
Knowl Inf Syst (2016) 46:599–628
DOI 10.1007/s10115-015-0824-9

REGULAR PAPER

The logic transformations for reducing the complexity
of the discernibility function-based attribute reduction
problem

Mehmet Hacibeyoglu · Mohammad Shukri Salman ·
Murat Selek · Sirzat Kahramanli

Received: 30 December 2013 / Revised: 4 January 2015 / Accepted: 2 February 2015 /
Published online: 22 February 2015
© Springer-Verlag London 2015

Abstract The basic solution for locating an optimal reduct is to generate all possible reducts
and select the one that best meets the given criterion. Since this problem is NP-hard, most
attribute reduction algorithms use heuristics to find a single reduct with the risk to overlook
for the best ones. There is a discernibility function (DF)-based approach that generates all
reducts but may fail due to memory overflows even for datasets with dimensionality much
below the medium. In this study, we show that the main shortcoming of this approach is its
excessively high space complexity. To overcome this, we first represent a DF of n attributes
by a bit-matrix (BM). Second, we partition the BM into nomore than n−1 sub-BMs (SBMs).
Third,we convert eachSBMinto a subset of reducts by preventing the generation of redundant
products, and finally, we unite the subsets into a complete set of reducts. Among the SBMs
of a BM, the most complex one is the first SBM with a space complexity not greater than the
square root of that of the original BM. The proposed algorithm converts such a SBM with n

attributes into the subset of reducts with the worst case space complexity of
(
n
n/2

)
/2.

Keywords Attribute reduction · Bit-matrix partitioning · CNF to DNF conversion ·
Computational complexity · Discernibility function · Set cover

M. Hacibeyoglu (B)
Department of Computer Engineering, Necmettin Erbakan University, Konya, Turkey
e-mail: hacibeyoglu@konya.edu.tr

M. S. Salman
Department of Electrical and Electronic Engineering, Mevlana University, Konya, Turkey
e-mail: mssalman@mevlana.edu.tr

M. Selek
Technical Vocation School of Higher Education, Selcuk University, Konya, Turkey
e-mail: mselek@selcuk.edu.tr

S. Kahramanli
Department of Computer Education and Instructional Technologies Teaching,
Mevlana University, Konya, Turkey
e-mail: sirzat@selcuk.edu.tr

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-015-0824-9&domain=pdf

600 M. Hacibeyoglu et al.

1 Introduction

An information system (IS) is usually represented as a triple S = (U, A, d), where U =
{u1, u2, . . . , um} is a set of uniformed objects (records, examples, instances, etc.) referred
to as a dataset, A = {a1, a2, . . . , an} is the set of condition attributes (features), and d is a
decisionattribute (class attribute) of the dataset. Thenumber of the objects of a dataset and the
number of attributes describing this dataset are called the size and the dimension of the dataset,
respectively. For instance, the dataset with U = {u1, u2, . . . , um} and A = {a1, a2, . . . , an}
has a size of m objects and a dimension of n attributes.

One of the basic problems of ISs is the selection of a minimal subset of attributes (MSA)
for a given dataset so that the selected MSA not only significantly reduces the dataset, but
also provides a correct classification of objects within the reduced dataset.

In the rough set theory, every MSA is referred to as a reduct, the number of attributes
composing a reduct is referred to as the size of the reduct, and the problem of finding the
reducts for datasets is referred to as attribute reduction (AR) or feature selection, that is,
one of the specific appearances of the unweighted set cover problem. In this study, the term
attribute reduction is used.

AR provides many benefits for ISs such as: reducing the dimension and size of the dataset,
simplifying the classification rules of the datasetwith improving their classification efficiency,
speeding up the data mining algorithms, reducing the amount of storage needed for ISs [1–7].
Due to these and other benefits, AR is widely used for preprocessing the datasets in ISs such
as pattern recognition, knowledge discovery, data mining, information retrieval, computer
vision, and bioinformatics [1,2,4,6,7].

From a methodological point of view, existing AR approaches are divided into two cat-
egories: Wrapper approaches (WAs) and Filter approaches (FAs). Since a WA selects an
optimal reduct by minimizing the training error of the chosen classifier, it can achieve better
classification accuracy for only particular classifiers.Moreover, theWAs are time-consuming.
In contrast, the FAs evaluate attributes based on criteria independent of any classifier and
find reducts by optimizing these criteria [5,6]. In this study, we deal only with FAs.

According to the rough set theory, once a reduct for a dataset has been computed, the rules
classifying the dataset are easily constructed by overlaying it over the originating dataset
and reading the values off [1,8]. But, unluckily, an optimal reduct is usually relative to a
certain criterion, imposing some restrictions on the parameters such as the reduct size, the
dataset classification accuracy, the query response time, the memory capacity required, and
the degree of inconsistency of the reduced dataset [5,9–11]. The basic solution for locating
an optimal reduct is to generate all possible reducts and retrieve those that meet the given
criterion. Unfortunately, the solution to such problem is NP-hard [5,10–12].

In order to reduce the computational complexity of AR, most AR methods involve the
heuristic criteria based onmeasures such as distance, information, dependency (correlation),
learning model performance, consistency and so on [7,13–15]. According to the first four
criteria, an attribute X is preferred over any other attribute Y if X induces a greater difference
between the two-class conditional probabilities than Y ; if the information gain from X is
greater than that from Y ; or if the association between X and the class C is higher than the
association between Y and C ; and/or if the classification accuracy provided by X is higher
than that by Y . As for the consistency-based heuristic, it selects such a minimum number of
attributes that separates the dataset into consistent subsets of objects [10,13]. Unfortunately,
every heuristic AR method generates a single reduct or a small number of possible reducts
[2,7,13,14,16,17] with the risk of overlooking the optimal ones. Since heuristic ARmethods

123

The logic transformations for reducing the complexity 601

cannot guarantee the optimality of the reduct found [16,17], they estimate the efficiency of
a reduct via the experiments on the dataset for which it was generated [10,18].

Above, it has been mentioned that the basic solution for locating an optimal reduct is
to generate all possible reducts and retrieve those that meet the given criterion. But, unfor-
tunately, there is only one such method developed by Skowron and Rauszer and named as
the discernibility function (DF)-based AR [8,10,17,19–22]. It is based on the conversion
of the DF of a dataset from the conjunctive normal form (CNF) to the disjunctive normal
form (DNF). But since the CNF to DNF conversion is NP-hard, the DF-based AR is only
applicable for simple datasets [8,10,14,17,19,23].

The analysis of CNF to DNF conversion processes shows that there are two main factors
complicating it: the number of prime implicants (PIs) and the number of redundant products
(RPs) generated during the process. Recall that a product is a conjunction of at least two logic
variables. In the process of the CNF to DNF conversion, every product can be absorbed by
the others or grow up to a member of the last result. While every product of the first type is
called as a RP, every product of the second type is called as a PI. Recall that the aim of the
CNF to DNF conversion for a dataset is to obtain the set of PIs of the DF belonging to the
dataset and to consider each PI as one certain reduct of the dataset.

In [24], it has been shown that theworst case time complexity (WCTC) of the conventional
CNF to DNF conversion is a square of its worst case space complexity (WCSC). Therefore,
in this study, we are focusing only on reducing the WCSC of the mentioned conversion.
Note that the WCSC of the CNF to DNF conversion is the maximum possible sum of the
theoretically achievable numbers of PIs and RPs in this conversion. In [1] and [25], it has
been shown that the number of PIs of the DNF of a function of n variables may be no more

than
(
n
n/2

)
. As for the number of RPs, usually, it is multiple times more than that of PIs [26].

In order to minimize the WCSC of the CNF to DNF conversion as many as possible, we
first represent a DF by a q × n bit-matrix (BM) M1 where the BCt∈{1,2,...,q} and the attribute
a j∈{1,2,...,n} are represented by the row Rt and the column a j , respectively. For short, in
sequel, instead of the phrase “the WCSC of the conversion of a BM to the DNF,” we will use
the phrase “WCSC of the BM”.

We iteratively partition a BM M1 into the SubBMs (SBMs) such that, firstly, the WCSC
of the SBM processed in any iteration cannot exceed the square root of the WCSC of the
conversion of the whole DF, and secondly, the number of the generated PIs in any iteration

cannot exceed the limit of
(
n
n/2

)
/2. The second transformation is based on dividing the

RPs generated during the conventional CNF to DNF conversion into two categories [26]:
preventableRPs (PRPs) andunpreventableRPs (URPs).While everyPRPcanbe pre-detected
and avoided without generation, every URP can be detected and removed only after it is
generated. Fortunately, the ratio between the numbers of UPRs and PRPs is usually very
small so that it cannot affect the complexity class of the CNF to DNF conversion. Moreover,
the Algorithm_ILE developed in Sect. 5 catches and discards each URPs once it is generated.
Due to this property of the second transformation, none of the results (intermediate or end)
generated during a CNF to DNF conversion can contain any RP. This transformation is also
iterative and can reduce the space complexity of the CNF toDNF conversion up to n−1 times
in each of iterations.We apply it for converting the SBMs produced by the first transformation
to the appropriate PIs of the DF represented by the BM.

The paper is organized as follows. In Sect. 2, preliminaries to DF-based AR are given.
In Sect. 3, the problem is stated and proved. In Sect. 4, unique properties of the approaches
used for converting a BM into the appropriate set of PIs are exposed. In Sect. 5, the algorithm
for converting a BM into the appropriate set of PIs and a numerical example demonstrating

123

602 M. Hacibeyoglu et al.

the work of the algorithm in detail are given. In Sects. 6 and 7, experimental results and
conclusions are given.

2 Preliminaries

As it is known, every DF is always represented in conjunctive normal form (CNF), which is
a conjunction of different disjunctions of 1 ≤ k ≤ n− 1 attributes [1,8,21,22]. Each of such
disjunctions is called a clause. The number of attributes composing a clause and the number
of clauses composing a DF in CNF are called the size of the clause and the size of the DF (or
the size of the CNF), respectively. For short, we denote the size of a set X by |X |.

A clause Ci j for a dataset with n attributes and m objects is defined as [1,8,19,22]:

Ci j = ∨n
k=1ak : ak(ui) �= ak(u j) (1)

where ak(ui) and ak(u j) are the values of the attribute ak for the objects ui∈{1,2,...,m−1} and
u j∈{i+1,i+2,...,m}, respectively. The DF for a dataset is formed as follows [1,8,10,19]:

DF = ∧m−1
i=1 ∧m

j=i+1 Ci j (2)

This formula prescribes the logic multiplication (in sequel will be referred simply asmultipli-
cation) over all clauses derived from the same dataset. Usually, a DF contains many clauses
absorbed (subsumed) by the other ones. We call such clauses as Redundant Clauses (RCs)
and the ones are not absorbed by other clauses as Prime Clauses (PCs). In order to avoid
superfluous operations and memory capacity related to RCs, before the computations in (2),
the RCs should be removed. A DF without any RC, i.e., containing only PCs, is called a
minimal DF and denoted by DFmin. In [27], it is shown that for datasets with numbers of
objects in the range from thousands to tens of thousands, the ratio between |DF| and |DFmin|,
usually, lies in the range from thousands to millions. Therefore, the algorithm obtaining the
DFmin, directly, from a dataset should compare each newly generated clause with the already
existing ones and remove from them those absorbed by it, or discard it, if it is absorbed by
any of them. Such an algorithm is given in [27].

Example 1 Obtain the DFmin for the dataset in Table 1.

