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Abstract Data preprocessing and cleansing play a vital role in data mining by ensuring good
quality of data. Data-cleansing tasks include imputation of missing values, identification of
outliers, and identification and correction of noisy data. In this paper, we present a novel
technique called A Fuzzy Expectation Maximization and Fuzzy Clustering-based Missing
Value Imputation Framework for Data Pre-processing (FEMI). It imputes numerical and
categorical missing values by making an educated guess based on records that are similar to
the record having a missing value. While identifying a group of similar records and making
a guess based on the group, it applies a fuzzy clustering approach and our novel fuzzy
expectation maximization algorithm. We evaluate FEMI on eight publicly available natural
data sets by comparing its performance with the performance of five high-quality existing
techniques, namely EMI, GkNN, FKMI, SVR and IBLLS.We use thirty-two types (patterns)
of missing values for each data set. Two evaluation criteria namely root mean squared error
andmean absolute error are used.Our experimental results indicate (according to a confidence
interval and t test analysis) that FEMI performs significantly better than EMI, GkNN, FKMI,
SVR, and IBLLS.
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1 Introduction

Data collection, storage, and analysis have become crucial nowadays for various decision-
making processes ofmodern organizations. Typically various sources and techniques (includ-
ing surveys, interviews, and sensors) are used for data collection, and the collected data are
then generally integrated into a single data set for data mining purposes [23]. For example,
different types of sensors such as weather stations are typically used to collect tempera-
ture, humidity, and wind speed data in a habitat monitoring system (HMS). Various factors
including human error and misunderstanding, equipment malfunctioning, and faulty data
transmission can cause data corruption and missing during the whole process of data col-
lection, storage, and preparation. Approximately 5% or more data values can often be lost
(missing) unless extreme care is taken by the organizations [32,35,40,48].

In this study, we consider that a data set DF is a two-dimensional table, where rows
represent the records (R = {R1, R2, . . . , Rn}) and columns represent the attributes (A =
{A1, A2, . . . AM }). A record Rx ∈ DF has a set of M attributes A = {A1, A2, . . . , AM } (i.e.,
|A| = M). It represents an individual such as a patient in the patient data set of a hospital. An
attribute Ai represents an information such as the age of the records. Each attribute Ai has a
domain. If Ai is a categorical attribute, then the domain of Ai is Ai = {Ai1, Ai2, . . . , Ai j },
and if Ai is a numerical attribute, then Ai = [low, up], where the lowest limit of Ai is low
and the highest limit of Ai is up. By Rxi , we mean the value of the i th attribute of the x th
record, and by a missing value of Rxi , we mean that the value Rxi is missing. A data set DF

may have some missing values in it. Note that in this study, we do not consider time series
data.

Use of poor-quality data, having missing and incorrect values, can result in an inaccurate
and non-sensible conclusion,making thewhole process of data collection and analysis useless
for the users [16,36]. Therefore, in order to deal with the inaccurate and missing values, it is
extremely important to have an effective data preprocessing framework [8,17,28,29]. One
important data preprocessing task is the imputation/estimation ofmissing values as accurately
as possible. A number of imputation methods have been proposed recently [12,14,22,31,37–
39,43,52,54,55].

The imputation performance generally depends on the selection of a suitable tech-
nique [51]. Different techniques take different approaches for imputation of a missing value.
While imputing a missing value, some techniques including EMI [43] and Mean Imputa-
tion [22] use the whole data set DF . On the other hand, some techniques including DMI [35],
KMI [31], LLSI [25], ILLSI [9], and IBLLS [12] use only a portion (i.e., a horizontal seg-
ment) Da ⊂ DF where the records Rx ∈ Da; ∀x are similar to the record Ry having a
missing value.

In this paper, we propose a novel imputation technique called A Fuzzy Expectation Max-
imization and Fuzzy Clustering-based Missing Value Imputation Framework for Data Pre-
processing (FEMI). The basic idea of the technique is to impute/estimate a missing value Rxi

of a record Rx using the records that are similar to Rx . Our technique considers the fuzzy
nature of a data set, where a record Rx has an association (i.e., a membership degree) with
each cluster instead of one and only one cluster. A cluster is a portion Da containing a group
of records. Similar records are grouped together in a cluster, and dissimilar records are placed
in different clusters.

FEMI uses two levels of fuzziness. In the first level, it considers that the record Rx (having
a missing value Rxi ) has a fuzzy nature in the sense that it has membership degreesUxl with
all clusters Cl; ∀l, instead of Rx having a complete (100%) association with one cluster Cl

and zero association with all other clusters C j ; ∀ j �= l. The missing value of Rx is estimated
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by considering each cluster Cl separately. Therefore, if there are k numbers of clusters, we
get k numbers of imputed values for Rxi . A final imputation is then computed through the
weighted average of all k imputed values, by using the imputed values (v1, v2, . . . , vk) and
the membership degrees (Ux1,Ux2, . . . ,Uxk).

In the second level of fuzziness, FEMI considers that all records Ry ∈ DF ; ∀y (not just Rx )
have a fuzzy association with all the k clusters. Therefore, while imputing the missing value
Rxi according to a cluster Cl , FEMI uses a novel fuzzy imputation technique (as explained
in Eqs. (6), (7) and (8)) that considers this second level of fuzziness. The fuzzy imputation
technique considers all records Ry; ∀y and their membership degrees Uyl; ∀y with Cl . Note
that all records Ry; ∀y are used for all clusters Cl; ∀l, but each cluster produces an imputed
value that is different to the imputed values produced by other clusters due to the difference
in membership degrees of the records with the clusters.

The main contributions of the technique are as follows: 1. The overall framework for
imputing the missing values, 2. The use of multiple clusters Cl; ∀l for imputing a missing
value Rxi , 3. Combining the imputed values (v1, v2, . . . , vk) considering the membership
degrees (Ux1,Ux2, . . . ,Uxk) of the record Rx (that has themissingvalue Rxi ), and4. Imputing
the missing value Rxi using a fuzzy imputation technique [see Eqs. (6), (7), and (8)] applied
on each cluster.

We evaluate FEMI on eight (8) natural data sets (available from UCI Machine Learning
Repository [15]) by comparing its performance with the performance of five high-quality
existing techniques, namely EMI [22,43], GkNN [53], FKMI [27,31], SVR [44,49] and
IBLLS [12], which have been argued to be better than many other existing techniques includ-
ing Bayesian principal component analysis (BPCA) [33], LLSI [25], and ILLSI [9]. Two
evaluation criteria such as root mean squared error (RMSE) and mean absolute error (MAE)
are used. Our experimental results indicate (based on some statistical analysis namely t test
and confidence interval) that FEMI performs significantly better than EMI, GkNN, FKMI,
SVR, and IBLLS.

The organization of the paper is as follows. Section 2 presents a literature review. Our
technique (FEMI) is presented in Sect. 3. Section 4 presents experimental results, and Sect. 5
gives concluding remarks.

2 Background study

A number of missing value imputation techniques have recently been proposed [12,14,22,
30,31,43,52,54,55]. A few of the existing techniques are nearest neighbor (NN), linear
interpolation (LIN), cubic spline interpolation, regression-based expectation maximization
(REGEM) imputation, self-organizing map (SOM), and multilayer perceptron (MLP) [22].
However, many existing techniques cannot handle a data set having both numerical and
categorical attributes [47].

The mean of all values of an attribute is used to impute a missing value of the attribute
by a relatively simple technique [43]. However, a more advanced technique called k-nearest
neighbor imputation (kNNI) [4] first finds the k-most similar records from the data set by
using Euclidean distance measure. It then imputes a missing categorical value belonging
to an attribute by using the most frequent value, of the same attribute, within the k-nearest
neighbor (k-NN) records. For imputing a numerical value, the technique utilizes the attribute
mean value for the k-NN records. The experimental results show that the performance of
kNNI technique is higher than the performance of a technique using mean/mode imputation
on a whole data set, instead of the horizontal segment having k-NN records. It is a simple
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technique in a way since it does not require to create explicit models such as decision trees
and forests. However, it needs to search the whole data set as many times as the number of
records having missing values in order to find the nearest neighbors of each record having
missing value/s. Therefore, the technique can be found expensive for a large data set [4,50].

Instead of repeatedly finding k-NN for each record having amissing value, another existing
technique called “K-means Clustering-based Imputation (KMI)” [27,31] uses the clusters of
records for imputation. It first divides a given data set DF into two data sets namely DC

and DI , where DC contains complete (no missing) records and DI contains records having
missing values. KMI then partitions the data set DC into k (user-defined) clusters using a
well-known K-Means clustering approach. It then assigns a record belonging to DI into a
cluster, which it has the minimum distance with. Themissing value is then imputed following
an educated guess based on the records of the cluster. The clustering is only done once for
imputing all records belonging to DI .

In order to impute numerical missing values of a record Ri , a recent technique called
“Iterative Bi-Cluster based Local Least Square Imputation” (IBLLS) [12] divides a data set
in both horizontal and vertical segments. It first finds the k-most similar records for Ri .
Within the k-most similar records, it then calculates the correlation information, Q, between
the attributes, the values of which are available in Ri , and the attributes the values of which
are missing in Ri . IBLLS then uses the correlation information, Q, in order to re-calculate
the k-most similar records for Ri .

IBLLS then detects the attributes (within the k-most similar records) that have high corre-
lations with the attribute having a missing value in Ri . It thus partitions a data set horizontally
(using the k-most similar records) and vertically using the most correlated attributes. IBLLS
then uses Local Least Square Framework [25] into the partition in order to impute a missing
value of Ri . IBLLS repeats this procedure for imputing other missing values (if any) of Ri .
Similarly, IBLLS imputes other records of the data set having missing values.

