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Abstract Two-dimensional contingency tables or co-occurrencematrices arise frequently in
various important applications such as text analysis and web-log mining. As a fundamental
research topic, co-clustering aims to generate a meaningful partition of the contingency
table to reveal hidden relationships between rows and columns. Traditional co-clustering
algorithms usually produce a predefined number of flat partition of both rows and columns,
which do not reveal relationship among clusters. To address this limitation, hierarchical co-
clustering algorithms have attracted a lot of research interests recently. Although successful
in various applications, the existing hierarchical co-clustering algorithms are usually based
on certain heuristics and do not have solid theoretical background. In this paper, we present
a new co-clustering algorithm, HICC, with solid theoretical background. It simultaneously
constructs a hierarchical structure of both row and column clusters, which retains sufficient
mutual information between rows and columns of the contingency table. An efficient and
effective greedy algorithm is developed, which grows a co-cluster hierarchy by successively
performing row-wise or column-wise splits that lead to themaximalmutual information gain.
Extensive experiments on both synthetic and real datasets demonstrate that our algorithm can
reveal essential relationships of row (and column) clusters and has better clustering precision
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than existing algorithms. Moreover, the experiments on real dataset show that HICC can
effectively reveal hidden relationships between rows and columns in the contingency table.

Keywords Co-clustering · Entropy · Contingency table · Text analysis

1 Introduction

Two-dimensional contingency table arises frequently in various applications such as text
analysis and web-log mining. Co-clustering algorithms have been developed to perform two-
way clustering on both rows and columns of the contingency table. Traditional co-clustering
algorithms usually generate a strict partition of the table [11,12,22]. This flat structure is
insufficient to describe relationships between clusters. Such relationships are essential for
data exploring in many applications related to document analysis.

To combine the advantages of both co-clustering and hierarchical clustering, various hier-
archical co-clustering algorithms have been recently proposed [16,17,20,33,39]. However,
existing hierarchical co-clustering algorithms are usually based on certain heuristic criteria or
measurements for agglomerating or dividing clusters of rows and columns. Such criteria may
be domain specific and lack of generality. Another limitation of many existing hierarchical
co-clustering algorithms is that they often require the number of clusters (for both rows and
columns) as an input. However, accurate estimation of the number of clusters may be a trivial
task in many applications.

To overcome these limitations, we propose a hierarchical co-clustering algorithm with
solid information-theoretic background. Our approach aims to generate the simplest co-
cluster hierarchy that retains sufficient mutual information between rows and columns in the
contingency table. More specifically, the mutual information between resulting row clusters
and column clusters should not differ from the mutual information between the original
rows and columns by more than a small fraction (specified by the user). Finding the optimal
solution for this criterion, however, would take exponential time. Thus, we devise an efficient
greedy algorithm that grows a co-cluster hierarchy by successively performing row-wise or
column-wise splits that lead to the maximal mutual information gain at each step. This
procedure starts with a single row cluster and a single column cluster and terminates when
the mutual information reaches a threshold (defined as a certain percentage of the mutual
information between the original rows and columns). Other termination criteria (such as the
desired number of row/column clusters) can be easily incorporated.

In principle, we can construct a co-cluster hierarchy in either agglomerative (i.e. recursive
grouping) or divisive (i.e. recursive splitting) manner. The rationale of having a divisive
clustering algorithm is that a simple hierarchy with a small number of clusters is usually able
to effectively retain most mutual information in the original contingency table in practice (as
confirmed in our experiments). Thus, it is much more efficient to generate such hierarchy
through recursive divisions.

The proposed hierarchical co-clustering algorithm has several desired properties.

– It builds cluster hierarchies on both rows and columns simultaneously. The relationships
between clusters are explicitly revealed by the hierarchies. The hierarchical structures
inferred by our approach are useful for indexing and visualizing data, exploring the parent–
child relationships and deriving generation/specialization concepts.

– It uses an uniform framework to model the hierarchical co-clustering problem. The opti-
mality of splitting the clusters is guaranteed by rigorous proofs.
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– It does not require the prior knowledge of the number of row and column clusters. Instead,
it uses a single input, the minimum percentage of mutual information retained, and auto-
matically derives a co-cluster hierarchy. On the other hand, the proposed method can also
incorporate optional constraints such as the desired number of clusters.

– It can explore the inherent hierarchy for both features and objects, which is very helpful
for users to understand the inner, existing relationships among objects and features.

Experiments on both synthetic and real datasets show that our algorithm performs better
than the existing co-clustering algorithms: (1) the leaf clusters of our hierarchies have better
precision than co-clusters produced by previous algorithms and (2) our co-cluster hierarchies
can effectively reveal hidden relationships between rows and columns in the contingency
table, which cannot be achieved by any previous co-clustering algorithm.

2 Related work

Co-clustering methods aim to cluster both rows and columns of a data matrix simultaneously
[2,5,8,9,15,23,27,29,32,35,37,38,40]. It has been studied extensively in recent years. These
clustering algorithms usually generate flat partitions of rows and columns. However, a tax-
onomy structure can be more beneficial than a flat partition for many applications. In this
section, we present a brief discussion of the recent co-clustering algorithms.

A pioneering co-clustering algorithm based on information theory was proposed in [12].
Taking the numbers of row and column clusters as input, the algorithm generates a flat
partition of data matrix into row clusters and column clusters, which maximizes the mutual
information between row and column clusters. In each iteration, the row clusters are adjusted
to maximize the mutual information between row and column clusters followed by adjusting
the column clusters in a similar fashion. It continues until there is no significant improvement
in mutual information. The idea is further generalized into a meta algorithm [4]. It can be
proven that any Bregman divergence can be used in the objective function, and the two-
step iteration algorithm can always find a co-cluster by converging the objective function
to a local minimum. A key difference between these methods and our method is that our
method generates hierarchical cluster structures, which entails different objective functions
and optimization techniques.

Linear algebramethods have also been applied to derive co-clusters. In [11], a co-clustering
algorithm based on bipartite spectral graph partitioning was developed. Co-clustering is
performed by singular value decomposition. A k-means algorithm is then applied on the
calculated singular vectors to form k clusters, where k is pre-specified by the user. A co-
clustering algorithm based on block value decomposition was proposed in [22]. It factorizes
the datamatrix into three components: row-coefficientmatrix, column-coefficientmatrix, and
block value matrix. The final co-cluster is established according to the decomposed matrices.

Although these methods are different in the criteria employed in decomposing matrices,
they all need the number of clusters as input. The conjunctive clustering method proposed
in [24] does not require the number of clusters as input. However, the minimum size of the
co-clusters is required, which is also hard to set. Moreover, when there are too many qualified
co-clusters, only the best k of them are reported. These k best co-clusters cover the remaining
qualified co-clusters but have little overlap with each other.

The clustering scheme of fully crossed association proposed in [7] adopts a data com-
pression technique and does not require any input parameters. Because it favours lossy
compression, the algorithm usually terminates with considerably more row (column) clus-
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ters than the actual number of clusters. Although they use a similar splitting procedure in
order to approach the optimal number of clusters, the clusters are formed by reassignment
of each individual row and column, which is analogous to the reassignment step in k-means
clustering (rather than hierarchical clustering). A similar approach is also used in divisive
information-theoretic clustering [10]. However, this method cannot be applied to cluster rows
and columns simultaneously.

