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Abstract We introduce an algorithm, called Karmal.ego, for the discovery of frequent sym-
bolic time interval-related patterns (TIRPs). The mined symbolic time intervals can be part
of the input, or can be generated by a temporal-abstraction process from raw time-stamped
data. The algorithm includes a data structure for TIRP-candidate generation and a novel
method for efficient candidate-TIRP generation, by exploiting the transitivity property of
Allen’s temporal relations. Additionally, since the non-ambiguous definition of TIRPs does
not specify the duration of the time intervals, we propose to pre-cluster the time intervals
based on their duration to decrease the variance of the supporting instances. Our experimental
comparison of the Karmal.ego algorithm’s runtime performance with several existing state of
the art time intervals pattern mining methods demonstrated a significant speed-up, especially
with large datasets and low levels of minimal vertical support. Furthermore, pre-clustering
by time interval duration led to an increase in the homogeneity of the duration of the discov-
ered TIRP’s supporting instances’ time intervals components, accompanied, however, by a
corresponding decrease in the number of discovered TIRPs.

Keywords Temporal knowledge discovery - Temporal abstraction - Time intervals mining -
Frequent pattern mining - Transitivity

R. Moskovitch (X)) - Y. Shahar

Department of Information Systems Engineering,
Ben Gurion University, Beersheba, Israel

e-mail: robertmo@bgu.ac.il

Y. Shahar
e-mail: yshahar@bgu.ac.il

R. Moskovitch
Telekom Innovation Laboratories, Ben Gurion University, Beersheba, Israel

R. Moskovitch

Department of Biomedical Informatics, Systems Biology and Medicine,
Columbia University, New York, NY, USA

@ Springer



22 R. Moskovitch, Y. Shahar

1 Introduction

The increasing use and availability of longitudinal electronic data presents a significant oppor-
tunity to discover new knowledge from multivariate, time-oriented data, by using various
data mining methods. Thus, multivariate temporal data mining is an important research topic
within the data mining area, in which progress might have considerable beneficial impli-
cations. In particular, the effective discovery of frequent temporal patterns has significant
potential benefits. Thus, in the medical domain, for example, it might lead to the clustering
of patients who have a similar temporal pattern of interaction among the disease, a set of
medications, and certain symptoms [5]. In other cases, it can lead to the prediction of certain
outcomes, given, as features, certain temporal patterns in the patient’s current longitudinal
disease course. [4,19,24] In the information security domain, it might enable classification
of hardware devices into infected and non-infected, by their temporal behavior [17].

However, temporal data include not only time-stamped raw data, or time points (e.g.,
hemoglobin value of 9.3 gr/100cc, at 9:05 am, on July 17th, 1998)), but also temporal inter-
vals, possibly at a higher level of abstraction, which are either a part of the original raw input
data (e.g., administration of a medication for 4 days), or are abstractions, or interpretations,
derived from them as part of the computational process (e.g., two weeks of moderate ane-
mia, or a month of Grade II liver dysfunction). We refer to such time intervals as symbolic
time intervals. Several methods exist for abstraction of time-stamped data into symbolic
time intervals; one option is to exploit domain knowledge [25], another is to use automated
discretization methods [16-19].

However, regardless of the methodology used for the generation of the symbolic time inter-
vals to support the multiple applications that use patterns composed of such time intervals
(such as clustering, classification, and prediction), we need an effective method for the dis-
covery of the frequent temporal patterns that are composed from the symbolic time intervals.
Such an effective method is the main focus of the current paper. We refer to the result-
ing discovered knowledge regarding time-oriented concepts and their temporal relationships
(patterns) as temporal knowledge.
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Fig. 1 The overall process of mining time interval- related patterns (TIRPs). The raw data time-point and
time interval series are abstracted into a uniform format of [abstract] symbolic time intervals using domain
knowledge or specialized computational means. The resulting symbolic time intervals are then mined and a
tree of enumerated, sufficiently frequent temporal patterns is generated

@ Springer



Fast time intervals mining 23

The overall process that we envision is presented as a block diagram in Fig. 1. The input
data include multiple instances of entities (e.g., patients or hardware devices) whose multiple
variables (e.g., Hemoglobin value or Number of processes) are described by multivariate
time-point series. The time-point series are abstracted, based on domain knowledge or on
other computational means, and are transformed into symbolic time intervals (e.g., Moderate
Anemia from t| to 7). Then, the symbolic time intervals are mined using the Karmalego
algorithm, which is the focus of this paper, and which we introduce in Sect. 3 in detail, to
discover frequently repeating temporal patterns.

As we explain in Sect. 3, the discovery process generates a tree of Temporal Interval Rela-
tion Patterns (TIRPs); for each symbol, each branch represents a temporal pattern discovered
in the data with a sufficient predefined frequency, which starts with the symbol represented
at the root of the tree.

After a TIRP tree is discovered, several major application categories exist. These potential
applications include:

e Temporal knowledge discovery, in which a domain expert manually and interactively
reviews the automatically discovered temporal patterns for meaningful knowledge, using
tools such as the KarmalegoV visualization module [18].

e Temporal clustering, in which each temporal pattern is considered as a cluster of entities
(e.g., patients, mobile devices) who have similar temporal behavior (e.g., a similar disease
course or malfunction history). The use of the discovered TIRPs for the purpose of clus-
tering is outside of the scope of the current paper. It is discussed in our study of clustering
a population of diabetes patients by their disease course, or their temporal pathways [18],
an example of which is shown in Sect. 4.2.

e Prediction rules, which are explicitly extracted based on the discovered temporal patterns
and the transition probabilities between the components of the patterns.

e Classification, in which the discovered temporal patterns are used as features for a classi-
fication task, such as for implicit prediction of future outcomes using various data mining
methods. The use of the discovered TIRPs for purpose of classification is outside of the
scope of the current paper. It is discussed in our study of using TIRPs for the classification
of the future outcomes of intensive-care unit patients [19].

The main contributions of the current paper can be summed up as follows:

1. Introduction in detail of the KarmaLego algorithm for fast TIRPs mining, which includes
an efficient TIRPs data structure and a method for generating candidate TIRPs by direct
extension of the evolving TIRP tree, which fully exploits the transitivity of temporal
relations;

2. A rigorous evaluation of the performance of the new framework versus several existing
algorithms, in several different time-oriented domains, demonstrating a significant speed-
up compared with previous methods, especially with large datasets and low levels of
minimal necessary TIRP support;

3. The use and evaluation of pre-clustering of the time intervals duration to reduce the
variance in the supporting instances of the discovered TIRPs. This approach is proposed
as complimentary for the non-ambiguous definition of TIRPs, which does not refer to the
duration of the symbolic time intervals in a TIRP. Our experiments have demonstrated
that pre-clustering by interval duration led to a decrease in the variance of the duration
of the time intervals in the supporting instances, however, by a corresponding decrease in
the number of discovered patterns.

In addition, the overall process we are using, shown in Fig. 1, built around the KarmalLego
algorithm, includes several additional interesting features, which we explain in detail in the
following sections:
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a. The integration of temporal abstraction into the overall TIRP mining process;

b. The use of an extended version of Allen’s temporal relations [1], in which flexible, more
robust constraints are used to define the semantics of temporal relations;

c. The introduction of several fundamental concepts that define the output of a TIRP mining
process, such as several measures of support across the overall subject population and
within each subject, and a measure of variability of the discovered patterns.

2 Background
2.1 Temporal data mining

Temporal data mining [7,23] is a sub-field of data mining, in which various techniques are
applied to time-oriented data to discover temporal knowledge, i.e. knowledge about rela-
tionships among different raw data and abstract concepts, in which the temporal dimension
is treated explicitly. Unlike common data mining methods, which are static, often ignoring
the temporal dimension, or using only concise statistical abstractions of it, temporal knowl-
edge discovery presents significant computational and methodological challenges. However,
temporal data mining offers considerable understanding of various scientific phenomena and
the potential for creation of richer and accurate classification models, representing explicitly
processes developing a long time.