According to (1), the clauses for this dataset are to be as in Table 2. The original and
minimized forms of the DF obtained from Table 2 are, respectively, as follows:

Table 1 A dataset example
(adopted from [10])

u a1 a2 a3 a4 d

u1 1 0 2 2 0

u2 0 1 1 1 2

u3 2 0 0 1 1

u4 1 1 0 2 2

u5 1 0 2 0 1

123

The logic transformations for reducing the complexity 603

Table 2 The clauses for the
dataset given in Table 1

i, j Ci j The status of Ci j DFmin

1,2 a1 ∨ a2 ∨ a3 ∨ a4 Absorbed by C1,3 {C1,2}
1,3 a1 ∨ a3 ∨ a4 Absorbed by C1,5 {C1,3}
1,4 a2 ∨ a3 Prime clause {C1,3,C1,4}
1,5 a4 Prime clause {C1,4,C1,5}
2,3 a1 ∨ a2 ∨ a3 Absorbed by C1,4 {C1,4,C1,5}
2,4 a1 ∨ a3 ∨ a4 Absorbed by C1,5 {C1,4,C1,5}
2,5 a ∨ a2 ∨ a3 ∨ a4 Absorbed by C1,5 {C1,4,C1,5}
3,4 a1 ∨ a2 ∨ a4 Absorbed by C1,5 {C1,4,C1,5}
3,5 a1 ∨ a3 ∨ a4 Absorbed by C1,5 {C1,4,C1,5}
4,5 a2 ∨ a3 ∨ a4 Absorbed by C1,5 {C1,4,C1,5}

Table 3 Description of the
dataset by a2 and a4

u a2 a4 d

u1 0 2 0

u2 1 1 2

u3 0 1 1

u4 1 2 2

u5 0 0 1

DF = C12∧C13∧C14∧C15∧C23∧C24 ∧ C25 ∧ C34 ∧ C35 ∧ C45

= (a1 ∨ a2 ∨ a3 ∨ a4) ∧ (a1 ∨ a3 ∨ a4) ∧ (a2 ∨ a3) ∧ a4 ∧ (a1 ∨ a2 ∨ a3)

∧(a1 ∨ a3 ∨ a4) ∧ (a1 ∨ a2 ∨ a3 ∨ a4) ∧ (a1 ∨ a2 ∨ a4)

∧(a1 ∨ a3 ∨ a4) ∧ (a2 ∨ a3 ∨ a4)

DFmin = C14 ∧ C15 = a4 ∧ (a2 ∨ a3)

As it is seen from Table 2 and these expressions, while |DF| = 10, |DFmin| = 2. Since a
reduct of a DF is a product of the variables the DF depends on, we should obtain the DNF of
DFmin by expanding it as follows:

DFmin = a4(a2 ∨ a3) = a2a4 ∨ a3a4

where each of the products a2a4 and a3a4 is a reduct of the dataset given in Table 1. The
descriptions of the dataset by these reducts are given in Tables 3 and 4, respectively.

For simplicity and clarity of operations on the clauses, in [24,26,27], each clause, Ci j ,
given by (1) is represented by a bit-clause (BC) Bi j defined as:

Bi j = (bi jk)
n
k=1 (3)

where bi jk = 1 if ak(ui) �= ak(u j) and bi jk = 0 otherwise, and k is the position of the bit at
hand in the Bi j . As it is seen from (2), for a dataset withm objects, exactly Q = m(m−1)/2
BCs are generated. They compose a set

S = {
Bi j

}
, i = 1, 2, . . . ,m − 1, j = i + 1, i + 2, . . . ,m (4)

123

604 M. Hacibeyoglu et al.

Table 4 Description of the
dataset by a3 and a4

u a3 a4 d

u1 2 2 0

u2 1 1 2

u3 0 1 1

u4 0 2 2

u5 2 0 1

Table 5 The BC-based
representation of Table 2

i, j Bi j The status of Bi j Smin

1,2 1111 Absorbed by B1,3 {B1,2}
1,3 1011 Absorbed by B1,5 {B1,3}
1,4 0110 Prime bit-clause {B1,3, B1,4}
1,5 0001 Prime bit-clause {B1,4, B1,5}
2,3 1110 Absorbed by B1,4 {B1,4, B1,5}
2,4 1011 Absorbed by B1,5 {B1,4, B1,5}
2,5 1111 Absorbed by B1,5 {B1,4, B1,5}
3,4 1101 Absorbed by B1,5 {B1,4, B1,5}
3,5 1011 Absorbed by B1,5 {B1,4, B1,5}
4,5 0111 Absorbed by B1,5 {B1,4, B1,5}

Since every Bi j is a bitwise representation of a certain propositional clause Ci j , a set S has
as many redundant BCs as the represented by its propositional DF with redundant clauses.
For example, the BC-based representation of Table 2 is given in Table 5, where attributes
and bit positions in BCs are associated by the following attribute-bit structure.

Attribute-bit-str = {a1 : 1; a2 : 1; a3 : 1; a4 : 1} (5)

In this structure, ak : 1 means that, in BCs, the attribute ak is represented by a single bit in
the kth position.

In Table 5, a redundant BC (RBC) is obtained as follows: Let A and B be different BCs.
A is absorbed by B (A is a RBC) if A&B = B and B is absorbed by A (B is a RBC) if
A&B = A. If the result of A&B is neither A nor B, then none of these BCs is a RBC. Based
on this rule, we obtain from Table 5 that Smin = {B1,4, B1,5} = {0110, 0001}. According to
the structure in (5), this result should be interpreted as a set of reducts a2a4 and a3a4.

Note that, removing the RBCs from the set S disorders the indices of the BCs remaining in
Smin. Therefore, for indexing the BCs in Smin, we use a single variable t = 1, 2, . . ., q ≤ Q
and rewrite (1), (4) and (2), respectively, as follows:

Bt = (btk)
n
k=1 (6)

Smin = {Bt }qt=1 (7)

W = |qt=1E(Bt) (8)

where W is the bitwise representation of a DF, the “|” denotes the sign of the bitwise OR
operation used for performing the AND operation on the pairs of BCs [24,26,27], and E(Bt)

is an operator expanding a Bt into the set of associated unit BCs as follows:

123

The logic transformations for reducing the complexity 605

E (Bt) = {Prk (Bt) |btk = 1} (9)

where Prk(Bt) is the projection of Bt on the bit-position k that gives a unit BC with a single
1 in the kth bit-position and 0’s in all the others. For instance, Bt = 1011001, E(Bt) =
{Prk(Bt)|btk = 1} = {1000000, 0010000, 0001000, 0000001}.

3 Problem statement

As discussed before, every DF is considered as a Boolean function where every variable
represents an attribute of the dataset to which the DF belongs. Since every variable in a DF
represents a certain attribute occurring only in the positive (uncomplemented) form, it may
be simply considered as a literal. Therefore, in this study, the concepts of attribute, variable,
and literal are interchangeably used.

Recall that according to DF-based AR, each reduct is obtained as one PI of the DF,
and for obtaining the PIs of a DF, it should be converted from CNF to DNF [1,8,19,21].
As it is known, all CNF to DNF conversion algorithms are based on the Nelson’s theorem
[15,28–31] stating that “all PIs of a Boolean function given in CNF can be obtained by
straightforward multiplying its clauses and deleting all RPs from the result” [29]. As it is
easy to understand, the Nelson’s CNF to DNF conversion is an exhaustive process during
which no any minimization of intermediate results is done.We will refer to such a conversion
as an exhaustive conversion. In the process of such conversion of a DF with n variables,
totally �EC (n) = ∏q

i=1 w(ci) ≈ w(c)q products are generated [24,30], where q is the size
of the DF, w(ci) < n is the size of the clause Ci , w(c) < n is the average size per clause,
and �EC (n) is the space complexity of the exhaustive CNF to DNF conversion. On the other
hand, the number of PIs of a logic function of n variables may be as large as 3n/n [29]. This
is to say that the number of RPs generated in the DF to DNF conversion process may be as
large as Rmax = w(c)q − 3n/n. But while this upper bound for Rmax is valid for a generic
Boolean function of n variables, it is very surplus for a DF in which every attribute appears
only in the positive form. Namely, every DF is a completely monotonic function (CMF). Such
a specification of a DF is very beneficial because the number of PIs of a CMF of n variables

is limited by
(
n
n/2

)
[1,25] which is much smaller than 3n/n for all n > 9. That is, for a

CMF, Rmax may be as large as w(c)q − (nn/2). The analysis of this formula shows that w(c)q

reaches its maximum value at w(c) = n/2 and q = (nn/2). Namely,

Rmax = (n/2)(
n
n/2) − (nn/2) (10)

Moreover, a DF considered as a CMF may be specified in the binary space {0, 1}n of the
complexity 2n instead of the ternary one {0, 1, x}n with the complexity 3n needed for speci-
fying a generic function of n variables. The computations by (10) show that even for n = 7,
the Rmax for a CMF could be as large as 1019. This is because with every increase of n by 1,
the exponent of Rmax increases more than the double. For instance, the increment in n from 9
to 10 causes an increment in the exponent of Rmax from 82 to 176. While modern computers
cannot afford a set of the size of the order of 1019, that would take place even at n = 7, they
have to process the datasets with n � 7. Briefly speaking, the main factor complicating the
CNF to DNF conversion is the excessively high WCSC of this problem that usually even
exceeds the virtual memory capacity of modern computers. Therefore, reducing the WCSC
of the mentioned conversion is one of the actual problems in logical data processing.

123

606 M. Hacibeyoglu et al.

In order to reduce the WSCS of the CNF to DNF conversion, a number of attempts were
made. In particular, the algorithm proposed by Slagle and et al., [32] represents a function
in CNF by a semantic tree, considers each prime path in it as a PI of the function, and finds
the PIs by a depth-first searching in the tree. Unfortunately, this algorithm usually performs
superfluous operations as it would generate some PIs more than once and present some RPs
as PIs [31]. Another search tree (ST)-based CNF to DNF conversion method is the Thelen’s
approach [33–35]. A Thelen’s ST is built such that in its every level, one clause represented
by the CNF is processed. Therefore, a ST representing a CNF of size q has exactly q levels.
Every node in the level i of the ST have as many outgoing arcs as many literals in the clause
Ci processed in this level, and each arc outgoing from every node of the level i is labeled by
one of literals of Ci . In such a ST, conjunction of all literals labeling the arcs at the path from
the root to a node is considered as the product to be represented by this node. Therefore,
each leaf node of such a ST represents a product that either a PI or a RP. In order to prevent
the growth of the number of RPs, a ST is pruned in each of its levels by the following rules
[34,35]:

R1: An arc is pruned if its predecessor node (product) contains the complement of the
arc-literal,

R2: A clause is discarded if it contains a literal, which appears also in the predecessor node
(product),

R3: An arc is pruned if another non-expanded arc on a higher level still exists, which has
the same arc-literal.

The rule R1 has no meaning for DFs since, as a CMF, every DF always contains only
the positive variables. In terms of switching functions, Thelen’s approach begins with a root
node representing a 1. In order to build each next level of a ST, the algorithm compares the
next clause to be embedded into the ST with each of products represented by the nodes in
the most recently built level. While the clause is multiplied by every product that does not
contain any literal from it, it is discarded for every product that contains at least one literal
from it (Rule 2). This process is iteratively continued until all clauses of the DF are processed
(embedded into the ST). In result, the algorithm gives all possible PIs and some URPs that
could not be recognized by rule R2. These URPs are removed from the result by rule R3.
Note that both rules R2 and R3 realize the same logic absorption law given below.

