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Abstract Image segmentation is an important low-level vision task. It is a perceptual group-
ing of pixels based on some similarity criteria. In this paper, a new differential evolution
(DE) algorithm, modified adaptive differential evolution, is proposed for color image seg-
mentation. The DE/current-to-pbest mutation strategy with optional external archive and
opposition-based learning are used to diversify the search space and expedite the conver-
gence process. Control parameters are automatically updated to appropriate values in order
to avoid user intervention of parameters setting. To find an optimal number of clusters (the
number of regions or segments), the average ratio of fuzzy overlap and fuzzy separation is
used as a cluster validity index. The results demonstrate that the proposed technique outper-
forms state-of-the-art methods.

Keywords Differential evolution (DE) · Segmentation · Spatial fuzzy C-mean (sFCM) ·
Archive · Cluster center · Crossover · Mutation

1 Introduction

Image segmentation and grouping similar visual objects have received an extensive attention
in the last decades. It plays an important role in computer vision and graphics applications
such as: object localization or recognition, data compression, tracking, and image retrieval.
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Image segmentation techniques can be divided into image-domain-based, physics-based
and feature-space-based techniques [18]. All these techniques with different variations have
been used extensively, but every one shares some pros and cons. Image-domain-based tech-
niques use both color features and spatial relationship, among pixels, to carry out segmen-
tation task. The main difficulty lies in these techniques is the selection of seed region.
Physics-based techniques use the reflection properties of material to carry out color image
segmentation. It performs better in a situation where the reflectance of underlying objects
are known; hence, these techniques are application specific. The feature-based techniques
use only color features and ignore spatial relationship; therefore, the segmented regions are
usually fragmented [17]. The contour-based approaches start from an initial boundary shape
in the form of spline curves; these curves are iteratively evolved to minimize some energy
function [6,10,22,30]. The difficulty lies in these techniques is the manual initialization of
spline curves to the boundaries of an object of interest.

Markov Random Field (MRF) as another statistical model that uses spatial connectivity
among neighboring pixels [2]. Many approaches are based on Markov Random Fields such
as Graph Cut [12–14,25]. These algorithms solve the two-class problem, i.e., separating
the background and foreground objects, and need human interaction to manually specify
the seed regions. Similarly, the background and foreground segmentation is treated with
watershed segmentation [3,29]. The watershed approach suffers from over-segmentation
that can be handled by morphological operations. Moveover, the segmentation accuracy is
highly sensitive to morphological structuring element. Recently, [16] proposed a supper pixel
segmentation algorithm that uses entropy rate of random walk on the graphs. This algorithm
performs best in the case of supper pixel segmentation, but for general segmentation it
produces over-segmented results.

Image segmentation can be treated as a clustering problem. Features of each pixel corre-
spond to a pattern, and the combination of the pixels (i.e., segment) corresponds to a cluster.
Keeping this analogy in mind, many clustering algorithms have been used for image seg-
mentation [1,5,7]. Among the clustering algorithms, adopted for color image segmentation,
the most famous is the k-means [7]. The fuzzy c-means (FCM) [1] has also extensively
used for image segmentation due to its ease of implementation and simplicity. However, its
implementation often faces two problems: 1) how many clusters should be made; 2) and
how to select the initial centroids that are properly distributed in the image. The number of
cluster centers and initialization has considerable impact on final results. Tan and Isa [27]
used the concept of histogram thresholding to initialize the cluster centers to the dominating
colors. They used compactness as an objective function to optimize the cluster centers. This
approach performs poor for complex color images because only cluster compactness is not
good enough to validate the segmentation accuracy. Level sets and spatial fuzzy have been
combined for medical image segmentation [15]. This algorithm performs well for two-class
problem but unable to segment general color images of complex scenes. Another color image
segmentation technique based on the merging of maximal similarity of regions is proposed
in [23]. Bhattacharyya distance between the histograms of the regions is used as a cluster
validity index. The main weakness of this approach is the human intervention to mark the
seed regions.