IBLLS is an iterative method. In each iteration, it checks how well the imputed value
agrees with the correlation matrix of the attributes within the data segment that is partitioned
both horizontally and vertically. If the imputed value of the current iteration agrees better
than the imputed value of the previous iteration, then it replaces the previous imputed value
by the new imputed value; otherwise, it keeps the previous imputed value. The process of
imputation and updating missing values continues recursively until the change of degrees
of agreement (between an imputed value and the correlation matrix) for two consecutive
iterations goes under a user-defined threshold.

Another iterative method called Expectation Maximization Imputation (EMI) [22,43]
relies on the basic concept of the well-known expectation maximization (EM) algorithm [6,
14]. The EM algorithm uses two main steps known as the expectation step (E-Step) and the
maximization step (M-Step) [6,14]. For the imputation of missing values, the EM algorithm
in theE-Step first computes themean and covariance values of a data set based on the available
(that is, non-missing) values. It then imputes the missing values based on the estimated mean
and covariance values. The imputed values are the best possible results according to the
maximum likelihood approach based on the available information, which in this case is the
mean and covariance values. The EM algorithm then goes to the M-Step in order to update
the mean and covariance values by taking the imputed values into consideration. It then
again uses the E-Step to make a better imputation of the values using the updated mean
and covariance values. The steps continue iteratively as long as the imputation quality keeps
improving.

Expectation maximization imputation (EMI) uses the mean and covariance matrix of a
whole data set (not a segment) in order to impute a numerical missing value. Let xa be the
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vector containing the available values of Ri . If Ri has four available values, then the vector
xa has four elements, where the first element contains the first available value of Ri . Let xm
be the vector that will contain the imputed values of the missing values of Ri . If Ri has three
missing values, then xm has three elements, where in the first element, the imputed value of
the first missing value of Ri will be stored. Letμm be the mean vector of the attributes having
missing values for a record Ri . For example, if Ri has three missing values, then μm is a
vector having three elements. The first element contains the average value (over all records
of DF ) of the first attribute for which Ri has a missing value. Similarly, the second and third
elements contain the average of the second and third attributes for which Ri has missing
values. Let μa be the mean vector of the attributes without missing values for a record Ri .
Let μ(= μa ∪ μm) be the mean vector of attributes having available values and of attributes
with missing values. Let B be a regression coefficient matrix. B = θ−1

aa θam , where θaa is
the covariance matrix for the attributes having available values for Ri . For example, if Ri

has four available values, then θaa is a 4 × 4 matrix, where the element σpq represents the
covariance between the pth attribute and qth attribute for which Ri has available values.

In the E-Step, EMI imputes the missing values xm of Ri based on the available values xa
of Ri , mean vectors μa and μm , and coefficient matrix B as shown in Eq. (1). During the
imputation, EMI considers the correlations among the attributes.

In Eq. (1), EMI considers that the deviation of a missing value Ri j ∈ xm from the mean
value of the j th attribute μ j ∈ μm is proportional to the deviation of an available value
Ril ∈ xa from the mean value of the lth attribute μl ∈ μa , when the correlation between the
j th and the lth attribute is high. The missing values xm of Ri are imputed using Eq. (1) as
follows [43].

xm = μm + (xa − μa)B + e (1)

where e is a residual error withmean zero and unknown covariancematrix [43]. The e value is
obtained by randomizing the covariances of the attributes as explained in Step 4 of Sect. 3.3.
The e value is used only in the first iteration (i.e., in the first execution of the E-step) of the
EMI algorithms.

In the M-Step, EMI again estimates the mean vector μ and the coefficient matrix B
considering the imputed data set. The objective of this step was to maximize the imputation
quality of the E-Step.

EMI repeats the E-Step andM-Step until the difference between the mean (and covariance
matrix) of the current iteration and the mean (and covariance matrix) of the previous iteration
is less than user defined thresholds.

3 A novel missing value imputation framework

3.1 The basic contributions

We propose a technique called A Fuzzy Expectation Maximization and Fuzzy Clustering-
based Missing Value Imputation Framework for Data Pre-processing (FEMI) that makes
use of a fuzzy clustering technique and a fuzzy expectation maximization algorithm for
imputation. Before we discuss the technique in details, we first introduce the basic concepts
and contributions of the proposed framework as follows.

If a numerical attribute value of a record is missing, then it can be imputed based on the
available attribute values of the record and the correlations for the attributes in the data set DF

as shown for the EMI technique [43] in Sect. 2.We argue that the imputation accuracy is likely
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Table 1 Correlation analysis on
the Yeast data set

Cluster
ID

Number of Better correlations within a cluster
(out of 28 correlations)

Number of
records

A B C

1 12 427

2 23 50

3 23 44

4 18 20

5 19 461

6 24 10

7 26 30

8 17 163

9 23 35

10 17 244

to be high when all records Rx ∈ DF ; ∀x are very similar to each other, and the correlations
for the attributes are high. By similar records, wemean records having similar attribute values
resulting in low distances among them. When the records are very similar to each other, then
the total number of possible values/options for an attribute are low. Low number of possible
values helps to achieve high imputation accuracy. Similarly, when the correlations between
two attributes are high, then with the increase of the value of one attribute, the value of the
other attribute also increases (or decreases in case of negative high correlation). Therefore,
by knowing the value of one attribute, it is possible to impute the value of the other attribute
more accurately. Based on this understanding, we aim to first find a group of similar records
(from DF ) with high correlations for the attributes and then apply an imputation technique
within the group. In order to find similar records, we perform a clustering on the records. Note
that existing EMI [14,22,43] uses all records of the whole data set for imputing a missing
value Rxi and therefore does not use any clusters.

If we perform a clustering on the records of DF , then we can expect to get similar records
in a cluster and dissimilar records in different clusters [11,26]. We argue that typically the
records grouped together in a cluster (i.e., similar records) should also have a high correlation
between two attributes of the data set. An initial experimentation is carried out on the Yeast
data set [15] in order to empirically assess the validity of the argument. We first compute
the correlation Ci, j between two attributes Ai and A j based on all records of the Yeast data
set. We then group the records of the Yeast data set into ten clusters. The correlation Cl

i, j
between the attributes Ai and A j is then computed for the records belonging to a cluster
Cl . If Cl

i, j > Ci, j , then we have a stronger/higher correlation between Ai and A j within a
cluster Cl than the correlation between Ai and A j over the whole data set DF . Since Yeast
has 8 attributes, there are 28 possible pairs of attributes, and therefore, 28 correlations Ci, j .
Table 1 shows the number of pairs of attributes having higher correlations within a cluster.
Column A shows the Cluster ID, and Column B presents the number of attribute-pairs (out of
28 pairs) having stronger correlation within the cluster than for the whole data set. It clearly
shows that attributes have higher correlations within the clusters than in the whole data set.
Column C presents the number of records in each cluster.

We also calculate the similarity of a record Rx with another record Ry for all Rx and Ry .
All these similarities are then used to calculate the average similarity SD among the records
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Fig. 1 Similarity analysis on
Yeast data set

Fig. 2 Basic concepts of FEMI

for the whole data set, as shown by the left bar graph in Fig. 1. The average similarity Sl
for the records within a cluster Cl is also calculated. We then compute the average similarity

Sc =
∑k

l=1 Sl
k , where k is the total number of clusters. Figure 1 shows that the similarity

among the records within the clusters is higher than the similarity among the records for the
whole data set.

Sometimes, the records in a data set do not have a clear separation among them, and
therefore, obvious boundaries do not exist among the clusters. For example, Fig. 2 shows an
example data set (two-dimensional), where each dot represents a record Rx . Each record Rx

has two attribute values: one along the X -axis and the other one along the Y -axis. There are
perhaps four clusters in the four corners of the example data set (see Fig. 2). However, it can
be extremely difficult to draw the exact boundaries of the clusters. For example, the records
just outside the outer circle (in the top left corner of Fig. 2) are almost equally attached to
the cluster (shown in the top left corner) as the records just inside the circle. Additionally,
the records also have some association with other clusters. Therefore, in the fuzzy clustering
approach [11,26], a record is assigned to all clusters with different membership degrees based
on the argument that a record may not just belong to one or the other cluster, rather it can
have different degrees of association with all clusters.

In this study,wepropose two levels of fuzziness. For the first level of fuzziness,we consider
that a record Rx having a missing value has a membership degree (i.e., a fuzzy association)
with each cluster. The fuzzy association of a record with all clusters can be computed using
a fuzzy clustering technique such as GFCM [26] as briefly explained in Sect. 3.2. Therefore,
instead of imputing a missing value of Rx based on just one cluster, we use all k clusters,
and thereby produce the k number of imputed values (v1, v2, . . ., vk). We then compute the
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final imputation using v1, v2, . . ., vk and the membership degrees (Ux1,Ux2, . . ., Uxk) of Rx

with the k clusters. The cluster with which the record Rx has a higher membership degree
has more influence in the imputation than the cluster with a lower membership degree.

The second level of fuzziness is that while imputing a missing value (Rxi = vl ) based
on a cluster Cl , we consider that each record of the data set (Rx ∈ DF ; ∀x) has a fuzzy
association with Cl . Therefore, while calculating the mean vector for the missing values μm ,
mean vector for the available values μa and regression coefficient matrix B (see Eq. (1)) for
Cl , we take all records of a data set into consideration according to their membership degrees
with Cl . Hence, we modify Eq. (1) as shown in Eqs. (6), (7) and (8).