2.2 Temporal abstraction

Temporal abstraction (TA) is the segmentation and/or aggregation of a series of raw, time-
stamped, multivariate data into a symbolic time interval series representation, often at a higher
level of abstraction (e.g., instead of a series of Hemoglobin or liver-function measurements,
characterizations such as “3 weeks of moderate anemia,” or “5 months of decreasing liver
functions”), suitable for human inspection or for data mining.

Temporal abstraction, which typically includes also some form of interpolation [26],
solves several common problems in mining raw time-series data, such as high variability in the
sampling frequency and temporal granularity, minor measurement errors, and missing values,
through the smoothing effect of the output abstractions. Thus, discovering frequent temporal
patterns in multivariate temporal data can benefit from a preprocessing phase of converting the
raw time-stamped data into a series of uniform, interval-based symbolic concepts. Figure 2
shows a TA process for one concept.
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Fig. 2 A series of raw time-stamped data of one concept type (at the bottom) is abstracted into an interval-
based state abstraction (a value classification) that has three discrete values: low (L), medium (M), and high
(H) (in the middle); and into a gradient abstraction (the sign of the first derivative) that has the values increasing
(I), decreasing (D), and stable (S) (at the top)

@ Springer



Fast time intervals mining 25

There are several approaches to the TA task; some exploit context-sensitive knowledge
acquired from human experts, a method known as knowledge-based temporal abstraction
(KBTA) [25]; others are purely automatic, and rely mostly on a discretization of the raw values
and concatenation [3,9,12, 14]. Temporal discretization refers to the process of discretization
of a time-series values, usually performed through unsupervised means, as a preprocess-
ing step in transforming the time-stamped, raw-concept series into a set of symbolic time
intervals. [13]

2.3 Allen’s temporal relations and transition tables

Allen formulated a finite set of 13 temporal relations between a pair of time intervals. The
set includes: before, meets, overlaps, starts, during, finishes, and their corresponding inverse
relations after, met-by, overlapped-by, started-by, contains, finished-by; and equals [1]. One
might consider Allen’s relations as being composed of seven basic relations, six of which
have an inverse (equals is its own inverse), as shown in Fig. 5.

Allen’s temporal relations were introduced for the purpose of temporal reasoning, such as
for planning and narrative understanding, and since then were used for many purposes and
were also further extended [6]. Allen also introduced the use of temporal relations transition
tables for reasoning purposes, which was later generalized by Freksa by considering the
option of having only semi-intervals [6].

Figure 3 shows four examples of reasoning about temporal relations based on their transi-
tivity property. In all the cases there are three time intervals A, B and C. Given the temporal
relations among A and B — A8 and among B and C — rB-C we would like to reason about
the possible relations among A and C — r4:C.

In the first case, (1), 748 is before (<) and the rB:Cig before (<); thus, the only optional
temporal relation for r4:C can be before (<). In the second case (2), r4B g overlap (o) and
rB-C is before (<); thus, r4C is before (<) too. In the third case (3), rZ is meer (m) and
rB-C is equal (), and thus, the only optional temporal relation which can be for r4-¢
(m). Thus, in this scenario r4:€ can be before (<), as it is actually in this illustration but it
could be also meet (m) or overlap (0).

In Allen [1] and in [6] transition tables are presented in which, two temporal relations
among three time intervals (among the first and second, and the second and third), the
disjunction of the optional temporal relations among the first and third time intervals are

is meet

A A
B B
S <
A<B&&B<C AoB&&B<C
=A<C =A<C
1) )
A A
B B
C C
A<B&&BeC AoB&&BoC
=>A<C =>A<C||AmB|AoB
(3) @)
A.C

Fig. 3 Four cases of temporal transitivity, illustrating how the temporal relation r can be derived, based

on r4 B and B:C
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stored. As we show in Sect. 3, one of Karmal.ego’s most novel contributions is in the use of
transition tables for efficiently generating TIRP candidates.

2.4 Mining time intervals

Mining time intervals is a relatively young research field that has mostly sprung during the
past decade. Most of the methods use some subset of Allen’s temporal relations [1]. One
of the earliest studies in the area is that of [27], which searches for containments of time
intervals in a multivariate symbolic time interval series.

Kam and Fu [11] were the first to use all of Allen’s temporal relations to compose time
interval series. Their language covers the concepts of coincidence, synchronicity and order
based on Allen’s temporal relations. Their patterns are defined by the temporal relation
of the extended frequent patterns with the new symbolic time interval, called A1 patterns.
However, A1 patterns are ambiguous, since the temporal relations among the components
of a pattern are undefined, except for the relations among all of the pairs of successive
intervals.

Hoeppner [8] was the first to define a non-ambiguous representation of time interval
patterns that are based on Allen’s relations, by a k2 matrix, to represent all of the pairwise
relations within a k-intervals pattern. Using Allen’s relations, [8,9] introduced a method
inspired by association rules mining to mine rules in symbolic time interval sequences,
restricted by using a sliding window.

In the rest of this paper, we shall refer to a conjunction of temporal relations between pairs
of intervals as a time interval-related pattern (TIRP). The formal definition of a TIRP appears
in Sect. 3 (Definition 5), as was defined and used already in [8,20]. Unlike Hoeppner’s naive
mining method, [20] propose two approaches for generating the TIRP tree, using breath first
search (BES), in which the enumeration is made at each level before proceeding to the next
level, depth first search (DFS), in which a greedy approach is used and each path is enumerated
up to the leaves, and a hybrid approach, H-DFS, which combines the BFS and DFS methods,
inspired by the Sequential Pattern Mining Algorithm (SPAM) [4] mining method. The BFS
is initially used to discover the first two sized TIRPs in the mined database. Papapetrou et
al. used only five temporal relations: meets, matches (equal, in terms of Allen’s relations),
overlaps, contains, and follows, similar to Allen’s temporal relations. To make the temporal
relations more flexible, Papapetrou et al. introduced an epsilon threshold, used only for a
subset of the temporal relations, including meet, matches and follows relations.

ARMADA, by [28], is a relatively recent projection-based efficient time interval mining
algorithm that uses a candidate generation and mining iterative approach. Wu et al. [29] pro-
posed TPrefixSpan, which is a modification of the PrefixSpan sequential mining algorithm
[22] for mining non-ambiguous temporal patterns from time interval events. TPrefixSpan
represents the time intervals based on the start-time and end-time events and discovered fre-
quent sequences of the start-time and end-time events from the projected database, although
it does not prevent multiple candidates of the same patterns from being generated.

Patel et al. [21] introduced IEMiner, an algorithm that improves Papapetrou’s method,
by extending the patterns during the discovery process directly, while they are being con-
sidered. While several methods for non-ambiguous time intervals mining were proposed
independently, not many runtime comparisons were made. Patel et al. [21] had compared
their method runtime to TPrefixSpan [20,29] and found their method to be faster. In Sect. 4,
we compare Karmal.ego’s runtime performance also to that of IEMiner [21], ARMADA
[28], and H-DFS [20].
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Fig. 4 An example of a time interval-related pattern (TIRP), represented by a sequence of five lexicographi-
cally ordered symbolic time intervals and all of their pairwise temporal relations. The indices inside the cells
are part of the KarmaL.ego data structure (explained in Sect. 3.4). Note that symbolic interval E is being added
to the four-symbol TIRP that includes A, B, C, D, thus extending it into a longer (candidate) TIRP; its temporal
relations with the other four symbols appear at the right column of the temporal relations-half-matrix

Other options exist for enumeration of the temporal relations to be discovered. Morchen
[15] proposed an alternative to Allen’s relations-based methods, in which time intervals are
mined to discover partially ordered coinciding symbolic time intervals. Sacchi et al. [24]
have used abstracted time series to find temporal association rules by generalizing several
of Allen’s relations into a relation called PRECEDES, which mainly included the temporal
relation before.