In this paper, we propose a novel differential evolution algorithm based on spatial fuzzy
c-mean (sFCM) [5] to make compact and well-separated clusters. A combination of fuzzy
separation and fuzzy overlap is used as a cluster validity index to determine the optimal
number of clusters automatically. Initialization greatly effects convergence and diversity.
Purely random initial solutions have more probability to visit or even revisit the unproductive
regions of the search space [24]. The opposite number decreases the chances to visit the
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unproductive regions again and again. For this purpose, we take the best individuals from
the union of purely random solutions and their opposites as initial population. An external
archive is maintained to store the dropped solutions in order to give chances to poor solutions
in the evolution process. Poor solutions are not always poor, but it can give best results with
slight perturbation. To represent each cluster center, we use the HSV color space relying
on the hue, saturation, and value properties the color. Such color space allows us to specify
colors in a way that is close to human experience of colors.

The rest of the paper is organized as follows. The basic concept of classical differential
evolution algorithm is presented in Sect. 2. Section 3 explains the proposed algorithm, mod-
ified adaptive differential evolution (MoADE), in detail. Experimental results are described
in Sect. 4 followed by conclusion.

2 Classical differential evolution algorithm

Differential evolution (DE) is a relatively recent population-based evolutionary heuristic. It
is used to optimize problems over continuous domains. In DE, a vector of real numbers is
used to represent a decision variable or solution. An individual vector can be represented, is
a bold face letter x, in the following way:

x = [x (1), x (2), x (3), . . . , x (D)] (1)

where the superscripts (1, 2, 3, . . . , D) represent the dimension of the problem. In classi-
cal differential evolution, the initial population {xi,0 = (x (1)

i,0 , x
(2)
i,0 , x

(3)
i,0 , . . . x (D)

i,0 )} | i =
1, 2, 3, . . . Np is generated randomly according to uniform distribution x j

low ≤ x j
i,0 ≤ x j

up

for j = 1, 2, . . . . . . D where D is the dimension of the problem and Np is the population
size. After initialization DE enters to a loop of evolutionary operations: mutation, crossover,
and selection.

Mutation: To mutate a particular target vector x at iteration t , three vectors are randomly
selected from the current population. In other words, the j th component of a trial vector x
at iteration t is generated as follows:

ϑ
j
t = x j

t + F · (x j
r1,t − x j

r2,t ) (2)

where the indices r1 and r2 are distinct integers uniformly chosen from the set {1, 2, . . . , Np},
and F is the mutation factor that lies in interval (0, 1+).

Crossover: The crossover operation is performed to increase the diversity of the per-
turb vector. A binomial crossover operation forms the final trial/offspring vector υ t =
(υ1

t , υ
2
t , . . . , υ

D
t )

υ
j
t =

{
ϑ

j
t if rand(0, 1) ≤ CR or j = jrand ,

x j
t , otherwise

(3)

where rand(0, 1) is a uniform random number in the interval [0, 1] and independently gener-
ated for each j and i , respectively, jrand = randint (1, D) is an integer randomly chosen
from 1 to D. The crossover probability CR ∈ [0, 1] roughly corresponds to the average
fraction of vector components that are inherited from the mutation vector.

Selection: It decides whether a particular trail individual υ or the parent x at generation
t should be allowed to next generation. Selection is performed on the bases of fitness values
f (·) of trail and parent vectors. For example, if we have a minimization problem, then the
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selection is given by:

xt+1 =
{

υ t if f (υ t ) < f (x t )

x t , otherwise
(4)

The operation in Eq. (4) is called a successful update if the trial vector υ is better than
parent x, i.e., the improvement or evolution progress � = f (x) − f (υ) is positive. The
evolutionary process continues up to a fixed number of iterations. The best vector in the last
generation is considered the solution.

3 Modified adaptive differential evolution

In classical differential evolution, the crossover andmutation parameters are fixed to generate
all trial vectors at all generations. In adaptive DE algorithms, each individual i is associated
with its own crossover probabilityCRi andmutation probability Fi . In this paper, an adaptive
differential evolution ADE [32]) is applied to the domain of color image segmentation by
incorporating a new objective function and opposition-based learning. The new algorithm is
called MoADE. The pseudocode of algorithm 1 explains MoADE in detail.