P̂ ∩ Ĉ = P̂ → P ∧ C = P (11)

where P is a product, C is a clause and P̂ , and Ĉ are the sets of literals present in P and C ,
respectively. Since (11) is the rule for the irredundant logic expansion (ILE) of a product P
by a clause C , we will refer to an approach based on this rule as an ILE. As it is stated in
[35], in spite of iteratively pruning of the ST, the WCSC of the ILE is exponential in n. This
is because of rule R2, according to which every clause to be embedded into a ST, should
be compared with all already computed products, the number of which may be as large as
(nn/2) that is of order of 2n . In [36], Socher proposed a n × q binary matrix (BM)-based
approach where the row k∈{1, 2, . . ., n} and the column t ∈ {1, 2, . . ., q} are labeled by the
literal (attribute) ak ∈ A and by the BC Bt ∈ Smin, respectively. In such a BM, the entry
(k, t) is always associated with the bit btk = Prk(Bt). For example, the BM representation
of the function F = (a ∨ c)(b ∨ c)(b ∨ d ∨ f)(b ∨ e ∨ f) is to be as in Table 6.

The mentioned approach is based on the divide-and-conquer strategy according to which
the given BM is processed iteratively and its remainder to be processed in the i th, i ≤ n − 1,
iteration is denoted by Mi (the original BM is denoted by M1). According to this approach,
in the i th iteration, a split literal SLi is chosen and the Mi is partitioned into two sub-BMs

123

The logic transformations for reducing the complexity 607

Table 6 The BM representation
of the function F

B1 B2 B3 B4

a 1 0 0 0

b 0 1 1 1

c 1 1 0 0

d 0 0 1 0

e 0 0 0 1

f 0 0 1 1

(SBMs) so that while one of the SBMs, denoted by Di , contains only those columns of the
Mi for which SLi = 0, another SBM, denoted by Mi+1, contains all the rows of BM except
the row labeled by the SLi . The SBM Di is processed at once in order to obtain all PIs that
can be derived from it. But the SBM Mi+1 is passed to the next iteration as the remainder of
the BM M1 to be processed in it. In sequel, we will call this method as the sequential logic
partitioning (SLP). In short, a SLP-based algorithm discovers the PIs of a DF by generating
all paths through the BM, discarding subsumed paths and considering each preserved path
as a PI [31]. Since at each iteration of the SLP one SL is chosen, the number of iterations
of a SLP-based algorithm cannot exceed the limit of n − 1. Unfortunately, this approach
performs superfluous operations as it generates some part of products more than once and
carries out some RPs [31,37]. In [37], an improvement of the SLP according to which the
BM is partitioned into several cofactors is proposed. The subsets of PIs for all cofactors are
obtained separately and then cross-concatenated. There are several other methods for CNF
to DNF conversion reviewed in [31,37] but not so attractive for the conversion of a DF to
DNF. In our opinion, the algorithms proposed in the abovementioned studies suffer from the
following drawbacks making them not so convenient for converting a DF from CNF to DNF:

1. The algorithms have been developed for logic minimization in the space {0, 1, x}n that is
much wider than the space {0, 1}n enough for DFs,

2. Every algorithm fixes all paths existing in the BM or ST, removes redundant paths from
the result and considers each of remaining paths as a PI. But since the number of RPs for
a function is usually much greater than that of PIs, the algorithm would generate so many
RPs that may overflow the memory,

3. The computational complexities of the algorithms have not been satisfactorily estimated,
4. Search for PIs in a BM or in a ST is more difficult than their computation by switching

functions techniques, where the PIs are calculated by logic transformations on the input
cubes (vectors specified in the space {0, 1, x}n).

The contributions of this paper include:

• We show that every DF is exactly a CMF and can be processed by much simpler way
than when it is considered as a generic function,

• We show that in the SLP the number of iterations cannot exceed n − 1 and the most
complex iteration is the first one with a space complexity no higher than the square root
of that of the original BM,

• We show that the WCSC of the ILE applied is (nn/2)/2,• Weshow that SLP and ILEmaybe combined in a single algorithm so that theWCSCof the
CNF toDNF conversion reduces from�EC (n) = (n/2)(

n
n/2) to�I LE (n − 1) = (nn/2)/2,

123

608 M. Hacibeyoglu et al.

where the �EC (n) and �I LE are WCSCs of the exhaustive and ILE-based CNF to DNF
conversions, respectively.

4 Unique properties of SLP and ILE

In our opinion, SLP and ILE have some unique properties that allow us to combine them in
a single algorithm more efficient than each of them alone. The unique properties of the SLP
are as follows:

1. It iteratively (sequentially) partitions the BM so that at each iteration only one SBMwith
the WCSC much less than the original BM is processed,

2. The number of PIs generated in each iteration cannot exceed the half of the number of
all PIs. This property is very useful, especially, in cases where n is a big number and the
number of PIs is close to the maximum possible one; that is almost exponential in n.

The unique property of the ILE is that it can prevent the generation of the vast majority of RPs
by using Rule 2 given above. As for the remaining few RPs referred to above as URPs, they
can be detected and deleted by the logic absorption law in (11) at the end of constructing every
level of the ST being built. In our opinion, the ILE may be considered as an improvement of
the Nelson’s method in the sense that it, additionally, can avoid the generation of all PRPs.
Therefore, we obtain the WCSC for the ILE via the WCSC of the Nelson’s method.

4.1 The WCSC of the Nelson’s method

As mentioned above, in the Nelson’s method, the minimized DNF (disjunction of all PIs)
of a Boolean function given in CNF is obtained by straightforward multiplying its clauses
and removing all RPs from the result. If the clauses of a CNF are C1,C2, . . .,Cq then the
Nelson’s algorithm can be written as given in Fig. 1.

In order to convert a DF to the DNF, the Algorithm_ON (Fig. 1) multiplies all clauses of
the DF together regardless of which there may be generated a large number of RPs. Above,
such conversion has been referred to as exhaustive one and its WCSC has been obtained as
�EC (n) = ∏q

i=1 w(ci). Since for the worst case q = (nn/2) and ∀i ∈ {1, 2, . . ., q}, w(ci) =
n/2, the WCSC of the Algorithm_ON is to be as:

�ON (n) = (n/2)(
n
n/2) (12)

while processing such a big number of clauses is beyond the power of modern computers for
n ≥ 7, the number of PIs of a function of n variables cannot exceed the number q = (nn/2)
�EC (n). However, the WCSC of the DF to DNF conversion can be reduced in a large scale
if statement 2 in Fig. 1 to be included into the For loop as in Fig. 2.

In the iteration t ∈ {0, 1, 2, . . ., q} of the Algorithm_IN (Fig. 2), first the set of products
W is expanded by multiplying it with the clause Ct and second all RPs present in W are

Fig. 1 The original Nelson’s
algorithm

Algorithm_ON(C1, C2 , … , Cq)
W=1
1. For t=1 to q

W=W Ci
End for

2. Remove from the set W all elements
absorbed by at least one other element in it

End

123

The logic transformations for reducing the complexity 609

Fig. 2 The improved Nelson’s
algorithm

Algorithm_IN(C1, C2 , … , Cq)
W=1
For t=1 to q

1. W=W Ci

2. Remove from the set W all elements
absorbed by at least one other element
in it

End for
End

removed. Namely, no RP is passed to the next (t +1)th iteration. According to the algorithm,
every iteration begins with a products set W of size |W | ≤ (nn/2). Statement 1 increases the
size of the set W by a factor n/2 and statement 2 reduces it up to |W | ≤ (nn/2). Therefore,
WCSC of the Algorithm_IN is as follows:

�I N (n) = (n/2) × (nn/2) (13)

As it is easy to see, the WCSC of the Algorithm_ IN (Fig. 2) is R = �ON (n) /�I N (n) =
(n/2)(

n
n/2) /((n/2)×(nn/2)) times less than that of the Algorithm_ON. For example, for n = 4,

5, 6, 7, 8, 9 and 10, R = 5.3, 3.8× 102, 5.8× 107, 9.0× 1016, 5.0× 1039, 3.5× 1079 and
1.1 × 10173, respectively. In spite of the reduction in these large scales, the WCSC of the
Algorithm_ IN remains in the class of exponential complexity because (n/2) × (nn/2) may be
specified as O(2n), i.e.,

O (�I N (n)) = O(2n) (14)

However, fortunately, the space complexity of real tasks is much less than the mentioned
WCSC, and hence, the conversion of a DF to DNF is applicable for datasets with several tens
of attributes.

4.2 The WCSC of the ILE

Recall that according to the ILE, while a clause to be inserted (embedded) into the ST is
multiplied by every product that does not contain any literal from it, it is neglected for every
product that contains at least one literal from it (Rule R2). This process is continued iteratively
until all clauses of the DF at hand are embedded into the ST. As it is shown in [26] and [34],
rule R2 may detect and prevent the generation of most RPs in each level of the ST. But the
number of RPs that cannot be detected by rule R2 remains not only unknown but also may
grow from level to level. This problem can be avoided if rule R3 is applied not at the end of
the algorithm but at the end of building each level of a ST.

In the worst case, the DF has q = (nn/2) clauses with n/2 literals per clause and each
literal appears exactly in (nn/2)/2 products of DNF of the DF. This is to say that in expansion
(multiplication) of a products set W with a clause C by the ILE, the maximum possible
number of expanded and unexpanded elements of the set W are the same and are equivalent
to (nn/2)/2, i.e., the WCSC of the ILE is to be as

�I LE (n) = (nn/2) (15)

From (13) and (15), it is seen that the amount of intermediate products produced by an ILE-
based algorithm is to be n/2 times less than that of the Improved Nelson’s algorithm. This is to
say that in many cases when Improved Nelson’s algorithm can overflow the memory, an ILE-
based algorithm can work easily. In spite of this, �I LE (n) belongs to the same complexity
class O(2n) as�I LE (n). However, the ILE is applicable for datasets with dozens of attributes

123

610 M. Hacibeyoglu et al.

because, firstly, the space complexities of the real AR tasks are usually much less than the
mentioned WCSC and secondly, the SLP applied to the BM before the ILE may seriously
reduce the work to do by it.

4.3 The WCSC of the SLP

Since the SLP was developed for solving the problems with a few variables such as theorem
proving [36,37], it has not been subjected to a serious computational complexity analysis.
But in our opinion, since this method may be applied to the processing of DFs with dozens
of attributes, the mentioned analysis is necessary. For this aim, consider the BM structure
given in [24] that is a 90 degrees right-rotated form of the conventional BM. In such a BM,
every row and column is, respectively, labeled with one BC and one certain literal of the DF
it represents. Since the location of such a BM in the memory is almost the same with its logic
structure, it may be processed by a more easy way. Moreover, every BM of this structure may
be subjected easily to the commutative decomposition according to which every BM can be
partitioned into smaller and independent SBMs without losing its original features [38]. In
our opinion, from the related approaches, the approach that most satisfies this criterion is the
Socher’s approach [36] summarized above (Sect. 3). In [24], two more important concepts
for processing the BMs have been introduced. They are the weight of an attribute and the
weight of a BC obtained as the numbers of 1’s in the column and in the row labeled by the
attribute and the BC, respectively. While the weights of the attributes are used for selecting
the best suited SL for current iteration, the weights of the BCs are used for obtaining the
space complexity of the exhaustive processing of BM. According to [22,24,34,36], as the
SL for every iteration the attribute of the highest weight in the BM to be processed in this
iteration is chosen. If there are more than one such attribute, any one of them may be chosen.
An algorithm implementing the SLP is given in Fig. 3.

In the Algorithm_SLP (Fig. 3), Rt is the t th row of the SBM Mi , Wi is the subset of prime
paths derived from the SBM Mi , and W is the union of the subsets W1,W2, . . .,Wi−1. In
order to derive the SBM Di from the SBM Mi , first the Mi is considered as a set and second
the Di is derived from it by the statement A2.

