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Abstract Now that the use of XML is prevalent, methods for mining semi-structured doc-
uments have become even more important. In particular, one of the areas that could greatly
benefit from in-depth analysis of XML’s semi-structured nature is cluster analysis. Most of
the XML clustering approaches developed so far employ pairwise similarity measures. In this
paper, we study clustering algorithms, which use patterns to cluster documents without the
need for pairwise comparisons. We investigate the shortcomings of existing approaches and
establish a new pattern-based clustering framework called XPattern, which tries to address
these shortcomings. The proposed framework consists of four steps: choosing a pattern
definition, pattern mining, pattern clustering, and document assignment. The framework’s
distinguishing feature is the combination of pattern clustering and document-cluster assign-
ment, which allows to group documents according to their characteristic features rather than
their direct similarity. We experimentally evaluate the proposed approach by implementing
an algorithm called PathXP, which mines maximal frequent paths and groups them into pro-
files. PathXP was found to match, in terms of accuracy, other XML clustering approaches,
while requiring less parametrization and providing easily interpretable cluster representa-
tives. Additionally, the results of an in-depth experimental study lead to general suggestions
concerning pattern-based XML clustering.

Keywords XML · Semi-structured document analysis · Pattern-based clustering ·
Pattern definition

1 Introduction

XML became an official W3C Recommendation [5] on February 10, 1998, and since then
it has become one of the most popular ways of representing digital information. Countless
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applications of XML have inspired the development of hundreds of domain-specific lan-
guages, including information technology: SOAP—message exchange protocol [41], health-
care: CDA—part of the HL7 standard [13], bioinformatics: PDBML—Protein Data Bank
XML [42], and mathematics: MathML—mathematical notation language [40].

Such a rapid expansion of this standard led to the point, where huge amounts of XML are
being generated every day. These data constitute a potentially important source of business
and scientific knowledge, which due to its size requires automated processing. In order to
automatically extract knowledge from such amounts of data, XML mining methods need to
be employed [15]. One of the most important XML mining tasks is XML clustering, which
partitions a dataset into groups of presumably similar documents. The key to successful
clustering lies in the definition of a similarity measure.

In the context of XML, there are three ways of measuring similarity between documents:
omitting the structure (metadata, hierarchy) of documents and treating them as ordinary text
documents [23,35], omitting the content of documents and relying solely on structure [6,
24,26,28], or considering both structure and content [37,44,45]. However, it is believed
that structural information contained in XML documents cannot be ignored and algorithms
dedicated to processing text documents are inappropriate for XML document clustering [10].
In this paper, we will focus on structural approaches.

1.1 Shortcomings of existing approaches

Given a datasetD of n objects, the purpose of clustering is to divideD into k groups of objects
(clusters), such that objectswithin clusters aremore similar to one another than to objects from
different clusters. The most common categorization of clustering methods divides them into
partitional and hierarchical approaches. Partitional clustering startswith an initial partitioning
and iteratively improves it until reaching an algorithm-specific stop condition. Hierarchical
clustering methods iteratively split/merge clusters and produce a hierarchy, called a dendro-
gram, which reflects the order in which clusters were split/merged. The most common hier-
archical method is the agglomerative hierarchical clustering algorithm (AHC), which merges
two most similar clusters at each iteration. The three most popular merging strategies are as
follows: single link, complete link, and average link, in which the distance between clusters
is computed as the closest, furthest, and average distance between objects, respectively.

In structural XML clustering, both partitional and hierarchical methods are used. The
characteristic feature of structural clustering algorithms lies in the definition of the similarity
measure used to group documents. One of the basic approaches to calculating document
similarity is the tag-only approach, which measures the number of common tags between
each pair of documents. However, for documents which differ mostly in structure rather than
tag counts, this approach gives a poor estimate of similarity between documents. This short-
coming is illustrated in Example 1. For the ease of presentation, we will discuss examples
using the single link agglomerative hierarchical clustering algorithm; however, using com-
plete link, average link, or a partitional method, such as k-means, would yield an identical
result in terms of clustering quality.

Example 1 Let us consider a dataset consisting of eight documents, presented in Table 1.
Documents d1, d2, d3, d4 represent summaries of books, while documents d5, d6, d7 and
d8 contain basic information about journal articles. We will expect the analyzed clustering
algorithms to distinguish books from journal articles.

In the tag-only approach, each document is represented as a vector containing the number
of occurrences of each tag in the document. Table 2 presents the example documents as tag-
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Table 1 Example XML documents describing books (d1, d2, d3, d4) and journal articles (d5, d6, d7, d8)

d1 d2 d3 d4
<paper> <paper> <paper> <paper>

<authors> <authors> <authors> <authors>
<author /> <author /> <author /> <author />

</authors> </authors> <author /> <author />
<booktitle> <booktitle> </authors> </authors>

<title /> <title /> <booktitle> <booktitle>
<year /> <year /> <title /> <title />
<volume /> </booktitle> <year /> <year />

</booktitle> <note /> <volume /> <number />
</paper> </paper> </booktitle> </booktitle>

<pages /> </paper>
</paper>

d5 d6 d7 d8
<paper> <paper> <paper> <paper>

<authors> <authors> <authors> <authors>
<author /> <author /> <author /> <author />

</authors> </authors> <author /> <author />
<journal> <journal> </authors> </authors>

<title /> <title /> <journal> <journal>
<year /> <year /> <title /> <title />
<volume /> </journal> <year /> <year />

</journal> <note /> <volume /> <number />
</paper> </paper> </journal> </journal>

<pages /> </paper>
</paper>

Table 2 XML documents from
Table 1 represented as tag-only
vectors

Tag d1 d2 d3 d4 d5 d6 d7 d8

paper 1 1 1 1 1 1 1 1

authors 1 1 1 1 1 1 1 1

author 1 1 2 2 1 1 2 2

title 1 1 1 1 1 1 1 1

year 1 1 1 1 1 1 1 1

booktitle 1 1 1 1 0 0 0 0

journal 0 0 0 0 1 1 1 1

volume 1 0 1 0 1 0 1 0

pages 0 0 1 0 0 0 1 0

notes 0 1 0 0 0 1 0 0

only vectors. Using euclidean distance as a similarity measure between the documents, we
obtain a dendrogram shown in Fig. 1. As a result, we would expect two clusters representing
the two types of documents—books and journal articles. However, for k = 2, the tag-only
approach fails to identify correct clusters, grouping documents d3 and d7 into one cluster and
documents d1, d2, d4, d5, d6, d8 into another.

The problem with the presented approach is that it discards the document hierarchy.
For heterogeneous datasets, simple tag counts are sometimes sufficient, but homogeneous
datasets, like the one in the discussed example, require more complex approaches. One of the
most studied methods which compares entire document structures is the tree-edit distance,
defined as the minimal number of atomic operations required to transform one tree into
another [30]. Typically, tree-edit distance is associated with three atomic edit operations
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Fig. 1 Dendrogram representing the clustering of tag-only representations from Table 2

Table 3 Distance matrix of the
example XML documents from
Table 1 created using tree-edit
distance

d1 d2 d3 d4 d5 d6 d7 d8

d1 0

d2 2 0

d3 2 3 0

d4 2 3 2 0

d5 1 3 3 3 0

d6 3 1 4 4 2 0

d7 3 4 1 3 2 3 0

d8 3 4 3 1 2 3 2 0

Fig. 2 Dendrogram representing the clustering based on a distance matrix from Table 3

conducted on nodes of a rooted ordered labeled tree: deletion, insertion, and replacement.
Let t1 and t2 be a pair of rooted ordered labeled trees. A tree-edit sequence is a sequence of
tree operations that transform t1 to t2. If we assign a cost to every operation, the tree-edit
distance between t1 and t2 will be the minimum cost of all possible tree-edit sequences that
transform t1 to t2.