Let us give a logical justification of the second level of fuzziness as follows using Fig. 2.
Let us assume that a record Rx has a missing value Rxi , and it is located somewhere within
the smaller/inner circle in the top left corner of Fig. 2. Let us also assume that Rxi is the
Y -axis value of Rx in the two-dimensional example data set. According to our framework,
we need to find the records similar to Rx , i.e., we need to find the cluster where Rx belongs
to. If we consider the records within the inner circle as the cluster, then we get a different set
of μa , μm and B values than the values we get if we consider the records within the outer
circle as the cluster. Since the Y -axis value of Rx is missing, μa is the average of the X -axis
values for all records within a cluster. It is not trivial to determine which set of values (for
μa , μm and B) are the most useful or sensible since for different cluster boundaries, we get
different values. It is not possible to determine the exact boundaries of the clusters. That is,
it is not possible to identify the exact set of records belonging to a cluster for the example
data set. Therefore, while calculating μa , μm , and B for Cl , we consider all records of the
data set and their membership degrees with Cl as shown in Eq. (6).

Hence, when a data set has the fuzzy nature (as shown in Fig. 2), we expect our novel
technique to perform better than even the existing techniques that use similar records either by
K-nearest neighbors or hard clustering. Besides, our technique should not be disadvantaged
even for a data set that does not have the fuzzy nature since our technique can adjust its
behavior accordingly through the use of membership degrees. If a data set is completely
non-fuzzy, then the records belonging to a cluster will have a membership degree equal to 1
for the cluster and zero for all other clusters.

The novel concept of the two level fuzziness, the necessary modifications of Eq. (1) [see
Eqs. (6), (7) and (8)] in order to support the Fuzzy EMI, and the overall framework are the
basic contributions of the study. Note that the existing EM algorithms [14,22,43] do not
consider the fuzzy clustering approach and fuzzy EMI imputation while imputing missing
values. In the following section, we briefly introduce an existing fuzzy clustering technique
called GFCM [26] for the clear understanding of an interest reader on Fuzzy Clustering.

3.2 A general fuzzy C-means (GFCM) [26] clustering algorithm

Clustering algorithms can be grouped into two categories, namely hard clustering and fuzzy
(soft) clustering [3]. In hard clustering, a record Ri of a data set DF belongs to one and
only one cluster to which Ri is the most similar. However, in fuzzy clustering, Ri has certain
probability (called membership degree) of belonging to each of the clusters. Themembership
degreeUik for the record Ri with the clusterCk can vary between 0 and 1. The valueUik = 1
indicates a complete association between Ri and Ck , and Uik = 0 indicates a complete
absence of any association between Ri and Ck . Moreover, the total association of Ri with k
clusters (i.e., C1,C2, . . . Ck) is equal to 1 (i.e.,

∑k
j=1Ui j = 1) [5,26].

We now discuss the general fuzzy C-means (GFCM) [26] clustering algorithm as follows.
Let a data set DF has N records and M attributes. GFCM first requires a user-defined value
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for k, based on which it groups the records of DF into k clusters (i.e., C1,C2, . . . Ck). It
then randomly assigns a membership degree to each record Ri for each cluster in such a
way so that

∑k
j=1Ui j = 1. Therefore, for k number of clusters a record Ri has k number

of membership degrees (i.e., {Ui1,Ui2, . . . ,Uik}), where
∑k

j=1Ui j = 1. The membership
degrees of all records with all clusters can be stored in two-dimensional matrix U having N
rows and k columns, where Ui j contains the membership degree of the i th record with the
j th cluster.

Based on U , GFCM then calculates the center of each cluster. Let V = {V1, V2, . . . , Vk}
be a set of k centers for k-clusters. The center Vj ∈ V of the j th cluster contains M values
{v j1, v j2, . . . , v jM } for the M attributes of the data set, where v jl is the lth attribute value of
the j th cluster center.

While computing the attribute values of a cluster center, GFCM applies different
approaches for numerical and categorical attributes. For a numerical attribute Al ∈ A, GFCM
calculates v jl by taking the weighted average of the lth attribute values for all records of DF .
The weighted average is computed considering the membership degrees of the records with
the j th cluster as shown in Eq. (2).

v jl =
∑N

i=1U
m
i j Ril

∑N
i=1U

m
i j

(2)

wherem is a fuzzification coefficient, which is greater than 1.0 and the default value of which
is 1.3 [26].

For a categorical attribute Al ∈ A, GFCM considers that the lth attribute value of a cluster
center actually contains all domain values of Al instead of just one of the domain values.
Each of the domain values of Al has a probability of being the actual value of the lth attribute
for the center. For example, let us assume that the domain size of Al is three meaning that Al

has three domain values say x , y and z. GFCM calculates the probability vxjl of the domain
value x being the actual value of v jl as shown in Eq. (3). Similarly, it also calculates the
probabilities v

y
jl and vzjl .

vxjl =
∑N

i=1

(
Um
i j |Ril = x

)

∑N
i=1U

m
i j

(3)

The random assignment of the membership degrees Ui j ; ∀i, j and the calculation of the
cluster centers V = {V1, V2, . . . , Vk} are considered to be the first iteration of GFCM. After
the completion of the first iteration, GFCM then enters into the second iteration, where it
recalculates the membership degrees [see Eq. (4)] and the cluster centers as explained above.
The membership degreeUi j of a record Ri with a clusterC j is calculated using the similarity
of Ri with C j . The record having high similarity with a cluster will have high membership
degree with the cluster [26].

Ui j = 1

∑k
z=1

(∑M
l=1 δ(Ril ,v jl )

2
∑M

l=1 δ(Ril ,vzl )2

) 1
(m−1)

(4)

where δ(Ril , v jl) is the dissimilarity between Ril and v jl .
Based on the updated (recalculated) membership degrees, a set of cluster centers are

calculated using Eqs. (2) and (3), as explained before. The process of recalculating the
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Fig. 3 The overall block diagram of our proposed technique

membership degrees and the cluster centers continues iteratively until a termination condition
is met.

Each iteration of GFCM is expected to improve the cluster quality from the previous
iteration. The termination condition in GFCM is met when the improvement of cluster qual-
ity stops over the two consecutive iterations. The cluster quality is evaluated through the
dissimilarity (as calculated by Eq. (5)) of the records within a cluster. The lower the total
dissimilarity, the better the cluster quality. Equation (5) computes the total dissimilarity of
the clustering solution of the t th iteration.

dt =
k∑

j=1

N∑

i=1

Um
i j

M∑

l=1

δ(Ril , v jl)
2 (5)

3.3 The main steps of our proposed technique

We now introduce the main steps of the FEMI framework. We also present an overall block
diagram of the FEMI framework as shown in Fig. 3. Besides, we present a running example
to illustrate the steps of FEMI. Note that the missing values of the running example (the main
purpose of which is to illustrate the main steps clearly) may appear to be straightforward
and can be imputed using a simple functional dependency analysis without requiring the
sophistication of FEMI. However, the real data sets are typically a lot more complicated, than
the running example, requiring the extra elegance of FEMI as evident from the experimental
results presented in Sect. 4.

Step 1: Copy a full data set DF into DN and normalize all numerical attributes of DN within
a range between 0 and 1.

Step 2: Divide the data set DN into two sub data sets DC (having only records without
missing values) and DI (having only records with missing values).

Step 3: Find membership degrees of all records of DC and DI with all clusters.
Step 4: Apply our novel FuzzyEM method to impute numerical missing values using all

clusters.
Step 5: Find the combined imputed value of a numerical attribute. Find the imputed value

of a categorical attribute.
Step 6: Combine records to form a completed data set (D′

F ) without any missing values.

Step 1: Copy a full data set DF into DN and normalize all numerical attributes of DN

within a range between 0 and 1.
We first make a copy of a data set DF having |R| records and |A| attributes into DN .

R = {R1, R2, ...Rn} is the set of records and A = {A1, A2, ...Am} is the set of attributes
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Algorithm 1: FEMI
Input : Data set DF having |R| records and |A| attributes
Output : Imputed data set D′

F having |R| records and |A| attributes
Step 1:

Set DN ← DF ;
DN ← Normali ze(DN ); /*Normalize all numerical attributes of DN into a range between 0 and 1*/

end
Step 2:

Divide DN into DC having |R′| records without missing values and DI having |(R − R′)| records with missing
values;

end
Step 3:

Apply a fuzzy clustering algorithm like GFCM on DC to find a set of k-cluster centroids V = {V1, V2, . . . , Vk }
and a membership degree matrix UC having |R′| rows and k columns;

For the records of DI , find fuzzy membership degree matrix U I having |(R − R′)| rows and k columns for the
same k-cluster centroids V = {V1, V2, . . . , Vk };
Set U ← UC ∪U I ;

end
Step 4:

Set DI ← Denormali ze(DI );
foreach cluster Ck do

Dk
I ← FuzzyEM(k, DI , DF ,U); /*k-cluster index*/

end
end
Step 5:

foreach record Ri ∈ DI do
foreach attribute Az ∈ A do

if Az is missing then
if Az is numerical then

Impute Riz using Equation (9);
end
else if Az is categorical then

For each domain value pl ∈ P , calculate the vote Gpl using Equation (11);
Find the maximum vote, Gmax ← max(Gpl ; ∀pl ∈ P);
Impute Riz by the domain value associated with Gmax ;

end
end

end
end

end
Step 6:

Set DC ← Denormali ze(DC );
Completed data set D′

F ← DC ∪ DI ;
Return D′

F ;
end

in DF . We then normalize each numerical attribute Ai ∈ A of DN into a range between
0 and 1 as shown in the Step 1 of the FEMI algorithm (Algorithm 1). Table 2a shows an
example data set DF . The data set DF has 15 records and 4 attributes out of which two are
numerical and two are categorical. The records R2, R8, R10, and R13 have missing values
for attributes Education (Edu.), Position (Pos.), Age and Salary (in thousand), respectively.
The normalized data set DN is shown in Table 2b.