Hierarchical clustering [1,3,14,18,25,26,30,31,36] on one side of the matrix has been
studied extensively and become a popular data analysis technique in many applications. In
the following, we review several hierarchical clustering techniques that are closely related to
our work.

The double clustering method in [34] is an agglomerative method. It considers the word–
document dataset as a joint probability distribution. In the first stage, it clusters the columns
into k clusters by an agglomerative information bottleneck algorithm. Then, in the second
stage, it clusters the rowswhile considering each generated column cluster as a single column.
This method has been shown to be able to increase clustering accuracy in a number of
challenging cases such as the noisy datasets. However, it has high computation cost due to
the bottom-up approach in constructing the hierarchy. In [13], an extended algorithm, iterative
double clustering (IDC), was presented, which performs iterations of double clustering. The
first iteration of IDC is just a DC procedure. And starting from the second iteration, when
columns are being clustered, the row clusters generated in the previous iteration are used as
new rows. Both DC and IDC do not generate the row and column clusters simultaneously
and rely on heuristic procedures with no guarantee on approximation ratio. Even though DC
and IDC generate clusters using hierarchical method, the final clusters are still presented as
flat partitions. It has been shown that co-clustering algorithms outperformed DC and IDC on
word–document datasets [12,22].

By integrating hierarchical clustering and co-clustering, hierarchical co-clustering aims
at simultaneously constructing hierarchical structures for two or more data types [16,17,
28]. A hierarchical divisive co-clustering algorithm is proposed in [39] to simultaneously
find document clusters and the associated word clusters. Another hierarchical divisive co-
clustering using n-Ary splits is proposed in [17,28]. It has been incorporated into a novel artist
similarity quantifying framework for the purpose of assisting artist similarity quantification
by utilizing the style and mood clusters information [33]. Both hierarchical agglomerative
and divisive co-clustering methods have been applied to organize the music data [20].

3 Preliminary

We denote the two-dimensional contingency table as T . R = {r1, r2, . . . , rn} represents the
set of rows of T , where ri is the i th row. C = {c1, c2, . . . , cm} represents the set of columns,
where c j is the j th column. The element at the i th row and j th column is denoted by Ti j . For
instance, in a word–document table, each document is represented by a row and each word
maps to a column. Each element stores the frequency of a word in a document. An example
table consisting of four rows and four columns is shown in Table 1 on the left.

We can compute a joint probability distribution by normalizing elements in the table. Let
X and Y be two discrete random variables that take values in R and C , respectively. The
normalized table can be considered as a joint probability distribution of X and Y . The table
on the right in Fig. 1 shows the result of normalizing the example table on the left. We denote
p(X = ri , Y = c j ) by p(ri , c j ) for convenience in the remainder of this paper.
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Table 1 (a): Example table,
(b): normalized example table

a b

c1 c2 c3 c4 c1 c2 c3 c4

r1 1 0 2 0 r1 0.1 0 0.2 0

r2 0 1 1 0 r2 0 0.1 0.1 0

r3 2 1 1 0 r3 0.2 0.1 0.1 0

r4 0 0 0 1 r4 0 0 0 0.1

Fig. 1 Left: synthetic contingency table. right:I (X̂ , Ŷ ) for each splitting step

A co-cluster consists of a set of row clusters and a set of column clusters. We denote the
set of row clusters as R̂,

R̂ = {
r̂1, r̂2, . . . , r̂l |r̂i ⊆ R, r̂i ∩ r̂ j = ∅, i �= j

}

where r̂i represents the i th row cluster.
Similarly, we denote the set of column clusters as Ĉ ,

Ĉ = {
ĉ1, ĉ2, . . . , ĉk |ĉ j ⊆ C, ĉ j ∩ ĉi = ∅, j �= i

}

where ĉ j represents the j th row cluster.
We denote the number of clusters in R̂ as L R̂ = |R̂|, and the number of clusters in Ĉ as

LĈ = |Ĉ |.
Given the sets of row and column clusters, a co-cluster can be considered as a “reduced”

table T̂ from T . Each row (column) in T̂ represents a row (column) cluster. Each element in
T̂ is the aggregation of the corresponding elements in T ,

T̂i j =
∑{

Tuv|ru ∈ r̂i , cu ∈ ĉ j
}

Let X̂ and Ŷ be two discrete random variables that take values in R̂ and Ĉ , respectively.
A normalized reduced table can be considered as a joint probability distribution of X̂ and Ŷ .
We will denote p(X̂ = r̂i , Ŷ = ĉ j ) by p(r̂i , ĉ j ) for convenience. Using the above example
(shown in Fig. 1), Table 2 shows the reduced table and normalized reduced table for the
following co-cluster.
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Table 2 (a): Reduced table of a
co-cluster, (b): normalized
reduced table

a b

ĉ1 ĉ2 ĉ3 ĉ1 ĉ2 ĉ3

r̂1 1 2 0 r̂1 0.1 0.2 0

r̂2 2 4 0 r̂2 0.2 0.4 0

r̂3 0 0 1 r̂3 0 0 0.1

R̂ = {
r̂1, r̂2, r̂3

}
,where r̂1 = {r1}, r̂2 = {r2, r3}, r̂3 = {r4}

Ĉ = {
ĉ1, ĉ2, ĉ3

}
,where ĉ1 = {c1}, ĉ2 = {c2, c3}, ĉ3 = {c4}

Note that the original contingency table can be viewed as a co-cluster by regarding each
single row (column) as a row (column) cluster. Given any co-cluster (R̂, Ĉ) on a contingency
table, we employ the mutual information between X̂ and Ŷ to measure the relationship
between row clusters and column clusters.

I (X̂ , Ŷ ) =
∑

r̂∈R̂

∑

ĉ∈Ĉ
p(r̂ , ĉ) log2

p(r̂ , ĉ)

p(r̂)p(ĉ)

As we may observe, the mutual information of the original table I (X, Y ) is larger than
the mutual information of the aggregated table I (X̂ , Ŷ ), due to clustering. This is in fact a
property held by co-clustering described in Theorem 3.1.

In order to prove Theorem 3.1, we first prove the following lemmas based on the theorems
proven by Dhillon et al [12].