The tree-edit distance measure utilizes the entire structural information encapsulated in
XML documents, and in this aspect, it is one of the most complete approaches to computing
tree similarity. However, in the context of clustering, this approach can be very sensitive to
subtle structural changes, which should be treated as noise. This shortcoming is illustrated
in Example 2.

Example 2 Let us once again consider the dataset presented in Table 1. Using a tree-edit
distance measure with equally weighted edit operations, we obtain a distance matrix shown
inTable 3.A single-link agglomerative hierarchical clustering algorithmapplied to thismatrix
produces a dendrogram presented in Fig. 2. As we can see, the tree-edit distance approach
also fails to identify correct clusters, grouping documents d1, d2, d5 and d6 into one cluster,
and documents d3, d4, d7 and d8 into another.
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The reason why the tree-edit distance approach produces incorrect results is because
(like most XML clustering algorithms) it uses only local information, i.e., information
obtained by comparing a pair of documents. Approaches that use only local information
do not capture the characteristic features of clusters available in the context of the entire
dataset, i.e., global information. That is why, in this article, we propose a clustering frame-
work, which uses patterns derived from the entire dataset. Our goal is to introduce a uni-
versal way of incorporating global information in structural clustering algorithms. Addition-
ally, we identify five issues, characteristic for pattern-based as well as general clustering
approaches, which need to be addressed in order to create a comprehensive XML clustering
solution.

The first issue with clustering algorithms is that they usually lack in description. Clusters
are often represented by numeric values (e.g., averages and standard deviations), which do
not generalize cluster contents in a human-understandable manner. An alternative approach
involves describing a cluster by a single object from the cluster. Unfortunately, such a repre-
sentative often displays individual characteristics instead ofmodeling a profile that is common
for the whole cluster.

A different challenge, characteristic for clustering by patterns, is the choice of a pattern
definition. The decision on which definition to choose is crucial to the clustering process as
it defines possible similarity measures and the interpretability of the output clusters. Exam-
ples of patterns in the domain of XML documents include: frequent subtrees, paths, words
or expressions, height or width of the tree, and number of distinct edges. Patterns can also
be defined as combinations of these features, which can provide additional flexibility and
description, but possibly at the cost of cluster interpretability. This trade-off between descrip-
tion completeness and interpretability makes defining a pattern a difficult task.

Another salient issue for clustering algorithms is parametrization. One of the most impor-
tant parameters for pattern mining approaches is minimum support—a value indicating the
minimal percentage of objects containing a feature required to call this feature a pattern.
Minimum support highly affects the number of obtained patterns and thus the whole cluster-
ing process. If the value is too low, then the number of patterns can be much higher than the
number of documents, which can significantly extend clustering time. If the value is too high,
there may be very few patterns and each of them will cover too many documents, which may
result in poor clustering quality. Therefore, choosing a proper minimum support value is a
challenging yet very important task. Furthermore, many algorithms require that the number
of result clusters is known a priori. Such a requirement can be unacceptable in many real-life
applications and solutions that automatically detect the number of clusters are needed.

The choice of the minimum support value is connected with another problem. Once
patterns are chosen, clustering is performed according to their definitions, but there is no
guarantee that the patterns will cover all of the documents in the dataset. If the clustering
method is a one-pass algorithm, the left out documents have to be processed separately.
Leaving them unassigned may be intentional (outlier treatment), but can result in lower
clustering quality measured by some evaluation indices.

Lastly, an issue that needs to be concerned is that pattern-based approaches usually rely on
a binary similarity measure between documents and patterns—either a document contains a
pattern or it does not. However, the number of connections between patterns and documents
can be used while assigning documents to clusters, possibly enhancing clustering quality.

In sum, XML document clustering and clustering by patterns pose many problems, which
existing algorithms only partially address. In our opinion, the main five challenges in this
area are as follows:
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C1 Cluster interpretability: describing each cluster in a way that allows for a straightforward
interpretation,

C2 Pattern definition: choosing an accurate yet easily interpretable pattern definition,
C3 Parametrization: reducing the number of parameters required by clustering algorithms,
C4 Dataset coverage: deciding how to interpret documents that do not match to any pattern,
C5 Pattern-document similarity: deciding whether to take the number of occurrences of a

pattern in a single document into account.

1.2 Our contributions

In this paper, we discuss challenges presented in the previous section and propose a new
clustering algorithm called PathXP, which addresses these challenges. PathXP uses groups of
frequent paths, called profiles, to cluster XMLdocuments in a divisivemanner. The algorithm
takes into account not only path-document existence, but also utilizes information about
multiple path occurrences and their uniqueness. PathXP follows a more general approach,
which we encapsulate in a framework called XPattern.

The main contributions of this paper are as follows:

– We propose an extensible framework for clustering XML documents by patterns, called
XPattern.

– We put forward the PathXP algorithm—an instantiation of the XPattern framework that
uses maximal frequent paths as patterns.

– We analyze the general components of pattern-basedXML clustering algorithms and show
their impact on clustering quality.

– We propose a heuristic for estimating the number of clusters k for pattern-based clustering
algorithms.

– We evaluate PathXP and discuss alternative pattern definitions.

The remainder of the paper is organized as follows. Section 2 reviews existing XML
clustering methods and compares PathXP with similar approaches. Section 3 discusses the
steps of theXPattern framework.An in-depth descriptionofPathXP is given inSect. 4. Section
5 outlines experiments conducted to evaluate the proposed algorithm and analyzes different
pattern definitions. Section 6 draws conclusions and suggests lines of further research.

2 Related work

The most popular criterion used to categorize XML clustering methods is the type of doc-
ument information used for clustering: content, structure, or both content and structure.
As this paper concentrates on clustering using structural patterns, we will focus mainly on
structure-based methods. Further categorization of XML clustering algorithms can be done
by distinguishing different document representations and similarity measures. In the follow-
ing sections, we summarize existing XML clustering methods based on the techniques they
exploit: schema-based, tag/path similarity, vector-based, entropy, edit distance, and pattern
approaches.

2.1 DTD approaches

One of the earliest works concerning XML document clustering is the XClust algorithm [24].
XClust is designed to cluster XML schemas represented in the form of Document-Type
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Definitions (DTDs). SinceDTDs are tree structures that can contain artificial AND-OR nodes
and can specify cardinality for regular nodes, the authors propose to simplify these trees prior
to clustering. The simplification process is performed by applying a set of transformation
rules on the originalDTD.After simplification,XClust comparesDTDnodeswith a similarity
measure that takes into account their semantics, immediate descendants, and leaf descendants.
The semantic similarity involves using the WordNet thesaurus [16] as well as comparing
element cardinality and path similarity. Immediate descendants of compared elements are
analyzed using theirWordNet distance and node cardinality. Finally, similarity between paths
of descendant leafs of the compared nodes is added to the overall measure. After calculating
schema distances, cluster analysis is performed in a hierarchical manner. A similar approach
was presented in the XMine algorithm [28].

2.2 Tag and path similarity approaches

Tag similarity approaches are considered to be the simplest algorithms for clustering XML
documents [14]. They are presented as a computationally efficient alternative for more com-
plex structural similarity methods such as tree-edit distance algorithms [30]. Tag-based
approaches discard the content of an XML document and treat it as a bag of tags. Based
on the frequencies of tags and their intersection between documents, similarity between doc-
uments can be computed. However, because tag-based approaches discard not only textual
but also most of the structural information, they achieve lower clustering quality compared
to other methods [30,38].