DE algorithm needs to be initialized before start of iterative procedure. In practice, ini-
tialization is either done by the user using some sort of the domain knowledge or random
procedure. The pure random initialization has proved to be inappropriate since it forces the
clustering algorithms to converge to local optima. It means there is more probability to visit
or even revisit the unproductive region of the search space. The opposite numbers have high
chance to produce best results than purely random ones. Here, the initial population takes the
best individuals from the union of purely random solutions and their opposites [24] in order
to avoid unproductive samples or solutions. In algorithm 1, steps 2− 8 show the implemen-
tation of opposition-based initialization. The opposite of each component of each individual
can be calculated as:

x̄ j
i = a j + b j − x j

i i = 1, 2, . . . , Np; j = 1, 2, . . . , D (5)

where x j
i and x̄ j

i denote the j th component/dimension of the i th vector and its opposite,
respectively, a j and b j represent the intervals of the j th dimension of the search space. The
probability randn(0, 1) < 1/(3+ e−1/g) encourages high exploration in initial stages while
high exploitation in the final stages. If the probability holds for particular individual xi then
its opposite can be calculated as:

x̄i,g = MINd + MAXd − xi,g (6)

where MINd and MAXd are the minimum and maximum values of a particular dimension
in the current generation g. The intervals [MINd ,MAXd ] encourages to stay in already
shrunken search space. If other boundary intervals are used rather than [MINd ,MAXd ], then
we would jump out side of the already shrunken search space and would lost the knowledge
of the current reduced space (converged population).

Sometimes inferior solutions, with little change, provide additional information about
the progress direction compared to current population [32]. For this purpose, the mutation
strategy DE/current-to-pbest/1 with archives [32] is adopted. This mutation strategy uses a
set of archived inferior solutions denoted by A and the current population denoted by P to
generate a mutation vector as given by Eq. (7).

ϑ i,g = xi,g + Fi (xbest,g − xi,g) + Fi (xr1,g − xr2,g) (7)
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Algorithm 1 Procedure with archives
1: Initialize: μCR = 0.5, μF =0.5, A = ∅ and Np ;
2: Generate a population xi , i = 1, 2, . . . , Np randomly.
3: for i =1 to Np do
4: for j = 1 to D do
5: x̄ j

i = a j + b j − x j
i

6: end for
7: end for
8: Select the Np fittest individuals from the set {xi ∪ x̄i | i = 1, 2, . . . , Np} as initial population P
9: while (g ≤ G) do
10: SF = ∅ SCR = ∅;
11: for i = 1 to Np do
12: Generate CRi = randn(μCR , 0.1), Fi = randc(μF , 0.1)
13: Randomly chose xr1,g , xi,g from P
14: Randomly chose xr2,g from P∪A| xr2,g �= xr1,g �= xi,g
15: if randn(0, 1) < 1/(3 + e−1/g) then
16: x̄i,g = MINd + MAXd − xi,g
17: if f (x̄i,g) ≤ f (xi,g) then
18: xi,g = x̄i,g
19: end if
20: end if
21: Randomly chose xbest from the top p% of P
22: ϑ i,g = xi,g + Fi (xbest,g − xi,g) + Fi (xr1,g − xr2,g)
23: Generate Jrand = randn(1, D)

24: for j =1 to D do
25: if j = Jrand or rand(0, 1) < CRi then

26: υ
j
i,g = ϑ

j
i,g

27: else
28: υ

j
i,g = x j

i,g
29: end if
30: end for
31: if f (xi,g) ≤ f (υ i,g) then
32: xi,g+1 = xi,g
33: else
34: xi,g+1 = υ i,g;A = A ∪ xi,g; SCR = SCR ∪ CRi ; SF = SF ∪ Fi
35: end if
36: end for
37: Randomly remove solutions from A so that |A| ≤ Np
38: μCR = (1 − c) · μCR + c · meanW (SCR)

39: μF = (1 − c) · μF + c · meanL (SF )

40: end while

where xbest,g is randomly chosen as one of the top p% individual in the current population
and Fi is the mutation factor that is associated with xi and re-generated at each generation
by the adaptation process introduced later in Eq. (12). The vectors xi,g and xr1,g are selected
from P, while xr2,g is randomly selected from P ∪ A.

Initially the archive is empty. Then after each generation the parent solutions, that fail in
the selection process, are added to it. The archive is made of fixed size to avoid significant
computation overhead. If the archive size exceeds a certain threshold, say Np , then some
solutions are randomly removed to keep the archive size at Np .