As it is easy to see fromFig. 3, theAlgorithm_SLPprocesses the originalBMM1 iteratively
so that, in the i th iteration, all paths containing the SLi (split literal for the i th iteration) but
not containing any literal from the set {SL I }i−1

I=1 are generated (see the statement A3), where
i ∈ {1, 2, . . ., n−1}. This is to say that in the i th iteration, the algorithm processes a BMwith
n − i + 1 literal including the SLi . Generally speaking, the algorithm begins with a BM of

Algorithm_SLP (M1)
i=1
Until Mi is a zero row

A1. Select the split literal SLi for Mi

A2. Di ={Rt: Rt Mi and Rt(SLi)=0}
A3. Mi+1 =Mi with the column SLi cleared and the redundant rows (BCs absorbed by other ones)

removed
A4. Obtain the set Wi of all paths in Di
A5. Remove all redundant paths from Wi
A6. Concatenate each path in Wi with the SLi
A7. i=i+1

End Until
A8. W={Wj}

1
1

i
j ; Consider each element of W as a PI of the DF

End

Fig. 3 The algorithm of the SLP

123

The logic transformations for reducing the complexity 611

n literals, reiterates with removing one literal in every iteration from the BM and ends when
there a SBM Mi = 0 (a SBM with single zero row) appears. This is to say that for a BM
with n columns (literals) the Algorithm_SLP will do at most n−1 iterations. But the number
of BCs in the SBM Di processed in the i th iteration and the number of PIs generated in the
same iteration may be as large as (n−i

(n−i)/2). It is easy to see that with each increment in the

value of i by 1, the value of (n−i
(n−i)/2) decreases approximately by the half. In other words,

the WCSC of the (i + 1)th iteration of the Algorithm_SLP is to be approximately two times
less than that of i th iteration.

As mentioned above, in the i th iteration, the BM Mi is partitioned into the SBMs Di and
Mi+1. While the Mi+1 is passed to the next iteration, the Di is processed at once to find PIs
derivable from it.

In the i th iteration, the algorithm Algorithm_SLP (Fig. 3) converts from CNF to DNF a
SBM Di with n − i + 1 nonzero columns (literals) and no more than (n−i

(n−i)/2) rows (BCs).

Since max
{
(n−i
(n−i)/2)

}
= (n−i

(n−i)/2), among the SBMs D1, D2, D3, . . ., Dn−1 processed in

the 1st, 2nd, . . ., (n − 1)th iterations of the algorithm, respectively, the one with the highest
WCSC is the D1. Therefore, below we will focus only on the WCSC of the 1st iteration of
the Algorithm_SLP.

As it is well known, the most complex BM representing a DF with n literals is a BM
with q = (nn/2) rows, n columns, exactly w(c) = n/2 1’s per row and exactly (nn/2)/2 1’sper
column [1,24,25]. The WCSC of the exhaustive conversion of such a BM to DNF is as of
Algorithm_ON (Fig. 2), i.e.,

�EMC1 (n) = �ON (n) = (n/2)(
n
n/2) (16)

As mentioned above in the first iteration of a SLP-based algorithm, to DNF is converted not
the whole of the original BM M1 but only its SBM D1 = {Rt |Rt ∈ M1 and SL1(Rt) = 0},
where Rt is the label of the row representing the BCt . Since in such a BM each column
(attribute) has exactly (nn/2)/2 0’s, the SBM D1 will have exactly (nn/2)/2 rows with the
following WCSC of the exhaustive conversion,

�ECD1 (n) = (n/2)(
n
n/2)/2 = √

�EMC1(n) (17)

Namely, the SLP reduces the WCSC of the exhaustive processing of a BM at least by√
�EMC1(n) times. The efficiency of this reduction increases almost in a quadratic behavior

with every increase in the value of n by 1. For instance, for n = 7, 8, 9 and 10, while the
orders of the values of �EMC1(n) are 1019, 1042, 1082 and 10176, the orders of the values of
�ECD1(n) are 109, 1021, 1041 and 1088, respectively. In spite of this, the space complexity
of the mentioned conversion still remains very high for all n ≥ 8. However, the SLP has
the following advantages that may be considered as a base for developing more efficient
algorithms: 1) The WCSC of the approach cannot exceed the square root of that of the BM
in whole, 2) The number of PIs that may be generated in one iteration of the approach cannot
exceed the half of the maximum possible number of all PIs, 3) The number of iterations of
the approach cannot exceed n-1.

5 The combined SLP-ILE approach

As mentioned above, the SLP allows us to reduce the WCSC of the exhaustive processing
of a BM from �EMC1 (n) = (n/2)(

n
n/2) to �ECD1 (n) = √

�EMC1(n) and the maximum

123

612 M. Hacibeyoglu et al.

possible number of simultaneously generated PIs from (nn/2) to (n−1
(n−1)/2) ≈ (nn/2)/2. As for

ILE, it can reduce the WCSC of the mentioned processing from �ECD1 (n) = √
�EMC1(n)

to �I LE (n) = (nn/2)/2. That is, the SLP and ILE may be combined together such that the

WCSC of CNF to DNF conversion of a DF can be reduced from (n/2)(
n
n/2) to (nn/2)/2. In order

to do this, it is sufficient to replace the statements A4 to A6 of the Algorithm_SLP (Fig. 3)
with a procedure implementing the ILE. But since the most efficient system of operations
for processing a BM is the bitwise-logic [16,24], we should implement the ST-based ILE in
terms of this logic.

5.1 The bitwise implementation of the ILE

In our opinion, the ILE is based on the commutative decomposition principle and logic absorp-
tion law. According to this principle, a function is partitioned into smaller and independent
sub-functions without losing its original features [38]. For example, the logic expression f
consisting of a multiplication of a product P by a clause C = (xi ∨ x j ∨ · · · ∨ xh) may be
expressed as follows:

f = P
(
xi ∨ x j ∨ · · · ∨ xh

) = xi P ∨ x j P ∨ · · · ∨ xh P (18)

where i < j < h < n. In order to explain the application of the logic absorption law to
a function like (18), let us to denote xi P, x j P, xk P, . . ., xh P by Fi ∨ Fj ∨ Fk ∨ · · · ∨ Fh ,
respectively. For every Fg∈{i, j,k,··· ,h}, rule R2 (Sect. 3) may be rewritten as:

if xg ∈ P̂ then Fg = P else Fg = xg P (19)

where P̂ is the set of literals present in P . The bitwise representation of (19) is as follows:

if BPi&Bt �= 0 then Fg = BPi else Fg = BPi |E(Bt) (20)

where BPi is a bit-product, Bt is a BC, E(Bt) is the set of unit BCs generated according to
(8) and “|” is the sign of bitwise OR operation used for bitwise ANDing the BPs and unit
BCs. Note that the BP representation of a product P contains 1’s and 0’s in the positions of
the literals present and not present in P , respectively.

Equation (20) says that “if BPi & Bt �= 0 then BPi may be preserved (as a candidate
to be a PI) without any operation on it, else it must be expanded by the Bt”. Based on this
corollary, our main procedure given by (8) and to be realized by the ILE can be expressed as
the following system of equations:

Vt1 = {BP : BP ∈ Vt−1 and BP&Bt �= 0} ; Vt2 = Vt−1 − Vt1 (21)

E (Bt) = {btk : btk = Prk (Bt) and btk = 1} (22)

Q = Vt2|E(Bt) (23)

Vt3 = {
h : h ∈ Q and ∃̄z ∈ Vt1 : z&h = z

}
(24)

Vt = Vt1 ∪ Vt3. (25)

As it can be seen from (21–25), while the set Vt1 consists of such elements from the set Vt−1

are to be included into the set Vt without any expansion, the set Vt2 contains those elements
from Vt−1 are to be expanded by Bt (multiplied by E(Bt)) and then included into the setVt .
This is to say that, no element from Vt1 may contain more literals than any element from the
set Vt3. In the other words, some elements from Vt3 may be absorbed by some elements from
Vt1 but not vice versa, i.e., the Vt3 may contain redundant BPs to instantly discard that each
new element generated for Vt3 should be controlled, whether it is absorbed by any element

123

The logic transformations for reducing the complexity 613

Fig. 4 The bitwise algorithm for
the ILE

Algorithm_SLP_ILE (M1)
Order the rows M1 by the weight of the rows; i=1
Until Mi is a zero bit-string

A1.1. Select SLi for Mi
A1.2. Form a unit BC B0 with a 1 in the position of SLi and 0’s in all others positions
A2. Di = B0 {Rt: Rt Mi and Rt (SLi)=0 }
A3. Mi+1 =Mi with the column SLi cleared and the redundant (absorbed) rows
removed
Call Algorithm_ILE (Di) // Output Wi
A7. i=i+1; End Until

A8. W ={Wj}
1
1

i
j

A9. Consider each element of W as a PI of the DF
End

Fig. 5 The Algorithm_SLP_ILE

from Vt1 or not. That is, the set of all non-redundant BPs generated in the t th level of a STwill
be obtained and included into the set of prime BPs by (24) and (25), respectively. Equations
(21–25) can be implemented by the Algorithm_ILE (Fig. 4), where B0 is the unit BC with a
1 in the position of the SLi and 0’s in all other positions. In the algorithm, the contribution of
a SL has been realized indirectly via the B0. This allows us to process every BM (or SBM)
by only parallel bitwise operations on its rows.

In theAlgorithm_ILE (Fig. 4), statement H1 initiates the set V0, statement H2 implements
(21), statement H3 implements (22) and initiates the set Vt3, statements H4 to H7 implement
(23) and (24) with discarding each unpreventable BP once it is generated. Statement H8
implements (25).

5.2 The SLP-ILE algorithm

As mentioned above, the SLP iteratively (sequentially) partitions a BM to SBMs so that
the WCSC of a SBM processed in any iteration is much less than that of the original BM.
Since in this approach, every SBM is transformed into the appropriate subset of PIs by
conventional CNF to DNF conversion, the processing of SBMs with high dimensions may
overflow the computer memory. As mentioned above, the main factor complicating CNF to
DNF conversion is that, besides the essential products, there are usually numerous RPs are
generated. We can avoid the generation of these RPs by replacing the statements A4 to A6
in the Algorithm_SLP (Fig. 3) with the Algorithm-ILE (Fig. 4) as shown in Fig. 5.

123

614 M. Hacibeyoglu et al.

As mentioned before, the most complex SBM generated by the statements A1.1, A1.2, A2,
andA3 of theAlgorithm_SLP_ILE is the SBM D1 with n−1 literals except the SL. According
to (15), this SBM is processed by the Algorithm_ILE with the WCSC (n−1

(n−1)/2) ≈ (nn/2)/2.
Albeit this WCSC is almost exponential in n, the probability of occurrence of a function with
this WCSC is as small as 1/((n − 1)! + nn−2), where ((n − 1)! + nn−2) is the number of
all possible minimal forms of a function of n variables [39]. In particular, this probability
becomes less than 0.001 even at n = 6 and decreasesmore than 2n timeswith every increment
of n by 1.

Example For an example, we select the datasetDiabet [40] withm = 768 objects and n = 8
attributes denoted by a1, a2, . . ., a8. This dataset was preferred due to that it is the smallest
of the available to us real datasets suitable for demonstrating all details of the proposed
algorithm.

For the datasetDiabetwere generated Q = 294568 BCs from which at most q = (nn/2) =
70 are to be prime BCs. But in this example, fortunately q = 15 < 70. Namely, there
294553 BCs have been removed as those absorbed by 15 prime BCs (PBCs) denoted by
R1, R2, . . ., R15 and represented as the BM M1 given in Table 7.