Lemma 3.1 Given two co-clusters, {R̂(1), Ĉ (1)} and {R̂(2), Ĉ (1)}, where R̂(2) is generated
by splitting a row cluster in R̂(1). Then I (X̂ (1), Ŷ (1)) ≤ I (X̂ (2), Ŷ (1))

Proof Assume that R̂(2) is generated by splitting r̂ (1)
1 ∈ R̂(1) into r̂ (2)

1 and r̂ (2)
2 . We have

I
(
X̂ (2), Ŷ (1)

)
− I

(
X̂ (1), Ŷ (1)

)
= H

(
Ŷ (1)|X̂ (1)

)
− H

(
Ŷ (1)|X̂ (2)

)

= −
∑

ĉ(1)∈Ŷ (1)

p
(
r̂ (1)
1 , ĉ(1)

)
log p

(
ĉ(1)|r̂ (1)

1

)

+
∑

ĉ(1)∈Ŷ (1)

p
(
r̂ (2)
1 , ĉ(1)

)
log p

(
ĉ(1)|r̂ (2)

1

)

+
∑

ĉ(1)∈Ŷ (1)

p
(
r̂ (2)
2 , ĉ(1)

)
log p

(
ĉ(1)|r̂ (2)

2

)

Because r̂ (2)
1 ∪ r̂ (2)

2 = r̂ (1)
1 , we have

p
(
r̂ (1)
1 , ĉ(1)

)
= p

(
r̂ (2)
1 , ĉ(1)

)
+ p

(
r̂ (2)
2 , ĉ(1)

)
,∀ĉ(1) ∈ Ŷ (1)

Therefore,

I
(
X̂ (2), Ŷ (1)

)
− I

(
X̂ (1), Ŷ (1)

)
=

∑

ĉ(1)∈Ŷ (1)

p
(
r̂ (2)
1 , ĉ(1)

)
log

p
(
ĉ(1)|r̂ (2)

1

)

p
(
ĉ(1)|r̂ (1)

1

)
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+
∑

ĉ(1)∈Ŷ (1)

p
(
r̂ (2)
2 , ĉ(1)

)
log

p
(
ĉ(1)|r̂ (2)

2

)

p
(
ĉ(1)|r̂ (1)

1

)

= p
(
r̂ (2)
1

)
D

(
p

(
ĉ(1)|r̂ (2)

1

)
||p

(
ĉ(1)|r̂ (1)

1

))

+ p
(
r̂ (2)
2

)
D

(
p

(
ĉ(1)|r̂ (2)

2

)
||p

(
ĉ(1)|r̂ (1)

1

))

(1)

where D(p(r̂ (2)
1 , ĉ(1))||p(r̂ (1)

1 , ĉ(1))) is the relative entropy (KL-divergence) between

p(ĉ(1)|r̂ (2)
1 ) and p(ĉ(1)|r̂ (1)

1 ), which is always non-negative (by definition). Therefore,

I (X̂ (2), Ŷ (1)) − I (X̂ (1), Ŷ (1)) ≥ 0

��
Similarly, we have the following lemma.

Lemma 3.2 Given two co-clusters, {R̂(1), Ĉ (1)} and {R̂(1), Ĉ (2)}, and Ĉ (2) is generated by
splitting one column cluster in Ĉ (1). Then,

I
(
X̂ (1), Ŷ (1)

)
≤ I

(
X̂ (1), Ŷ (2)

)

The above two lemmas state that splitting either row- or column-wise clusters increases
the mutual information between the two sets of clusters. Hence, we can obtain the original
contingency table (i.e. each row/column itself is a row/column cluster) by performing a
sequence of row-wise splits or column-wise splits on a co-cluster. By Lemmas 3.1 and 3.2,
the mutual information monotonically increases after each split, which leads to the following
theorem.

Theorem 3.1 The mutual information of a co-clustering, I (X̂ , Ŷ ), always increases when
any one of its row or column clusters is split, until the mutual information reaches its maximal
value, I (X, Y ), where each row and column is considered as a single cluster.

Based on the previous results, we design a greedy algorithm that starts by considering the
rows and columns as two clusters. In each iteration, the cluster that can increase I (X̂ , Ŷ )most

is split until I (X̂ ,Ŷ )
I (X,Y )

is larger than a user-defined threshold or there are enough (row or column)
clusters generated as user required. The monotonicity property of mutual information leads
to the following problem definition.

Problem Definition Given a normalized two-dimensional contingency table, T , and a thresh-
old θ(0 < θ < 1), find a hierarchical co-clustering containing a minimum number of the leaf
row clusters R̂ and leaf column clusters Ĉ , such that the mutual information corresponding

to co-clustering {R̂, Ĉ} satisfies I (X̂ ,Ŷ )
I (X,Y )

≥ θ . Optionally, a user can specify desired number of
row or column clusters (L R̂ = maxr or LĈ = maxc) and ask for a co-cluster with maximal
mutual information.

4 The co-clustering algorithm

In this section, we present the details of our co-clustering algorithm. The monotonicity
property of mutual information stated in Lemmas 3.1 and 3.2 inspires us to develop a
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greedy divisive algorithm that optimizes the objective function I (X̂ , Ŷ ) at each step. Our
algorithm starts from a single row cluster (containing all rows) and a single column cluster
(containing all columns). At each subsequent step, we perform the split that maximizes the
mutual information I (X̂ , Ŷ ). Our algorithm takes local greedy partitioning strategy. The
algorithm finds a co-cluster {R̂, Ĉ} by splitting one row or column cluster, which maximizes
the increase in objective function in each iteration. The main routine is presented in Sect. 4.1.
Themethod of finding a proper split of a cluster tomaximize gain in I (X̂ , Ŷ )will be discussed
in Sect. 4.3.

Our co-clustering algorithm starts by considering all rows and all columns as two clusters.
In each iteration, one of the clusters gets split into two sub-clusters. The method of splitting
one cluster will be discussed in Sect. 4.3.

4.1 The main algorithm

The pseudocode of the algorithm is shown in Algorithm 1. In Step 1 of the main function
Co-Clustering(), function InitialSplit() is called to generate the initial co-cluster {R̂(0), Ĉ (0)}
with two row clusters and two column clusters. In Step 2, the joint distribution p(X̂ , Ŷ )

of this initial co-cluster is calculated. Then, the algorithm goes through iterations. During
each iteration, a split is performed to maximize the mutual information of the co-cluster.
In Steps 5 and 6, each row or column cluster si is examined by function SplitCluster() to
determine the highest gain in mutual information, δ I (k)

i , which can be brought by an optimal
split on si . (si1 and si2 denote the resulting clusters after split.) Steps 7 to 9 select the row or
column cluster, whose split gives the highest gain δ I (k)

i , and perform the split. In Step 10, the

joint distribution p(X̂ , Ŷ ) is updated according to the new co-cluster {R̂(k+1), Ĉ (k+1)}. The
algorithm continues until the mutual information ratio I (X̂ ,Ŷ )

I (X,Y )
reaches the threshold, θ , and/or

the number of clusters (row or column) reaches the number of desired clusters, denoted by
maxc and maxr . Note that the termination condition can be easily modified to suit users’
needs.