The discovery of TIRPs is computationally highly demanding, since, in its most complete
form, it requires generating all of Allen’s seven basic temporal relations. For example, a
naive generation of all TIRPs having 5 symbolic time intervals, such as in Fig. 4, with all
possible temporal relations among them, requires in theory generating up to 7 ((52 —5)/2) =
7710 = 282, 475, 249 candidate TIRPs. In general, an extension of a k-sized TIRP, will result
with 7° ((k> — k)/2) candidate TIRPs.

In the following section, we introduce the Karmalego algorithm, designed to mine time
intervals using all of Allen’s temporal relations, all which are defined in a robust (flexible)
fashion. Mining intervals using all Allen’s temporal relations is very challenging from a
computational perspective. Among other means, the KarmalLego mining method has an
efficient data structure, and exploits the transitivity of the temporal relations for pruning, in
order to efficiently generate all relevant candidate TIRPs.

3 Methods
3.1 Karmal.ego—fast time intervals mining

To define formally the problem of mining time intervals, and to better understand the Kar-
malego algorithm, we first present several basic definitions. These definitions will be used
in the description of the methods.

3.2 Definitions

Definition 1 To define a flexible framework of Allen’s temporal relations in Karmalego,
two relations are defined on time-stamped (point-based) data, given an epsilon value.
Given two time points #] and #;:
h=cenifflh—t|l<=¢
and

Hh <enhiffth—1t >¢
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A
before (<) B B.s-A.e>¢&AB.s- A.e <max_gap
A
meets (m) B |Bs—-Ae|<=¢
A
overlaps (o) B B.s-As>eANAe-B.s>¢
A
contains (c) B Bs-As>eAAe-Be>¢
A
finish-by (fi) B Bs-As>tA|Be-Ae|<=¢
A
equal (=) B |B.s-As|<=eA|Be-Ae|<=¢
starts(s) = g |B.s-As|<=£ABe-Ae>¢

Fig. 5 A flexible extension of Allen’s temporal relations, using the same epsilon for all of the seven basic
relations

Based on the two relations =¢ and < ¢ and the epsilon value, a flexible version of Allen’s
seven relations is defined, as shown in Fig. 5.

The introduction of the epsilon parameter to Allen’s full set of temporal relations maintains
the jointly exhaustive and pairwise disjoint (JEPD) conditions, as will be shown soon. The
jointly exhaustive condition comes from probability theory and means that a set of events is
jointly exhaustive if at least one of the events must occur. In the context of temporal relations,
it means that the set of temporal relations, which are defined, must cover all of the optional
relations among two time intervals.

The pairwise disjoint condition means that two sets A and B are disjoint if their intersec-
tion is the empty set. In the context of temporal relations, it means that the introduction of
the epsilon value as defined in Definition 1 and Fig. 5 keeps the set of the temporal relations
mutually exclusive. This is indeed true, since the epsilon-extended temporal-relation defini-
tions appearing in Fig. 5 imply that for any two time intervals exactly one (epsilon-extended)
temporal relation applies.

Definition 2 A symbolic time interval, | = <s, e, sym >, is an ordered pair of time points,
start-time (s) and end-time (e), and a symbol (sym) that represents one of the domain’s
symbolic concepts. When referring to these properties we will use the following /.s for its
start-time, /.e for its end-time, and Isym for its symbol.

Definition 3 A symbolic time interval series, 1S = {I', I?,..., I}, where each I' is a
symbolic time interval, represents a series of symbolic time intervals, over each of which
holds a start-time, end-time and a symbol.

Definition 4 A lexicographical symbolic time interval series is a symbolic time interval
series, sorted in the lexicographical order of the start-time, end-time using the relations < &,
= ¢ and the symbols, IS = {11, %, ..., I}, such that:

VI e ISG < j) A ((Ifv < IVl = IALL < IVl =1

AL =5 TEAT,, < 1,§.ym))
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Since in our problem definition the time intervals are ordered lexicographically, we use only
the seven temporal relations shown in Fig. 5.

Definition 5 A non-ambiguous lexicographical (TIRP) P is defined as P = {I, R}, where
I={I' 1%, ..., I*}isasetof k symbolic time intervals ordered lexicographically and

k
R=[) () {ra i) ={r2a' D)o 1,

i=1 j=i+1

rs(2 1), (1 Ik)]

defines all the temporal relations among each of the (k2 —k)/2 pairs of symbolic time intervals
in/.

Figure 4 presented a typical TIRP, represented as a half-matrix of temporal relations.
We will usually assume such a representation through the description of the Karmalego
algorithm.

A problem with Definition 5 is that it ignores the precise duration of the time intervals
that are the components of the TIRP. We focus on this problem, and on a possible solution
of it, in Sect. 3.7, when we propose to pre-cluster the time intervals by duration.

Definition 6 Given a database of |E| distinct entities (e.g., different patients), the vertical
support of a TIRP P is denoted by the cardinality of the set E p of distinct entities for which P
holds, divided by the total number of entities (e.g., patients) | E| : ver_sup(P) = |ET|/|E|.
The vertical support is actually what is commonly used as support in association rules, itemset
and sequential mining.

When a TIRP has vertical support above a minimal predefined vertical support threshold,
it is referred to as frequent.

We distinguish between two types of support: support across all entities that we call
vertical support and within the longitudinal record of a specific entity, as will be introduced
and defined in definition 7.

Definition 7 The time intervals duration variance (TIV) of a k-sized TIRP P, having n
supporting instances, in which 7P is the duration of a time interval / ({1,m 1s the [th symbolic
time interval (i.e., component) of the k time intervals of which instance m is composed) is:

k
Xl S P — Py
n-k

TIV(P) =

Where [ ZD‘” is the mean of [, ,d“r, that is, the mean duration of the /th component in all of the
TIRP’s n instances.

Definition 8 The time intervals mining task: Given a set of entities E, described by a sym-
bolic time interval series IS, the goal of the time intervals mining task is to find all the TIRPs
whose vertical support is above a predefined threshold.
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Fig. 6 A Karmalego enumeration tree, in which the direct expansion of TIRPs is performed. Each node
represents a TIRP as a half-matrix of the temporal relations. See text and detailed algorithms for an explanation

3.3 The Karmal_ego algorithm

The KarmaLego (algorithm 1) consists of two main phases. The first phase is called Karma,'
in which all of the frequent two-sized TIRPs, r (11, 1>) having two symbolic time intervals
I1 and I, that are ordered lexicographically and are related to r, a temporal relation, are
discovered, and indexed. In the second phase, called Lego,2 a recursive process extends the
frequent 2-sized TIRPs, referred to as T2, through efficient candidate generation, into a tree of
longer frequent TIRPs consisting of conjunctions of the 2-sized TIRPs that were discovered
in the Karma phase. Eventually a tree of all frequent TIRPs is discovered and returned (Fig.
6). Note that the Karmal.ego algorithm is oblivious to the precise definition of temporal
relations; we use the robust, flexible version introduced in Definition 1.

Algorithm 1 — KarmaLego

Input:

db — A database of |El entities representing for each the symbolic time intervals of ISI
symbols;

min_ver_sup — the minimal vertical support threshold;

Output: 7 — an enumerated tree of all frequent TIRPs

1. T «— Karma(db, min_ver_sup)
2.Foreacht € T // T is T at the 2™ level
3. Lego(T, t, min_ver_sup)

4. End Foreach

5. return T

6. End

! Karma—The law of cause and effect originated in ancient India and is central to Hindu and Buddhist
philosophies.

2 Lego—A popular game, in which modular bricks are used to construct different objects.
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3.4 Karma

In algorithm 2 (Karma), the first level of the enumeration tree is constructed and all the
2-sized TIRPs are discovered by indexing all the pairs of symbolic time intervals and their
temporal relations, as described in lines 2—7. For each entity e (e.g., patient), the method
incrementally indexes each pair of symbolic time intervals I‘f;ym, I_{me; i and j represent
their order in the symbolic time intervals series / ordered lexicographically in entity e; and
sym is their symbol. After determining the temporal relation among the two symbolic time
intervals r, based on their start-time and end-time, according to definition 1, the 2-sized TIRP
instance is indexed in the proper node in the enumeration tree according to the symbols and
the temporal relation.