The archive provides information about the progress direction and improves the population
diversity. The larger F increases the population diversity but it tends to converge to local
minima. The proposed algorithmwith archives and opposition-based learning is able to search
the space effectively in order to come out of local optima.
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3.1 Parameters adaptation

Similar to [32], the crossover probability CRi of each individual xi is independently gener-
ated according to a normal distribution of mean μCR and standard deviation 0.1.

CRi = randni (μCR, 0.1) (8)

The set of all successful crossover probabilities CRi s at generation g is represented by SCR .
The mean μCR is initialized to be 0.5 and then updated at the end of each generation as:

μCR = (1 − c) · μCR + c · meanW (SCR) (9)

where c is a positive constant between 0 and 1 and meanW (·) is the weighted average of all
successful crossover probabilities at generation g. The meanW (·) can be calculated as:

meanW (SCR) =
∑

s j∈SCR

w(μ, s j )(s j ) (10)

The weights w(μ, s j ) are then computed as follows:

w(μ, s j ) = 1

Z j
e−‖μ−s j‖22 (11)

where Z j is a normalization constant ensuring that
∑

s j∈SCR
w(μ, s j )(s j ) = 1. Compared

to arithmetic means, the weighted average gives more weights to frequently used successful
crossover factors and thus maintain an optimal crossover range.

Similar to [32], at each generation g, the mutation factor Fi of each individual xi is
independently generated according to a Cauchy distribution with location parameter μF and
scale parameter 0.1.

Fi = randci (μF , 0.1) (12)

When the mutation factors are highly concentrated around a certain value, then the greedy
mutation strategies (such as DE/best, and DE/current-to-pbest) tend toward premature con-
vergence. The Cauchy distribution helps to diversify the mutation factors and thus avoid
premature convergence very effectively compared to normal distribution. At a particular
generation, g the set of all successful mutation factors is represented by SF . The location
parameter μF of the Cauchy distribution is initialized to be 0.5 and then updated at the end
of each generation as:

μF = (1 − c) · μF + c · meanL(SF ) (13)

where meanL(·) is the Lehmer mean

meanL(SF ) =
∑

F∈SF F2∑
F∈SF F

(14)

The Lehmer mean gives more weights to larger successful mutation factors. Therefore,
Lehmer mean is helpful to propagate larger mutation factors to improve the progress rate.

3.2 Objective function formulation

The objective function or the cluster validity index (CVI) plays an important role in clus-
tering and segmentation. It checks whether the provided clustering (U ; V ) of X reflects the
original structure of the data or not. Clustering algorithms need c, the number of clusters,
to be known in advanced. Due to unsupervised nature of clustering, the user does not have
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prior knowledge about c. A reliable cluster validity index (CVI) should take into account
both compactness and separation for the c-partition of U . If only the former is considered
then the best partition consists of as many clusters as that of points. On the other hand, if
only the latter is considered, the best partition consists of a single cluster. For the accurate
and reliable segmentation, it is important to combine both measures in the CVI. But the sep-
aration generally finds distances between centroids of different clusters and are insufficient
to represent the geometrical structure of the data.

In this paper, we use an aggregation functions, for the cluster validity, that map a collection
of values u in [0,1] to a value in [0,1], formally a vector u = (u1; . . . ; uc)t 	−→ A(u). The
norms (t-norms) and conorms (t-conorms) are the frequently used aggregation operators in the
class of triangular norms. They are used to implement conjunctive and disjunctive operators
in field of fuzzy logic and fuzzy set theory. A t-norm � and t-conorm ⊥ are commutative,
associative and monotone functions having 1 and 0, respectively, for the neutral elements
[11].

If v1, v2,…, vc denote clusters’ centers, then the membership ui j , i = 1, 2, . . . , c and
j = 1, 2, . . . , n, can be computed as:

ui j = 1∑c
k=1(

D(vi ,x j )

D(vk ,x j )
)

1
m−1

, f or 1 ≤ i ≤ c, 1 ≤ j ≤ n (15)

where D(vi , x j ) is the Euclidean distance between point x j and cluster center vi , m is the
weighting coefficient. While computing ui j using Eq. (15), if D(vi , x j ) is equal to zero for
some k, then ui j is set to zero for all i = 1, 2, . . . , c, i �= k, and ui j is set equal to one.