In theBMM1 (Table 7), the elements of the extra roww(a) and extra columnw(R) contain
the weights of the attribute a∈{a1, a2, . . ., a8} and BC R∈{R1, R2, . . ., R15}, respectively.
The w(a) and w(R) are obtained as the number of 1’s present in the column and in the row
labeled by a and R, respectively. For ease of processing the BM, its rows are ordered by the
value of the w(R).

The space complexity of the BM M1 is �EMC1 (n) = ∏15
1 w (Ri) = 2.8 × 109. The PIs

for the dataset are obtained by the Algorithm_SLP_ILE as follows:
The 1st Iteration of the Until Statement: i = 1, input is M1

A1.1: Since in the BM M1 (Table 7) max{w(a j)}8j=1 = w(a7) = 10, SL1 = a7
A1.2: B0 = 00000010

Table 7 The BM M1
representing the set of PBCs for
the dataset Diabet

a1 a2 a3 a4 a5 a6 a7 a8 w(R)

R1 0 0 0 0 0 1 1 1 3

R2 0 1 0 0 0 0 1 1 3

R3 0 1 0 0 0 1 1 0 3

R4 0 1 0 1 0 0 1 0 3

R5 1 0 1 0 0 0 1 1 4

R6 1 0 1 0 0 1 1 0 4

R7 1 1 1 0 0 0 1 0 4

R8 1 1 1 0 0 1 0 0 4

R9 0 1 1 1 0 1 0 1 5

R10 1 0 0 1 1 1 1 0 5

R11 0 0 1 1 1 0 1 1 5

R12 0 0 1 1 1 1 1 0 5

R13 1 1 1 1 1 0 0 1 6

R14 1 0 1 1 1 1 0 1 6

R15 1 1 0 1 1 1 0 1 6

w(a) 8 8 9 8 6 9 10 8

123

The logic transformations for reducing the complexity 615

Table 8 The SBMs D1 (a) and
M2 (b)

a1 a2 a3 a4 a5 a6 a7 a8

(a)

B0 0 0 0 0 0 0 1 0

B1 1 1 1 0 0 1 0 0

B2 0 1 1 1 0 1 0 1

B3 1 1 1 1 1 0 0 1

B4 1 0 1 1 1 1 0 1

B5 1 1 0 1 1 1 0 1

a1 a2 a3 a4 a5 a6 a7 a8 w(R)

(b)

R1 0 0 0 0 0 1 0 1 2

R2 0 1 0 0 0 0 0 1 2

R3 0 1 0 0 0 1 0 0 2

R4 0 1 0 1 0 0 0 0 2

R5 1 0 1 0 0 0 0 1 3

R6 1 0 1 0 0 1 0 0 3

R7 1 1 1 0 0 0 0 0 3

R10 1 0 0 1 1 1 0 0 4

R11 0 0 1 1 1 0 0 1 4

R12 0 0 1 1 1 1 0 0 4

w(a) 4 4 5 4 3 5 0 4

A2: D1 = B0 ∪ {Rt : Rt ∈ M1 and Rt (SL1 = 0 = {B0, R8, R9, R13, R14, R15} that is
re-denoted as {B0, B1, B2, B3, B4, B5}, respectively (Table 8a)

A3: M2 = M1 with the column SL1 = a7 cleared and the redundant rows
(R8, R9, R13, R14, R15) removed (Table 8b)

The space complexity of the SBM D1 to be processed in the first iteration is�ECD1 (n) =∏5
0w (Bi) = 1 × 4 × 5 × 6 × 6 × 6 = 4320 �ECD1 (n) = ∏5

0w (Bt) = 1 × 4 ×
5 × 6 × 6 × 6 = 4320 √

�EMC1(n) = √
2.8 × 109 = 52915. But according to (15), the

Algorithm_SLP_ILEwill process the D1 with theWCSC�I LE (n = 8, i = 1) ≤ (8−1
(8−1)/2) =

35.Since �ECD1 (n = 8, i = 1) > ∀�ECDi (n − i + 1, i > 1) and �I LE (n = 8, i = 1) >

∀�I LE > (n − i, i > 1), we will estimate only the first iteration of the Until statement of
the algorithm.

Start of the Algorithm_ILE (Di) at i = 1. Since the SBM D1 has 5 rows, the Algo-
rithm_ILE (D1) will do 5 iterations.

H1: V0 = {B0} = {00000010}
The 1st iteration: t = 1, inputs are V0 and B1

H2:V11 = {P : P ∈ V0 and P&B1 �= 0} = ∅; V12 = V0 − V11 = {00000010}
H3:E(B1) = {Prk(B1) : b1k = 1} = {10000000, 01000000, 00100000, 00000100}
H4-H7:V13 = V12|E(B1) = {10000010, 01000010, 00100010, 00000110}
H8:V1 = V11 ∪ V13 = V13

123

616 M. Hacibeyoglu et al.

The 2nd iteration: t = 2, inputs are V1 and B2

H2:V21 = {P : P ∈ V1 and P&B2 �= 0} = {01000010, 00100010, 00000110}; V22 =
V1 − V21 = {10000010}
H3:E(B2) = {Prk(B2) : b2k1} = {01000000, 00100000, 00010000, 00000100,
00000001}
H4-H7:V23 = V22|E(B2) = {10010010, 10000011}//Here were generated and dis-
carded 3 URPs: 11000010, 10100010 and 10000110.
H8:V2 = V21 ∪ V23 = {01000010, 00100010, 00000110, 10010010, 10000011}
The 3rd iteration: t = 3, inputs are V2 and B3

H2:V31={P : P ∈V2 and P&B3 �= 0}={01000010, 00100010, 10010010, 10000011};
V32 = V2 − V31 = {00000110}
H3:E(B3) = {Prk(B3) : b3k = 1} = {10000000, 01000000, 00100000, 00010000,
00001000, 00000001}
H4-H7:V33 = V32|E(B3) = {10000110, 00010110, 00001110, 00000111} //Here were
generated and discarded 2 URPs: 01000110 and 00100110
H8:V3 = V31 ∪ V33 = {01000010, 00100010, 10010010, 10000011, 10000110,
00010110, 00001110, 00000111}
The 4th iteration: t = 4, inputs are V3 and B4

H2:V41 = {P : P ∈ V3 and P&B4 �= 0 = {00100010, 10010010, 10000011,
10000110, 00010110, 00001110, 00000111}; V42 = V3 − V41 = {01000010}
H3:E(B4) = {Prk(B4) : b4k = 1} = {10000000, 00100000, 00010000, 00001000,
00000100, 00000001}
H4-H7:V43 =V42|E(B4)={11000010, 01010010, 01001010, 01000100, 01000011} //

Here was generated and discarded 1 URP: 01100010
H8:V4 = V41 ∪ V43 = {00100010, 10010010, 10000011, 10000110, 00010110,
00001110, 00000111, 11000010, 01010010, 01001010, 01000110, 01000011}
The 5th iteration: t = 5, inputs are V4 and B5

H2:V51={P : P ∈ V4 and P&B5 �= 0= {10010010, 10000011, 10000110, 00010110,
00001110, 00000111, 11000010, 01010010, 01001010, 01000110, 01000011}; V52 =
V4 − V51 = {00100010}
H3:E(B5) = {Prk(B5) : b5k = 1} = {10000000, 01000000, 00010000, 00001000,
00000100, 00000001}
H4-H7:V53 = V52|E(B5) = {10000110, 01000110, 00100110, 00010110, 00001110,
00000111}
H8:V5 = V51 ∪ V53 = {10010010, 10000011, 10000110, 00010110, 00001110,
00000111, 11000010, 01010010, 01001010, 01000110, 01000011, 10100010,
01100010, 00110010, 00101010, 00100110, 00100011}
H9:W1 = V5; The end of the Algorithm_ ILE

While in this iteration of the “Until” statement, conventionally
∑4

t=0 Vt × E(Bt+1) =
1 × 4 + 4 × 5 + 5 × 6 + 8 × 6 + 12 × 6 = 174 multiplications with the space complexity
max{4, 20, 30, 48, 72, 17} = 72 had to be performed, where the number 17 is the size of the
setW1, the algorithmperforms only

∑5
t=1 Vt2×E(Bt) = 1×4+1×5+1×6+1×6+1×6 =

27 multiplications with the space complexity max{4, 5, 6, 8, 12, 17} = 17.

123

The logic transformations for reducing the complexity 617

Table 9 The submatrices D2 (a) and M3(b)

a1 a2 a3 a4 a5 a6 a7 a8

(a)

B0 0 0 1 0 0 0 0 0

B1 0 0 0 0 0 1 0 1

B2 0 1 0 0 0 0 0 1

B3 0 1 0 0 0 1 0 0

B4 0 1 0 1 0 0 0 0

B5 1 0 0 1 1 1 0 0

a1 a2 a3 a4 a5 a6 a7 a8 w(R)

(b)

R1 0 0 0 0 0 1 0 1 2

R2 0 1 0 0 0 0 0 1 2

R3 0 1 0 0 0 1 0 0 2

R4 0 1 0 1 0 0 0 0 2

R5 1 0 0 0 0 0 0 1 2

R6 1 0 0 0 0 1 0 0 2

R7 1 1 0 0 0 0 0 0 2

R11 0 0 0 1 1 0 0 1 3

R12 0 0 0 1 1 1 0 0 3

w(a) 3 4 0 3 2 4 0 4

The 2nd Iteration of the Until Statement: i = 2, input is M2

A1.1: Since, in the BM M2 (Table 8b), max{w(a j)}8j=1 = w(a3) = w(a6) = 5, SL2 =
a3; A1.2 : B0 = 00100000
A2:D2 = B0 ∪ {Rt : Rt ∈ M2 and Rt (SL2) = 0} = {B0, R1, R2, R3, R4, R10} that are
re-denoted as {B0, B1, B2, B3, B4, B5}, respectively (Table 9a)
A3:M3 = M2 with the column SL2 = a3 cleared and the redundant (absorbed) rows
removed (Table 9b).

Start of theAlgorithm_ ILE (Di) at i = 2. Since the SBMD2 has 5 rows, the Algorithm_
ILE (D2) will do 5 iterations.

H1:V0 = {00100000}
The 1st iteration: t = 1, inputs are V0 and B1

H2:V11 = {P : P ∈ V0 and P&B1 �= 0} = ∅; V12 = V0 − V11 = {00100000}
H3:E(B1) = {Prk(B1) : b1k = 1} = {00000100, 00000001}
H4-H7:V13 = V12|E(B1) = {00100100, 00100001}
H8:V1 = V11 ∪ V13 = V13

The 2nd iteration: t = 2, inputs are V1 and B2

H2:V21 = {P : P ∈ V1 and P&B2 �= 0} = {00100001}; V22 = V1−V21 = {00100100}
H3:E(B2) = {Prk(B2) : b2k = 1} = {01000000, 00000001}

123

618 M. Hacibeyoglu et al.

H4-H7:V13 = V22|E(B2) = {01100100}//Here was generated and discarded 1 URP:
00100101
H8:V2 = V21 ∪ V23 = {00100001, 01100100}
The 3rd iteration: t = 3, inputs are V2 and B3

H2:V31 = {P : P ∈ V2 and P&B3 �= 0} = {01100100}; V32 = V2−V31 = {00100100}
H3:E(B3) = {Prk(B3) : b3k = 1} = {01000000, 00000100}
H4-H7:V33 = V32|E(B3) == {01100001, 00100101}
H8:V3 = V31 ∪ V33 = {01100100, 01100001, 00100101}
The 4th iteration: t = 4, inputs are V3and B4

H2:V41 = {P : P ∈ V3 and P&B4 �= 0} = {01100100, 01100001}; V42 = V3 − V41 =
{00100101}
H3:E(B4) = {Prk(B4) : b4k = 1} = {01000000, 00010000}
H4-H7:V43 = V42|E(B4) = {00110101} //Here was generated and discarded 1 URP
01100101;
H8:V4 = V41 ∪ V43 = {01100100, 01100001, 00110101}
The 5th iteration: t = 5, inputs are V4 and B5

H2:V51 = {P : P ∈ V4 and P&B4 �= 0} = {01100100, 00110101}; V52 = V3 − V41 =
{01100001}
H4:E(B5) = {Prk(B5) : b5k = 1} = {10000000, 00010000, 00001000, 00000100}
H5-H8:V53 = V52|E(B5) = {11100001, 01110001, 01101001} // Here was generated
and discarded 1 URP: 01100101
H9:V5 = V51 ∪ V23 = {01100100, 00110101, 11100001, 01110001, 01101001}
H10:W2 = V5; The end of the Algorithm_ ILE

To complete this example, twomore iterations of theUntil statement with i = 3, and i = 4
are to be performed.At i = 3, first the SBMM3 (Table 9b) is partitioned by SL3 = a2 (instead
of a2 could be used either a6 or a8) into the SBMs D3 and M4 (Table 10), and then D3 is con-
verted into the set of PBPsW3 = {01000101, 11010100, 11001100, 11010001, 11001001}.