Algorithm 1 Co-Clustering()

INPUT: Normalized table, T , minimal threshold of I (X̂ ,Ŷ )
I (X,Y )

, θ .
OPTIONAL INPUT: Maximal number of row clusters, maxr , maximal number of column clusters, maxc .
OUTPUT: Co-cluster {R̂, Ĉ}.
1: {R̂(0), Ĉ(0), I (0)} ← I ni tialSpli t (T )

2: Calculate distribution p(X̂ , Ŷ ) according to {R̂(0), Ĉ(0)}
3: k ← 0
4: repeat
5: for all si ∈ R̂(k) ⋃

Ĉ(k) do

6: {si1 , si2 , δ I (k)i } ← Spli tCluster(si , p(X̂ , Ŷ ))

7: j ← argmax1≤i≤|R̂(k) ⋃
Ĉ(k)|δ I

(k)
i

8: I (k+1) ← I (k) + δ I (k)j

9: {R̂(k+1), Ĉ(k+1)} = (R̂(k) ⋃
Ĉ(k) − s j )

⋃{s j1 , s j2 }
10: Update p(X̂ , Ŷ ) according to {R̂(k+1), Ĉ(k+1)}
11: k ← k + 1

12: until I (X̂ ,Ŷ )
I (X,Y )

< θ and/or |R̂(k)| < maxr and/or |Ĉ(k)| < maxc

13: return {R̂(k), Ĉ(k)}
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Algorithm 2 InitialSplit(T)
INPUT: Normalized table, T .
OUTPUT: {R̂(0), Ĉ(0), I (0)}.
1: p(X, Y ) ← T
2: s1 ← R
3: s2 ← C
4: {s11 , s12 , δ I1} ← Spli tCluster(s1, p(X, Y ))

5: {s21 , s22 , δ I2} ← Spli tCluster(s2, p(X, Y ))

6: R̂(0) ← {s11 , s12 }
7: Ĉ(0) ← {s21 , s22 }
8: I (0) = I (X̂ (0), Ŷ (0))
9: return {R̂(0), Ĉ(0), I (0)}

Table 3 Normalized table T c1 c2 c3 c4

r1 0.1 0 0 0

r2 0 0.2 0.2 0

r3 0 0.2 0.2 0

r4 0 0 0 0.1

Before we discuss InitialSplit() and SplitCluster() in detail, we first illustrate the general
procedure by an example. Given the normalized table in Table 3, InitialSplit() splits it into
two row clusters and two column clusters:

R̂(0) =
{
r̂ (0)
1 , r̂ (0)

2

}
, r̂ (0)

1 = {r1, r4}, r̂ (0)
2 = {r2, r3}

Ĉ (0) =
{
ĉ(0)
1 , ĉ(0)

2

}
, ĉ(0)

1 = {c1, c4}, ĉ(0)
2 = {c2, c3}

I (0)
(
X̂ (0), Ŷ (0)

)
= 0.722

During the first iteration, row cluster r̂ (0)
1 is split

R̂(1) =
{
r̂ (1)
1 , r̂ (1)

2 , r̂ (1)
3

}

r̂ (1)
1 = {r1}, r̂ (1)

2 = {r4}, r̂ (1)
3 = {r2, r3}

Ĉ (1) = Ĉ (0)

I (1)
(
X̂ (1), Ŷ (1)

)
= 0.722

Note that I (X̂ , Ŷ ) remains the same. This is because it happens to be the case where no splits
can increase I (X̂ , Ŷ ).

During the second iteration, column cluster ĉ(1)
1 is split

R̂(2) = R̂(1)

Ĉ (2) =
{
ĉ(2)
1 , ĉ(2)

2 , ĉ(2)
3

}

ĉ(2)
1 = {c1}, ĉ(2)

2 = {c4}, ĉ(2)
3 = {c2, c3}

I (2)
(
X̂ (2), Ŷ (2)

)
= 0.923
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The mutual information of the original table (Table 3) is I (X, Y ) = 0.923, which is equal
to I (2)(X̂ (2), Ŷ (2)). Therefore, co-cluster {R̂(2), Ĉ (2)} retains 100% of mutual information in
the original table. The algorithm terminates.

Convergence of mutual information

A larger example may better demonstrate the trend of mutual information after each iteration.
A synthetic contingency table is shown on the left side of Fig. 1. We plot I (X̂ , Ŷ ) after each
step on its right side. I (X, Y ) of the original table (plottedwith a dashed line) has themaximal
value and serves as the upper bound of I (X̂ , Ŷ ) (plotted in solid line). As shown in Fig. 1,
the mutual information I (X̂ , Ŷ ) approaches I (X, Y ) after our algorithm splits both rows and
columns into four clusters. Note that in Step 1, the InitialSplit() function splits both rows and
columns into two clusters as we will discuss in the next section.

4.2 Initial split

Function InitialSplit() splits the contingency table into two row clusters and two column
clusters. In Step 1, the joint distribution is set to the normalized table T . In Step 2, all rows are
considered as in a single row cluster s1, and all columns are considered as in a single column
cluster s2. They are then split in Steps 3 and 4 by calling the function SplitCluster(). The
initial co-cluster {R̂(0), Ĉ (0)} and the correspondingmutual information I (0) = I (X̂ (0), Ŷ (0))

are calculated accordingly in Steps 5 and 6.
Note that we split both row clusters and column clusters in this initial step. To ensure a

good initial split, when the function SplitCluster() is called, we tentatively treat each row as
an individual cluster so that the initial column clusters are created by taking into account the
row distribution. By the same token, we also tentatively treat each column as an individual
cluster when we create the initial row clusters.

The algorithm starts with one row cluster and one column cluster, and in the first iteration,
one of the clusters gets split. However, it is easy to see that at the end of the first iteration, with
a single cluster on one side and two clusters on the other side, objective function I (X̂ , Ŷ ) is
always 0. Therefore, in order to get a proper initial splitting, in the initial step, when splitting
the row cluster, each column is considered as a cluster itself and vice versa. In the algorithm,
the initial splitting is separated from others, and it splits both columns and rows into two
clusters to form the initial four clusters.

4.3 Cluster splitting

According to Lemmas 3.1 and 3.2, a split will never cause I (X̂ , Ŷ ) decrease. In addition,
only the split cluster may contribute to the increase in I (X̂ , Ŷ ). Therefore, in each iteration in
the main algorithm, all current clusters are tried to be properly split to maximize the increase
in I (X̂ , Ŷ ) and the cluster that can achieve the maximal increase in I (X̂ , Ŷ ) by splitting
is finally split. We will explain the details of function SplitCluster() in this section. As we
proved in Theorem 3.1, the increase in I (X̂ , Ŷ ) only relates to the cluster being split. Suppose
that a row cluster r̂ (1) is split into r̂ (2)

1 and r̂ (2)
2 , the increase in I (X̂ , Ŷ ) is

δ I = I
(
X̂ (2), Ŷ (1)

)
− I

(
X̂ (1), Ŷ (1)

)

= p
(
r̂ (2)
1

)
D

(
p

(
ĉ(1)|r̂ (2)

1

)
||p

(
ĉ(1)|r̂ (1)

1

))
+ p

(
r̂ (2)
2

)
D

(
p

(
ĉ(1)|r̂ (2)

2

)
||p

(
ĉ(1)|r̂ (1)

1

))
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Algorithm 3 SplitCluster(s, p(X̂ , Ŷ ))

INPUT: Cluster s, s ∈ R̂
⋃

Ĉ , current joint distribution p(X̂ , Ŷ ).
OUTPUT: Two sub-clusters of s, s1 and s2, s.t. s1

⋃
s2 = s, s1

⋂
s2 = ∅, δ I , the increase in I (X̂ , Ŷ )

achieved by splitting s.
1: if s is a column cluster then
2: p(X̂ , Ŷ ) = p(X̂ , Ŷ )T

3: Randomly split s into two clusters, s1 and s2
4: Calculate p(Ŷ |s1), p(Ŷ |s2) and δ I accordingly
5: repeat
6: for all xi ∈ s do
7: Assign xi to cluster s′,

where s′ = argmin j=1,2D(p(Ŷ |xi )||p(Ŷ |s j ))
8: Update p(Ŷ |s1), p(Ŷ |s2) and δ I accordingly
9: until δ I converges
10: return s1, s2 and δ I

Therefore, SplitCluster() can calculate the maximal value of δ I by examining each cluster
to be split separately. However, it may still take exponential time (with respect to the cluster
size) to find the optimal split. Therefore, SplitCluster() adopts a greedy algorithm that can
effectively produce a good split achieving a local maximum in δ I . Elements in the cluster
are initially randomly grouped into two sub-clusters. For each sub-cluster, a weighted mean
distribution is calculated to represent it by aggregating the distributions in the sub-cluster in
an weighted way. A sequence of iterations is taken to re-assign each element to its closer
sub-cluster according to KL-divergence until δ I converges.