Step 2 Divide the data set DN into two sub data sets DC (having only records without
missing values) and DI (having only records with missing values).

In this step, we divide the data set DN into two sub data sets namely DC and DI , where
DC contains |R′| records without missing values (see Table 2c) and DI contains (|R|− |R′|)
records with missing values (see Table 2d) as shown in the FEMI algorithm (Step 2 of
Algorithm 1).

Step 3: Find membership degrees of all records of DC and DI with all clusters.
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Algorithm 2: Procedure FuzzyEM()
Input : Cluster index k, data set DI , data set DF , membership degree matrix U
Output : Imputed data set Dk

I

Step 1:
initialize termination criteria, ε ← 10−10;

end
Step 2:

Set Dk
I ← φ;

foreach record Ri ∈ DI do
Set m ← Number of numerical attribute(s) of Ri having a missing value;
Set a ← Number of numerical attribute(s) of Ri having a non-missing value;

Calculate weighted mean vector, μk
mis using Equation (6) for m number of attributes having missing values

in Ri ;

Calculate weighted mean vector, μk
av using Equation (6) for a number of attributes having available values

in Ri ;

Calculate weighted covariance matrix B = (θkaa )−1θkam using Equation (7);

Calculate residual error, e ← [μ0 + H.ZT ]T ;
Set xm and xa as (1 × m) and (1 × a) size vectors having missing and available attribute values of Ri ;

Impute xm ← μk
mis + (xa − μk

av)B + e;
Update Ri with the imputed values xm ;

Dk
I ← Dk

I ∪ Ri ;
end
Replace missing values of DF by corresponding values of Dk

I ;
end
Step 3:

Repeat Step 2 until the change of mean and covariance, in DF , obtained from two consecutive iterations is less
than ε;

end
Step 4:

Return imputed data set Dk
I ;

end

In Step 3, we apply a fuzzy clustering technique such as GFCM [26] on DC with a user-
defined k number of clusters as an input in order to produce a set of k cluster centers V =
{V1, V2, . . . , Vk} as shown in Step 3 of Algorithm 1. The clustering technique also produces a
membership degreematrixUC having |R′| rows and k columns, whereUC

i j is themembership
degree of the ith record (Ri ∈ DC ) with the jth cluster.

Using the membership degree calculation equation of the fuzzy clustering technique, we
then find the membership degree matrix U I for all records of DI and the same k clusters
having the same cluster centers V = {V1, V2, . . . , Vk} as mentioned before. U I

lm is the mem-
bership degree of the lth record (Rl ∈ DI ) with the mth cluster. Membership degree of a
record with a cluster is inversely proportionate to the distance between the record and the
center of the cluster. We next combine UC and U I into U having |R| number of rows and k
number of columns.

For the example data set (as shown in Table 2c), let us use k = 3 in order to produce 3
clusters. The membership degrees of each record of Ri ∈ DC with 3 clusters are shown
in Table 3a. Each cluster has a centroid which contains the weighted mean of a numerical
attribute and the frequency of each attribute value of a categorical attribute as shown Table 3b.

We then calculate the membership degrees of each record Rl ∈ DI with a cluster C j ; ∀ j ,
using the centroid of C j and the available values of Rl . Membership degrees are calculated
based on the equations used in GFCM [26]. In our example, the membership degreesU I , of
Rl ∈ DI ; ∀Rl with the 3 clusters are shown in Table 3c. Finally, we combine the membership
degrees UC , and U I into U , where Ui j is the membership degree of the ith record Ri ∈ DF

with the jth cluster. Note that the membership degree of a record Ri ∈ DF is the same as the
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Table 2 A sample data set DF and normalized data set DN

Rec. Age Edu. Salary Pos.

(a) A sample data set DF

R1 27 MS 85 L

R2 45 ? 145 P

R3 42 PhD 145 P

R4 25 MS 85 L

R5 50 PhD 146 P

R6 28 MS 85 L

R7 38 PhD 140 P

R8 43 PhD 147 ?

R9 44 PhD 146 P

R10 ? MS 86 L

R11 42 PhD 142 P

R12 26 MS 84 L

R13 42 PhD ? P

R14 25 MS 86 L

R15 43 PhD 143 P

(b) Normalized data set DN

R1 0.08 MS 0.01587 L

R2 0.80 ? 0.96825 P

R3 0.68 PhD 0.96825 P

R4 0.00 MS 0.01587 L

R5 1.00 PhD 0.98413 P

R6 0.12 MS 0.01587 L

R7 0.52 PhD 0.88889 P

R8 0.72 PhD 1.00000 ?

R9 0.76 PhD 0.98413 P

R10 ? MS 0.03175 L

R11 0.68 PhD 0.92063 P

R12 0.04 MS 0.00000 L

R13 0.68 PhD ? P

R14 0.00 MS 0.03175 L

R15 0.72 PhD 0.93651 P

(c) Data set DC having no missing values

R1 0.08 MS 0.01587 L

R3 0.68 PhD 0.96825 P

R4 0.00 MS 0.01587 L

R5 1.00 PhD 0.98413 P

R6 0.12 MS 0.01587 L

R7 0.52 PhD 0.88889 P

R9 0.76 PhD 0.98413 P
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Table 2 continued

Rec. Age Edu. Salary Pos.

R11 0.68 PhD 0.92063 P

R12 0.04 MS 0.00000 L

R14 0.00 MS 0.03175 L

R15 0.72 PhD 0.93651 P

(d) Data set DI

R2 0.80 ? 0.96825 P

R8 0.72 PhD 1.00000 ?

R10 ? MS 0.03175 L

R13 0.68 PhD ? P

Table 3 Membership degree of the records of DC and DI with three clusters and clusters centroids V

Rec. Cluster 1 Cluster 2 Cluster 3

(a) Membership degrees UC of each record of DC with three clusters

R1 0.00000002 0.99999976 0.00000022

R3 0.99999986 0.00000009 0.00000005

R4 0.00000013 0.99998951 0.00001036

R5 0.00000011 0.00000252 0.99999737

R6 0.00000005 0.99999923 0.00000072

R7 0.99941392 0.00000013 0.00058595

R9 0.99733209 0.00000032 0.00266759

R11 0.99999438 0.00000362 0.00000200

R12 0.00000122 0.99999301 0.00000577

R14 0.00000044 0.99999122 0.00000834

R15 0.99999270 0.00000141 0.00000589

(b) Centroids of three clusters

Attr. name Attr. value Cluster 1 Cluster 2 Cluster 3

Age 0.6719620190601 0.0480000000929 0.9998616492793

Edu. MS 0.0000000000002 0.9999999997743 0.0000000000005

PhD 0.9999999999998 0.0000000002257 0.9999999999995

Salary 0.9396589053030 0.0158720001969 0.9841240084866

Pos. L 0.0000000000002 0.9999999997743 0.0000000000005

P 0.9999999999998 0.0000000002257 0.9999999999995

(c) Membership degrees U I of each record of DI with three clusters

Rec. Cluster 1 Cluster 2 Cluster 3

R2 0.944139470580681 0.000000060804250 0.055860468615069

R8 0.999816462968573 0.000000002003948 0.000183535027478

R10 0.000000000000032 0.999999999999939 0.000000000000029

R13 0.999999999978393 0.000000000000001 0.000000000021606
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membership degree of the record RN
i ∈ DN with a cluster C j , where RN

i is the normalized
form of Ri .

Step 4 Apply our novel FuzzyEM method to impute numerical missing values using all
clusters.

In this step, we impute the missing numerical attribute values using a novel Fuzzy
Expectation Maximization approach, which is a modification (fuzzy version) of an exist-
ing approach [43]. The basic idea of this step is to use the membership degrees of the records
with a cluster, in order to impute the missing values as shown in Step 4 of the FEMI algo-
rithm (see Algorithm 1) and Procedure FuzzyEM (see Algorithm 2). The missing values are
imputed using the membership degrees of all clusters one by one. For example, we impute
the missing values using the membership degrees of the records with Cluster 1 and store the
imputed data set in D1

I . Similarly, we produce D2
I , D

3
I . . . Dk

I from Cluster 2, Cluster3, ...
Cluster k, respectively.

FuzzyEM takes four input parameters namely the index k of a cluster, data set having
records with missing values DI , full data set DF , and membership degree matrixU . We next
describe the proposed iterative imputation process as follows.

In this step, we first denormalize DI data set, where each record has one or more missing
values. Let Ri be a record of DI . Ri has m number of numerical attributes with missing
values and a number of numerical attributes with available values.

Let μk
mis and μk

av be the fuzzy mean vectors of the m number of missing values and
a number of available values, respectively. The fuzzy mean is calculated considering the
membership degree of each record. It is the average value weighted by the membership
degrees as shown in Eq. (6). We calculate fuzzy mean, μk

p , for the pth attribute according to
the kth cluster as follows. Note that the fuzzy mean of an attribute according to a cluster can
be different to the fuzzy mean of the attribute according to another cluster.