At i = 4, first the SBM M4 (Table 10b) is partitioned by SL4 = a1 (instead of a1 could
be used either a4 or a6 or a8) into the SBMs D4 and M5 (Table 11), and then D4 is converted
into the set of PBPs W4 = {10010101}.

Since the SBM M5 consist of a single zero row, the Algorithm_SLP_ILE is terminated
with:

A8. W = {
Wj

}4
j=1 ={10010010, 10000011, 10000110, 00010110, 00001110, 00000111,

11000010, 01010010, 01001010, 01000110, 01000011, 10100010, 01100010,
00110010, 00101010, 00100110, 00100011, 01100100, 00110101, 11100001, 01110001,
01101001, 01000101, 11010100, 11001100, 11010001, 11001001, 10010101};
A9. Consider each element of W as a PI of the DF: WPI = {a1a4a7, a1a7a8, a1a6a7,
a4a6a7, a5a6a7, a6a7a8, a1a2a7, a2a4a7, a2a5a7, a2a6a7, a2a7a8, a1a3a7, a2a3a7,
a3a4a7, a3a5a7, a3a6a7, a3a7a8, a2a3a6, a3a4a6a8, a1a2a3a8, a2a3a4a8, a2a3a5a8,
a2a6a8, a1a2a4a6, a1a2a5a6, a1a2a4a8, a1a2a5a8, a1a4a6a8.

6 Experimental results

To estimate the performance of the proposed method, we compare the results generated
by it with the results generated by RSES (Rough Set Exploration System), which is a

123

The logic transformations for reducing the complexity 619

Table 10 The submatrices D3 (a) and M4 (b)

a1 a2 a3 a4 a5 a6 a7 a8

(a)

B0 0 1 0 0 0 0 0 0

B1 0 0 0 0 0 1 0 1

B2 1 0 0 0 0 0 0 1

B3 1 0 0 0 0 1 0 0

B4 0 0 0 1 1 0 0 1

B5 0 0 0 1 1 1 0 0

a1 a2 a3 a4 a5 a6 a7 a8 w(R)

(b)

R2 0 0 0 0 0 0 0 1 1

R3 0 0 0 0 0 1 0 0 1

R4 0 0 0 1 0 0 0 0 1

R7 1 0 0 0 0 0 0 0 1

w(a) 1 0 0 1 0 1 0 1

Table 11 The submatrices D4 (a) and M5 (b)

a1 a2 a3 a4 a5 a6 a7 a8

(a)

B0 1 0 0 0 0 0 0 0

B1 0 0 0 0 0 0 0 1

B2 0 0 0 0 0 1 0 0

B3 0 0 0 1 0 0 0 0

a1 a2 a3 a4 a5 a6 a7 a8 w(R)

(b)

R7 0 0 0 0 0 0 0 0 0

w(a) 0 0 0 0 0 0 0 0 0

unique exhaustive search-based AR program generating all reducts. In the experiments,
we used a target machine with an Intel Core I7 3840QM@2.80 GHz processor and 16
GB memory, running on Microsoft Windows 8 Ultimate Edition OS. For experiments, we
chose datasets with different characteristics such as: the number of attributes, the num-
ber of classes, the number of distinct values of the attributes, the types of attribute values
(symbolic, numeric and mixed) and the number of objects (instances). We loaded these
datasets into the memory without any preprocessing. The results of experiments measured
by Microsoft’s process explorer utility show that our algorithm has important advantages
over RSES in terms of both the memory used and time elapsed. As the examples in
Table 12, the results of processing of 23 datasets from the UCI repository [40] are given.
Processing some of these datasets by RSES was failed due to overflow of memory. The

123

620 M. Hacibeyoglu et al.

Ta
bl
e
12

T
he

am
ou

nt
s
of

th
e
m
em

or
y
us
ed
,t
he

C
PU

-t
im

es
el
ap
se
d,

an
d
th
e
nu

m
be
r
of

re
du

ct
s
ge
ne
ra
te
d
by

SL
P-
IL
E
an
d
R
SE

S
ap
pr
oa
ch
es

D
at
a
se
t

N
um

be
r
of

at
tr
ib
ut
es
/o
bj
ec
ts
/c
la
ss
es

A
m
ou
nt
of

th
e
m
em

or
y
(i
n
M
B
s)
us
ed

by
R
SE

S
(M

1
)
/S

L
P-
IL
E

(M
2
)

C
PU

tim
e
(i
n
se
co
nd
s)

el
ap
se
d

by
R
SE

S
(T

1
)
/S

L
A
_I
L
A

(T
2
)

N
um

be
r
of

re
du

ct
s

ge
ne
ra
te
d

M
1

M
2

M
1
/
M

2
T
1

T
2

T
1
/
T
2

R
SE

S
SL

P-
IL
E

D
ia
be
t

8/
76
8/
2

0.
83

0.
27

3.
07

0.
67

0.
47

1.
43

28
28

W
hi
te
w
in
eq
ua
lit
y

11
/4
89

8/
7

1.
62

0.
70

2.
32

12
.3
6

2.
80

4.
42

12
7

12
7

R
ed
w
in
eq
ua
lit
y

11
/1
59

9/
6

0.
99

0.
33

3.
01

1.
33

0.
31

4.
24

22
7

22
7

Po
ke
rh
an
d

11
/1
02

50
10

/1
0

27
8.
12

29
.3
5

9.
47

20
2.
68

80
.9
6

2.
50

8
8

Ly
m
n

18
/1
48

/4
0.
66

0.
32

2.
04

3.
75

0.
03

12
0.
97

42
4

42
4

V
eh
ic
le

18
/8
46

/4
1.
49

0.
32

4.
60

40
.1
9

0.
22

18
3.
50

14
13

14
13

H
ep
at
iti
s

19
/1
55
/2

1.
23

0.
39

3.
18

59
.2
7

0.
03

19
11

.7
7

69
4

69
4

Tw
on

or
m

20
/7
40

0/
2

2.
75

1.
81

1.
52

33
.7
3

13
.8
8

2.
43

18
9

18
9

T
hy
ro
id

21
/7
20
0/
3

2.
34

0.
26

8.
89

15
.8
0

1.
78

8.
87

24
24

M
us
hr
oo

m
22

/8
12

4/
2

2.
72

1.
01

2.
69

48
.1
1

9.
23

5.
21

29
2

29
2

St
at
lo
g(
G
cd
)

24
/1
00

0/
2

2.
40

2.
95

0.
81

11
5.
36

0.
28

41
0.
53

24
24

24
24

W
al
l-
Fo

llo
w
in
g

R
ob
ot

N
av
ig
at
io
n

24
/5
45

6/
4

5.
02

1.
57

3.
19

20
24

.5
8

9.
70

20
8.
65

51
75

51
75

Fa
rs

29
/1
00

96
8/
8

27
.7
2

22
.2
1

1.
24

11
24

7.
27

31
77

.8
3.
54

8
8

C
he
ss

36
/3
19

6/
2

68
0.
42

0.
82

82
5.
75

23
.5
8

2.
24

10
.5
5

4
4

So
yb

ea
n

35
/6
83

/1
9

10
01

.0
8

0.
39

25
93

.4
7

45
3.
13

0.
63

72
5.
00

23
70

23
70

Sp
am

ba
se

57
/4
60

1/
2

17
64

.1
3

3.
56

49
5.
26

78
.3
1

7.
23

10
.8
3

12
0

12
0

Io
no

sp
he
re

34
/3
51

/2
>
18

57
.1
3

0.
39

>
48

11
.2
2

>
71

42
.7
3

0.
41

17
59

2.
94

N
o
R
es
ul
t

(D
ue

to
Fa
ilu

re
)

41
7

D
er
m
at
ol
og

y
34

/3
66

/6
>
18

95
.3
2

10
.5
0

>
18

0.
51

>
12

29
.7
5

23
1.
83

>
5.
30

41
92

2

123

The logic transformations for reducing the complexity 621

Ta
bl
e
12

co
nt
in
ue
d

D
at
a
se
t

N
um

be
r
of

at
tr
ib
ut
es
/o
bj
ec
ts
/c
la
ss
es

A
m
ou
nt
of

th
e
m
em

or
y
(i
n
M
B
s)
us
ed

by
R
SE

S
(M

1
)
/S

L
P-
IL
E

(M
2
)

C
PU

tim
e
(i
n
se
co
nd
s)

el
ap
se
d

by
R
SE

S
(T

1
)
/S

L
A
_I
L
A

(T
2
)