Algorithm 2 — Karma

Input:

db — A database of IEl entities (the overall set of entities being referred to as E),

representing for each entity e, the lexicographically sorted vector of its symbolic time

intervals, e.I;

min_ver_sup — the minimal vertical support threshold;

Output: 7 — an enumerated tree of up to 2-sized frequent TIRPs

1.T<—@

2. Foreache € E

3. Foreach I', I € e.I " i<j o

4. r < the temporal relation among 7',  given epsilon

S. Index(T%, < .05y 1, €4 5,>)

6. End Foreach

7. End Foreach

8. Foreach r € T2

9. if ver_sup(?) < min_ver_sup

10. Prune(t)

11. End Foreach

12. return T

13. End

After the indexing of all of the time interval pairs is completed, each ¢ in T2 that is not
frequent is removed (pruned) from the tree. Eventually, an enumeration tree 7 is returned, at
this point having only two levels. During the indexing process the first level of the enumeration
tree is created as well, based on the frequency of the symbols.

In order to enable later a highly efficient retrieval of the 2-sized TIRPs for the recursive
Lego step, T2 is implemented by a two-dimensional square array of size |T'|%. |T!] is the
number of the frequent symbols found in Karma. Each cell in the two-dimensional array
contains a vector of size |R| (the number of temporal relations) that holds a HashMap, which
contains all of instances of the indexed pairs. Thus, retrieval of the indexed pairs from T2 in the
Lego phase is performed in O(1), using as indices the two symbols and the temporal relation.

In the description of enumeration of the TIRPs using Lego we will use the following data
structure, which implements a TIRP.

TIRP.sym—a vector of its ordered symbols;

TIRP size—the size of the TIRP, defined as the number of the symbolic time intervals in
the TIRP (|TIRP.sym]);

TIRP.tr—a vector that represents the half-matrix defining its conjunction of temporal
relations; in Fig. 8, in each cell there is a number at the top-left corner, which is the index
of the vector. Thus, the first index O represents the relation among the first and the second
time intervals, the indices 1, 2 the relations among the first and second time intervals and
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the third time interval, the indices 3-5 the relations among the first, second, and third
time intervals, and the fourth time interval, and so on.

TIRP.tr_size— the size of the half-matrix defining the temporal relations in the TIRP,
which is (TIRP.size? — TIRP.size)/2;

TIRP.insts—a list of the instances supporting the TIRP;

TIRP.inst.e_id—contains the entity id of the instance;

TIRP.inst.ti—a vector of pointers to the actual time intervals of the supporting instances.
Note that the positions in all of the vectors of size k are indexed by the numbers0 - - - k—1.

3.5 Candidate-TIRP generation: the supporting data structure

In Karmal ego, the candidate generation is made directly, i.e., by considering only specific
frequent k-sized TIRPs and attempting to extend the ones being considered. Thus, extending
a k-sized TIRP into a (k 4 1) sized TIRP is made by adding a frequent symbolic time interval
and adding all the possible temporal relations among the added symbolic time interval and
the existing k time intervals, according to the lexicographical order in the TIRP.

More specifically, as shown in Fig. 7, the extension is done by generating for each frequent
symbol a new symbolic time interval, and generating all of Allen’s 7 temporal relations
between the new symbolic time interval and the latest, in lexicographical order (see definition
5), symbolic time interval (i.e., the most recent addition) within the current extended TIRP.
The last step is generating all of Allen’s 7 temporal relations as the temporal relations among
the new symbolic time interval and the existing TIRP’s time intervals.

In Fig. 7, a 4-sized TIRP is extended by a symbolic time interval E that can be related to
the TIRP’s last time interval D (note that D is last according to the lexicographical order),
having the latest start-time, by any of Allen’s 7 temporal relations. The next step is generating,
for each of these 7 possible temporal relations between E and D, all of the temporal relations
among E and the previous time intervals: C, B and A. In this example having to set seven
optional temporal relations in three temporal relations [r(A, E), (B, E) andr(C, E)] would
in theory generate up to 73 = 343 candidates for each of Allen’s 7 possible temporal relations,
in addition to setting one of the seven temporal relations between E and D. Thus, overall, 7 x
343 candidates for the entire extension process. (later we will show how the 343 candidates can
be decreased dramatically by exploiting the transitivity property). Finally, for each candidate
TIRP, we must check whether all of its component relations are frequent and whether overall
it is frequent. The extension process is implemented by the Lego algorithm.

Thus, Lego (Algorithm 3) receives a k-sized TIRP and extends it by all of the frequent
symbols in 7' and a set of predefined desired temporal relations R (Allen’s seven relations,
or other versions). First, all the frequent symbol candidates are generated and are added by
relating them to the last time interval in ¢, using each of the temporal relations in R (lines 1

Fig.7 A 4-sized TIRP (denoted :
by the black intervals) is directly A | E
extended by a symbolic time B ! before
M O 1 - !
interval E, each time r'eldted to C ; E meets
another temporal relation, among #
Allen’s seven temporal relations, E "
to the last symbolic time interval E 1 overlaps
! -
D | finish-by
E ! .
i contain
E |
i equal
El starts
|
1
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and 2). In line 3 a new TIRP is created of the extended TIRP, a symbol sym and a relation r
are set to ¢ in lines 4 and 5. C contains all of the candidates that were generated in line 7 by
the method Generate Candidate TIRPs that will be described in the next section.

Then, for each candidate TIRP in C, a search is performed for its supporting instances
(described in Algorithm 6), and if it was frequent, it is added to the current tree, and Lego
extends the frequent candidate (recursively) in lines 8 to 13.

Algorithm 3 — Lego(T, t, min_ver_sup)

Input:

T — the enumeration tree created by Karma,

t —a TIRP that has to be extended,

min_ver_sup - the minimal vertical support threshold
Output: void

1. Foreach sym € T'

2 Foreach r € R

3 Create new ¢ of size (t.size + 1)

4. 5[t .size-1] < sym

5. £ ar[t.tr_size-1] «—r

6 C—0

7 C « Generate_Candidate_TIRPs( £, 1)
8. Foreach ¢ € C // candidates

9. Search supporting instances(c, T°)
10. if( ver_sup(c) > min_ver_sup )
11. T «— T U ¢/l cis frequent

12. Lego(T, ¢, min_ver_sup)

13. End Foreach

14.  End Foreach
15. End Foreach
16. End

The candidate generation in line 7 can be performed in two ways: a naive candidate genera-
tion method, as will be presented in Algorithm 4, which is commonly used, or a faster method,
exploiting a transition table, which is implemented in Karmal.ego, as shown in Algorithm 5.

3.6 Efficient candidate-TIRP generation: exploiting transitivity in temporal relations

In line 3 of algorithm 2, an extended candidate TIRP ¢€ is created based on TIRP ¢, a symbolic
time interval sym and a temporal relation r. Figure 8 illustrates an extension process of a
4-sized TIRP, including the symbolic time intervals: A, B, C, D, with a symbolic time
interval E. The half matrix on the left presents the conjunction of the temporal relations
defining the extended TIRP, in which each column contains the temporal relations among
the symbolic time interval at the top and the earlier (lexicographically) time intervals in ¢
on the left. The temporal relations, at the cells having the gray background, are the temporal
relations defining 7. For example, the temporal relation between B and D is < (before). The
rightest column contains the temporal relations among the new symbolic time interval (E)
and the time intervals in #. The temporal relations that will be set in this column will generate
the entire set of candidate TIRPs C.

Algorithm 4 generates (somewhat naively, as we shall see) the entire set of candidates C
by first setting all the R temporal relations to the temporal relation between the new symbolic
time interval and the latest time interval in the extended TIRP, and then generating all the
combinations of the temporal relations in the rest of the temporal relations among the new
symbolic time interval and the time intervals of TIRP ¢. For example, in Fig. 8, the temporal
relation among the new symbolic time interval E and the latest D, shown in the cell having
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Fig. 8 The transitivity property is exploited in order to generate efficiently the possible temporal relations
that are the candidate TIRPs. After setting the temporal relation between the new symbolic time interval E and
the last (by lexicographical order) symbolic time interval D to meets, the possible temporal relations between
E and the previous time intervals of the TIRP are inferred using a transition table. In this case, inferring by
temporal transitivity decreased the number of potential candidates from 343 to only three. (The numbers in
the left-top corner in the half-matrix cells refer to their index when represented by a vector in the algorithms)

the index 9 is set to the temporal relation m (meet). There are three temporal relations to
generate (set), which total will be R3: so for the case of using R = 7 temporal relations,
there will be 73 = 343 candidate TIRPs to be searched in T2 (this is true with any relation
among R set to index 9 and not specifically meet).