The details of function SplitCluster() are shown in Algorithm 3. In Step 1, the joint
probability distribution p(X̂ , Ŷ ) is transposed if the input cluster s is a column cluster so that
column clusters can be split into the sameway as row clusters. In Step 2, cluster s is randomly
split into two clusters. In Step 3, δ I is calculated according to Eq. 1, and the weighted mean
conditional distributions of Ŷ for both clusters s1 and s2 (p(Ŷ |s1) and p(Ŷ |s2)) are calculated
according to Eq. 2.

p(X̂ = si ) =
∑

x j∈si
p(X = x j )

p(Ŷ |si ) =
∑

x j∈si

p(X = x j )

p(X̂ = si )
· p(Ŷ |x j ) (2)

From Step 5 to Step 7, each element xi in cluster s is re-assigned to the cluster (s1 or s2),
which can minimize the KL-Divergence between p(Ŷ |xi ) and p(Ŷ |s j ). p(Ŷ |s1), p(Ŷ |s2)
and δ I are updated at the end of each iteration. The procedure repeats until δ I converges. In
Step 9, the two sub-clusters, s1 and s2, and δ I are returned.

In order to prove that function SplitCluster() can find a split that achieves local maximum
in δ I , we need to prove that the re-assignment of element xi in Steps 4–8 can monotonically
increase δ I . Since the same principle is used to split row clusters and column clusters, without
loss of generality, we only prove the case of splitting row clusters.

A similar cluster split algorithm was used in [10], which re-assigns elements among k
clusters. It is proven that such re-assignment can monotonically decrease the sum of within-
cluster JS-divergence of all clusters which is

Q({s1, s2, . . . , sk}) =
k∑

i=1

∑

x j∈si
p(X = x j ) ∗ D

(
p(Ŷ |x j )||p(Ŷ |si )

)
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In our function SplitCluster(), we only need to split the cluster into two sub-clusters. There-
fore, we show the proof for a special case where k = 2. The following lemma was proven in
[10].

Lemma 4.1 Given cluster s containing n elements ((Ŷ |xi )), the weighted mean distribution
of the cluster ((Ŷ |s)) has the lowest weighted sum of KL-divergence of p(Ŷ |s) and p(Ŷ |xi ).
That is, ∀q(Ŷ ), we have

n∑

i=1

p(xi ) · D
(
p(Ŷ |xi )||q(Ŷ )

)
≥

n∑

i=1

p(xi ) · D
(
p(Ŷ |xi )||p(Ŷ |s)

)

Theorem 4.1 When splitting cluster s into two sub-clusters, s1 and s2, the re-assignment of
elements in s as shown in Steps 5–7 of function SplitCluster() can monotonically decrease
the sum of within-cluster JS-divergence of the two sub-clusters s1 and s2.

Proof Let Ql{s1, s2} and Ql+1{s1, s2} be the sum of within-cluster JS-divergence of the two
clusters before and after the lth re-assignment of elements, respectively. And let pl(Ŷ |si )
and pl+1(Ŷ |si ) be the corresponding weighted mean conditional distributions of sub-clusters
before and after the lth re-assignment. We will prove that Ql+1{s1, s2} ≤ Ql{s1, s2}. Assume
that the two clusters after reassignment are s∗

1 and s∗
2 .

Ql{s1, s2} =
2∑

i=1

∑

x j∈si
p(X = x j ) · D

(
p(Ŷ |x j )||pl(Ŷ |si )

)

≥
2∑

i=1

∑

x j∈si
p(X = x j ) · D

(
p(Ŷ |x j )||pl(Ŷ |s∗

i )
)

=
2∑

i=1

∑

x j∈s∗i
p(X = x j ) · D

(
p(Ŷ |x j )||pl(Ŷ |s∗

i )
)

≥
2∑

i=1

∑

x j∈s∗i
p(X = x j ) · D

(
p(Ŷ |x j )||pl+1(Ŷ |s∗

i )
)

= Ql+1{s1, s2}
The first inequality is a result of Step 6 in SplitCluster(), and the second inequality is due
to Step 7 in SplitCluster() and Lemma 4.1. Therefore, we prove that the re-assignment of
elements in s can monotonically decrease Q({s1, s2}). ��

Note that the sum of δ I and Q({s1, s2}) is a constant, which is shown in Eq. 3.

∑

x j∈s
p(x j )D

(
p(Ŷ |x j )||p(Ŷ |s)

)
=

2∑

i=1

∑

x j∈si
p(x j )D

(
p(Ŷ |x j )||p(Ŷ |si )

)

+
2∑

i=1

p(s1)D
(
p(Ŷ |si )||p(Ŷ |s)

)

= Q({s1, s2}) + δ I (3)

Since the re-assignment process monotonically decreases Q({s1, s2}), it will monotoni-
cally increase δ I as a result. Thus, function SplitCluster() can find a split that achieves local
maximum in δ I .
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Table 4 A row cluster to be split ŷ1 ŷ2 ŷ3 ŷ4

x1 0.1 0 0 0

x2 0 0.2 0.2 0

x3 0 0.2 0.2 0

x4 0.1 0 0 0

We now illustrate the function SplitCluster() with an example. The table in Table. 4
represents a row cluster to be split. Assume that the initial random split creates sub-clusters
s1 = {x1} and s2 = {x2, x3, x4}, then the weighted mean distributions of these two sub-
clusters are

p(Ŷ |s1) = [1, 0, 0, 0], p(Ŷ |s2) = [0.1, 0.45, 0.45, 0]
Then, for each element xi , we calculate its KL-divergence with these two weighted mean
distributions and re-assign it to the sub-cluster having the smaller value of KL-divergence.

D
(
p(Ŷ |x1)||p(Ŷ |s1)

)
= 0, D

(
p(Ŷ |x1)||p(Ŷ |s2)

)
= 3.3

D
(
p(Ŷ |x2)||p(Ŷ |s1)

)
= 28, D

(
p(Ŷ |x2)||p(Ŷ |s2)

)
= 0.15

D
(
p(Ŷ |x3)||p(Ŷ |s1)

)
= 28, D

(
p(Ŷ |x3)||p(Ŷ |s2)

)
= 0.15

D
(
p(Ŷ |x4)||p(Ŷ |s1)

)
= 0, D

(
p(Ŷ |x4)||p(Ŷ |s2)

)
= 3.3

Only element x4 is re-assigned to cluster s1. The new sub-clusters are s1 = {x1, x4} and
s2 = {x2, x3}. If we repeat the process, the sub-clusters will not change any more.

