5 and 6 demonstrate the performance of SPASC and ReaSC over each dataset.
In each figure, diagrams of overall accuracy of SPASC with semi-Bayesian batch assigning
method, SPASC with semi-heuristic batch assigning method, and ReaSC are shown. For all
of the three datasets, SPASC performs more accurately than ReaSC, disregarding the method
of batch assignment. Accuracy of semi-Bayesian, semi-heuristic and ReaSC algorithms on
spam filtering dataset are 89.8, 0.9 and 81.7, respectively, which show an improvement of
more than 8% in accuracy for SPASC compared to ReaSC.

Over KDD99 dataset, these accuracies are 97.1, 94 and 93.8, respectively. Semi-Bayesian
method shows the highest accuracy. For hyperplanes dataset, finally, accuracies are seen
as 72.2, 71.9 and 71. The better performance of SPASC is mainly because it is capable of

Fig. 4 Comparison of accuracy on KDD99 dataset

Fig. 5 Comparison of accuracy on spam filtering dataset

123



An ensemble of cluster-based classifiers for semi-supervised. . . 589

Fig. 6 Comparison of accuracy on hyperplanes dataset

detecting recurring concepts and thus it exploits previously learned concepts in the case that
they reoccur. This significantly reduces the cost of learning a repeated concept from scratch.
Therefore, SPASC will be more robust on datasets containing recurring concepts. ReaSC,
however, cannot handle recurring concepts and will show lower accuracy in such cases. As
described in Sect. 2, ReaSC will maintain an ensemble of L models. After getting a new
chunk of partially labeled data, a new model is created. The best L models out of the L + 1
models will be selected based on their accuracies on the last seen chunk of data. The number
of labeled instances is limited for each batch, so a good model may be discarded because
of a few labeled examples. This means that the method is sensitive to noise. In addition,
after a concept drift in L successive chunks, the whole models may be replaced. This implies
that recurring concepts will not be handled using this method. Hence, if a concept reoccurs,
ReaSC needs to learn models from scratch for that concept.

Finally, Comparing the semi-Bayesian and semi-heuristic method shows that they have
relatively similar performance on two datasets, while semi-Bayesian approach performs
slightly better (about 3%) onKDD99 dataset. As discussed in Sect. 3.2.2, themain theoretical
difference of these two methods is that in semi-Bayesian, the unlabeled data are also used to
assign a batch of instances to a concept. Therefore, we expect that the semi-heuristic method
has failed to assign the last batches to correct concepts. Thismay be handled in semi-Bayesian
method by using unlabeled instances for batch assignment.

Moreover, it could be inferred from above figures that all algorithms decline in accu-
racy when facing concept drift; however, the amount of decrease varies among different
algorithms.

4.4 Effect of percentage of labeled instances on performance

In this section, the accuracy of the algorithmwith two batch assignment methods is evaluated
for different proportions of labeled instances to the whole. For this purpose, we change
percentage of labeled instances from 10% of the whole data to 100% with the ascending
steps of 10% and test the accuracy of methods. Figures 7, 8 and 9 show the results of
these experiments. Ignoring a few exceptions, increasing the proportion of labeled instances
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Fig. 7 Effect of percentage of labeled instances on KDD99 dataset

Fig. 8 Effect of percentage of labeled instances on spam filtering dataset

generally results in an increase in accuracy of SPASC. A notable point to mention, however,
is that the amount of increase is very slight for percentage of labeled instances more than
20%. This comes to the important conclusion that SPASC algorithm is able to use unlabeled
instances efficiently to learn concepts. In addition, except for a few cases, SPASCoutperforms
ReaSC for all datasets and all percentages of labeled instances. Finally, it is expected that
by increasing the percentage of labeled instances, the accuracy of learners increase as well.
However, ReaSC does not show this behavior on spam filtering and hyperplanes datasets.
The base models that ReaSC makes should intuitively improve by increasing the number of
labeled instances. However, when the number of labeled instances increases, the accuracy
of the mentioned L + 1 models will be measured on different samples. This may lead to
different selection of models. The new selection may not be always better while testing on
more labeled samples and this may add some randomness to the results while increasing the
ratio of labeled instances.
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Fig. 9 Effect of percentage of labeled instances on hyperplanes dataset

4.5 Sensitivity to parameters

Besides the percentage of labeled instances, there are some other important parameters that
should be analyzed. In this section, the effects of the number of clusters and the number
of concepts on accuracy are analyzed. These two parameters are common between SPASC
and ReaSC. As a result, the sensitivity to these parameters can be compared for the two
algorithms. The effect of number of clusters on accuracy is shown in Figs. 10, 11 and 12.
For all datasets, semi-Bayesian method outperforms others for sufficiently large number of
clusters. For KDD99 and hyperplanes datasets, semi-heuristic also outperforms or at least
functions as accurate as ReaSC. In spam filtering dataset, however, semi-heuristic fluctuates
between 0.75 and 0.9 accuracy. In addition, it can be concluded that semi-Bayesian is more
robust against changes in number of clusters than semi-heuristic method.