A compromise between fast tag-based methods and accurate edit distance approaches is
provided by algorithms that use XML paths for clustering. A good example is the PBClus-
tering algorithm [26], which describes each XML document as a set of XPaths from root to
leaf. Since there can be a large number of root to leaf XPaths, the authors propose to use only
frequent paths. A frequent path is defined as a path that occurs in at least minsup percent
of documents in a dataset, where minsup is a user-defined minimum support level. After
extracting frequent paths, each document is encoded as a vector of bits. Each bit in this vector
corresponds to a frequent XPath and is set to 0 by default. If a document contains a frequent
XPath, the bit that corresponds to that path is set to 1. Finally, a similarity matrix is cre-
ated by comparing each pair of bit vectors, and clustering is performed by an agglomerative
algorithm. PBClustering can use as little features as tag-based approaches while performing
as well as more expensive methods [26]. Other interesting path-based approaches to XML
clustering include the use of s-graphs [27] and the construction of SuperTrees [25].

The PathXP algorithm presented in this paper also uses frequent paths to compare doc-
uments and in this way is similar to the PBClustering algorithm. However, unlike PBClus-
tering, PathXP is not limited to the use of only root to leaf paths, but utilizes also shorter
paths. Furthermore, our algorithm does not require the specification of minimum support.
Finally, while comparing documents, PBClustering takes into account only pattern existence,
whereas PathXP utilizes the strength between patterns and documents.

2.3 Vector-based approaches

In the field of text clustering, most methods rely on the Vector Space Model (VSM) [34].
In this model, each document is represented as a vector of terms that appear in a dataset.
A typical example of such an approach is the TF-IDF scheme [33], in which each word in
a document is described by the ratio of its frequency in the document and its frequency in
the whole dataset. Because the classical VSM representation of documents uses only words,
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it is unsuitable for semi-structured data. That is why new methods have been proposed to
represent XML data as vectors in an abstract n-dimensional feature space.

An interesting vector-based approach for clustering XML documents was put forward
by Candillier et al. [8]. The authors propose to summarize each document with a set of
attribute-value pairswith structural information. These pairsmay describe tags, edges, sibling
relationships, node positions, and the number of distinct paths starting from the document’s
root. Such an approach creates asmany attributes asmany distinct features can be encountered
in the training set. Afterward, for a given document, each attribute value is set to the number
of occurrences of the feature associated with that attribute (e.g., number of occurrences of a
certain tag). After calculating feature vectors for all documents, clustering is performed by a
variation of the EM algorithm [8]. Since the number of attributes for a dataset can grow fairly
large, the authors propose to perform feature selection for each cluster. To perform this, for
each cluster, attributes are weighted by the ratio between local and global standard deviations
of attribute values. Afterward, only a user-defined number of highest weighted attributes is
kept for further processing.

A different method that partially maps XML data to a vector-based representation was
proposed by Hagenbuchner et al. [19]. The authors put forward an algorithm called SOM-SD,
which extends Kohonen’s Self Organizing Map (SOM) [22] and clusters XML documents in
an unsupervised fashion. For each document in a dataset, SOM-SD processes document tree
nodes one at a time and maps them on the SOM’s neuron grid. After presenting all the nodes
in a dataset to the grid, similar documents are displayed at the same or close coordinates on
the SOM. SOM-SD performed favorably to other structural clustering methods in the INEX
2005 XML Mining Competition [12].

2.4 Entropy and FFT approaches

One of the more efficient XML clustering methods is the entropy-based clustering algo-
rithm [21]. The main idea behind this approach is to compress structural information about
documents, compare the lengths of the compressed files, and calculate the normalized com-
pression distance (NCD) between each pair of documents. The calculated distances can be
later used by a similarity based clustering algorithm like AHC or k-means. An interesting
aspect of this algorithm is that it can work with any type of document representation. The
definition of NCD allows such flexibility, as it is based on an approximation of the Kol-
mogorov complexity, which can be defined for any data object [4]. Although the algorithm
can use any type of document representation, clustering results will differ depending on
the selected representation. For this reason, the author analyzes four methods of extracting
structural information: tags, pairs of tags, paths, and whole document trees. Compared to
simple tag and edit distance algorithms, the entropy-based approach requires less time and
achieves similar or better clustering accuracy, depending on the selected representation and
compression algorithm [21].

The entropy-based method was also compared with another interesting algorithm, one
that converts XML documents into time series and compares them using frequency analy-
sis [17]. In this approach, each tag occurrence of an XML element/attribute is considered
as an impulse. The combined set of impulses in a document can be treated as a time
series. Subsequently, structural similarity between documents is measured by analyzing fre-
quencies obtained from corresponding time series through Fast Fourier Transform (FFT).
While this algorithm runs faster than edit distance approaches, clustering experiments con-
ducted on both real and synthetic XML data show that the FFT method yields higher error
rates [7].
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2.5 Edit distance approaches

Most of the methods discussed so far used DTDs or simple structural information like tags or
paths. However, full structural information about XML documents is usually represented in
tree form. Methods for comparing whole tree structures are based on edit distance measures,
which calculate the number of operations required to transform one tree into another. From
the myriad of proposed tree-edit distance algorithms, one of the most sophisticated methods
to date is an algorithm put forward by Nierman and Jagadish [30].

In their approach, Nierman and Jagadish propose to represent an XML document as a
labeled ordered tree in which inner nodes are tags and leaf nodes are tags or attributes.
The algorithm allows three operations on single nodes: relabel, insert leaf, and delete leaf.
In contrast to many other tree-edit distance methods, the authors also allow two subtree
operations: insert subtree and delete subtree. Subtree insertions and deletions are limited
only to subtrees that are already contained in the source/destination tree, that is, if all nodes
of the inserted/deleted subtree occur in the source/destination tree, with the same parent–
child edge relationships and same sibling order [30]. Edit distance methods provide the
most complex document comparison, much needed in XML clustering, but are known to be
computationally expensive [27]. Currently, the most efficient tree-edit distance method is the
RTED, proposed by Pawlik and Augsten [31].

2.6 Pattern approaches

In the XProj framework [1], the authors propose a clustering algorithm that uses frequent
substructures (tree edges) as patterns. Initially, the document set is randomly divided into k
partitions of equal size.Next, sets of frequent edges aremined from these partitions. These fre-
quent edges (cluster representatives) are later used to calculate similarity among documents.
The distance between a document and a set of representatives is defined as the fraction of
nodes in the document, which are covered by any representative in the set. According to the
computed distances, documents are reassigned to clusters with representatives that are most
similar. In subsequent iterations, the algorithm mines new frequent edges and repeats the
clustering process until it converges or reaches the maximum number of iterations. XProj
was compared with two tree-edit distance methods achieving higher precision [1].

Although PathXP also mines frequent substructures to create cluster profiles, there are
several differences compared to the work in [1]. Firstly, our algorithm only requires the
expected number of clusters as an input parameter, while XProj expects the number of
clusters, mined substructure size, and minimum support. Secondly, XProj is a partitioning
algorithm and thus produces flat results. PathXP, on the other hand, returns not only the final
groups, but also a hierarchy of clusters. Thirdly, XProj is a randomizable algorithm, and its
final results depend on the initial grouping of input documents, while for a given dataset,
our algorithm always returns the same result. Finally, the coverage-based similarity criterion
used to compare documents with patterns in XProj is based on node co-occurrences, while
PathXP takes into account path co-occurrences and their arity.