μk
p =

∑|R|
i=1Uik Rip
∑|R|

i=1Uik

(6)

where |R| is the number of records in DF , Uik is the membership degree of the ith record
with the kth cluster, and Rip is the pth attribute value of the ith record.

Using μk
mis and μk

av , we now calculate fuzzy covariance matrix B = (θkaa)
−1θkam , where

the element σ k
pq , of θ

k
aa or θ

k
am , is a covariance between the p-th and q-th attributes according

to the kth cluster and is calculated as follows. It is a covariance value weighted by the
membership degrees of the recordswith a cluster as shown in Eq. (7). Note that the covariance
of two attributes according to a cluster can be different to the covariance of the attributes
according to a different cluster.

σ k
pq =

∑|R|
i=1Uik(Rip − μk

p)(Riq − μk
q)

∑|R|
i=1Uik

(7)

Now, let xm and xa be the vectors of missing attribute values and available attribute values
in Ri , respectively. We impute the missing values of xm as follows.

xm = μk
mis + (xa − μk

av)B + e (8)

where e is a residual error with mean zero and unknown covariance matrix Q(= θmm −
θmaθ

−1
aa θam). Following an existing approach [43], we use a residual error e = [μ0+H.ZT ]T ,

where μ0 is a mean vector having zero value/s meaning that the elements of the vector
μ0 represent the mean values, which are all equal to zero in this case, H is a cholesky
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decomposition of the covariance matrix Q, and Z is a vector having Gaussian random values
that have mean zero and variance equal to one. Since H is multiplied by Z for the calculation
of e, the e value is obtained through a randomization of the cholesky decomposition of the
covariances. Note that the residual error e is used in Eq. (8) for the first iteration only.

After imputing all the records of Ri ∈ DI , ∀i we get an imputed data set Dk
I . We replace

the missing values of DF with the corresponding imputed values in Dk
I . We then re-calculate

μk
mis , μ

k
av and B using the updated DF . We next re-impute xm using (8) for all the records

of DI . We repeat this process until the change of the means and covariances in DF of two
consecutive iterations is less than a user-defined threshold ε. We use 10−10 as a value for
the termination threshold (ε) in the experiments. The Procedure FuzzyEM then returns the
imputed data set Dk

I . Following [43], we use the residual error only in the first iteration.
We impute our example data set according to three clusters using the Algorithm 2. The

imputed data sets are shown in Table 4a–c. For easy understanding, the imputed values are
presented in bold font.

Note that for a non-fuzzy data set where Uik can be either 1 or 0, μk
miss (see Eq. (6))

becomes equal to μm (see Eq. (1)) for some k. Similarly, μk
av becomes equal to μa and σ k

pq
becomes equal to σpq for some k. Therefore, Eq. (8) becomes equal to Eq. (1), suggesting
that the existing EMI [43] technique is a special case of the proposed FEMI algorithm.

Step 5 Find the combined imputed value of a numerical attribute. Find the imputed value
of a categorical attribute.

In this step, we impute both numerical and categorical missing values of DI (see Fig. 3
and Step 5 of Algorithm 1). For imputing numerical missing value of DI , we combine all
Ds

I ; ∀s ∈ K , where K = {1, 2, . . . k}. Let Rip be the pth attribute value (numerical) of the
ith record in DI . Let vsip be the pth attribute value of the ith record in the data set D

s
I , which

is imputed according to sth cluster as explained in Step 4. If Rip is a missing value, then it is
computed as follows.

Rip =
∑k

s=1Uisv
s
ip

∑k
s=1Uis

, where Uis ∈ U I (9)

We now explain our approach toward imputing a categorical attribute value. Many fuzzy
clustering techniques such asGFCMproduce a fuzzy seed (center) for a clusterwhere the seed
contains each value of the domain of an attribute according to a confidence degree [24,26].
The confidence degree of an attribute value pl in a cluster s is the sum of the membership
degrees for the records, having pl , with the cluster. So the confidence degree Ck

pl for the
value pl of the p-th attribute (categorical) in the kth cluster can be calculated as follows.

Ck
pl =

|R|∑

i=1

Uik |vkip = pl (10)

Similarly, confidence degree for all domain values of an attribute can be calculated. A
fuzzy seed of a cluster can contain all the domain values of a categorical attribute and their
corresponding confidence degrees with the cluster. Naturally, the value having the highest
confidence degree is considered to be the most likely value of the attribute in the cluster.

While imputing a missing value of a record Ri , we calculate the vote (Gpl ) for a value pl
by multiplying its confidence degree (Cs

pl ) in terms of the s-th cluster, and the membership
degree Uis of Ri with the s-th cluster, for all clusters as follows.
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Table 4 Imputed data set DI

Rec. Age Edu. Salary Pos.

(a) Imputed data set D1
I using FuzzyEM on cluster 1

R2 45 ? 145 P

R8 43 PhD 147 ?

R10 2.2 MS 86 L

R13 42 PhD 143.6 P

(b) Imputed data set D2
I using FuzzyEM on cluster 2

R2 45 ? 145 P

R8 43 PhD 147 ?

R10 25.7 MS 86 L

R13 42 PhD 82 P

(c) Imputed data set D3
I using FuzzyEM on cluster 3

R2 45 ? 145 P

R8 43 PhD 147 ?

R10 3.4 MS 86 L

R13 42 PhD 144.4 P

(d) The final imputed data set DI

R2 45 Phd 145 P

R8 43 PhD 147 P

R10 25.69 MS 86 L

R13 42 PhD 143.6 P

Gpl =
k∑

s=1

Cs
pl ×Uis (11)

Similarly, we calculateGpl ; ∀pl ∈ P , where P is the domain of the p-th attribute. Finally,
the value having the maximum vote is considered to be the imputed value Rip for the p-th
attribute of the i-th record. The final imputed data set of DI (in our example) is shown in
Table 4d.

Step 6 Combine records to form a completed data set (D′
F ) without any missing values.

We finally combine denormalized DC and imputed DI in order to form D′
F , which is the

imputed data set.

3.4 A few possible approaches for automatically determining the number of clusters, k

Since FEMI requires a number of clusters k for the fuzzy clustering technique (as discussed in
Step 3 of Sect. 3.3), a suitable approach (for automatically determining the most appropriate
k value) could be incorporated into the FEMI algorithm. In the following paragraphs, we
discuss a few possible approaches to automatically determine the k value. However, they
need to be carefully evaluated in order to find the best of them and we plan to carry out the
evaluation in our future study. In the experiments of this study, we use k = 20 based on our
initial empirical analysis as discussed in Sect. 4.4.

Approach 1: The full data set DF can be divided into two (mutually exclusive) horizontal
segments DC (having only records without any missing value/s) and DI that has only the
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records with missing value/s. Artificial missing values can be created in DC randomly, using
the same approach that we have taken in this study to simulate missing values (see Sect. 4.2).
The artificial missing values can then be imputed many times, where each time FEMI can
use different k values. Finally, the k value resulting in the best imputation accuracy can be
chosen as the k value for FEMI in order to impute the real missing values. Note that the
process of generating artificial missing values and imputation can be run many times, and
the average result for each k value can be used for finding the best k.

Approach 2: Instead of GFCM [26], an existing fuzzy clustering algorithm such as
FBSA [45], that automatically finds the k value, can be used. Note that FBSA finds the
best k value by comparing the quality of clusters obtained for different k values.

Approach 3: The k-means algorithm [21] can be applied many times for different k values
and thereby produce different clustering results. All clustering results can be evaluated using
any evaluation metric such as the Silhouette coefficient [41] and Davies?Bouldin Index
(DBI) [13]. The k with the best clustering result can then be used in FEMI for the imputation
of missing values.

Approach 4: Instead of k-means a basic fuzzy c-means such as FCM [5] can be applied
many times in order to find the best k value. This approach does not require FEMI to use
the GFCM technique for clustering since a fuzzy clustering technique like FCM computes
the membership degrees as well. The set of membership degrees for the best k value can be
directly used in the FEMI algorithm.

An advantage of the first approach is that the best k value is determined by evaluating
the imputation accuracy instead of evaluating the cluster quality for each k value as required
by the other approaches. The k value determined based on the imputation accuracy may
produce better end result than the k value determined based on the cluster quality. However,
a disadvantage of the first approach is its time complexity since it requires the complete
imputation many times in order to determine the best k value. An advantage of the second
approach is a relatively lower time complexity than the first approach as it does not require
to run all steps of FEMI in order to identify the best k value. Since k-means is well known
for its low time complexity [20], the third approach can also enjoy its simplicity in terms
of time complexity compared with the first approach. Since the fourth approach skips the
step involving GFCM, it can save some computation time. However, a possible disadvantage
of Approach 2, Approach 3, and Approach 4 can be the use of clustering quality instead of
imputation quality.

3.5 Complexity analysis

We now analyze complexity for FEMI, EMI, GkNN, FKMI, SVR, and IBLLS. We consider
that we have a data set with n records, and m attributes. We also consider that there are nI
records with one or more missing values, and nc records (nc = n − nI ) with no missing
values. FEMI uses a fuzzy clustering technique such as GFCM [26] to create clusters with a
user-defined number of clusters k.

Complexity of Step 1 for normalizing all numerical attributes is O(nm). In Step 2, the
complexity for preparing DI and DC is O(nm). The complexity of Step 3 is dominated by
the GFCM algorithm [26] which has a complexity O(k2ncmd), where we consider that the
domain size of each attribute is d .