Fig. 10 Effect of number of clusters on KDD99 dataset
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Fig. 11 Effect of number of clusters on spam filtering dataset

Fig. 12 Effect of number of clusters on hyperplanes dataset

Another interesting result than can be inferred from this experiment is that when the
number of clusters increases, ReaSC shows a decline in accuracy while SPASC remains
highly accurate. This is more noticeable for spam filtering and hyperplanes datasets. It is due
to the recurring of concepts in these datasets. SPASC retains drifted instances in order to use
them later if that concept recurs; conversely, ReaSC uses a mechanism for forgetting old data.
Thus, as time passes, SPASC forms clusters with more instances, while these clusters are
sparse in ReaSC, since it exploits fewer number of instances to form its clusters in comparison
with SPASC that forms its clusters using all received instances from the beginning.

The effect of number of concepts (models) on the accuracy can be seen in Figs. 13, 14
and 15. Semi-Bayesian and semi-heuristic methods outperform ReaSC for sufficient number
of concepts, i.e. 7 for KDD99, 3 for spam filtering and 5 for hyperplanes datasets. For
smaller number of concepts, however, ReaSC gives more accurate results. This means that
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Fig. 13 Effect of number of concepts on KDD99 dataset

Fig. 14 Effect of number of concepts on spam filtering dataset

SPASC requires a minimum number of concepts to perform well, although this number
may not be equal to the actual number of concepts describing instances. The problem is
that SPASC method may assign more than one classifier to a single actual concept as its
threshold parameter for the used batch assignment method may not be set properly or even
no unique appropriate threshold parameter exists for all concepts. For example, hyperplanes
dataset contains only two concepts, but SPASC needs at least five concepts. Similar problem
exists for the supervised version of SPASC, i.e. PASC [19] algorithm. This problem has been
addressed in our previous work, PMRCD [18], by managing the pool of classifiers via merge
and split operations on the classifiers of the pool. Similar approach can be used for SPASC;
however, it can already be seen that the current method has led to highly accurate results
using sufficient number of classifiers.
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Fig. 15 Effect of number of concepts on hyperplanes dataset

5 Conclusion and future works

In this paper, we proposed a semi-supervised algorithm for classification of non-stationary
data streams using ensemble learning methods. In this algorithm, called SPASC, a pool of
classifiers is maintained and updated upon processing consecutive batches of data. Each
classifier in the pool is associated with one single concept. When a new batch arrives, labels
are predicted by the algorithm at first. Then, labels of some of them are revealed and used for
updating the pool. Basic classifiers of the pool are of the cluster-based type. In the process of
updating, using both labeled and unlabeled data, each classifier forms clusters of instances
such that two conditions are fulfilled: (1) there would be the most intra-cluster similarity and
inter-cluster dissimilarity and (2) each cluster is as pure in labels as possible. In literature, one
of themost similarmethods is ReaSC [28] since it uses ensemble classifierswhichwork based
on clustering the data. This algorithm is one of the most successful methods proposed in the
field of semi-supervised classification of non-stationary data streams; however it is incapable
of handling recurring concepts. This is because it forgets learned base models based on
recent batches of data. It is also discussed that it may be sensitive to noise in the stream while
discarding the base models. In order to evaluate SPASC, it is mainly compared to ReaSC
on three standard datasets. Considering experimental results, SPASC outperforms ReaSC in
terms of accuracy. It is also proved via experiments that having a low percentage of labeled
instances, achieving the performance near that of the situation where all labels are present
are still possible. In some datasets, it was not the case for ReaSC, again because it does not
take recurring concepts into account. The proposed method is open to improvement. Some
future works in this direction include exploiting a number of pool management methods.
These methods try to increase the accuracy of the pool by pursuing different strategies such
as splitting one classifier into two new classifiers or merging a classifier with a similar one.
Moreover, using variable sized batches of data could be considered. Length of a batch can
be determined by monitoring some characteristics of input data during the running of the
algorithm. Also, it is not necessary to apply classification and updating procedures on equal
length batches. For instance, classification can be performed on smaller batches of data
while updating can be done using larger batches. Furthermore, other measures for finding
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the similarity between a batch of data and a classifier, in batch assignment method, can be
tested. In addition, the formulation has done based on some assumptions. These assumptions
can be reconsidered to be more realistic. This may lead to more complicated methodology
since optimization without those assumptions may be generally harder. Finally, conducting
experiments on more and larger datasets is another direction to follow in future.
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