In images, neighboring pixels are highly correlated [5]. In other words, neighboring pixels
possess similar features and there is high probability that they belong to the same cluster. A
spatial function is defined in Eq. (16) to exploit the idea of spatial information [5].

hi j =
∑

k∈N B(x j )

uik (16)

where NB(x j ) represents a square window centered on pixel x j in the spatial domain. The
spatial function hi j represents the probability that pixel x j belongs to i th cluster. The spatial
information can be incorporated in membership function as:

u′
i j = u p

i j h
q
i j∑c

k=1 u
p
k j h

q
k j

(17)

where p and q are parameters to control the relative importance of both functions. The centers
can be updated using (18).

vi =
∑n

j=1 (u′
i j )

mx j∑n
j=1 (u′

i j )
m , 1 ≤ i ≤ c (18)

The above equations gives the fuzzy clustering (U ; V ) of data X , where ui j defines the
similarity of a data point x j to a center vi . Using themembership vector u′

j = (u′
1 j ; . . . ; u′

cj )
t

( j th column ofU ), to assign a particular data point to the most matching group the standard t-
conorm (max operator) is commonly used. However, the data point x j may satisfy more than
one group description (i.e., lower values interact with the greatest) then using the exclusive
partitioning (only the t-conorm) is not efficient. The aggregate value of u′

j is adequate to
assess that howmuch a particular point x j belongs to several other clusters. We use the fuzzy
OR operator (fOR-� for short) defined in [20] to evaluates the degrees of similarity at a given
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order (�). Let ρ be the power set ofC = 1, 2, . . . , c and ρ� = A ∈ |A| = �where |A| denotes
the cardinality of subset A, then the fOR-(�) associates a single value ⊥�(u′

j ) ∈ [0; 1] to u′
j

as given by the following equation:

�⊥(u′
j ) = �⊥

i=1,2,...,c
u′
i j = �

A∈ρl−1

(
⊥

j∈\A

)
u′
i j (19)

It must be viewed as some kind of generalization of the �th highest value, � ∈ C . The standard

t-norms,
�⊥(u′

j ) uses the �th highest element of u′
j [20].

In this paper, we have used two measures, the fuzzy overlap and fuzzy separation [4], to
find the relation of a point x j to the clusters and overcome the drawbacks of compactness
and separation measures. The fuzzy overlap measure evaluates the degree of overlap of a
specified number (�) of fuzzy clusters, and a fuzzy separation measure indicates the degree
of overlap of the most probable cluster, i.e., the one corresponding to the highest membership
degree, with respect to c − 1 other clusters. A low value of this latter measure will denote
a large separation of the most probable cluster from the others. For each point, x j of X ,
described by its membership vector u′, the overlap measure between � fuzzy clusters can be
obtained by (20). A combination of �-order overlap degrees for x j is obtained by successive

computing of
�⊥(u′

j ) for different values of �. To determine the over all degree of overlap for
a given point x j , the order that induces high overlap is find out. The most satisfied order(s)
can be quantified by the fuzzy disjunction of the �-order overlap measures (� = 2; c), so the
overall overlap measure of a point x j is given by:

O⊥(u′
j ; c) = 1⊥

�=2,c

(
�⊥

i=1,c
u′
i j

)
(20)

The inter-cluster separation plays an important role in cluster validity. For this purpose, the
fuzzy separation [4] of each point x j with (u′

j ) is find out. It is the overlap measure within
one fuzzy cluster, i.e., its separation from the other fuzzy clusters, since u′

j sums to one. This
aggregation corresponds to the fuzzy disjunction of membership degrees for a given point
x j , which selects the most probable cluster. The fuzzy separation of x j with respect to the c
clusters is given as:

S⊥(u′
j ; c) = 1⊥

⎛
⎜⎜⎜⎝

1⊥
i=1,c

u′
i j , . . .