Algorithm 4 is recursive, and each time it creates for each temporal relation r in R a new
candidate ¢V, which is a copy of ¢ (line 2), and r is set to the temporal relation between the
new time interval and the rldx+1 earlier time interval. When all the temporal relations were
set, rldx is smaller than the size of the TIRP and the generated TIRP is ready and added to
C, otherwise the function is called again with ¢"“V. Eventually the function returns the set of
TIRP candidates C.

Algorithm 4 brute force candidate generation process results in a large number of candi-
dates. The number of candidates grows exponentially with the number of time intervals in
the TIRP. Thus, for example extending a 4-sized to a 5-sized TIRP (as the example in Fig.
8) generates 74 = 2401 candidates, and extension from a 5-sized to a 6-sized TIRP will
generate 7° = 16,807 candidates for each added symbol.

However, note that such naive generation results with many combinations of temporal
relations that contradict each other and create an impossible TIRP. For example, consider
a candidate based on Fig. 8, in which r(D, E) = meets, and then the following [potential
candidate] settings are made: r(C, E) = meets, r(B, E) = meets, r(A, E) = meets.
Obviously, setting r(D, E) to meets means that it is impossible to have r(C, E) = meet,
since the temporal relation r(C, D) is contains; similarly, the relations r(B, E) andr(A, E)
contradict the existing relations.

Algorithm 4 - Gen_Candidate_TIRPs (Naively)
Input:

¢ — the base TIRP to generate

rldx — the temporal relation index to generate

Output: C - set of the candidate TIRPs

1. Foreachr € R
L
"V[c.tr_size-1-rldx] < r
if(c.size — rldx > 2)
C« C U Gen_Candidate_TIRPs (c"", rldx+1)
else
. C—CU ™
8. EndForeach
9. return C
10. End

Nowa W
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The ability to perform candidate generation without contradictions should decrease the
number of candidates, and more important, should decrease the need to search for impossible
candidates in T2. To implement this capability, we use transition tables [1,6], which we
introduced in Sect. 2.3. After setting the relation r(D, E) to meets, as shown in Fig. 8, the
disjunction of the possible relationsinr(C, E)canbereasonedbasedonr(C, D)andr(D, E)
from a transition table, which results in this case with a disjunction of three possible temporal
relations: overlaps (0), or finished-by (fi) or contains (c), as shown on the right side of Fig. 8.
Similarly, the possible relations of r(B, E) can be computed based on r(B, C) and r(C, E).
Since r(C, E) had a disjunction of three relations, the computation will be performed for each
of the three temporal relations. Thus, when r(C, E) = o, using a transition table results in the
conclusion that r(B, E) is before (<), and the same type of reasoning results in the cases, in
which r(C, E) = fi, and r(C, E) = c. The same process is repeated to reason about r(A, E)
for each of the temporal relations, which in this example were the same—before and result
in the same relation, before as well. Thus, instead of 73 = 343 candidates, there are actually
only 3 candidates that do not contradict the TIRP’s temporal relations. This process, which
is implemented in Algorithm 5, obviously decreases dramatically the number of candidates
that have to be searched in T2 and the time that is required for that, as will be shown also
empirically in the runtime evaluation results.

Algorithm 5 is a recursive process that exploits the transitivity property of temporal rela-
tions in order to generate candidates efficiently. The procedure gets the extended TIRP ¢ and
the temporal relation index rldx to generate. The relation index (rIdx) starts as the temporal
relation that was set in Lego (Algorithm 3) among the new, or next, symbolic time interval
and the latest time interval, and ends with the last relation among the new symbolic time
interval and the first time interval (for example, r(A, E) in Fig. 8).

Algorithm 5 - Gen_Candidate_TIRPs (with Transitivity)
Input:

¢ — the base TIRP to extend

rldx — the temporal relation-index currently set

Output: ¢"" — the candidate TIRP

1. first_rel <—(((c.size-r1dx)2- (c.size-rldx))/2)-1

2. second_rel < c.tr_size-rIdx

3. trans_rels «— trans_table[c.tr[first_rel], c.tr[second_rel]]
4. Foreach rel € trans_rels

5. "V e—c

6. c"¥[scnd_rel-1] < rel

7. if(first_rel > 0)

8. C «+ C U Gen_Candidate_TIRPs(c"", rldx+1)
9. else

10. C—Cuc™

11. EndForeach

12. return C

13. End

Given the size of the TIRP c.size and rldx, the indices of the first and second relations
to be looked up in a transition table are calculated (lines 1,2) and the actual disjunction of
temporal relations—trans_rels—is computed and returned by the transitive table at line 3.
Then, for each of the relations, a new TIRP ¢"V is generated in line 5 and the relation is set
in the appropriate location in the relations-half-matrix vector. If the index of the first relation,
frst_rel is zero, then the generated set of candidate TIRPs ¢"V is added to C, otherwise
Get_Candidate_TIRPs is called again with ¢"*V. Eventually the function returns the set of
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candidate TIRPs C. After the candidates C were generated, the supporting instances are
searched in line 9 in Lego (Algorithm 2).

Algorithm 6 describes the method of searching for supporting instances of a potentially
extended TIRP and adding them to the supporting instances list of the extended TIRP. The
method searches for the next appropriate symbolic time interval(s) for whom the defined
temporal relations with the previous symbolic time intervals in the extended TIRP hold.
After executing this method, the vertical support of the new TIRP, which is a longer pattern
than the one to be extended, will be equal to or (usually) lower than the extended TIRP’s
vertical support. (Note that it is possible, in the case of certain specific entities, that the
number of occurrences of the extended TIRP within a particular entity’s set of symbolic time
intervals might actually grow, when compared with the original TIRP. This could happen
when there are several suitable instances of symbolic time intervals within the same entity
that can extend the same original TIRP instances.)

The method receives as input the candidate TIRP ¢ and the set of the two sized TIRPs
in T2. In line 1, the next (new) symbol that was added (in Algorithm 3—Lego) is set to
next_sym; then, for each instance in the extended TIRP’s supporting instances, the search
is made. First the temporal relation rel between the next time interval and the latest (in the
extended TIRP) is set (line 3), then the latest symbol of the extended TIRP sym: is set (line
4).

GetNextSTIs searches the symbolic time interval (STI) two- dimensional square array T2,
as explained in Sect. 3.4, using indices defined by the symbols sym and last_sym and the
temporal relation rel, for the instances starting with the latest time interval in the instance
ins.sti. GetNextSTIs might return several new symbolic time intervals, next_stis.

Algorithm 6- Search_Supporting Instances

Input:

¢ — the TIRP to extend by searching supporting symbolic interval instances

T* — the 2-dimensional array of 2-sized TIRPs instances

Output: ¢ — extended by the supporting instances

1. next_sym « c.sym|[c.size-1]

2. Foreach inst € c.insts

3. rel « c.tr[c.tr_size-1]
sym <— c.sym[c.size-2]
next_stis<—GetNextSTIs(inst.sti[c.size—Z],Tz[sym, rel, next_sym])

4

5

6. Foreach next_sti € next_stis
7 new

8

inst™" « inst
inst"" sti[c.size-1] < next_sti
9. For(i=1; i<c.size-1; i++)
10. rel « c.trc.tr_size-1-i]
11. sym <— c.sym|c.size-2-i]
12. if(NoInst?( inst™¥.e_id, inst"".sti[c.size-2-i], next_sti, T°[sym,rel,next_sym])
13. break
14. EndFor
15. c.insts «— c.insts U inst™"

16. End Foreach

17. remove inst from c.insts
18. End Foreach

19. return ¢

20. End

For each next symbolic time interval next_sti, the existence of all the temporal relations
among next_sti and the earlier time intervals of the extended TIRP have to be checked in T2
(lines 9-15). First, inst is copied into a new instance inst™" (line 7), the next time interval
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next_sti is set to its proper location (line 8), and then, using a loop, the pairs of the time
intervals and the temporal relations are searched at the relevant T? (using as indices the
current-TIRP’s symbol sym, the next symbol next_sym, and the temporal relation rel) in
lines 9—-16. Thus, in line 9, the existence of each temporal relation defined between the next
symbolic time interval and the current extended TIRP’s time intervals is verified.