In [6], we presented an approach that utilized maximal frequent subtrees as patterns,
grouped those patterns according to a similarity measure, and assigned XML documents
to pattern groups. This paper builds on that work and presents the XPattern framework,
which generalizes the previously proposed algorithm. Furthermore, in this paper, we consider
possible instances of the proposed framework by analyzing: the use of several different pattern
definitions, the influence of using all frequent patterns and not only maximal, and the use
of an occurrence count for patterns appearing more than once in a document. Moreover, we
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propose and evaluate the use of weighted support as a way of taking into account not only
pattern frequency, but also pattern uniqueness. The results of our research are compiled into
a new algorithm called PathXP, which is presented and discussed in the following sections.

3 XPattern clustering framework

As it was shown in Sect. 2, there are many different approaches to XML document clustering.
However, most of the mentioned algorithms share a common high-level architecture, which
consists of three phases [2]:

1. Data representation
2. Similarity computation
3. Document clustering

In the first phase, documents are transformed into a chosen representation. Next, all of the
documents are compared according to a chosen similarity measure. Finally, the documents
are grouped into clusters with respect to the computed similarity between them.

The above-mentioned clustering methodology is followed by countless algorithms. How-
ever, in the context of pattern-based clustering, this methodology is inappropriate, since in
pattern-based approaches, documents are assigned to clusters based on global information
encapsulated in patterns rather than local information expressed by direct document similar-
ity. Therefore, for the purpose of pattern-based clustering, we propose a newXML document
clustering framework, called XPattern. In Sect. 3.1, we will present a conceptual description
of the framework, and in Sect. 3.2, we will formally define its elements.

3.1 Conceptual description

The XPattern framework consists of four steps:

1. Data transformation
2. Pattern mining
3. Pattern clustering
4. Document assignment

This approach is based on a real-life observation that objects—for instance people—differ
from each other in many details. Thus, we say that each person is unique. But if we omit
characteristic features, we can see that people manifest similar patterns of behavior that allow
us to classify them into a limited amount of profiles (for example, extroverts and introverts).

Following this analogy, we have to define what kind of patterns we are looking for,
i.e., decide whether we want to group people according to their behavior or maybe their
appearance. Next, we have to find all the patterns that appear in the dataset. Since we do not
know how many patterns we will find and there can be even more patterns than people, we
have to group the patterns into profiles. Once we have formed an optimal number of profiles,
we can simply assign each person to the profile she/he fits best. Let us now discuss each step
of the XPattern framework in more detail.

3.1.1 Step 1: Data transformation

The purpose of the first step is to transform input data into a representation that allows for
efficient pattern mining according to a chosen pattern definition. The framework is indepen-
dent of any particular representation, and thus, XML documents can be transformed into any
of the data structures discussed in Sect. 2, such as bags of tags or trees.
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3.1.2 Step 2: Pattern mining

In the pattern mining step, the transformed input dataset is mined for patterns. A pattern can
be defined as any piece of information obtainable from a single document that has a user-
specified property, e.g., is unique or appears frequently across the dataset. Typical structural
patterns include frequent subtrees and tags, but also features such as tag counts, paths, or
statistical measures can be used. As we are describing an abstract framework, we will not use
any concrete pattern definition in the remainder of this section and discuss the consequences
of particular definitions in Sect. 5.2.

A pattern definition implies a method, which needs to be employed for pattern mining,
e.g., patterns defined as frequent subtrees require an Apriori-like algorithm, while patterns
defined as distinct tag counts require a simple dataset scan. Since in our framework patterns
serve as cluster representatives, the mining algorithm has to produce at least as many patterns
as there are expected clusters. That is why, if there are less patterns than expected clusters,
we have to restart the pattern mining step and search for new patterns.

3.1.3 Step 3: Pattern clustering

In the third step ofXPattern, patterns are clustered into groups, called profiles. The framework
does not define any pattern similaritymeasure necessary for clustering. Two basic approaches
arise—similarity measures that compare pattern structures and similarity measures that com-
pare patterns by the number of the documents they co-occur in. The first approach promotes
structurally cohesive profiles and takes into account relations between patterns rather than
between documents. The second approach promotes profiles with commonly co-occurring
patterns and, thus, indirectly uses inter-document relationships. Additionally, the second
approach requires less processing. Comparing pattern structures would require calculating
similarity between each pair of patterns, while all information needed for clustering using
document co-occurrences can be gathered during the pattern mining step. That is why, we
propose to use the second approach.

3.1.4 Step 4: Document assignment

After patterns are grouped into profiles, in the final step of the framework, we have to assign
all documents to the clusters represented by these profiles. It is performed by testing each
document against each profile to check how well the patterns in that profile describe that
particular document. A document is assigned to the cluster for which this test produces
the best result. In this step, similarly as in the third step, we can use the earlier acquired
information about occurrences of patterns in documents. Therefore, we do not need to check
whether a document contains a pattern. It is also worth noticing that some documents may
not contain any pattern and, thus, may be left unassigned. This feature relates to the problem
of outlier detection, as documents without corresponding patterns naturally form a set of
outliers.

Let us now focus on the main differences between the steps of XPattern and the earlier
mentioned typical clustering methodology [2]. Although the first step of both methodologies
transforms objects into a chosen representation, in the traditional approach this is done to
compare documents with each other, while in our approach it facilitates the process of pattern
mining. Patternmining and pattern clustering are steps distinctive for our framework. In these
steps, we aim at tackling the challenge of creating easily interpretable cluster representatives

123



196 M. Piernik et al.

in the form of profiles. The final step of our framework assigns each document to a profile and,
thus, incrementally creates clusters. This differs from the traditional approach where the last
step consists of clustering by direct document similarity, which uses only local information
and usually cannot be performed incrementally. Finally, it is worth noticing that the XPattern
framework facilitates outlier treatment, as it naturally captures documents, which do not fit
to any profile.

3.2 Formal definition

The first step of the framework aims at transforming all documents from a datasetD into a rep-
resentation that permits the chosen type of feature extraction.We will denote the transformed
dataset as DT .

Definition 1 A feature f is any piece of information that can be extracted or calculated from
an XML document, e.g., a subtree, element label, or total number of elements. We denote
the set of all features by F .

Definition 2 A document d ∈ D contains a feature f if f can be obtained from its trans-
formed representation dT ∈ DT . We denote the containment relation by f ∈ d and the
number of occurrences of f in d by m( f, d).

Definition 3 Afeature f is called apattern if it fulfills a user-specified predicate pattern( f ).
We denote a single pattern by p and a set of all patterns by P:

P = { f ∈ F : pattern( f )}
The second step of the framework mines all available patterns P from the dataset, pre-

serving the information about all document-pattern containment relations.

Definition 4 A set of profiles Πk is a set of k sets of patterns defined as follows:

Πk = {
π1, π2, . . . , πk : ∀i=1...kπi �= ∅ ∧ πi ⊆ P ∧ ∀ j=1...k; j �=iπi ∩ π j = ∅}

Definition 5 A profile πi is an element of a set of profiles Πk that represents a cluster ci .

In the third step of the XPattern framework, the patterns P are grouped into a set of k
profilesΠk . One can use any algorithm or similarity measure to create the profiles—they are
only restricted by the definition of a profile and a profile set (Definitions 4 and 5).