1⊥
i=1,c

u′
i j︸ ︷︷ ︸

c−1 times

⎞
⎟⎟⎟⎠ (21)

The highest membership degree of a point x j corresponds to the small value of overlapping
degree O⊥(u′

j ; c) and a large value of the separation S⊥(u′
j ; c). It means that if a point x j

has a small O⊥(u′
j ; c) and large S⊥(u′

j ; c), it will be well-separated and not overlapping
cluster. Then, the �-order overlap and separation index (OSI) taking values in [0; 1] as the
average value of the ratios of both measures:

OSI⊥(c) = 1

n

n∑
j=1

O⊥(u′
j ; c)

S⊥(u′
j ; c)

(22)

Running MoADE for c ∈ [cmin; cmax] and selecting that value of c, which best minimizes
Eq. (22). The cmin and cmax are set to 2 and 20, respectively. The small regions less than
100 pixels are merged to its neighboring segments on the basis of similarity to avoid over-
segmentation.
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Fig. 1 Results of ADE [32] andMoADE after 100 iterations. The first row contains the results of ADE, while
the second row contains the results of proposed MoADE, respectively

MoADEexplores the underlying search space efficiently using the opposition-based learn-
ing. Besides to diversify the search process, MoADE also speeds up the convergence consid-
erably. Figure 1 shows the results of ADE [32] and proposes MoADE after 100 iterations by
optimizing the new objective function. First row in Fig. 1 shows the results of ADE, while the
second row shows the results of MoADE, respectively. It is clear from the figure that ADE
does not detect the body of the boy, while MoADE performs better in this case. Similarly,
for the pyramid image, (second column of Fig. 1) ADE fails to detect the black-gate-shaped
and white-building-shaped objects. But the proposed MoADE performs better to detect the
underlying objects accurately. Note that, ADE uses random procedure for initialization and
is unable to uniformly initialize the search space to the productive regions. Once the search
space is initialized to the unproductive regions, then the algorithm converges to local opti-
mas’. On the other hand, the proposed MoADE uses the opposition-based learning strategy
to initialize and evolve the population. By this way, best individuals from the union of cur-
rent population and its opposition are selected for new generation in order to get global best
solution.

4 Experimental results

Experimentations have been carried out on images taken from the Berkeley image segmen-
tation database (BSD) [19]. The Berkeley image segmentation database (BSD) contain 300
natural images of sizes (321 × 481) or (481 × 321). The results of the proposed algorithm
are compared with three state-of-the-art image segmentation algorithms: segmentation via
lossy data compression (LDC) [31], efficient graph-based image segmentation (EG) [8], and
normalized cuts and image segmentation (NC) [26].
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592 A. Khan et al.

The region number in NC is set to 20, which is the average number of segments marked
by the human subjects in each image. In EG algorithm, the Gaussian smoothing parameter
σ = 0.8, the threshold value k = 300, and theminimal region = 50 pixels are set, as described
in [8]. Source codes of the all algorithms are downloaded from their respective web sites.

4.1 Qualitative comparisons

In this section, the segmentation results of the MoADE, NC, EG, and LDC approaches are
evaluated visually. Eight images: shrub (481×321), church1 (481×321), eagle1 (481×321),
eagle2 (481×321), texture (321×481), building (481×321), lion (481×321), and church2
(481 × 321) are selected from the Berkeley image segmentation database for qualitative
comparison. Figure 2 shows the results of proposedMoADE,NC,EG, andLDC.For theShrub
image, the result of MoADE is closely matching the human perception, i.e., the shrub and
non-shrub areas are separated in a best way, whereas the NC divides the uniform background
into unnecessary segments. The performance of EG and LDC is not good for the shrub
image because they make over-segmentation. In the case of eagle1 image, the proposed
algorithm outperforms the other state-of-the-art algorithms. LDC performs good for eagle1
image compared to NC, which divide the uniform background into multiple segments, and
EG, which fails to detect the actual boundaries of the object. Note that, the proposedMoADE
also outperforms the other techniques in the case of church1 image. For eagle2 image, the
proposed technique performs better by accurately separating the tree and eagle from the
background region, but the performance of the other three methods are not good enough.
Similar to the human perception, the proposed MoADE correctly segment the texture image
by separating the two different textures. For the same image, the LDC performs good enough
compared to NC, which divides the same texture into different segments, and EG, which
makes over-segmentation, but fails to detect boundaries of the texture correctly. It is clear from
the figure that the proposed algorithm also outperforms the other state-of-the-art methods in
the case of building, lion, and church2 images.

NC tends to partition an image into regions of similar sizes, resulting in the region bound-
aries different from the real edges. EG gives strongly over-segmented results. LDC usually
obtains better visual results than NC, and EG, but it often fails to find real edges and cre-
ates strongly over-segmented regions. It is easy to judge from the results that the proposed
method performs better than the other state-of-the-art algorithms by generating boundaries
which match the real edges of the objects.