Step 4 uses the FuzzyEM() procedure, which has a complexity O(nnIm2 + nIm3).
FuzzyEM() is applied repeatedly k times which makes the complexity of this step is
O(knnIm2 + knIm3). The complexity for imputing missing values in Step 5 is O(knnIm).
Complexity of Step 6 for denormalizing all numerical attributes is O(nCm).
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Table 5 Data sets at a glance

Data set Records Num. attr. Cat. attr. Missing Pure Rec.

Adult 32,561 6 9 Yes 30,162

Chess 28,056 3 4 No 28,056

Yeast 1,484 8 1 No 1,484

CMC 1,473 2 8 No 1,473

GermanCA 1,000 7 14 No 1,000

Pima 768 8 1 No 768

Housing 506 11 3 No 506

Autompg 398 5 3 Yes 392

Therefore, the overall complexity of FEMI is O(nm + k2ncmd + knnIm2 + knIm3 +
knnIm. However, typically k, and d values are very small, especially compared with n.
Besides, we can also consider nI to be very small and therefore nc ≈ n. Hence, the overall
complexity of FEMI is O(nm2+m3). Moreover, for low-dimensional data sets such as those
used in this study, the complexity is O(n). We estimate the complexities of EMI, FKMI, SVR
and IBLLS (i.e., the techniques that we use in the experiments of this study) as O(nm2+m3),
O(nm), O(n3m) and O(n3m2 + nm4), respectively. Moreover, the complexity of GkNN is
O(n2mlog(n)) [53]. This is also reflected in the execution time complexity analysis in the
next section (see Table 8).

4 Experimental result

WecompareFEMIwith four existing techniques namelyEMI [22,43],GkNN[53], FKMI [27,
31] and IBLLS [12].Moreover, we use the Java implementation (LibSVM [10]) of an existing
technique SVR [44,49]. The existing techniques have been shown to be better than Bayesian
principal component analysis (BPCA) [33], LLSI [25], and ILLSI [9].

4.1 Data sets

We apply the techniques on eight real data sets, namely Adult, Chess, Yeast, Contraceptive
Method Choice (CMC), GermanCA, Pima, Housing and Autompg data set that are available
fromUCIMachine Learning Repository [15]. A brief description of the data sets is presented
in Table 5. For instance, the Adult data set has 32,561 records, 6 numerical and 9 categorical
attributes. There are a number of records having missing values. We first remove all records
having missing values. Therefore, we get a pure data set having 30162 records without any
missing values. In our experiment we use the pure data set.

4.2 Simulation of missing values

In pure data sets, we artificially create missing values, which are then imputed by different
techniques. Since the original values of the artificially created missing data are known to us,
we can evaluate the performances of the techniques.

Both the amount and type of missing data influence the imputation performance [22].
Missing data can have many different types. For example, in one scenario (type), we may
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have a data set where a record has at most one missing value, and in another scenario, we
may have records with multiple missing values, but both data sets may have the same number
of total missing values. Moreover, the probability of a value being missing typically does
not depend on the missing value itself [42,43], and hence, missing values often can have a
random nature, which can be difficult to formulate. Therefore, in this experiment, we use
various types of missing values such as simple, medium, complex and blended, as explained
below.

A record can have at most one missing value for a simple pattern, whereas in a medium
pattern, if a record has any missing value, then it has minimum 2 attributes with missing
values and maximum 50% of the attributes with missing values [22,35,40]. Similarly, a
record having missing values in a complex pattern has minimum 50% and maximum 80%
attributes with missing values. In a blended pattern, we have a mixture of records from all
three other patterns. A blended pattern contains 25% records havingmissing values in simple
pattern, 50% in medium pattern and 25% in complex pattern. Blended pattern simulates a
natural scenario where we may expect a combination of all three missing patterns.

For each of the missing patterns, we use different missing ratios (1, 3, 5 and 10%) where
x% missing ratios means x% of the total attribute values (not records) of a data set are
missing. For example, if a data set has 5 records and 20 attributes then a missing ratio of
10% means that 10 values, out of the total 100 (= 5 × 20) attribute values, are missing.
Therefore, for 10% missing ratios and simple missing pattern, the total number of records
having missing values may exceed the total records in some data sets. In the experiments,
we therefore use 6% missing ratios (instead of 10% missing ratios) only for simple missing
pattern with 10% missing ratios, for all data sets.

Moreover, we use two types of missing models namely Overall and Uniformly Distrib-
uted (UD). In the overall distribution, missing values are not equally spread out among the
attributes, and in the worst case scenario, all missing values can belong to a single attribute.
However, in the UD model each attribute has equal number of missing values.

Note that there are 32 combinations (id 1, 2, . . . , 32) of Missing Ratio, Missing Model,
and Missing Pattern. For each combination, we create 10 data sets with missing values. For
example, for the combination having “1%” missing values , “overall” missing model , and
“simple” missing pattern (id 1, see Table 6), we generate 10 data sets with missing values.
We therefore create all together 320 data sets for each natural data set namely Adult, Chess,
Yeast, Contraceptive Method Choice (CMC), GermanCA, Pima, Housing and Autompg.

4.3 Evaluation criteria

The imputation accuracy of FEMI is evaluated using two well-known evaluation criteria
namely root mean squared error (RMSE) and mean absolute error (MAE).

We now define the evaluation criteria briefly. Let N be the number of artificially created
missing values, Oi (1 ≤ i ≤ N ) be the actual value of the i th artificially created missing
value, Pi be the imputed value of the i th missing value.

Themost commonly used imputation performance indicator is the rootmean squared error
(RMSE) [22], which aim to explore the average difference of actual values with the imputed
values as shown in (12). Its value ranges from 0 to ∞, where a lower value indicates a better
matching.

RMSE =
(
1

N

N∑

i=1

[Pi − Oi ]
2

) 1
2

(12)
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Table 6 Performance of FEMI, GkNN, FKMI, SVR, EMI, and IBLLS based on RMSE, and MAE for 32
missing combinations on Adult data set

Missing combination Id RMSE (Lower value is better) MAE (Lower value is better)

FEMI GkNN FKMI SVR EMI IBLLS FEMI GkNN FKMI SVR EMI IBLLS

1% Overall Simple 1 0.103 0.156 0.182 0.120 0.123 0.149 0.072 0.119 0.135 0.095 0.082 0.113

Medium 2 0.106 0.147 0.173 0.128 0.126 0.175 0.074 0.113 0.128 0.100 0.084 0.123

Complex 3 0.106 0.151 0.174 0.137 0.126 0.211 0.071 0.111 0.124 0.105 0.081 0.136

Blended 4 0.109 0.151 0.176 0.130 0.129 0.179 0.074 0.110 0.127 0.101 0.084 0.125

UD Simple 5 0.106 0.146 0.172 0.122 0.126 0.169 0.074 0.112 0.125 0.096 0.084 0.133

Medium 6 0.107 0.149 0.174 0.129 0.127 0.176 0.072 0.110 0.126 0.100 0.082 0.125

Complex 7 0.106 0.148 0.173 0.135 0.126 0.231 0.071 0.109 0.125 0.104 0.081 0.164

Blended 8 0.103 0.146 0.171 0.129 0.123 0.179 0.072 0.111 0.127 0.100 0.082 0.128

3% Overall Simple 9 0.107 0.148 0.173 0.121 0.126 0.181 0.078 0.115 0.130 0.096 0.087 0.151

Medium 10 0.105 0.146 0.172 0.127 0.125 0.209 0.074 0.112 0.128 0.100 0.085 0.159

Complex 11 0.105 0.149 0.174 0.137 0.126 0.232 0.073 0.113 0.128 0.105 0.084 0.170

Blended 12 0.106 0.146 0.173 0.128 0.125 0.216 0.074 0.111 0.129 0.100 0.084 0.159

UD Simple 13 0.103 0.144 0.172 0.121 0.125 0.193 0.075 0.113 0.129 0.096 0.086 0.151

Medium 14 0.107 0.147 0.175 0.129 0.126 0.271 0.076 0.113 0.132 0.101 0.086 0.199

Complex 15 0.105 0.149 0.174 0.136 0.126 0.216 0.072 0.113 0.127 0.105 0.083 0.159

Blended 16 0.107 0.148 0.174 0.130 0.127 0.206 0.077 0.114 0.130 0.101 0.087 0.160

5% Overall Simple 17 0.107 0.148 0.173 0.121 0.126 0.184 0.079 0.118 0.132 0.096 0.088 0.133

Medium 18 0.105 0.146 0.175 0.128 0.126 0.208 0.076 0.114 0.132 0.100 0.086 0.160

Complex 19 0.107 0.148 0.174 0.137 0.127 0.248 0.075 0.113 0.128 0.105 0.085 0.183

Blended 20 0.108 0.149 0.175 0.130 0.128 0.241 0.076 0.114 0.131 0.101 0.087 0.195

UD Simple 21 0.107 0.147 0.177 0.122 0.127 0.193 0.078 0.115 0.136 0.096 0.089 0.152

Medium 22 0.107 0.147 0.175 0.129 0.127 0.190 0.076 0.114 0.132 0.101 0.086 0.144

Complex 23 0.107 0.149 0.176 0.139 0.127 0.257 0.074 0.113 0.130 0.106 0.084 0.193

Blended 24 0.104 0.146 0.175 0.128 0.125 0.230 0.074 0.113 0.134 0.100 0.085 0.173

10% Overall Simple 25 0.107 0.147 0.177 0.123 0.127 0.239 0.077 0.115 0.138 0.097 0.088 0.199

Medium 26 0.106 0.147 0.174 0.128 0.127 0.234 0.078 0.116 0.131 0.100 0.088 0.179

Complex 27 0.107 0.149 0.175 0.140 0.127 0.259 0.076 0.116 0.130 0.107 0.086 0.190

Blended 28 0.106 0.148 0.174 0.129 0.127 0.235 0.077 0.117 0.131 0.100 0.088 0.173

UD Simple 29 0.106 0.146 0.175 0.121 0.125 0.209 0.077 0.115 0.135 0.096 0.087 0.163

Medium 30 0.106 0.148 0.174 0.128 0.127 0.232 0.078 0.117 0.134 0.100 0.089 0.172

Complex 31 0.106 0.148 0.174 0.142 0.127 0.256 0.075 0.113 0.128 0.109 0.085 0.194

Blended 32 0.106 0.148 0.175 0.128 0.127 0.224 0.078 0.118 0.135 0.100 0.088 0.175

Themean absolute error (MAE) [22] determines the closeness between actual and imputed
values. Similar to RMSE, its value ranges from 0 to∞, where a lower value indicates a better
matching.