Definition 6 A document d is connected to a profile πi if it contains at least one pattern
from that profile:

d ∼ πi ⇐⇒ ∃p∈πi p ∈ d

Definition 7 The degree in which a document and a profile are connected (document-profile
similarity) is measured by the connection strength function str, defined as follows:

str : D × Πk → R
+
0

Definition 8 A document d is assigned to a cluster ci if it has the highest connection strength
with profile πi :

ci = {d ∈ D : arg max
π∈Πk

str(d, π) = πi }
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In the last step of the framework, each document is assigned to a cluster according to
Definition 8.

In this section, we have defined a general framework for clustering XML documents
by patterns. One can use any document representation, pattern definition, pattern similar-
ity measure, and pattern clustering method to create an algorithm tailored to a specific
problem. In the next section, we will present one of the possible instances of the XPattern
framework.

4 The PathXP algorithm

In this section, we present a concrete instantiation of the XPattern framework—the PathXP
algorithm. Section 4.1 describes this algorithm in detail and illustrates it with an exam-
ple. Section 4.2 presents an attempt to create a parameterless version of the PathXP algo-
rithm, which automatically estimates the minimum support value as well as the number of
clusters.

4.1 The algorithm

Based on the XPattern framework, we propose an algorithm called PathXP, outlined in Algo-
rithm 1, which uses XML paths as features. In PathXP, a feature f will be called a pattern if
it is a maximal frequent path, i.e., if it is contained in at least minsup percent of documents
in D, where minsup is a user-defined minimum support parameter, and f is not a subpath
of any other frequent path:

f requent ( f ) ⇐⇒ ∃D′⊆D∀d ′∈D′ f ∈ d ′ ∧ |D′|
|D| ≥ minsup (1)

pattern( f ) ⇐⇒ f requent ( f ) ∧ ¬∃ f ′∈F
(
f requent ( f ′) ∧ f ⊂ f ′) (2)

The algorithm begins with setting the initial value of minsup at 1/k (the value 1/k will
be discussed in detail in Sect. 4.2), where k is the number of expected clusters. Next, the
input datasetD is mined for maximal frequent paths. Until the number of discovered paths is
greater or equal to the number of expected clusters, minsup is divided by 2 and the mining
process is restarted. The obtained set of patterns P is later grouped into k profiles using
complete link AHC algorithm with a pattern similarity measure defined as:

sim(p1, p2) =
∑

d∈D min {m(p1, d),m(p2, d)}
∑

d∈D m(p1, d) + m(p2, d) − min {m(p1, d),m(p2, d)} (3)

Finally, each document is assigned to the profile with which it has the highest connection
strength. In PathXP, we define connection strength as the number of patterns contained in a
document d which are present in a profile πi , divided by the size of πi :

str (d, πi ) =
∑

p∈πi
m(p, d)

|πi | (4)

It is worth noting that dividing by the profile’s size is used to eliminate the effect of promoting
large profiles.
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Algorithm 1 The PathXP clustering algorithm
Input: set of XML documents D, number of clusters k
Output: set of k clusters C

1: minsup ← 1
k ;

2: P ← AprioriPaths(D,minsup);
3: while |P| < k do
4: minsup ← minsup/2;
5: P ← AprioriPaths(D,minsup);
6: end while
7: Πk ← AHC(P, k);
8: C ← k empty clusters each defined by one profile πc ∈ Πk ;
9: for all d ∈ D do
10: bestCluster ← the first profile;
11: bestMatchCount ← 0;
12: for all c ∈ C do
13: matchCount ← ∑

p:p∈πc∧p∈d
NumOfOccurrences(p, d);

14: if matchCount > bestMatchCount then
15: bestMatchCount ← matchCount ;
16: bestCluster ← c;
17: end if
18: end for
19: add d to bestCluster ;
20: end for

Table 4 XPattern components defined in PathXP

XPattern PathXP

Document representation Set of paths

Pattern definition Maximal frequent paths

Pattern clustering algorithm Complete link AHC

Pattern similarity sim(p1, p2) =
∑

d∈D min{m(p1,d),m(p2,d)}∑
d∈D m(p1,d)+m(p2,d)−min{m(p1,d),m(p2,d)}

Connection strength
(document-profile similarity)

str (d, πi ) =
∑

p∈πi
m(p,d)

|πi |

As an instance of XPattern, PathXP defines all the required components of the framework.
Table 4 summarizes all the defined components.

Let us analyze the worst-case complexity of the PathXP algorithm. The problem ofmining
frequent itemsets is known to be NP-Hard [43]. The theoretical cost of mining frequent paths
from a dataset of n documents withm distinct tags is O(2mn). The pattern clustering step uses
AHC, hence, for p patterns and k expected clusters, the complexity of this step is O(k · p2).
Finally, the document assignment step searches for all the occurrences of each pattern in each
document. A single search for pattern occurrences in a document requires O(v) operations,
where v is the number of vertices in the document. Thus, the pessimistic complexity of the
document assignment step is O(p · n · max(v)), where max(v) is the number of vertices
in the longest document in the dataset. Given the above, the overall worst-case complexity
of PathXP equals O(2mn). Since the number of distinct labels m is usually bounded and
n is the number of documents in a dataset, this shows that our algorithm can in practice
scale linearly up to very large datasets (as evidenced by the scalability test performed in
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Sect. 5). Furthermore, since the most costly operation takes place in the pattern mining step,
our solution will prove particularly effective in incremental clustering scenarios, where new
documents are added to existing clusters.

Example 3 Let us now analyze the operation of PathXP on the example set of documents
from Table 1. First, the initial value of minsup is calculated. For the expected number of
clusters k = 2, minimum support is set to 1

2 . This means that for a dataset of eight documents,
a feature must occur in at least four documents to be considered as frequent. Table 5 presents
maximal frequent paths (patterns) found in the example dataset.

Since the number of obtained patterns is greater than the number of expected clusters, it is
not necessary to decreaseminsup and restart frequent path mining. Therefore, the algorithm
proceeds with grouping patterns into profiles according to Eq. 3. The result of this operation
is presented in Fig. 3.

Table 6 presents the distance matrix created based on the pattern-document co-
occurrences. According to this matrix, the complete link AHC algorithm will create two
profiles: the first one (π1)will contain patterns p1 and p2, while the second one (π2) patterns
p3, p4, p5 and p6. It is worth noting that by looking at paths in profiles π1 and π2 one can
easily interpret the characteristic features of each cluster.

Finally, documents are assigned to profiles. Each document is assigned to the profile with
which it has the highest connection strength (see Eq. 4). As Table 7 shows, according to the
number of pattern-document co-occurrences, documents d1, d2, d3 and d4 are assigned to
the cluster represented by profile π1, while documents d5, d6, d7 and d8 are assigned to the
cluster represented by profile π2. This concludes the algorithm.

As described in Sect. 1.1, choosing a proper pattern definition is an important task. The
use of frequent paths as patterns in the PathXP algorithm was dictated by a series of tests
(described in Sect. 5) conducted on several different definitions. While subtrees preserve
more structural information than paths, the latter are easier to obtain, and, thus, the whole
clustering process is more efficient.