The boolean method (predicate) Nolnst? searches for an instance of a pair of symbolic time
intervals having the given temporal relation; thus, it gets sym, rel, and next_sym as indices
to its fourth argument, the appropriate T2 array entry, in which it queries the HashMap for
the pair based on the entity id of the new instance (inst"*V.e_id) and the first symbolic time
interval instance (inst"®% sti[c.size-2-i]).

Once the HashMap returns a potential pair of symbolic time intervals, it compares them
to the expected symbolic time interval—next_sti. If it was not found, the predicate Nolnst?
returns True, meaning that no instances of the requested pair were found for the same entity
ID, and the search is immediately stopped, since at least one required temporal relation
does not hold between the next instance and the instances of the TIRP to be extended
(line 13); otherwise, it returns False, and the For loop continues to the next check. At
the end of the search, if there was no break (i.e., Nolnst? was never true - all tempo-
ral relations were verified), inst"™" is added to the supporting instances list, c.inst. This
process is repeated for each of the next_sti. The searched instance inst is removed from
c.inst, since it was replaced by all of the inst™*" that were found, and if not, it should
be removed too (line 17). Finally the candidate ¢ is returned with its list of supporting
instances.

Note that retrieval of an indexed pair from T? to check that it indeed exists and is frequent,
is performed in O(1) (in line 12), using the two-dimensional array created in the Karma
phase, and, as indices, the two symbols and the temporal relation between them.

3.7 Reducing TIRP instances variance via pre-clustering

The definition of a non-ambiguous TIRP (see Definition 5) is non-metric: it pays no attention
neither to the duration of the symbolic time intervals, nor to the duration of temporal gaps
between them, or to overlaps or containment periods, as part of the definitions of their
temporal relations; all of these aspects might significantly affect the meaning of a TIRP. This
omission occurs since a symbol (which is, in fact, a predicate, such as “Low blood pressure, as
defined in the context of pregnancy” or “a Very high number of open connection sockets’) that
holds over a symbolic time interval means the same for the purpose of the TIRP enumeration
process, regardless of its duration: it is generated by the temporal-abstraction process and
has identical semantics over all intervals of the same type.

This lack of a metric definition regarding the duration of the intervals that compose the
TIRP, and the precise quantitative nature of each temporal relation, might pose a problem. The
instances of discovered TIRPs may in reality vary significantly in the durations of the time
intervals that they are composed from, or in the nature of their internal temporal relations,
while still satisfying the same TIRP definition. Figure 9 presents three very different instances
of the same TIRP definition, which in real world can reflect quite qualitatively different
scenarios.

Therefore, to make the instances satisfying the definition of the same TIRP more homoge-
neous, with respect to the duration of the symbolic time intervals, we propose to first cluster
the time interval instances of each symbol according to their durations. Thus, having for
example a database with the interval-based symbols A, B, and C, we can first cluster their
instances into k clusters according to their duration prior to the mining process by using an
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Fig. 9 Various instances of TIRPs, all satisfying the same TIRP definition, demonstrating the significant
variability implied by the current TIRP definition. Note, for example, the highly different instantiations of the
before relation between C! and C2 and of the duration of intervals such as C2 and D

appropriate method such as the k-means clustering algorithm. The result will be that we will
have potentially more symbols, up to a maximum of k subtypes of each original symbol, and
a minimum of 0 subtypes of the original symbol—in the case that none of the clusters were
sufficiently frequent.

As can be readily understood, there is a trade-off involved here: pre-clustering symbolic
time intervals of a specific symbol into sub-symbols according to their duration results in more
types of symbols, each of which is less frequent, which results in a potentially smaller number
of frequent TIRPs; but those TIRPS that are still sufficiently frequent, will be supported
by more homogenous instances. With respect to the possibility of clustering also temporal
relations, we consider it as probably unnecessary following the clustering of the time interval
durations (see the discussion of this point in Sect. 5).

4 Evaluation

The objectives of the experimental evaluation were twofold. The first objective focused on
a comparison of Karmal.ego’s performance with that of previous methods using Allen’s
temporal relations, on various datasets. The second objective of the evaluation focused on
the assessment of the effect of pre-clustering the symbolic time intervals by their duration,
prior to the mining process, on the variance of the supporting instances of the TIRPs (see
Definition 9) and on their vertical support.

4.1 Datasets
4.1.1 The American signup language dataset

The American signup language (ASL) dataset was created by the National Center for Sign
Language and Gesture Resources at Boston University [20]. It consists of a collection of
884 utterances, in which each utterance associates a segment of video with a detailed tran-
scription. Every utterance contains a number of ASL gestures and grammatical fields (e.g.,
eyebrow raised, head tilted forward), each one occurring over a time interval. This dataset
was used by [20] for the runtime evaluation of their algorithm. We used this dataset for the
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runtime evaluation of our algorithm, by comparing its running time with that of the other
algorithms.

4.1.2 The MavLab smart house dataset

The MavLab SmartHome dataset, provided by [10], contains data from the readings of 99
sensors installed in a computerized apartment. The sensors described the activity of people
and of various appliances scattered around the apartment and were sampled each single
second over a period of 81 days, in which only the data for the first 3 h from each day were
used. We used this dataset for the runtime evaluation of our algorithm, by comparing its
running time with the other algorithms, and also for the clustering experiments.

4.1.3 The diabetes dataset

The diabetes dataset, provided as part of collaboration with Clalit Health Services (Israel’s
largest HMO), contains data on 2038 patients who have type II diabetes, collected monthly
from 2002 to 2007. The dataset contains six variables recorded over time for each patient:
hemoglobin-Alc values, blood glucose levels, cholesterol values, and several medications
the patients purchased: diabetic (insulin-based) medications, cholesterol reducing statins, and
beta blockers. The total amount of the diabetic medications was represented in the dataset in
terms of an overall defined daily dose (DDD).

Knowledge-based state-abstraction definitions for abstraction of the raw data laboratory-
test measurements into more meaningful concepts were provided by expert physicians from
Ben Gurion University’s Soroka Medical Center, as shown in (Table 3 in Appendix 6).

4.2 Example of knowledge discovery using the Karmalego algorithm

To make our performance analysis and the overall motivation for making the mining process
more efficient and more concrete, Figure 10 shows a typical result of discovered TIRPs, in this
case, a case study we performed in the diabetes domain [18]. For example, 141 of the 1,702
patients who had an Increasing period of the HbA1C measurement (HBA1C.inc) [denoting
an exacerbation of their disease], finished that period by an interval of an Increasing dose
of the diabetes medications (Diab.inc), followed immediately by (i.e., meeting) an interval

HBA1C.inc
[1702]

Diab.dec

m F
D.dec D.inc
@s0n.2), | DS ’[315%!‘ L Dsab | ’mmum Dunc ‘ ‘[485/1.2] s ‘
e G

HBA1C.stab HBA1C.dec HBA1C.dec HBA1C.dec
s m

m s

115/1.06] H.dec 105/1.0! H.stab 106/1.00] H.dec 161/1.09] H.dec 141/1.04] . H.dec

L _] Do ==t | |I ol oo, === | 1 Disteb [ _] Dine [ ]> Dinc ~=—7
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Fig. 10 A part of the TIRP tree in the diabetes domain. For each node, the level of [vertical] support is given;
within each node are shown the number of entities found to have at least one instance of the TIRP (i.e., the
vertical support) and the mean number of instances of that TIRP found in each entity, displayed as [vertical
support/mean number of instances per entity] D.inc, D.dec, D.stab = drug dose gradient abstractions; H.dec,
H.inc, H.stab = HbA | C gradient abstractions; F = Finishes; M = Meets; S = Starts (temporal relations). The
time intervals within each node denote the mean duration of the symbolic intervals of each node, in months.
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of Decreasing HbA1C levels (HBA1C.dec) (denoting an improvement in the disease). Other
patterns of behavior can be found as well.