4.2 Quantitative comparisons

Quantitative comparisons are also important to evaluate the performance of an algorithm
objectively. Region differencing [13] measures how much a particular segmentation can
be viewed as a refinement of other. The boundary matching [9] compares the results of
an algorithm and that of human subjects by finding the average displacement error of the
boundary pixels. Region differencing and boundary matching are not sufficiently good to
objectively evaluate segmentation results [28]. If a single pixel is considered a separate
segment, then region differencing and boundary matching will have best scores. Thus, the
over-segmented results may be ranked good, which are far away from human perception of
image understanding.

In this paper, we have used probabilistic rand index (PRI) [28] and variation of information
(VoI ) [21] to objectively evaluate the segmentation results. Consider a set of ground truths,
labeled by K persons, S1, S2, . . . , SK , of an image consisting of N pixels. Let Stest be the
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Fig. 2 Segmentation results on some of the images from the Berkeley segmentation dataset and benchmark.
The first, second, third, and fourth columns contain the MoADE, NC, EG, and LDC segmented images,
respectively

segmentation result to be compared with the ground truths. Then, the PRI value is defined
as:

PRI(Stest , {Sk}) = 1(N
2

) ∑
p<q

[ p̄cpqpq (1 − p̄pq)
1−cpq ] (23)
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Table 1 Average values of PRI and VoI for the four algorithms on 300 BSD images

Measures Human MoADE NC EG LDC

PRI 0.8961 0.7953 0.7212 0.7857 0.7529

VoI 0.9219 1.9052 2.9893 2.7589 2.0288

Fig. 3 PRI values achieved on individual images by the four algorithms. The values are plotted in increasing
order

Fig. 4 VoI values achieved on individual images by the four algorithms. The values are plotted in increasing
order

where (p, q) is a pixel pair in image, cpq = T (l Stestp = l Stestq ) denotes the event of a pair of

pixel p and q having the same label in the test result Stest , and ¯ppq = 1/K
∑K

k=1 T (l Skp = l Skq )

is regarded the probability of p and q having the same labels. The value of PRI lies in the
range [0,1], and the larger the better. The variation of information (VoI) is defined as:

VoI(Stest , {Sk}) = 1

K

∑
k

[H(Stest ) + H(Sk) − 2I (Stest , Sk)] (24)

where H and I denote the entropy and the mutual information, respectively. The detailed
definitions of H and I can be found in [21]. VoI is an information-based measure, which
determines howmuch one segmentation gives information about other. The value of VoI falls
in [0,∞), and the smaller, the better.

123



A modified adaptive differential evolution algorithm 595

Table 1 shows the average values of PRI and VoI for the four algorithms on 300 images
of the Berkeley segmentation database. In this table, the second column shows the average
PRI and VoI values between different human subjects, which are the best scores. It can be
observed from the table that the proposed algorithm performs better than the other three
state-of-the-art algorithms in terms of VoI and PRI scores. The average PRI value of the
EG is close to proposed algorithm, but the average VoI value is much greater. Similarly, the
average VoI of the LDC is close to proposed MoADE and better than that of the other two
algorithms, but the PRI value is not better. Figures 3 and 4 graphically represent the PRI
and VoI scores, respectively, for the four algorithms on 300 BSD images. It is clear from
the curves in Figs. 3 and 4 that the proposed algorithm performs better compared to other
state-of-the-art methods.

5 Conclusion

In this paper, we presented a novel image segmentation algorithm. It is the combination of
spatial fuzzy c-mean (sFCM), which looks for similarity in the local neighborhood among
the pixels, and differential evolution (DE), which diversifies the search space to find the
optimal solution. The ratio of fuzzy overlap and fuzzy separation is used as a cluster validity
index in order to find out the optimal number of clusters automatically. The results of the
proposed algorithm are compared with three state-of-the-art image segmentation algorithms.
The qualitative and quantitative results demonstrate that the proposed algorithm performs
better compared to the given state-of-the-art image segmentation algorithms. In the future, we
are going to construct a unified matrix, from different feature spaces. i.e., color and texture,
in such away that the important information of each feature space is to be preserved. Then,
the segmentation will be performed on a joint or combined search space.
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