Table 5 Patterns found in the
documents from Table 1

Id Pattern

p1 paper/booktitle/title

p2 paper/booktitle/year

p3 volume

p4 paper/authors/author

p5 paper/journal/title

p6 paper/journal/year

Fig. 3 Occurrences of patterns in the example documents
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Table 6 Patterns’ distance
matrix

p1 p2 p3 p4 p5 p6

p1 0.0

p2 0.7 0.0

p3 0.7 1.0 0.0

p4 0.7 0.0 1.0 0.0

p5 0.7 1.0 0.0 1.0 0.0

p6 0.5 0.5 0.5 0.5 0.5 0.0

Table 7 Connection strengths
between documents and profiles

Bold values indicate the profile to
which the document is assigned

π2
1 π2

2

d1 1.0 0.5

d2 1.0 0.3

d3 1.0 0.8

d4 1.0 0.5

d5 0.0 1.0

d6 0.0 0.8

d7 0.0 1.3

d8 0.0 1.0

4.2 Parametrization

As stated in the introduction of this paper, choosing a proper minimum support threshold can
be a problematic task. That is why, in PathXP we only require user to provide the number
of clusters and we set the minimum support threshold automatically. Given the number of
clusters k, we propose to set the minimum support parameter to 1/k. The assumption behind
this approach is that documents in each cluster share common patterns; therefore, assuming a
uniform document distribution among clusters, the 1/k value should allow the algorithm for
discovering these patterns. For highly imbalanced datasets, this approach may not be suffi-
cient; however, this problem is out of the scope of this paper and is planned as a future work.

The requirement of knowing the number of clusters a priori is commonly assumed in most
XML clustering algorithms. Recent XML clustering surveys [2,32] reveal that nearly all of
the approaches proposed so far rely on this assumption. However, such a requirement may
discredit the algorithm in many real-world applications. To address this problem, we propose
a heuristic approach which automatically detects the number of clusters. The pseudocode of
this heuristic is illustrated in Algorithm 2. This approach consists of two phases. In the first
phase (lines 1–9), we determine the number of clusters by incrementally iterating through
consecutive values of k and triggering our basic PathXP algorithm for each of these values.
Once PathXP returns a result with at least one of the clusters empty, the iteration stops and we
assume that the previous value of k was the correct number of clusters. After obtaining k, in
the second phase (line 10), we simply use this information to cluster the dataset with PathXP.

This approach is based on an intuition that after reaching a certain number of clusters, pro-
files start to disintegrate and the connection strength between documents and these profiles
weakens. This disintegration means that the most unsuited patterns of the weakest profile
form a separate profile. This profile should, eventually, get overwhelmed by other, more
cohesive profiles, and be left with no documents assigned. This means that this profile is too
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Algorithm 2 Parameterless version of PathXP
Input: set of XML documents D
Output: set of clusters C

1: k ← 1;
2: while k < |D| do
3: C ← PathX P(D, k);
4: if C contains an empty cluster then
5: k ← k − 1;
6: break;
7: end if
8: k ← k + 1;
9: end while
10: C ← PathX P(D, k);

weak to stand on its own and should be a part of another profile; thus, the number of clusters
should be decreased.

Experiments show that the unparameterized version of our algorithm can produce results
of similar quality as PathXP, however, does not always accurately predict k withmore difficult
datasets. Details will be discussed in Sect. 5.

5 Experimental evaluation

The proposed algorithm was evaluated in several experiments to inspect its properties and
compare it with competitive approaches. In the following subsections, we describe all of the
used datasets, discuss experimental setup, and analyze experiment results.

5.1 Datasets and experimental setup

The proposed algorithm was tested against 5 real and 2 synthetic datasets, summarized in
Table 8. For real data, we chose one heterogeneous dataset from the SIGMOD Record [36]
(sig) and four homogeneous datasets from the 2005/2006 INEX competition (dbN , N =
0 . . . 3), which are drawn from the IMDB movie database and ranked according to their
difficulty—the higher the N , the more overlap there is between the classes. To generate
synthetic datasets, we used the ToXgene framework [3] with two sets of schemas: one con-
taining 10 different DTDs for generating a heterogeneous dataset (het), second containing
three similar DTDs for generating a homogeneous dataset (hom). The parameter indicating
the maximal number of times that a node can appear as a child of its parent node was set to
4 for all of the synthetic datasets.

Table 8 Characteristic of datasets

Dataset Classes Number of
documents

Avg. size Avg. width Avg. height Distinct
labels

SIGMOD (sig) 2 140 82.66 32.16 5.46 39

INEX (db0-3) 11 4,825 220.03 112.24 5.32 195

Heterogeneous (het) 10 1,000 40.11 21.82 3.98 73

Homogeneous (hom) 3 300 36.37 18.07 4.00 12
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All of the compared algorithms were implemented in the C# programming language. We
have also used a C++ implementation of the CMTreeMiner [9] algorithm for miningmaximal
frequent subtrees. The experiments took place on a computer with a 2,80 GHz Inter Core i7
processor and 16 GB of RAM.

As in [1], to evaluate clustering quality, we used precision and recall:

precision =
∑

i si∑
i si + ∑

i vi
, recall =

∑
i si + ∑

i vi

|D| , i = 1 . . . k

where k is the number of clusters, |D| is the number of documents in the dataset, si is the
number of documents correctly assigned to the i-th cluster and vi is the number of documents
incorrectly assigned to the i-th cluster. Although these evaluation measures originate from
supervised learning, they can be used in our setting as all of the employed datasets contain
labeled documents.

5.2 Alternative pattern definitions

Before discussing the properties of PathXP, let us analyze the impact of using various pattern
definitionswith theXPattern framework.Asmentioned earlier, we propose to useXMLpaths,
as they offer a compromise between full structural information and lightweight processing.
This decision is supported by experimental results given in Table 9, which presents precision,
recall, and clustering time of PathXP using subtrees, paths, tags, and metadata as patterns.

Subtrees are often presented as objects that best summarize structural information of
an XML document. They include all the information contained in tags or paths and provide
additional sibling information. As experimental results show, subtrees are the most expensive
pattern definition from the compared set. Frequent subtrees are usually larger than tag or path
patterns and, thus, more resource consuming. Furthermore, as stated by Chi et al. [9], the cost
of mining maximal frequent subtrees is linearly proportional to the depth h of a document

Table 9 Precision, recall, and clustering time for PathXP with different pattern definitions

Pattern sig het hom db0 db1 db2 db3

Precision

Subtrees 1.00 1.00 0.90 − − − −
Paths 1.00 1.00 0.92 0.66 0.71 0.66 0.64

Tags 0.51 1.00 0.35 0.73 0.69 0.45 0.44

Metadata 0.98 0.45 0.36 0.22 0.18 0.15 0.17

Recall

Subtrees 1.00 1.00 1.00 − − − −
Paths 1.00 1.00 1.00 1.00 0.99 0.99 1.00

Tags 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Metadata 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Clustering time [s]

Subtrees 0.07 1.40 3.24 − − − −
Paths 1.57 0.09 0.17 65.25 137.76 311.64 403.38

Tags 0.08 1.06 0.05 21.44 25.62 42.66 44.07

Metadata 0.02 0.03 0.01 0.18 0.24 0.40 0.38
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and exponentially proportional to its width w. This gives a worst-case complexity of O(2w)

just for the pattern mining step. For this reason, although accurate for smaller datasets, this
pattern definition cannot be used to cluster large, real-world datasets such as the INEXmovie
database. In our study, experiments involving subtrees as patterns on datasets db0-3 consumed
all available memory before providing results, which is illustrated by blank values in Table 9.

Simple sequences of tags are much easier to process than document trees. As time results
presented in Table 9 show, tag patterns are among the easiest to acquire and process. This
result finds its confirmation in the complexity analysis of tag mining, which in the worst-case
scenario requires O(M · n) operations, where n is the number of documents in a dataset
and M is the number of tags in the largest document in the dataset. However, precision
acquired for the tag-based approach shows that tag patterns performed well only for the
synthetically generated heterogeneous dataset (het) and for the noiseless real dataset (db0).
This is understandable as single tags can characterize very distinct object groups. For more
difficult homogeneous datasets (db1–3, hom), where most objects are very similar to each
other, as well as for real heterogeneous dataset (sig), tags do not convey enough structural
information to perform proper clustering. Additional data are needed for these datasets, such
as additional structural information or metadata.