4.4 Finding optimal θ

Basically, the setting of θ is a non-trivial problem. A mechanism by which an appropriate
value of θ can be determinedwithin the capability of a clustering algorithm can be very useful.
In this section, we provide a model selection method to determine an appropriate value of θ

in the dataset due to Brunet et al. [6]. We emphasize that the consistency of the clustering
algorithm with respect to random initial splitting is critical in successful application of this
model selection method. In order to measure the consistency, a connectivity matrix is defined
as follows. The connectivity matrix, Cθ ∈ Rn×n for n data points, is constructed from each
execution of a clustering algorithm. Cθ (i, j) = 1 if i-th data point and j-th data point are
assigned to the same cluster, and 0 otherwise. Then, for given θ , we can run the co-clustering
algorithm several times and calculate the average connectivity matrix Ĉθ . Ideally, if each run
obtains similar clustering assignments, elements of Ĉθ should be close to either 0 or 1. Thus,
we can define a general quality of the consistency by

ρθ = 1

n2

n∑

i=1

n∑

j=1

4

(
Ĉθ (i, j) − 1

2

)2

(4)

where 0 ≤ ρθ ≤ 1, ρθ=1 represents the perfectly consistent assignment. Hence, we can get
value of ρθ for various θ ’s. Then, the appropriate value of θ could be determined by the value
θ where ρθ drops.
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5 Experimental study

In this section, we perform extensive experiments on both synthetic and real data to evalu-
ate the effectiveness of our co-clustering algorithm. In Sect. 5.1, we run our co-clustering
algorithm on a synthetic dataset with a hidden cluster structure to see whether our algorithm
is able to reveal the clusters. In Sects. 5.3 and 5.4, we use real datasets for to evaluate our
method.We compare the quality of the clusters generated by ourmethodwith those generated
by previous co-clustering algorithms in Sect. 5.3. We use micro-averaged precision [12,22]
as the quality measurement. Besides the precision of the clusters, we also show the hierarchi-
cal structure of the discovered clusters in Sect. 5.4. Since we use a document-word dataset
consisting of documents from different newsgroups, we demonstrate how the hierarchical
structure reveals the relationships in document clusters and word clusters.

5.1 Experimental evaluation on synthetic data

We generated a 1,000×1,000matrix, which has value 1 for threematrices along the diagonal,
each of which contains a sub-matrix of value 1.4, and 0 for the rest elements as shown in
Fig. 2a. Then, we add noise into the matrix by flipping the value of each element with
probability p = 0.3 as shown in Fig. 2b. Before we run our algorithm, we permute the rows

(a) (b)

(d)(c)

Fig. 2 Experiment on synthetic data
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Table 5 Subsets of 20
newsgroups used in Sect. 5.3

Dataset Newsgroups #documents
per group

Total
#documents

Multi5 comp.graphics 100 500
rec.motorcycles

rec.sports.baseball

sci.space

talk.politics.mideast

Multi10 alt.atheism 50 500

comp.sys.mac.hardware

misc.forsale

rec.autos

rec.sport.hockey

sci.crypt

sci.electronics

sci.med

sci.space

talk.politics.guns

and columns randomly to hide the cluster structure, and the final synthetic data are shown
in Fig. 2c. We run our co-clustering algorithm on the data with θ = 0.7 and get seven row
clusters and eight column clusters as shown in Fig. 2d, which resemble the original co-cluster
structure. The dendrogram of row and column clusters is shown along the axis.

5.2 Experimental settings on real dataset

In this section, we describe the experimental settings, which include the structure of the real
data and the quality measurement.

Real dataset

We downloaded the 20 Newsgroup dataset from UCI website.1 The package consists of
20,000 documents from 20 major newsgroups. Each document is labelled by the major
newsgroup in which it is involved. However, according to the detailed labels in the head
section of each document, a document can also be involved in several minor newsgroups,
which are not described in the 20 major newsgroups. Therefore, even for documents labelled
by one newsgroup, they can be further divided by theirminor newsgroups. These relationships
can not be revealed byprevious co-clustering algorithms that generate clusters in flat structure.
Wewill see in Sect. 5.4 that, with the hierarchical co-clustering, documents in the samemajor
newsgroup are further clustered into meaningful subgroups, which turn out to be consistent
with their minor newsgroup labels.

We pre-process the 20 Newsgroup dataset to build the corresponding two-dimensional
contingency table. Each document is represented by a row in the table, and 2,000 distinct
words are selected to form 2,000 columns. Words are selected using the same method as in
[34].

1 http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html.
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Table 6 Subsets of 20
newsgroups used in Sect. 5.4

Dataset Newsgroups #documents
per group

Total #
documents

Multi51 comp.graphics 1,000 5,000
rec.motorcycles

rec.sports.baseball

sci.space

talk.politics.mideast

Multi41 rec.motorcycles 1,000 4,000

rec.sports.hockey

rec.sports.baseball

talk.politics.mideast

In order to compare the quality of clusters generated by our method with those of previous
algorithms, we generate several subsets of the 20 Newsgroup dataset using the method in
[12,22,34]. Each subset consists of several major newsgroups and a subset of the documents
in each selected newsgroups. The details are listed in Table 5. As in [12,22,34], each of these
subsets has two versions, one includes the subject lines of all documents and the other does
not. We use datasets and dataset to denote these two versions, respectively.

In order to illustrate the effectiveness of the hierarchical structure of our clusters, we use
two subsets of the 20 Newsgroup dataset in Sect. 5.4. The details are reported in Table 6.
Subset Multi51 consists of the same newsgroups as in Multi5. However, Multi51 contains
all documents in each newsgroup so that documents involved in different minor newsgroups
can be included. All experiments are performed on a PC with 2.20GHz Intel i7 eight-core
CPU, and 8GB memory. The running time of the proposed algorithm is 2.16 and 4.72 s on
datasetMulti5 andMulti5, respectively.

Quality measurement

To compare our algorithm with previous algorithms in [12,22], we use the same quality
measurement, micro-averaged precision, used by those algorithms.

For each generated row (document) cluster, its cluster label is decided by the majority
documents in the cluster from the same major newsgroup. And a document is correctly
clustered if it has the same label as the cluster. Assume that the total number of rows (doc-
uments) is N and the total number of correctly clustered rows (documents) is M . The value
of micro-averaged precision is M

N .

5.3 Comparison with previous algorithms

In this section, we compare our co-clustering algorithmwith several previous algorithms.We
use micro-averaged precision on the document clusters to measure the cluster quality since
only documents are properly labelled in the dataset. For all the datasets, we set θ = 0.7 in
our algorithm. Using Multi51 dataset, we compare the results of different θ ’s in Fig. 3. We
observed θ = 0.7 obtains the best clustering result.