N
um

be
r
of

re
du

ct
s

ge
ne
ra
te
d

M
1

M
2

M
1
/
M

2
T
1

T
2

T
1
/
T
2

R
SE

S
SL

P-
IL
E

A
nn

ea
l

38
/7
98

/6
>
19

03
.0
0

0.
45

>
42

38
.3
1

>
39

4.
78

0.
20

>
19

44
.7
3

57
59

C
yl
in
de
rb
an
ds

40
/5
40

/2
>
18

57
.7
8

8.
48

>
21

8.
97

>
21

54
4.
17

34
.9
9

>
61

5.
81

43
90

7

K
dd

cu
p

41
/4
94

02
0/
23

>
18

00
.0
0

15
0.
3

>
11

.9
7

>
40

98
75

.1
4

83
25

8
>
4.
88

60
7

Sp
ec
tf
H
ea
rt

44
/2
67

/5
9

>
18

00
.0
0

6.
73

>
26

7.
46

>
14

95
82

.8
1

48
.8
1

>
30

64
.4
7

11
55

6

So
na
r

60
/2
08

/2
>
18

00
.0
0

7.
48

>
24

0.
64

>
40

47
88

.1
4

21
.0
3

>
19

24
7.
21

86
87

2

123

622 M. Hacibeyoglu et al.

Ta
bl
e
13

T
he

si
ze

an
d
th
e
at
tr
ib
ut
es

of
re
du

ct
s
ge
ne
ra
te
d
by

A
R
ap
pr
oa
ch
es

D
at
a
se
t

Si
ze
/a
ttr
ib
ut
es

of
th
e
re
du
ct
s
ge
ne
ra
te
d
by

SL
P-
IL
E

C
B
A

C
A

W
A

D
ia
be
t

4/
a 1

,
a 2

,
a 3

,
a 8

4/
a 2

,
a 6

,
a 7

,
a 8

8/
a 1

,
a 2

,
a 3

,
a 4

,
a 5
,

a 6
,
a 7

,
a 8

5/
a 1

,
a 2

,
a 3

,
a 6

,
a 7

Fa
rs

23
/
a 1

,
a 2

,
a 3

,
a 4

,
a 5
,

a 6
,
a 7

,
a 8

,
a 9

,
a 1

0
,
a 1

1
,

a 1
2
,
a 1

3
,
a 1

4
,
a 1

5
,
a 1

6
,
a 1

7
,

a 1
8
,
a 1

9
,
a 2

0
,
a 2

4
,
a 2

5
,
a 2

6

7/
a 3

,
a 6

,
a 1

0
,
a 1

2
,

a 2
4
,
a 2

5
,
a 2

9

23
/
a 1

,
a 2

,
a 3

,
a 4

,
a 5
,

a 6
,
a 7

,
a 8

,
a 9

,
a 1

0
,
a 1

1
,

a 1
2
,
a 1

3
,
a 1

4
,
a 1

5
,
a 1

6
,
a 1

7
,

a 1
8
,
a 1

9
,
a 2

0
,
a 2

4
,
a 2

5
,
a 2

6

1/
a 4

Io
ne
sp
he
re

4/
a 1

,
a 4

,
a 5

,
a 6

14
/
a 1

,
a 3

,
a 4

,
a 5

,
a 6
,

a 7
,
a 8

,
a 1

4
,
a 1

8
,
a 2

1
,

a 2
7
,
a 2

8
,
a 2

9
,
a 3

4

7/
a 5

,
a 6

,
a 8

,
a 1

3
,

a 2
2
,
a 2

7
,
a 3

4

5/
a 4

,
a 5

,
a 1

2
,
a 1

4
,
a 3

2

K
dd

cu
p

10
/
a 3

,
a 5

,
a 6

,
a 2

4
,
a 2

6
,

a 3
3
,
a 3

4
,
a 3

6
,
a 3

7
,
a 4

0

10
/
a 3

,
a 5

,
a 6

,
a 2

4
,
a 2

6
,

a 3
3
,
a 3

4
,
a 3

6
,
a 3

7
,
a 4

0

10
/
a 1

,
a 3

,
a 5

,
a 6

,
a 1

2
,

a 3
3
,
a 3

5
,
a 3

6
,
a 3

7
,
a 3

8

1/
a 2

Ly
m
n

9/
a 2

,
a 3

,
a 6

,
a 7

,
a 9
,

a 1
1
,
a 1

4
,
a 1

6
,
a 1

7

11
/
a 1

,
a 2

,
a 3

,
a 8

,
a 9
,

a 1
0
a 1

1
,
a 1

2
,
a 1

4
,
a 1

5
,
a 1

6

9/
a 1

,
a 2

,
a 3

,
a 6

,
a 9
,

a 1
1
,
a 1

4
,
a 1

5
,
a 1

6

7/
a 3

,
a 8

,
a 9

,
a 1

0
,
a 1

3
,

a 1
4
,
a 1

6

Po
ke
rh
an
d

7/
a 1

,
a 2

,
a 4
,

a 5
,
a 6

,
a 8

,
a 1

0

1/
a 1

4/
a 2

,
a 3

,
a 4

,
a 6

4/
a 2

,
a 3

,
a 4

,
a 6

R
ed
w
in
eq
ua
lit
y

4/
a 2

,
a 5

,
a 1

0
,
a 1

1
4/
a 2

,
a 7

,
a 1

0
,
a 1

1
8/

a 1
,
a 2

,
a 3

,
a 5

,
a 7
,

a 8
,
a 1

0
,
a 1

1

4/
a 2

,
a 7

,
a 1

0
,
a 1

1

So
na
r

3/
a 1

1
,
a 3

6
,
a 4

5
19

/
a 2

,
a 4

,
a 5

,
a 9

,
a 1

0
,

a 1
1
,
a 1

2
,
a 1

3
,
a 2

1
,
a 2

8
,

a 3
6
,
a 4

4
,
a 4

5
,
a 4

7
,
a 4

8
,

a 4
9
,
a 5

1
,
a 5

2
,
a 5

8

15
/
a 1

,
a 4

,
a 5

,
a 9

,
a 1

1
,

a 1
2
,
a 2

0
,
a 3

5
,
a 3

7
,
a 4

5
,

a 4
6
,
a 4

7
,
a 5

1
,
a 5

2
,
a 5

4

2/
a 1

2
,
a 1

9

Sp
ec
tf

5/
a 1

,
a 1

5
,
a 2

3
,
a 3

7
,
a 4

3
2/
a 2

7
,
a 4

3
2/
a 2

7
,
a 4

3
2/
a 3

7
,
a 4

3

St
at
lo
gG

C
D

13
/
a 1

,
a 3

,
a 5

,
a 6

,
a 7
,

a 8
,
a 9

,
a 1

1
,
a 1

4
,
a 1

6
,

a 1
7
,
a 2

0
,
a 2

4

5/
a 1

,
a 2

,
a 3

,
a 7

,
a 2

1
14

/
a 2

,
a 3

,
a 4

,
a 5

,
a 6
,

a 7
,
a 9

,
a 1

0
,
a 1

1
,
a 1

5
,

a 1
6
,
a 1

7
,
a 2

0
,
a 2

1

8/
a 1

,
a 3

,
a 5

,
a 9

,
a 1

5
,

a 1
6
,
a 1

7
,
a 2

3

T
hy
ro
id

6/
a 3

,
a 8

,
a 1

0
,
a 1

1
,a

17
,
a 2

1
5/
a 8

,
a 1

3
,
a 1

7
,
a 1

8
,
a 2

1
9/

a 1
,
a 2

,
a 3

,
a 8

,
a 1

7
,

a 1
8
,
a 1

9
,
a 2

0
,
a 2

1

10
/
a 1

,
a 2

,
a 3

,
a 9

,
a 1

0
,

a 1
7
,
a 1

8
,
a 1

9
,
a 2

0
,
a 2

1

123

The logic transformations for reducing the complexity 623

Ta
bl
e
13

co
nt
in
ue
d

D
at
a
se
t

Si
ze
/a
ttr
ib
ut
es

of
th
e
re
du
ct
s
ge
ne
ra
te
d
by

SL
P-
IL
E

C
B
A

C
A

W
A

V
eh
ic
le

5/
a 1

,
a 6

,
a 8

,
a 1

0
,
a 1

4
11

/
a 4

,
a 5

,
a 6

,
a 7

,
a 8
,

a 9
,
a 1

1
,
a 1

2
,
a 1

4
,
a 1

5
,
a 1

6

18
/
a 1

,
a 2

,
a 3

,
a 4

,
a 5

,
a 6
,

a 7
,
a 8

,
a 9

,
a 1

0
,
a 1

1
,
a 1

2
,

a 1
3
,
a 1

4
,
a 1

5
,
a 1

6
,
a 1

7
,
a 1

8

2/
a 1

1
,
a 1

8

W
hi
te
w
in
eq
ua
lit
y

5/
a 2

,
a 3

,
a 5

,
a 8

,
a 1

1
6/

a 2
,
a 3

,
a 5

,
a 6

,
a 8

,
a 1

1
11

/
a 1

,
a 2

,
a 3

,
a 4

,
a 5
,

a 6
,
a 7

,
a 8

,
a 9

,
a 1

0
,
a 1

1

2/
a 2

,
a 1

1

W
al
l-
Fo

llo
w
in
g

R
ob

ot
N
av
ig
at
io
n

3/
a 2

,
a 1

5
,
a 2

0
6/

a 1
3
,
a 1

4
,
a 1

5
,
a 1

8
,

a 1
9
,
a 2

0

7/
a 2

,
a 1

2
,
a 1

4
,
a 1

5
,

a 1
8
,
a 1

9
,
a 2

0

4/
a 5

,
a 1

0
,
a 1

5
,
a 2

4

123

624 M. Hacibeyoglu et al.

Table 14 The classification accuracies and the elapsed CPU-Times for classification of reducts generated by
AR approaches

Dataset name Classification accuracies of
reducts generated by

CPU time elapsed for classification
with the reduct generated by

SLP-ILE CBA CA WA SLP-
ILE

CBA CA WA

Diabet 0.751 0.741 0.688 0.742 0.19 0.19 0.34 0.22

Fars 0.767 0.767 0.767 0.415 3317.75 2294.15 3551.10 1186.41

Ionesphere 0.912 0.840 0.863 0.860 0.04 0.11 0.06 0.05

Kddcup 0.992 0.990 0.995 0.568 57662.43 57812.45 57598.45 2667.25

Lymn 0.818 0.723 0.730 0.824 0.02 0.02 0.02 0.01

Redwinequality 0.579 0.538 0.548 0.538 0.80 0.80 1.42 0.80

Pokerhand 0.732 0.507 0.604 0.604 97648.95 33204.76 75698.83 75582.21

Sonar 0.731 0.582 0.591 0.558 0.02 0.06 0.04 0.01

Spectf 0.236 0.154 0.154 0.109 0.04 0.02 0.02 0.02

StatlogGCD 0.739 0.708 0.690 0.732 0.71 0.34 0.77 0.46

Thyroid 0.979 0.970 0.943 0.941 17.92 16.69 28.19 30.25

Vehicle 0.735 0.621 0.680 0.615 0.28 0.53 0.83 0.16

Whitewinequality 0.514 0.492 0.463 0.508 9.03 10.39 17.91 4.69

Wall-following
robot navigation

0.905 0.892 0.862 0.855 9.14 12.75 14.43 9.14

results of experiments are given in Table 12, where “> X” denotes the expression “greater
than X”.

As seen from Table 12, our method requires much less amount of memory and much less
processing time than RSES, especially, for medium- and large-sized datasets. For example,
for the dataset Sonar with 60 attributes, 208 objects and 2 classes, while RSES failed after
404788.14 seconds with no result due to memory overflow at about 1800MB of the inter-
mediate results, our program used only 7.48 MB of the memory and generated all of 86872
reducts in only 21.03 seconds.

For evaluating the comparative performance of the reducts generated by the SLP-ILE
approach, we also generated reducts for the 11 datasets given in Table 12 by the widely used
AR approaches such as Correlation-based approach (CBA), Consistency approach (CA) and
Wrapper approach (WA) [41]. The sizes and the attributes of the reducts generated by the
mentioned AR approaches are given in Table 13.

Note that the shortest reduct is not always the reduct with the best classification accuracy
[10,42]. Therefore, in Table 13, column of SLP-ILE are not the sizes of the shortest reduct
but the sizes of the reduct with the best classification accuracies.

For evaluating the classification accuracies of the reducts generated by the SLP-ILE,
CBA, CA, and WA, we used the Euclidian distance-based K-nearest neighborhood (K-nn)
classification algorithm with k = 9. The classification results of the datasets given in Table 13
with 10-fold cross-validation are given in Table 14.

As it is seen fromTable 14, the reducts generated by SLP-ILE for 12 of 14 datasets provide
significant higher classification accuracies than those generated by other AR approaches.
Moreover, the CPU time elapsed by SLP_ILE is usually lower than other AR approaches.