Alternatively, pattern definitions constructed from document structures can be replaced by
data describing these structures, i.e., by structural metadata. In order to determine how well
metadata can capture document characteristics, first, we identified 10 different structural
summaries: number of elements, number of distinct elements, number of levels, average
number of elements at all levels, standard deviation of number of elements at all levels,
number of leafs, average path length, standard deviation of path length, average number of
children for all nodes, and standard deviation of number of children for all nodes. Next, for
each dataset, we performed tests of all 1,023 possible combinations of these parameters.
The combination that performed best was based on two very basic structural summaries:
the number of distinct elements and the number of levels in a tree. The quality and time
evaluation of this combination are presented in Table 9 (Metadata). As results indicate, using
metadata can produce results of a competing quality compared to the tag-only approach for
heterogeneous (sig, het) and synthetic homogeneous (hom) datasets, while requiring much
less time. However, real homogeneous datasets (db0-3) reveal that this approach can only be
used for simple problems or as additional information for other clustering methods.

Looking at the results a question arises: to what extent structural metadata can describe
documents? For a closed set of XML data sources, documents can be clustered using solely
structural metadata, but for very large datasets, it seems more reasonable to use metadata
only as additional clustering information. As denoted by Halevy et al. [20], recent research
shows that document processing requires the use of all available data and for this reason,
the use of metadata such as document statistics can possibly become an important part of a
real-world pattern definition, but as the presented results show, it is not sufficient to use them
alone.

This paper focuses mainly on clustering XML documents by structure, but it is worth
noting that the presented approach can work equally well with textual data as patterns. One
can use n-grams, synsets, or other word relations as cluster representatives. Since using
patterns for clustering is a general idea, which does not imply their specific definition, it
can be used with content as well as structure-based document representations. However,
since XML clustering has many domains of application, we think that algorithms for this
problem should give the user a choice on which information should be taken into account.
For example, in domains such as chemistry, compounds can be encoded only by the structure
of an XML format, thus eliminating the necessity for textual analysis. On the other hand,
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clustering records of a consistent, XML-based employee database can be performed without
structural information. In other cases, both structure and content should be taken into account.

5.3 Analysis of the components of the proposed algorithm

While constructing the PathXP algorithm, we analyzed several possibilities concerning algo-
rithm functioning and parametrization. In this section, we present results of this analysis.
First, we investigate how restricting frequent patterns to maximal frequent patterns, counting
multiple pattern occurrences, and considering pattern uniqueness influence clustering quality.
Secondly, we analyze the impact of limiting the length of path patterns. Finally, we perform
a parameter sensitivity test and a scalability test of the proposed algorithm.

Let us start by analyzing three binary algorithm settings:

– C: Counting multiple occurrences of patterns in documents.
This information is used by function m( f, d) from Definition 2 to calculate pattern
similarity and connection strength, as presented in Eqs. 3 and 4. In order to discard this
information, we alter the definition ofm( f, d), so that it produces a binary result: 1 when
f ∈ d , 0 otherwise.

– W: Weighting patterns according to their uniqueness.
This information is expressed by the following formula:

Weighted Support(p) =
∑

d:p∈d

1

|{pi : pi ∈ d}| ,

When used, it is embedded into the connection strength formula (Eq. 4) as follows:

str (d, πi ) =
∑

p∈πi

m(p, d) · Weighted Support(p)
|πi |

– M: Using only maximal frequent paths as patterns.
This information is used in the pattern( f ) predicate in Eq. 2. If we want to use all
frequent paths, the pattern( f ) predicate simply changes to:

pattern( f ) ⇐⇒ f requent ( f )

Table 10 presents the precision obtained by the algorithm for different combinations of
settings {C, W, M}. Recall was omitted, as it remained unchanged for each dataset.

In order to determine whether the settings significantly influence the algorithms quality,
for every dataset we ranked each algorithm’s performance from 1 to 8, where 1 is the highest
and 8 is the lowest score. In case when one or more algorithms were tied, average ranks were
assigned (e.g., if two algorithms were tied at the third place, each was granted a rank of 3.5).
Once created, the ranking was used to perform a Friedman test [11]. The null hypothesis for
this test is that there is no difference between the performance of all the tested algorithm
settings. Moreover, in case of rejecting this null hypothesis, we use the Bonferroni–Dunn
post hoc test [11] to verify whether the performance of the best setting is statistically different
from the remaining approaches. The result of the test is visualized in Fig. 4. Assuming a Chi-
square distribution with 7 degrees of freedom, the value of Chi-square for the Friedman test
equals 15.30.With the significance level ofα = 0.05,we can reject the null hypothesis, which
indicates that the algorithm settings are not identical. Furthermore, the Critical Difference
(CD) chosen by the Bonferroni–Dunn test CD = 3.5 indicates that settings 101 and 100
perform significantly better than setting 010. This means that combining information about
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Table 10 Precision for varying algorithm settings

Settings Precision Avg. rank

C W M sig het hom db0 db1 db2 db3

0 0 0 1.00 1.00 1.00 0.62 0.54 0.51 0.47 4.9

0 0 1 1.00 1.00 1.00 0.54 0.51 0.54 0.49 5.0

0 1 0 1.00 1.00 0.76 0.49 0.28 0.17 0.18 6.7

0 1 1 1.00 1.00 0.76 0.61 0.54 0.53 0.50 5.4

1 0 0 1.00 1.00 0.92 0.73 0.68 0.58 0.55 3.1

1 0 1 1.00 1.00 0.92 0.66 0.71 0.66 0.64 2.6

1 1 0 0.50 1.00 0.51 0.72 0.63 0.55 0.52 4.9

1 1 1 1.00 1.00 0.79 0.65 0.70 0.65 0.62 3.4

Fig. 4 Friedmann test performed on the results from Table 10

Table 11 Precision for varying maximal path length

Maximal path length Precision Avg. rank

sig het hom db0 db1 db2 db3

1 (tags) 0.51 1.00 0.35 0.73 0.69 0.45 0.44 3.6

2 (edges) 0.79 1.00 0.35 0.66 0.66 0.49 0.44 4.0

3 1.00 1.00 0.96 0.67 0.68 0.58 0.55 2.6

4 1.00 1.00 0.92 0.66 0.69 0.61 0.59 2.6

≥5 1.00 1.00 0.92 0.66 0.71 0.66 0.64 2.1

multiple pattern occurrences with maximal patterns is better than weighting patterns by their
uniqueness combined with using all patterns instead of maximal. Additionally, analyzing the
results of the two best settings (101 and 100), we observe that setting 101 performs equally
good or better on all datasets, except for db0. That is why, in PathXP we use the combination
of counting multiple pattern occurrences with maximal patterns.

Apart from analyzing different pattern counting schemes, we analyzed the possibility of
limiting the maximal length of paths used as patterns. The results of this study are illustrated
in Table 11.

From the computational point of view, the most desired path length is 1 (tags), as longer
paths yield exponential worst-case complexity in the pattern mining process. In order to
determinewhether the path length changes algorithmquality,we performed another Friedman
test illustrated in Fig. 5. This timewe have five algorithmswith path lengths ranging from 1 to
5 (the paths of length 5 and above produced the same results). For this setting, the Friedman
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Fig. 5 Friedmann test performed on the results from Table 11

Fig. 6 Scalability test results for PathXP

test does not reveal a significant difference between the path lengths (α = 0.05). However,
because paths of unlimited length provided the best result for most of the datasets, in PathXP
we are using frequent paths of unlimited length as patterns.