The state of the art hierarchical co-clustering algorithms used for comparison are as
follows:

– NBVD [22]: Co-clustering by block value decomposition. This algorithm solves the
co-clustering problem by matrix decomposition. It sets the number of row clusters to
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Fig. 3 Comparison of the clustering results using different θ ’s onMulti51

be the number of major newsgroups in datasets. The resulting clusters form a strict
partition.

– ICC [12]: Information-theoretic co-clustering. This algorithm is also based on
information-theoretic measurements and considers the contingency table as a joint prob-
ability distribution. It is a k-means clustering algorithm that generates exact k disjoint
row clusters and l disjoint column clusters for given parameters k and l.

– HCC [21]: a hierarchical co-clustering algorithm. HCC brings together two interrelated
but distinct themes from clustering: hierarchical clustering and co-clustering. The former
theme organizes clusters into a hierarchy that facilitates browsing and navigation, and
the latter theme clusters different types of data simultaneously by making use of the
relationship information between two heterogenous data.

– HiCC [17]: a hierarchical co-clustering algorithm produce compact hierarchies because
it produces n-ary splits in the hierarchy instead of the usual binary splits. Thus, it is able
to simultaneously produces two hierarchies of clusters: one on the objects and the other
one on the features.

– Linkage [25]: a set of agglomerative hierarchical clustering algorithms based on linkage
metrics. Four different linkage metrics were used in our experiments, i.e. Single-Link,
Complete-link, UPGMA (average), WPGMA (weighted average). We used its build-in
version in MatLab 7 to conduct the experiments.

There are other existing co-clustering/clustering algorithms, such as [13,19,34], which
conducted experiments on the same subsets in Table 5. Since NVBD and ICC outperform
these algorithms in terms ofmicro-averaged precision,wewill not furnish a direct comparison
with them. The fully crossed association co-clustering algorithm in [7] is not used in the
comparison because its experiments were conducted on other datasets.

Both NVBD and ICC set the number of document clusters as the number of major
newsgroups in the dataset, while our algorithm terminates when I {X̂ , Ŷ } is big enough
(I {X̂ , Ŷ }/I {X, Y } ≥ θ ), which may generate slightly more clusters. Therefore, in addition
to measuring the quality of the original clusters output by our algorithm, we also merge the
document clusters into the same number of clusters as that from NVBD and ICC so that
they can also be compared directly with each other. We consider each document cluster as
a probability distribution over the word clusters. And we merge the clusters by calculating
the relative entropy (KL-divergence) between them. In each step, we merge two document
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clusters, which have the minimal relative entropy of their distributions over word clusters. It
is repeated until the remaining number of document clusters is equal to that in NVBD and
ICC. For the Linkage algorithms, we set their number of clusters as same as the number of
document clusters generated by our algorithm since both of them are hierarchical clustering
algorithms.

For convenience, we use HICC to represent our algorithm and use m-pre to represent
micro-averaged precision. For the number of word clusters, ICC generates about 60–100
word clusters as reported in [12], while our algorithm HICC generates about 50–80 word
clusters. The number of word clusters generated by NVBD is not reported in [22]. While in
the Linkage algorithms, since they only cluster the rows, each column can be considered as
a column cluster.

The comparison of micro-averaged precision on all datasets in Table 5 is shown in Table 7.
The average value of micro-averaged precision is computed based on 10 repeatedly runs
of each experiment. In the table, the micro-averaged precision decreases slightly after we
merge our original clusters into the same number of clusters as NVBD and ICC. This is
because cluster merge may over-penalize the incorrectly labelled documents. Nevertheless,
our algorithm is still the winner in all cases.

The single-linkage metric has a very low precision comparing with all other algorithms.
The reason may be that using the shortest distance between two clusters as the inter-cluster
distance suffers from the high dimensionality and the noise in the dataset. Note that we so
far only examine the leaf clusters of the rich hierarchy that our algorithm is able to generate.
In the next section, we will show that, besides the cluster quality, our hierarchical structure
reveals more information which previous algorithms cannot find.

Table 7 Micro-averaged precision on subsets of 20 Newsgroup

Method HICC (merged) NVBD ICC HCC HiCC
#clusters m-pre m-pre m-pre m-pre m-pre

Multi5s 5 0.95 0.93 0.89 0.72 0.81

Multi5 5 0.93 N/A 0.87 0.71 0.80

Multi10s 10 0.69 0.67 0.54 0.44 0.69

Multi10 10 0.67 N/A 0.56 0.61 0.65

Method HICC Single-link Complete-link
#clusters m-pre m-pre m-pre

Multi5s 30 0.96 0.27 0.89

Multi5 30 0.96 0.29 0.85

Multi10s 60 0.74 0.24 0.67

Multi10 60 0.74 0.24 0.60

Method UPGMA WPGMA HCC HiCC
#clusters m-pre m-pre m-pre m-pre

Multi5s 30 0.73 0.65 0.57 0.59

Multi5 30 0.59 0.71 0.53 0.60

Multi10s 60 0.60 0.58 0.41 0.53

Multi10 60 0.61 0.62 0.51 0.50

The best results are shown in bold
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5.4 Analysing hierarchical structure of clusters

In this section, we show that the hierarchical structure built by our algorithm provides more
information than previous algorithms. Generally, there are two kinds of extra information in
the hierarchical structure of document clusters.

– The relationship betweenmajor newsgroups. Themajor newsgroups of the 20Newsgroup
dataset can be organized in a tree structure according to their naming convention. The
flat cluster structure in [12,22] cannot reveal the information about the tree structure of
newsgroups while our algorithm can capture these relationships.

– The relationship between documents in the same major newsgroup. As we mentioned,
besides the major newsgroup label, each document can have several minor newsgroup
labels. Therefore, documents in a major newsgroup can be further divided into several
subgroups according to their minor labels. Our algorithm can partition the documents in
one major newsgroup into meaningful subgroups.

In addition to the hierarchical structure of document clusters, our algorithm builds a
hierarchical structure of word clusters at the same time. The relationships between word
clusters, which were not found by previous co-clustering algorithms, are also provided in the
hierarchical structure. We will use the two datasets in Table 6 for experiments in this section.
Note that, although Linkage algorithms also generate a hierarchy of the row clusters, the
structure is much larger and does not reveal the relationships correctly. Therefore, we do not
present the hierarchy from Linkage algorithms in this section.

5.4.1 Hierarchical structure of multi51

The first dataset Multi51 consists of five major newsgroups. Our algorithm generates 30
document clusters and 39 word clusters. We represent the hierarchical structure in a tree
format. Each final cluster corresponds to a leaf node in the tree, while intermediate clusters
correspond to intermediate tree nodes. The root node corresponds to the cluster consisting
of all documents. Each final cluster has an ID ci , and the number in the circle underneath the
node represents its label of major newsgroups. For each intermediate node, the newsgroup
label is also given in the circle if majority of the documents in its sub-tree come from the
same major newsgroup. The hierarchical structure of document clusters for Multi51 is shown
in Fig. 4.