Another useful way to characterize a cluster of patients by their temporal pattern is by the
distribution of the static, non-temporal, variables characterizing these patients, which were
not part of the TIRP-discovery process (e.g., gender, age group). For example, during our
evaluations, in the case of the diabetes data set, it seemed that certain TIRPs, such as those
describing the response of the HbA1C parameter (which approximates the severity of the
diabetic state) to treatment by diabetes medications, are significantly more frequent in male
rather than in female patients. Such insights are easy to arrive at and explore further, once a
TIRP tree exists.

4.3 A runtime evaluation of KarmaLego on the datasets

We evaluated the hypothesis that the Karmal.ego algorithm improves runtime performance
for discovery of TIRPs. Thus, a comparison of the runtimes was performed among (1) the
KarmaLego method, (2) an implementation of the H-DFS method [20], (3) an implementation
of ARMADA [28] and (4) an implementation of IEMiner [21] method. All the methods were
implemented in Visual C++ according to their papers. We made sure that all the methods
produce the same output of frequent patterns.

Since several of the methods detect and extend only the first instance of a TIRP, and not
all of the instances of its occurrence within each entity (unlike the Karmal.ego method),
all the TIRP-discovery methods were applied that way for the evaluation. All experiments
were conducted on a 3 Ghz Intel Xeon server, having 3Gb main memory, running Microsoft
WindowsServer2003. We used the ASL, Diabetes and SmartHome data sets described above.

Table 1 describes the data sets using four parameters: N: the entire number of time intervals
in the dataset; E: the number of entities (i.e., patients or subjects); S: the number of different
symbols; and /: the mean number of intervals per entity. While the ASL dataset is relatively
small in all the parameters, the Diabetes dataset contains a significantly larger number of
time intervals (N) and of entities (E). The SmartHome dataset has the largest mean number
of time intervals per entity (I).

All four methods, including: H-DFS, Armada, IEMiner, and Karmal.ego, were run on the
ASL dataset using 5 levels of minimal vertical support, starting with 50 % and ending with
10 %. Figure 11 presents the runtime in seconds, as a function of the minimal vertical support
(%), using a logarithmic scale for the computation time.

In this dataset, Armada and Karmalego behaved very similarly, while IEMiner was slower,
and the H-DFS method was much slower (see Fig. 11). The similar behavior of Armada and
Karmalego on this data set can be explained by the relatively low value of /, the mean
number of time intervals per entity, in this case a subject, which enables the Armada method
to keep up with the KarmalLego method. As will be shown later, this is not the case when the
mean number of intervals per entity is large, causing more difficulties to the Armada method.
Since the runtime of the H-DFS method is significantly slower than that of the other methods,

Table 1 The properties of the

R Dataset N E S I
evaluation datasets
N number of time intervals, S ASL 2,037 65 146 313
number of symbols, E number of ~ Diabetes 80,538 2,038 227 39.5
entities, / mean number of SmartHome 30,210 81 212 372.9

intervals per entity
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Fig. 11 A runtime comparison of the algorithms (in seconds) on the ASL data set as a function of the minimal
vertical support threshold (%). Note time is presented using a logarithmic scale.
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Fig. 12 A performance comparison among three TIRP mining algorithms applied to the Diabetes (a) and
SmartHome (b) data sets. Computation time (in seconds) is displayed as a function of the minimal vertical
support threshold (in percentages). The Karmal.ego algorithm is faster than both others, especially for low
levels of vertical support

it requires a logarithmic-scale graph for the clarity of presentation. Thus, its performance
results are presented in this evaluation only once, using the relatively small ASL dataset.
Figure 12a shows the results of the experiments on the Diabetes dataset, in which N and £
are the largest. While IEMiner was the slowest, Karmalego was about twice as fast as Armada
at very low levels of minimal vertical support. Experiments on the SmartHome dataset, having
the largest mean number of intervals per entity, 7, are shown in Fig. 12b. Karmalego was
much faster than both IEMiner and Armada. The difference was pronounced more clearly,
compared with the ASL and Diabetes data sets, due to the large size of the SmartHome data set.

4.4 Experiments in pre-clustering time intervals by their duration

Our second hypothesis in the current study was that pre-clustering the symbolic time interval
instances in the dataset by their duration reduces not only the number of discovered TIRPs
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when the clustering parameter k (number of clusters) increases, but also the mean time interval
variance (TIV) for discovered TIRPs (definition 9), due to the increased uniformity, at least
in symbolic time interval duration, of the components of the discovered TIRPs.

In these experiments, which focused on TIRP counts and on interval duration variance
measures, we used an epsilon value of zero (the Allen default); three values of k for the
K-means clustering: two, three and four; and the non-clustered data for comparison. To
evaluate the influence of these settings on the variance of the TIRPs time intervals instances
variance, we counted the number of TIRPs discovered, C, and measured the TIV of discovered
TIRPs.

The Diabetes dataset was abstracted into either 3 or 9 states using the Equal-Width Dis-
cretization (EWD) method (see Sect. 2.2), creating two datasets: Diabetes_3EWD and Dia-
betes_9EWD, respectively. The MavLab SmartHome dataset was abstracted into 3 states
using EWD. The symbolic intervals of both datasets were pre-clustered by duration using
the K-means method into k = 2, 3 and 4 clusters. The number of symbolic interval types
in the dataset after each size of k pre-clustering is presented in Table 1. Note that the num-
ber of symbolic interval types after pre-clustering is not necessarily multiplied (approxi-
mately) by the k value, but it is bounded by that value, since the clusters may sometimes be
empty.

Table 2 presents the quantitative properties of each dataset. Note that the number of
symbolic time intervals after a 9EWD pre-clustering process is approximately twice than after
a 3EWD state abstraction, since there are now many additional symbolic interval types—
each symbol type is fragmented into several subtypes (states), by its value range; thus,
the same is true for the mean number of symbolic intervals per entity. Furthermore, the
number of symbolic interval types increases as the number of clusters grows, due to a similar
fragmentation process, this time by duration.

Figures 13 and 14 display an analysis of the pre-clustering results for the Diabetes_ 3EWD
dataset, for the 3-sized and 4-sized TIRPs. In both figures, the TIV decreases when the number
of clusters increases. Thus, the discovered TIRPs are indeed more homogenous with respect
to their duration. However, as expected, the number of discovered TIRPs also decreases,
for the reasons explained in Sect. 3.7. Note that the number of discovered TIRPs with four
clusters was zero, in the case of the 4-sized TIRPs. (Similar trends were noted after using
9EWD discretization.)