MAE = 1

N

N∑

i=1

|Pi − Oi | (13)
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Fig. 4 Performance of FEMI based on RMSE for different number of clusters. a Credit Approval data set, b
CMC data set

4.4 Justification of k

FEMI uses a user-defined value k (the number of clusters) as explained in Sect. 3. In order
to explore a suitable value for k, we first evaluate the performances of FEMI for the Credit
Approval data set and CMC data set by using different values of k as shown in Fig. 4. For
both data sets, k = 20 gives the best result based on the evaluation criteria RMSE. Note
that, k = 20 also gives the best result based on MAE for the data sets. Therefore, we use the
default value of k equal to 20 for the experiments in this study.

4.5 Experimental result analysis for the adult data set

In Table 6, we present the performance of FEMI, GkNN, FKMI, SVR, EMI and IBLLS, on
Adult data set, based on RMSE and MAE for 32 missing combinations. The average values
of the performance indicators on 10 data sets having missing values for each combination of
missing ratios, missing model, and missing pattern are presented in Table 6. For example,
there are 10 data sets having missing values with the combination (id = 1) of “1%” missing
ratio, “Overall” missing model and “Simple” missing pattern. The average of RMSE for the
data sets having id = 1 is 0.103 for FEMI as reported in Table 6. The average RMSE values
for the data sets having id = 1 are 0.156, 0.182, 0.120, 0.123 and 0.149 for GkNN, FKMI,
SVR, EMI, and IBLLS, respectively. Bold values in the table indicate the best results among
the three techniques. FEMI performs significantly better than all other techniques on the data
set. In 32 out of 32 combinations of missing patterns, FEMI performs better than all other
techniques in terms of all evaluation criteria.

4.6 Statistical significance analysis on adult data sets

We now present the confidence interval analysis on Adult data set to evaluate the statistical
significance of the superiority of FEMI over the five existing techniques as evident from our
empirical assessment. However, we first briefly explain the essence of confidence interval
and its actual meaning.

Suppose that we have ten different copies of the Adult data set with different missing
values, and we impute the missing values of each data set using FEMI. We thereby get ten
imputed data sets.We can evaluate the imputation quality of the ten data sets through ametric
such as RMSE. Therefore, we get ten RMSE values and can calculate the mean of the ten
values. Let us call the mean RMSE value as the population mean. Now if we collect another
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set of ten copies of the Adult data set with missing values and impute them using FEMI, we
are likely to get a different population mean. An obvious question is then which of the two
population means is the correct one. Is any of the two population means is the same as the
true mean? A true mean is the theoretical population mean obtained from the imputation of
infinite number of data sets [46].

The 95% confidence interval analysis allows us to compute an interval (i.e., an upper limit
and a lower limit) around a mean value, suggesting that if we run the tests 100 times (where
each test imputes say ten data sets and thereby obtain a population mean) and compute the
100 intervals from the tests then the true mean will be within the intervals for 95 tests. By
running a test, we mean the collection of ten missing data sets and creating ten imputed data
sets. Therefore, 95% confidence interval tells us that the true mean falls within the interval
obtained from a test with 95% chance [46].

If we have ten data sets with missing values that are imputed by two different imputation
techniques X and Y , then we get ten imputed data sets that are imputed by a technique. We
can then compute the population mean and confidence interval for each technique. If the
population mean of X is higher than the population mean of Y and the confidence intervals
are non-overlapping, then it tells us that there is 95% chance that the true mean of X is higher
than the true mean of Y . That is, Y is clearly better than X (since the RMSE value lower the
better) with 95% probability.

We now present 95% confidence interval analysis of FEMI with other techniques in terms
of RMSE, and MAE for all 32 missing combinations in Fig. 5. It is clear from the figure that
FEMI performs better (i.e., better average value and no overlap of confidence intervals) than
other techniques for all missing combinations. We can see from the figures that IBLLS in
general performs worse for a high missing ratios, whereas FEMI maintains almost the same
performance even for a high missing ratios.

4.7 Statistical significance analysis for all data sets

We present 95% confidence interval analysis in terms of RMSE for all seven remaining
data sets as shown in Fig. 6. FEMI performs significantly better (i.e., better average value
and no overlap of confidence intervals) than other five techniques in terms of RMSE, for
all missing combinations in Chess (Fig. 6a), Yeast (Fig. 6b), GermanCA (Fig. 6d) and Pima
(Fig. 6e) data sets. In CMC (Fig. 6c), Housing (Fig. 6f) and Autompg (Fig. 6g) FEMI
performs significantly better than EMI and IBLLS for all missing combinations except for
those marked by the circles.

We also present the number of overlapping cases between FEMI and other techniques for
all evaluation criteria in Table 7. Out of 256 cases (i.e., 32 combinations for each data set, of
8 data sets), confidence interval of FEMI overlaps with other techniques in only 38 and 51
cases in terms of RMSE, and MAE, respectively (see Table 7).

From Fig. 6, we realize that generally overlapping happens for low missing ratio and
simple missing pattern. Although GkNN, FKMI, SVR, IBLLS, and EMI generally perform
worse than FEMI for all patterns, they perform comparatively better in the simple pattern
than in the medium and complex patterns. However, FEMI performs almost equally good for
the low and high missing ratio.

All six techniques demonstrate a similar tendency of better performance for the simple
pattern than the medium and complex patterns. In the simple pattern, a record can have at
most one missing value. Therefore, an imputation technique can take advantage of a higher
number of available values of a record in order to impute the missing value of the record. On
the other hand, in themedium and complex patterns, a recordmay havemore than onemissing
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Fig. 5 95% confidence interval analysis on Adult data set. a RMSE, b MAE

values. When a record has a big number of missing values, then an imputation technique has
a lower number of available values in the record to make a more precise estimation of the
missing values. An extreme example can be the case where all values of a record are missing.
Naturally, the imputation accuracy drops with the increased number of missing values in a
record. However, the imputation techniques generally perform better for the blended pattern
(as evident from Fig. 6) due to the existence of the simple pattern inside the blended pattern
as explained in Sect. 4.2.

In Fig. 7, we present the overall average values (average of all 32 combinations) for the
techniques on all eight data sets. FEMI performs clearly better than five other techniques.

Figure 8 shows the percentage of combinations (out of 256 combinations for all data sets)
where FEMI, GkNN, FKMI, SVR, EMI, and IBLLS perform the best. For example, FEMI
performs the best in 88.67% cases (combinations) in terms of RMSE as shown in Fig. 8a.

In Fig. 9, we now present another statistical significance analysis called the t-test for
all 32 missing combinations of all data sets. Before we present the results, we first briefly
explain the t test analysis. Like the confidence interval test, a t test is also used to evaluate
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Fig. 6 95% confidence interval analysis on Chess, Yeast, CMC, GermanCA, Pima, Housing and Autompg
data sets in terms of d2. a Chess data set. b Yeast data set. c CMC data set. d GermanCA data set. e Pima data
set. f Housing data set. g Autompg data set

the significance of the superiority of a technique X over another technique Y [46]. Let X and
Y be evaluated through RMSE. For 32 runs (i.e., the sample size nX = 32) of X , we get 32
different RMSE values for X . Similarly, if we run the technique Y 32 times (i.e., the sample
size nY = 32), then we get 32 different RMSE values for Y . Let X and Y be the averages
of X and Y , respectively, and sX and sY be the variances of X and Y , respectively. Also, let
d fX (= nX − 1) and d fY (= nY − 1) be the degrees of freedom for X and Y , respectively.
Using the averages, variances, and degrees of freedom, we can calculate a t value for X and
Y as follows [2].
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Table 7 The number of
overlapping cases (out of the total
of 256 cases for each evaluation
criterion) between FEMI and
other techniques in terms of 95%
confidence interval analysis

Data set RMSE MAE

Adult 0 0

Chess 7 10

Yeast 1 0

CMC 1 0

GermanCA 1 16

Pima 8 0

Housing 12 14

Autompg 8 11

Total (Out of 256 cases) 38 51

Fig. 7 Performance comparison on eight data sets. a Performance on Adult, Chess, Yeast and CMC data sets.
b Performance on GermanCA, Pima, Housing and Autompg data sets

tXY = X − Y
√

sX
d fX

+ sY
d fY

(14)
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Fig. 8 Score comparison on eight data sets. a RMSE. b MAE

Fig. 9 t test analysis on eight data sets. a t test analysis on Adult, Chess, Yeast and CMC data sets. b t test
analysis on GermanCA, Pima, Housing and Autompg data sets