We observe that (1) clusters labelled by 1 (talk.politics.mideast) are contained in two
separate sub-trees; (2) clusters labelled by 3 and 4 (rec.motocycle and rec.sports.baseball)
are contained in one sub-tree and are separated further down the tree; (3) clusters labelled by
2 and 5 (comp.graphics and sci.space) are contained in one sub-tree and are also separated
later. This cluster separationmakes sense. Newsgroups rec.motocycle and rec.sports.baseball
are certainly close to each other since they share one keyword rec. For the rest newsgroups,
both comp.graphics and sci.space relate to scientific techniques so that they are contained in
one sub-tree. The newsgroup talk.politics.mideast is obviously most distant from the other
four newsgroups. Figure 4 clearly demonstrates that the hierarchical structure of document
clusters reveals relationships between the five major newsgroups.

Furthermore, the structure also reveals relationships of documents within a major news-
group.Document clusters belonging to newsgroup talk.politics.mideast are separated into two
sub-trees, each ofwhich contains documentswith differentminor newsgroup labels. Note that
all documents in this newsgroup share the same major newsgroup label talk.politics.mideast.
Consider the following 3 clusters: c8, c24, and c21. Cluster c21 is far from c8 and c24,
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Fig. 4 Hierarchical structure of document clusters on Multi51. Each leaf node represents a cluster. Interme-
diate nodes represent the hierarchical structure. The label below the node represents the newsgroup that the
cluster belongs to

Table 8 Absolute number and
percentage of documents having
the minor newsgroup label in
each cluster

Cluster soc.culture.turkish (%) soc.culture.greek (%)

c8 89 93 54 57

c24 51 85 22 35

c21 16 7 0 0

while c8 and c24 are more similar to each other. After checking the minor newsgroup labels
for documents in these clusters, labels soc.culture.turkish and soc.culture.greek are found to
play roles in this separation. Table 8 shows the number and the corresponding percentage of
documents having these two minor newsgroup labels in each cluster.

We observed soc.culture.turkish makes cluster c21 separated from c8 and c24, while
soc.culture.greek makes c8 and c24 separated. This indicates that the hierarchical structure
of document clusters reveals the relationship between documents in one major newsgroup
via meaningful sub-clusters.

In addition to document clusters, our algorithm also builds hierarchical structure for word
clusters. Sincewords do not have labels, we label eachword clustermanually according to the
five major newsgroups in the dataset. For those word clusters containing only general words,
they are unlabelled. Table 9 lists nine of the word clusters. The words are sorted according to
the scoring function in [34], and the top five words of each of these nine clusters are shown.
The first row of each column contains word cluster ID, and the second row contains the
cluster label which corresponds to the five major newsgroups.
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Table 9 Labelled word clusters of Multi51

Newsgroups Cluster 4 Cluster 6 Cluster 7 Cluster 20

1. talk.politics.mideast Newsgroup 1 Newsgroup 1 Newsgroup 2 Newsgrgoup 2&5
2. comp.graphics Government Greek Image University

3. rec.motorcycles War Russian Images Information

4. rec.sport.baseball Rights Greece Program Find

5. sci.space Muslims Men Software Book

Killed United Pub Possible

Cluster 12 Cluster 11 Cluster 13 Cluster 14 Cluster 36

Newsgroup 2&5 Newsgroup 1 Newsgroup 3 Newsgroup 4 Newsgroup 5

Data Turkish Clutch Baseball Spacecraft

Project Armenian Car Players Nasa

Systems Istanbul Driving Season Launch

Science Armenia Engine Braves Orbit

Surface Soviet Lock Pitcher Solar

1.talk.politics.mideast
2.comp.graphics
3.rec.motorcycles
4.rec.sport.baseball
5.sci.space

15

25

30

17

16

26 29

31 34

36

root

32 33

c20c16

35

4 3

5 2&5

2 5

1

92

1

1.rec.motorcycles
2.rec.sport.baseball
3.rec.sport.hockey
4:talk.politics.mideast

1

32

4 5

6 7

1

root

8

4

3

3 2
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Fig. 5 Left tree: a truncated hierarchical structure of word clusters on Multi51. Right tree: a truncated hier-
archical structure of document clusters on Multi41

The word clusters appear to be meaningful. Word clusters c6 and c11 also correlate with
the separation of document clusters c8, c24 and c21. Word cluster c11 has higher occurrence
in both document clusters c8 and c24, while word cluster c6 has higher occurrence only
in c8. Word clusters c12 and c20 have label 2&5 because the words in these two clusters
are common scientific words, which could be used in both sci.space and comp.graphics
newsgroups.

A truncated hierarchical structure of word clusters is shown by the left tree in Fig. 5 due
to space limitation. In this structure, sub-trees in which majority of nodes sharing a single
cluster label are represented by its top intermediate node and labelled by the dominating
cluster. Nodes without a label represent sub-trees consisting of un-labelled (general) word
clusters. We can make similar observations on the word cluster hierarchy as we did on
document cluster hierarchy: (1) word clusters labelled by 1 are separated from other clusters,
(2) word clusters labelled by 3 and 4 are in the same sub-tree, and (3) word clusters labelled
by 2 and 5 are in another sub-tree.
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For those word clusters containing general words, their positions in the hierarchical struc-
ture are also expected. For example, node 9 of the left tree in Fig. 5 represents word clusters
related to talk.politics.mideast. Its sibling node contains general words related to politic top-
ics, such as “national,” “human,” and “military”. Node 17 contains some general words,
which are related to the labels of its sibling node 25, such as “driver”, “point,” and “time”.

5.4.2 Hierarchical structure of multi41

In theMulti51 dataset, two of the newsgroups share one keyword “rec” in the label. InMulti41,
we add one newsgroup rec.sport.hockey so that three of the newsgroups share one keyword
“rec” and furthermore, two of them share two keywords “rec.sport” in the label. With these
more complicated relationships between newsgroups, the effectiveness of our algorithm can
be seen in the hierarchical structure of clusters.

Because of space limitation, we only show a truncated hierarchical structure of document
clusters by the tree on the right in Fig. 5, which is sufficient to show the effectiveness of our
algorithm. The word clusters are similar to those of Multi51 and thus are omitted here.

We observe in the right tree in Fig. 5 that clusters with label 4 are separated from others,
while clusters with labels 1, 2, and 3 are in the same sub-tree. In the sub-tree under node
1, clusters with label 1 are separated from clusters with labels 2 and 3. This hierarchical
structure correctly reveals the relationships between the four newsgroups.

The experiments in this section demonstrate that our hierarchical co-clustering algorithm
reveals much more information including relationships between different newsgroups and
relationships between documents in one newsgroup. This information cannot be found by
previous algorithms such as NVBD and ICC. This advantage is in addition to the higher
cluster quality than all competing algorithms.

6 Conclusions

In this paper, we present a hierarchical co-clustering algorithm based on entropy splitting to
analyse two-dimensional contingency tables. Taking advantage of the monotonicity of the
mutual information of co-cluster, our algorithm uses a greedy approach to look for simplest
co-cluster hierarchy that retains sufficient mutual information in the original contingency
table. The cluster hierarchy captures rich information on relationships between clusters and
relationships between elements in one cluster. Extensive experiments demonstrate that our
algorithm can generate clusters with better precision quality than previous algorithms and
can effectively reveal hidden relationships between rows and columns in the contingency
table.
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