Figures 15 and 16 present the analysis results for the SmartHome_3EWD dataset, for
discovery of 3-sized and 4-sized TIRPs, respectively. In both figures, the TIV decreases sig-
nificantly as the number of clusters increases, while the number of frequent TIRPs decreases.
While the TIV decreased significantly for both 3-sized TIRPs (Fig. 15) and 4-sized TIRPs
(Fig. 16), the number of discovered frequent TIRPs decreased less dramatically, especially for
4-sized TIRPs. Unlike in the case of the Diabetes datasets, the 4-sized TIRPs were frequent

Table 2 The evaluation datasets properties after the pre-clustering

Dataset N E 1 NC C2 C3 C4

D_3EWD 36,434 2,038 17.8 101 150 192 226
D_9EWD 73,144 2,038 35.8 234 336 410 463
SH_3EWD 42,847 88 486.9 232 366 477 573

N =no. of symbolic time intervals; E = no. of entities; / = mean no. of symbolic intervals per entity; NC =
no. of symbolic interval types with no clustering; C2 = no. of symbolic intervals types for k = 2 clusters; C3
= no. of symbolic intervals types for k = 3 clusters D diabetes, SH SmartHome
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Fig. 13 The time-intervals-variance (TIV) decreases as the number of clusters grows, in the case of 3-sized
TIRPs in the Diabetes dataset. A similar observation applies to the number of discovered 3-sized frequent
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Fig. 14 The time-intervals-variance (TIV) decreases as the number of clusters grows, in the case of 4-sized
TIRPs in the Diabetes dataset. A similar observation applies to the number of discovered 4-sized frequent
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Fig. 16 The time-intervals-variance (TIV) decreases as the number of clusters grows, for 4-sized TIRPs in
the SmartHome; the number of frequent TIRPs decreases only with 4 clusters

even with clustering by duration into three and four clusters. This can be explained by the
larger number of time intervals per entity in that dataset (Table 1).

5 Summary and discussion
5.1 A summary of the main results and the conclusions from them

We presented a comprehensive process based on a new algorithm, Karmalego, for efficient
temporal knowledge discovery from multivariate temporal data. The overall process includes
a TA preprocessing phase of the raw time-stamped data into meaningful symbolic time
intervals.

Note that the TA preprocessing phase overcomes several frequent problems encountered in
temporal data mining, since temporal multivariate data often appear in varying granularities
and frequencies, and some of the raw data might be missing; TA (which typically includes
some form of interpolation) often solves such problems.

The overall temporal data mining process uses an extended version of all of Allen’s
temporal relations, relying on constrained-based representation to define in an internally
coherent, robust fashion all of the temporal relations by an epsilon value. The result is a
mutually exclusive flexible definition of all of Allen’s seven basic temporal relations. Note
that the Karmal.ego algorithm handles any number of temporal relations used during the
enumeration process, and is oblivious to the degree of fuzziness (i.e., the epsilon value) used
in their definition.

We have also introduced several fundamental concepts that define the output of the TIRP
mining process, such as the vertical support and the Time Interval Variance. We then explained
in detail the fast time intervals mining technique used within the Karmalego algorithm, which
extends TIRPs directly using a specialized data structure, and which exploits the transitivity
of the temporal relations to significantly reduce the number of generated candidates.

We demonstrated the use of the Karmal_ego algorithm on several datasets, and in particular,
on a set of diabetic patients’ records; we have presented an example of a part of the discovered
TIRPs tree, in the case of the diabetes domain, whose patterns can be quite useful to clinical
researchers.
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The quantitative performance evaluation first compared the runtime performance of Kar-
malego with other alternative methods: ARMADA, [EMiner, and H-DFS. Although the
ARMADA algorithm is relatively fast, it becomes very slow, in large datasets, especially
when the number of time intervals per entity is large, such as in the SmartHome dataset, and
when using low levels of minimal vertical support. This can be explained by the fact that the
search in ARMADA is performed on the actual data, without indexing first the 2-sized TIRPs.
While in both Karmal.ego and the [IEMiner method, the construction of TIRPs is performed
on pairs of time intervals that are indexed earlier (the Karma algorithm within Karmalego),
the IEMiner method is much slower than Karmalego, since in KarmalLego the transitivity-
based candidate generation phase makes the candidate generation process significantly more
efficient and faster, resulting in a significantly smaller number of candidates to examine.

Finally, to provide a better basis for our TIRP-discovery framework, we considered the
common problem of a lack of metric specification regarding the time intervals durations in
the otherwise non-ambiguous definition of TIRPs and the problem of discovering TIRPs that
significantly vary with respect to the duration of their supporting instances. For that purpose,
we proposed to pre-cluster the symbolic time intervals by their durations into k clusters.

We demonstrated the feasibility of this process and quantitatively assessed its effects and
its potential trade-offs using several real datasets. The use of pre-clustering indeed increased
the homogeneity of the instances, as witnessed by a lower TIV measure, as we hypothesized,
but, as we suspected, has resulted also in the reduction in the number of discovered frequent
TIRPs.

In addition to clustering intervals by duration and measuring the variance in the duration
of the TIRP’s interval-based components, it is also possible in theory to cluster temporal
relations by their characteristics, such as by the duration of the gap between the two intervals
in the case of the before relation, or the duration of the overlapping segment, in the case of
the Overlaps relation.

However, pre-clustering time intervals by their duration greatly decreases the need for
clustering the temporal relations by other characteristics, such as clustering the relations
starts, finished-by, or equal. For example, the quantitative characteristics of the temporal
relation between two time intervals, when both of the start-time points, or both of the end-time
points, are identical (as is the case for the starts or finished-by relations), or both the start-time
and the end-time points are identical (as is the case with equal), are already considerably
constrained by the duration-based pre-clustering and thus have by nature already very low
variability. For example, the starts sub-relations can include only up to the small number of
combinations of intervals from the discovered classes of the two relevant symbols (e.g., 2
X 3 = 6, when 2 classes were discovered for one symbol and 3 classes for the other, after
clustering by duration) while the equal sub-relation can include only up to the lower number
of classes of each symbolic interval that were discovered during the clustering by duration
(e.g., 3 sub-relations, when 3 duration classes were discovered for one symbol and 4 duration
classes were discovered for the other symbol).

We expect that following the time interval duration-based pre-clustering, only the cluster-
ing of the gap durations in the case of the before relation, and possibly the relative duration
of the overlapped segment in the case of the overlap relation, and in the case of the contain
relation, might be meaningful. (Note that we are already using a maximal gap parameter, in
the case of the before temporal relation, thus considerably reducing the potential variability).

The main downside of pre-clustering temporal relations into sub-relations (as happens with
the time intervals pre-clustering), in addition to clustering by durations, is that it reduces the
support for each such sub-relation to a level below the minimal threshold.
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5.2 The implications of an effective TIRP-discovery methodology

The effective discovery of temporal patterns in the data, referred to as TIRPs in this paper,
supports temporal knowledge discovery, as well as potentially facilitating clustering of the
entities by their temporal behavior, and classification of multivariate time series, including a
form of prediction.

Indeed, we have previously shown that using TIRPs from time-stamped data collected
during the first 12 h of hospitalization in an intensive-care unit (ICU), as features for prediction
whether an ICU patient will require ventilation for more than 24 h, resulted in a positive
predictive value of 79 %, given a population of 664 patients, of which 28 % needed more than
24 h of ventilation [19].

Each TIRP can also be viewed as representing a cluster of entities, such as patients, who
have similar temporal behavior along time, such as for example, a similar pattern of a reaction
to a particular drug dose. Each cluster, or TIRP P, can be described by its vertical support, the
mean number of instances of the TIRP found within each entity, and other measures such as
TIV. The extended (longer) TIRPs have equal or smaller vertical support; these are actually
sub-cluster variations within a k-sized TIRP population. Thus, in the case of the medical
domain, the same chronic disease might express itself in a population of patients through
only a certain set of meaningful temporal pathways, i.e., possible courses of disease. Indeed,
that is what we discovered in the case of the diabetes domain [18].
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6 Appendix

Table 3 contains the cutoff definitions used for each state in the case of the raw measurements
included in the Diabetes dataset. The rest of the raw data consisted of medications, for each
of which an overall defined daily dose (DDD) abstraction was defined.

The knowledge-based state-abstraction definitions for the measurements were provided
by physicians from Ben Gurion University’s Soroka Medical Center.

In the following four parts of Table 3, the cutoff definitions are presented for each state
for the various temporal measurement variables in the Diabetes dataset.

Table 3 Measurement data types and their cut-off (discretization) values for 3 or 4 state abstractions each,
for four concepts, in the case of the diabetes data set

State Blood glucose HemoglobinA1C LDL cholesterol HDL cholesterol

HDL-male HDL-female

1 <100 <7 <100 <35 <30
2 100-125 7-9 100-130 3545 30-40
3 126-200 9-10.5 130-160 >45 >40
4 >200 >10.5 >160
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