123

The logic transformations for reducing the complexity 625

7 Conclusions

At present, the generation of the complete set of reducts for a dataset can be done only
by the exhaustive search program RSES that, unfortunately, is very time-consuming and
suffers from frequent memory overflows even for the datasets of medium dimensionality.
The proposed algorithm is based on a sequential partitioning of the BM of a DF into the
SBMs and preventing the generation of redundant products during the transformation of a
SBM into PIs (reducts) of the DF. Although this approach reduces the WCSC of the DF-
based AR in a large scale, it still remains theoretically exponential in n. This is, mainly, due
to that the mentioned WCSC is evaluated for the DFs containing all (nn/2) combinations of
n attributes with uniformly distributed frequencies. But since the space complexity of the
proposed algorithm is rapidly decreased with increasing the imbalance in weights of columns
in the BM, it may be quite useful for problems of tens and even of hundreds of attributes
with seriously imbalanced distributions of frequencies in DFs. This is confirmed by the
analysis of results of processing numerous datasets borrowed from practice and from the
UCI repository. The proposed approach also allows us to process the original BM in parallel
by first partitioning it into the SBMs D1, D2, . . ., Dk≤n−1, and then separately processing
them and uniting the separate obtained results. In this respect, if some SBM is found to be
so large that cannot be processed by the computer used, it may be processed as a pseudo-
original BM with uniting the result with that of the rest of processing of the original BM.
It should be noted that, the proposed approach reduces not only the WCSC of DF to DNF
conversion in a very large scale, but it also reduces theWCTC of this conversion from square
ofWCSC to somewhat near to it. Moreover, when it is to find a single reduct, it may be found
simply by considering every Di as Mi+1 and taking each SL as a component of the reduct.
We believe that the proposed approach could be an efficient solution for the unweighted set
cover problem used for solving wide range of discrete optimization problems in knowledge
and data engineering.

References

1. Komorowski J, Pawlak Z, Polkowski L, Skowron A (1999) Rough-fuzzy hybridization: rough sets: a
tutorial. A new trend in decision making. Springer, Berlin

2. Wang XY, Yang J, Teng XL, Xia WJ, Jensen R (2007) Feature selection based on rough sets and particle
swarm optimization. Pattern Recogn Lett 28(4):459–471

3. Shang WQ, Huang HK, Zhu HB, Lin YM, Qu YL, Wang ZH (2007) A novel feature selection algorithm
for text categorization. Expert Syst Appl 33(1):1–5

4. Matsumoto Y, Watada J (2009) Knowledge acquisition from time series data through rough sets analysis.
Int J Innov Comput Inf Control 5(12B):4885–4897

5. Javed K, Babri HA, Saeed M (2012) Feature selection based on class-dependent densities for high-
dimensional binary data. IEEE Trans Knowl Data Eng 24(3):465–477

6. Yang SH, Hu BG (2012) Discriminative feature selection by nonparametric Bayes error minimization.
IEEE Trans Knowl Data Eng 24(8):1422–1434

7. Zhao Z, Wang L, Liu H, Ye JP (2013) On similarity preserving feature selection. IEEE Trans Knowl Data
Eng 25(3):619–632

8. Skowron A, Rauszer C (1992) The discernibility matrices and functions in information systems. ICS PAS
Report 1/91, Technical University of Warsaw, pp 1–44

9. Maji P, Pal SK (2010) Feature selection using f-information measures in fuzzy approximation spaces.
IEEE Trans Knowl Data Eng 22(6):854–867

10. Jensen R, Shen Q (2004) Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based
approaches. IEEE Trans Knowl Data Eng 16(12):1457–1471

11. Thangavel K, Pethalakshmi A (2009) Dimensionality reduction based on rough set theory: a review. Appl
Soft Comput 9(1):1–12

123

626 M. Hacibeyoglu et al.

12. Gao BJ, Ester M, Xiong H, Cai JY, Schulte O (2013) The minimum consistent subset cover problem: a
minimization view of data mining. IEEE Trans Knowl Data Eng 25(3):690–703

13. Hall MA, Holmes G (2003) Benchmarking attribute selection techniques for discrete class data mining.
IEEE Trans Knowl Data Eng 15(6):1437–1447

14. Liu H, Yu L (2005) Toward integrating feature selection algorithms for classification and clustering. IEEE
Trans Knowl Data Eng 17(4):491–502

15. Qu GZ, Hariri S, Yousif M (2005) A new dependency and correlation analysis for features. IEEE Trans
Knowl Data Eng 17(9):1199–1207

16. Chen WC, Tseng SS, Hong TP (2008) An efficient bit-based feature selection method. Expert Syst Appl
34(4):2858–2869

17. Wang F, Liang JY, Dang CY (2013) Attribute reduction for dynamic data sets. Appl Soft Comput
13(1):676–689

18. Yan J, Zhang BY, Liu N, Yan SC, Cheng QS, Fan WG, Yang Q, Xi WS, Chen Z (2006) Effective and
efficient dimensionality reduction for large-scale and streaming data preprocessing. IEEE Trans Knowl
Data Eng 18(3):320–333

19. Skowron A (1990) The rough sets theory and evidence theory. Fundam Inf 13:245–262
20. Øhrn A, Komorowski J, Skowron A, Synak P (1998) The design and implementation of a knowledge

discovery toolkit based on rough sets: the ROSETTA system. In: Polkowski L, Skowron A (eds) Rough
sets in knowledge discovery. Physica Verlag, Heidelberg, pp 376–399

21. Jensen R, Shen Q (2007) Rough set based attribute selection: a review. http://cadair.aber.ac.uk/dspace/
bitstream/handle/2160/490/JensenShen.pdf?sequence=3. Accessed 12 Dec 2013

22. Wang J,Wang J (2001)Reduction algorithms based on discernibilitymatrix: the ordered attributesmethod.
J Comput Sci Technol 16(6):489–504

23. Mafarja M, Abdullah S (2013) Record-to-record travel algorithm for attribute reduction in rough set
theory. J Theor Appl Inf Technol 49(2):507–513

24. Kahramanli S, Hacibeyoglu M, Arslan A (2011) Attribute reduction by partitioning the minimized dis-
cernibility function. Int J Innov Comput Inf Control 7(5A):2167–2186

25. Procaccia AD, Rosenschein JS (2006) Exact VC-dimension of Monotone formulas. Neural Inf Process
Lett Rev 10(7):165–168

26. Hacibeyoglu M, Basciftci F, Kahramanli S (2011) A logic method for efficient reduction of the space
complexity of the attribute reduction problem. Turk J Electr Eng Comput Sci 19(4):643–656

27. Kahramanli S, Hacibeyoglu M, Arslan A (2011) A Boolean function approach to feature selection in
consistent decision information systems. Expert Syst Appl 38(7):8229–8239

28. Nelson JR (1955) Simplest normal truth functions. J Symb Log 20(2):105–108
29. Malik AA, Brayton RK, Newton AR, Sangiovannivincentelli A (1991) Reduced offsets for minimization

of binary-valued functions. IEEE Trans Comput Aided Des Integr Circuits Syst 10(4):413–426
30. Miltersen PB, Radhakrishnan J, Wegener I (2005) On converting CNF to DNF. Theor Comput Sci 347

(1–2):325–335
31. Vorwerk K, Paulley GN (2002) On implicate discovery and query optimization. In: Proceedings of inter-

national database engineering and applications symposium, 2002
32. Slagle JR, Chang CL, Lee RCT (1970) New algorithm for generating prime implicants. IEEE Trans

Comput C–19(3):304–310
33. ThelenB (1981) Investigations of algorithms for computer-aided logic design of digital circuits.University

of Karlsruhe, Karlsruhe
34. Bieganowski J, Karatkevich A (2005) Heuristics for Thelen’s prime implicant method. Scheda Inf 14:

125–135
35. Karatkevich A, Bieganowski J (2004) Detection of deadlocks and traps in petri nets by means of Thelen’s

prime implicant method. Int J Appl Math Comput Sci 14(1):113–121
36. Socher R (1991) Optimizing the clausal normal form transformation. J Autom Reason 7:325–336
37. Shiny AK, Pujari AK (1998) Computation of prime implicants using matrix and paths. J Logic Comput

8(2):135–145
38. Lee TT, Lo TY, Wang JF (2006) An information-lossless decomposition theory of relational information

systems. IEEE Trans Inf Theory 52(5):1890–1903
39. Sasao T, Butler JT (2001) Worst and best irredundant sum-of-products expressions. IEEE Trans Comput

50(9):935–948
40. Machine Learning Repository. http://archive.ics.uci.edu/ml. Accessed 13 Dec 2013
41. Selvakuberan K, Indradevi M, Rajaman R (2008) Combined feature selection and classification—a novel

approach for the categorization of web pages. J Inf Comput Sci 3(2):83–89
42. Hacibeyoglu M, Arslan A, Kahramanli S (2013) A hybrid method for fast finding the reduct with the best

classification accuracy. Adv Electr Comput Eng 13(4):57–64

123

http://cadair.aber.ac.uk/dspace/bitstream/handle/2160/490/JensenShen.pdf?sequence=3
http://cadair.aber.ac.uk/dspace/bitstream/handle/2160/490/JensenShen.pdf?sequence=3
http://archive.ics.uci.edu/ml

The logic transformations for reducing the complexity 627

Mehmet Hacibeyoglu is currently Assistant Professor at the Com-
puter Engineering Department of the Konya Necmettin Erbakan Uni-
versity (Konya, Turkey). He received the B.Sc., M.Sc., and Ph.D.
Degrees in Computer Engineering from the Selcuk University (Konya,
Turkey) in 2003, 2006, and 2012, respectively. His research interests
are system administration in Unix and Linux, machine learning, feature
selection, logic circuits, meta heuristic algorithms to the nesting prob-
lems, information security, and data mining.

Mohammad Shukri Salman received the B.Sc., M.Sc., and Ph.D.
Degrees in Electrical and Electronics Engineering from the Eastern
Mediterranean University (EMU), in 2006, 2007, and 2011, respec-
tively. From 2006 to 2010, he was a teaching assistant of Electrical and
Electronics Engineering department at EMU. In 2010, he joined the
Department of Electrical and Electronic Engineering at European Uni-
versity of Lefke (EUL) as a senior lecturer for the Department. Since
2011, he worked as an Assist. Prof. Dr. in the Department of Electrical
and Electronics Engineering, Mevlana (Rumi) University, Turkey. He
served as a general chair, program chair, and a TPC member for many
international conferences. He has supervised 6 M.Sc. Theses and cur-
rently supervising 4 Ph.D. Theses. His research interests include sig-
nal processing, adaptive filters, image processing, and communications
systems.

Murat Selek received the M.Sc. Degree in electronics engineering
from the Selcuk University, Turkey, in 1997 and the Ph.D. degree from
the Selcuk University, Turkey, in 2007. He is head of the department of
electronics and automation, Higher School of Vocational and Technical
Sciences, Selcuk University. His research interests are in the fields of
image processing, infrared thermography, autofocusing, remote control
and telecommunications.

123

628 M. Hacibeyoglu et al.

Sirzat Kahramanli was born in Fizuli, Azerbaijan, in 1944. He
received his Ph.D. degree in computer science from Azerbaijan Tech-
nical University, Baku in 1983. From 1968 to 1993, he worked in the
department of Computer Systems at the same university. From 1993 to
2011, he was with the department of Computer Engineering at Selcuk
University, Konya, Turkey. From 2011 to 2014, he served as a Profes-
sor with the department of Computer Engineering at Mevlana (Rumi)
University, Konya, Turkey. Since 2014, he worked as a Professor with
the Department of Computer Education and Instructional Technologies
Teaching at Mevlana (Rumi) University, Konya, Turkey. His research
interests include switching theory and data processing.

123

	The logic transformations for reducing the complexity of the discernibility function-based attribute reduction problem
	Abstract
	1 Introduction
	2 Preliminaries
	3 Problem statement
	4 Unique properties of SLP and ILE
	4.1 The WCSC of the Nelson's method
	4.2 The WCSC of the ILE
	4.3 The WCSC of the SLP

	5 The combined SLP-ILE approach
	5.1 The bitwise implementation of the ILE
	5.2 The SLP-ILE algorithm

	6 Experimental results
	7 Conclusions
	References