The statistical superiority of X over Y is evaluated by comparing the tXY -value with the
t(ref) value. The t(ref) value can be obtained from the Student t distribution Table [1] through
the degree of freedom and the confidence level. For example, the t(ref) value of the two-tailed
test at significance level p = 0.05 (i.e., 95% confidence level) and degree of freedom=31

123



416 Md. G. Rahman, M. Z. Islam

Table 8 Average execution time (in ms) of different techniques on the eight data sets

Data set FEMI GkNN FKMI SVR EMI IBLLS Machine used

Adult 1,249,433 1,075,760 1,101,046 1,475,522 82,189 53,947,274 Machine 1

Chess 48,784 11,994 114,254 410,324 8,667 15,537,849 Machine 1

Yeast 1,603 51,102 2,827 1,260 92 173,209 Machine 1

CMC 34,383 6,711 39,993 150,341 469 233,994 Machine 2

GermanCA 785 1,740 11,125 4,006 62 58,044 Machine 1

Pima 702 11,327 13,204 562 47 39,443 Machine 1

Housing 15,331 9,767 88,120 54,987 3,087 1,268,431 Machine 2

Autompg 970 1,170 2,013 167 18 8,861 Machine 1

Average 168,999 146,196 171,573 262,146 11,829 8,908,388

Table 9 Average execution time (in ms) on CMC data set for a complex pattern (30 runs)

FEMI EMI IBLLS Machine used

33,879.00 482.63 312,005.90 Machine 2

(since nX = nY = 32) is 1.96 [1]. The performance of X is significantly better than Y if the
tXY -value is greater than the t ref (which is 1.96 in this case).

In Fig. 9, we present the statistical significance analysis using t test for all 32 missing
combinations of all data sets. If a tXY value (denoted as the t value in the figure) is greater
than the t(ref) value, then it indicates the superiority of FEMI over the other techniques being
evaluated. Please note that in this experimentation, we evaluate the superiority of FEMI over
the existing techniques for 99.5% confidence since we use (p = 0.005). Therefore, Fig. 9
demonstrates a considerably better performance of FEMI over other techniques based on all
evaluation criteria for all eight data sets except for a few cases indicated by a downhead arrow
in the figure.

4.8 Execution time complexity analysis

We now present the average execution time (in milliseconds) for 320 data sets (32 combina-
tions × 10 data sets per combination) with missing values for each real data set in Table 8.
We carry out the experiments using two different machines. However, for one data set, we
use the same machine for all techniques. The configuration of Machine 1 is 4 × 8 core Intel
E7-8837 Xeon processors, 256 GB RAM. The configuration of Machine 2 is Intel Core i5
processor with 2.67 GHz speed and 4 GB RAM. The last row of Table 8 indicates that FEMI
takes less time than IBLLS, SVR, and FKMI, whereas it takes considerably more time than
EMI to pay the cost of a significantly better quality imputation. Moreover, the execution
time of FEMI is comparable with GkNN. However, FEMI performs significantly better than
GkNN as shown in Figs. 7 and 8.

For CMC data set, we next create 30 noisy data sets for a missing combination (id=27,
missing ratio=10%, missing model = Overall, and missing pattern = Complex) and apply
FEMI, EMI, and IBLLS on all data sets. We then calculate average execution time for 30
runs for each of the three techniques. FEMI requires lower time than IBLLS, but higher time
than EMI (see Table 9).
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Fig. 10 t test analysis on CMC data set for a complex pattern (30 runs)

For the same missing combination, we also perform t test analysis for all four evaluation
criteria as shown in Fig. 10. FEMI performs significantly better than both other techniques
in terms of R2, d2, RMSE, and MAE.

4.9 Experimentation on categorical missing value imputation for all data sets

Unlike EMI and IBLLS, FEMI can impute categoricalmissing values in addition to numerical
missing values. Therefore, in order to evaluate the performance of FEMI for imputing cate-
gorical values, we now compare its performance with GkNN, FKMI, and SVR that imputes
categorical missing values. Figure 11 shows that FEMI achieves lower RMSE (Fig. 11a) and
MAE (Fig. 11b) values than GkNN and FKMI for all eight data sets. FEMI also performs bet-
ter than SVR in terms of RMSE andMAE formost of the data sets except Yeast andAutompg.
For each data set, RMSE and MAE values are computed using all 32 combinations. Note
that for RMSE and MAE, a lower value indicates a better imputation.

Note that for categorical attributes, FEMI provides the votes Vpl ; ∀pl ∈ P where P is the
domain of the pth attribute (see Eq. 11). For the RMSE and MAE calculation in this study
(see Eqs. 12 and 13), the value pl having the highest vote is considered as the imputed value
Pi of the i th missing value. For the RMSE and MAE calculation, if the imputed value (Pi )
and the actual/observed value (Oi ) are the same, then the distance between them (Pi −Oi ) is
considered 0 and otherwise 1. However, if the votes for two possible values (such as pl ∈ P
and pm ∈ P) are high, then a user is less certain about the imputed value Pi . When the
votes are close to each other, then a user is more uncertain than when only one value has
the highest vote, and all other values have very low votes. The uncertainty of a user can be
captured through the entropy of the votes. We considered in this study the value having the
highest vote as the imputed value just for the sake of RMSE and MAE calculation. However,
FEMI actually provides a user with all votes and a user can take his/her decision on the
imputation.

We understand that when the observed value (Oi ) does not receive the highest vote, the
following two cases are not the same. In the first case, the observed value (Oi ) receives a high
vote, and in the second case, it receives a low vote. Obviously, the first case is better than the
second case in terms of the imputation accuracy. In order to take this into consideration in
the RMSE andMAE calculation, we use all votes and thereby calculate the probability of the
actual value to be imputed, p(Oi ) = Vpm |pm=Oi

�pl∈P;∀pl Vpl
. The best imputation is when p(Oi ) = 1

and p(pl) = 0; ∀pl �= Oi . Therefore, we introduce two new metrics called new RMSE (see
Eq. 15) and new MAE (see Eq. (16)), where N is the total number of missing values.

nRMSE =
(
1

N

N∑

i=1

[1 − p(Oi )]
2

) 1
2

(15)
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Fig. 11 Performance comparison on eight data sets in terms of categorical imputation. a RMSE, b MAE

Table 10 Overall performance comparison of FEMI and DMI for categorical imputation based on RMSE,
nRMSE, MAE and nMAE

Data set DMI FEMI FEMI DMI FEMI FEMI
RMSE RMSE nRMSE MAE MAE nMAE

CMC 0.779 0.694 0.569 0.617 0.436 0.502

Housing 0.480 0.328 0.316 0.413 0.269 0.310

nMAE = 1

N

N∑

i=1

|1 − p(Oi )| (16)

In Table 10, we present the overall average values (average of all 32 combinations) of
RMSE, nRMSE, MAE and nMAE for FEMI and DMI on the CMC and Housing data sets.
The results in the table indicate a strong superiority of FEMI over DMI for categorical
imputation.

5 Conclusion

In this paper, we propose a framework for missing value imputation using a fuzzy clustering
technique and a proposed fuzzy expectation maximization algorithm. The basic idea of the
technique is to make an educated guess for a missing value using the most similar records.
It takes the fuzzy nature of clustering into consideration while identifying the group of most
similar records. Therefore, it considers all groups of records (clusters) as similar, with some

123



A framework for missing value imputation 419

degree of similarity. Moreover, while imputing a missing value based on a group, it also
considers the fuzzy nature of all records for belonging to the group. Therefore, it uses a novel
fuzzy expectation maximization algorithm to impute missing values.

The proposed technique utilizes a user-defined value for k (i.e., the number of clusters),
the default value of which is k = 20. We use k = 20 in all experiments. While a data set
specific k value would favor our technique, it achieves higher quality of imputation than
the existing techniques even for the default k value. Moreover, in this study (see Sect. 3.4),
we present a number of possible approaches for finding a suitable k value automatically.
Note that the main focus of the proposed technique is imputation of missing values and not
clustering the records.We are using clustering only to find a group of similar records possibly
having high correlations among the attributes. Therefore, it is okay if we do not find the actual
clusters very precisely (that is, the best clustering solution with the best k) as long as the
clusters found contain similar records. For example, if there are actually three clusters in a
data set (i.e., k = 3) while FEMI finds two groups of records from each cluster and thereby
obtains six groups (i.e., k = 6), the records within each group are still similar to each other.
Therefore, the imputation quality of the proposed technique should still remain high. Hence,
choosing a high k value (such as k = 20) can be considered acceptable when the typical data
sets [34] such as those used in this study have low number of clusters. Our future research
plans include the automation of the k value as indicated in Sect. 3.4.

We compare the proposed technique with five other high-quality existing techniques.
In our experiments, we use eight publicly available natural data sets and two evaluation
criteria. The data sets used in the experiments of this study contain non-time series data.
However, our technique can also be used on time series data provided the data set has two or
more attributes. Two or more attributes are required to facilitate the correlation calculation
needed by the fuzzy EMI technique used in FEMI. Since FEMI was not tailored for time
series data, it does not take advantage of time information, while imputing missing values.
Nevertheless, many imputation techniques similar to our approach have been applied on time
series data [7,18,19].

The experimental results indicate that the proposed technique performs significantly better
than the other five techniques. We use average values and confidence interval and t test
analyses to compare the performance of our technique with other techniques. We also carry
out a test on execution time complexity. While the proposed technique takes less time than
IBLLS, SVR, and FKMI, it takes more time than EMI. Our future research plan is to reduce
the time complexity of the technique and improve its imputation accuracy.
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