Finally, we performed a scalability and sensitivity test to verify how PathXP works for
different dataset sizes and parameter values. For scalability test, we generated 20 heteroge-
neous datasets containing from 5,000 to 100,000 documents. As results presented in Fig. 6
show, the most time-consuming stage of our algorithm is pattern mining, which is expected,
as the worst-case complexity of this step is O(2mn), wherem is the number of distinct tags in
the dataset of n documents. Additionally, the plot confirms that with the increasing number
of documents, the execution time of our algorithm increases linearly.

To perform the parameter sensitivity test, we used the first dataset from the previously
mentioned INEX competition (db0). This test was performed for minsup varying between
0.01 and 0.3, as higher values yield too few patterns to form a required number of clusters.
Figure 7 contains plots showing how minimum support changes the execution time of all
steps in our algorithm. Similarly to the scalability test, the execution time depends mainly
on pattern mining. The plot shows that with decreasing values of the minimum support
parameter, execution time increases exponentially. This exponential growth concerns also
the pattern clustering and document assignment. However, these steps of our algorithm do
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Fig. 7 Sensitivity test results for
PathXP with respect to minimal
support: time

Fig. 8 Sensitivity test results for
the PathXP algorithm with
respect to minimal support:
precision and recall

not use the minimum support parameter; therefore, the shapes of the plots in fact illustrate
the growth in number of patterns obtained during pattern mining.

Apart from time sensitivity, we have also analyzed how the minimum support parameter
influences the quality of clustering. The outcome of this analysis is presented in Fig. 8. As
expected, the overall clustering quality decreases with the increase in the minimum support
value. This is due to the fact that higher minsup values produce more general patters, which
are not discriminative enough to distinguish between different clusters. However, it is worth
noting that for a wide range of minsup values (up until 0.21) precision holds a steadily high
level (66–73%). Only after the 0.21mark, the quality drops notably. Similarly, recall remains
steady at approximately 100% for minsup between 0 and 0.13 and drops to 88% above the
0.13 threshold. This means that for minsup > 0.13, approximately 12% of the documents
have no corresponding patterns in any profile. In other words, afterminsup reaches a certain
threshold, the patterns generated in themining process begin to reflect only themost common
information in the dataset. As a result, in the document assignment step, the documents with
less common characteristics have no matching patterns and, therefore, are not assigned to
any cluster. This, in turn, results in the lower recall value.

The parameter sensitivity test (Figs. 7 and 8) showcases that our solution is predictably
sensitive to the value ofminimum support in terms of both execution time and clustering qual-
ity. The lower the parameter’s value, the longer the execution time, but also higher clustering
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quality. It is worth noticing that our suggestion of setting the value of this parameter to 1/k
(kdb0 = 11) produces a compromise with satisfying quality and acceptable execution time.

5.4 Comparative study of clustering algorithms

After establishing the properties of PathXP, a set of experimentswas conducted to compare the
newly proposed algorithm against four competitive structure-based algorithms. The results
of this comparison are presented in Table 12 (precision for algorithms other than PathXP was
taken from the Report on the XML Mining Track at INEX 2005 and INEX 2006 [12]). The
PathXP settings used for the comparison were default: counting multiple pattern occurrences
with maximal, unlimited frequent paths as patterns.

The comparison results are inconclusive, as they do not clearly indicate which approach
is best. PathXP produced equally good or better results across all datasets compared to
Vercoustre’s et al., and Nayak’s and Xu’s approaches. On the other hand, Candillier’s and
Hagenbuchner’s approaches outperformed PathXP on the first dataset (db0). Unfortunately,
results for the remainig datasets (db1–3) were unavailable due to reasons not clearly stated
by authors [8,18]. Given the above, we cannot significantly state that our algorithm performs
better than the others. However, we presented a competitive solution, which additionally
addresses the challenges stated in the introduction of this paper.

Apart from comparing PathXP with other approaches, we also evaluated its performance
against our parameterless algorithm proposed in Sect. 4.2. Table 13 presents the number of
clusters, precision, recall, and clustering time of PathXP and parameterless PathXP.

Table 12 Comparison of
PathXP with other
structure-based algorithms

Algorithm Precision

db0 db1 db2 db3

Vercoustre et al. [39] 0.45 0.71 0.66 0.53

Candillier et al. [8] 0.78 – – –

Hagenbuchner et al. [18] 0.97 – – –

Nayak and Xu [29] 0.60 0.60 0.59 0.59

PathXP 0.66 0.71 0.66 0.64

Table 13 Comparison of PathXP
and parameterless PathXP

Algorithm sig het hom db0 db1 db2 db3

Number of clusters

PathXP 2 10 3 11 11 11 11

Parameterless 2 11 9 22 23 14 18

Precision

PathXP 1.00 1.00 0.92 0.66 0.71 0.66 0.64

Parameterless 1.00 1.00 0.88 0.72 0.74 0.69 0.65

Recall

PathXP 1.00 1.00 1.00 1.00 1.00 0.99 1.00

Parameterless 1.00 1.00 1.00 1.00 0.99 0.99 0.99

Clustering time (s)

PathXP 2 <1 <1 65 138 312 403

Parameterless 1 19 1 1,538 3,176 3,647 5,999
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As the results in Table 13 show, the parameterless version of our algorithm produced clus-
ters of quality comparable to when the number of clusters was provided. For heterogeneous
datasets (sig, het), the results are nearly identical—parameterless algorithm found only one
more cluster for het dataset than expected. For homogeneous datasets (hom, db0–db3), the
number of automatically detected clusters is higher than the expected value. The reason for
this overestimation lies in a fact that with homogeneous datasets there is naturally more
overlap between the clusters than with heterogeneous datasets. This results in less cohesive
profiles and leads to a more uniform distribution of connection strength, even for higher
values of k. This, in turn, causes our parameterless algorithm to find empty clusters only after
exceeding the actual number of clusters. The additional cost of automatic cluster number
detection is apparent in the processing time. For the analyzed datasets, the processing time of
the parameterless PathXP is over an order of magnitude higher than the parametrized version.
Such an overhead is a direct consequence of repetitive triggering of the PathXP algorithm
for each consecutive value of k, until finding an empty cluster.

6 Conclusions and future work

In this paper, we have stated the main challenges concerning XML document clustering by
structure and proposed a pattern-based framework called XPattern along with an algorithm
called PathXP, which successfully address these challenges. Thanks to the idea of represent-
ing each cluster by a set of patterns, the results are clearly identified and easy to interpret
(Challenge C1). Additionally, the pattern-based algorithm detects and excludes outliers from
the analysis (Challenge C4).We have also proposed a parameterless version of our algorithm,
which automatically determines both the number of clusters and the minimum support value
(Challenge C3).

By exploring different types of pattern definitions, from simple metadata to complex sub-
trees, we have discovered that frequent paths provide very good clustering quality while
maintaining reasonable efficiency (Challenge C2). We have also shown that the often omit-
ted information about the number of occurrences of a pattern in a single document can
significantly improve clustering quality (Challenge C5).

In the future, we plan to continue our research to address the problem of clustering of
imbalanced datasets. We would also like to explore possible consequences of using sets
of frequent paths other than maximal, by selecting additional, characteristic, non-maximal
patterns. Other lines of further research include adding content to the analysis and extending
the proposed approach to XML classification.
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