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Abstract Nodes in real-world networks organize into densely linked communities where
edges appear with high concentration among the members of the community. Identifying
such communities of nodes has proven to be a challenging task due to a plethora of defin-
itions of network communities, intractability of methods for detecting them, and the issues
with evaluation which stem from the lack of a reliable gold-standard ground-truth. In this
paper, we distinguish between structural and functional definitions of network communities.
Structural definitions of communities are based on connectivity patterns, like the density
of connections between the community members, while functional definitions are based on
(often unobserved) common function or role of the community members in the network.
We argue that the goal of network community detection is to extract functional commu-
nities based on the connectivity structure of the nodes in the network. We then identify
networks with explicitly labeled functional communities to which we refer as ground-truth
communities. In particular, we study a set of 230 large real-world social, collaboration, and
information networks where nodes explicitly state their community memberships. For exam-
ple, in social networks, nodes explicitly join various interest-based social groups. We use
such social groups to define a reliable and robust notion of ground-truth communities. We
then propose a methodology, which allows us to compare and quantitatively evaluate how
different structural definitions of communities correspond to ground-truth functional com-
munities. We study 13 commonly used structural definitions of communities and examine
their sensitivity, robustness and performance in identifying the ground-truth. We show that
the 13 structural definitions are heavily correlated and naturally group into four classes. We
find that two of these definitions, Conductance and Triad participation ratio, consistently
give the best performance in identifying ground-truth communities. We also investigate a
task of detecting communities given a single seed node. We extend the local spectral cluster-
ing algorithm into a heuristic parameter-free community detection method that easily scales
to networks with more than 100 million nodes. The proposed method achieves 30 % relative
improvement over current local clustering methods.
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1 Introduction

Networks are a natural way to represent social [23], biological [26], technological [18], and
information [9] systems. Nodes in such networks organize into densely linked groups that
are commonly referred to as network communities, clusters, or modules [12]. There are many
reasons why nodes in networks organize into densely linked clusters. For example, society is
organized into social groups, families, villages, and associations [8,14]. On the World Wide
Web, topically related pages link more densely among themselves [9]. And, in metabolic
networks, densely linked clusters of nodes are related to functional units, such as pathways
and cycles [26].

In community detection, one aims to identify sets of nodes that correspond to communities.
One way to formalize the process of community detection is to think of a scoring function
that quantifies how much the connectivity pattern of a given set of nodes resembles the
connectivity structure of a network community. Most scoring functions, like Modularity [25]
and Conductance [31], are based on the intuition that sets of nodes that have many connections
between its members correspond to communities. Once the scoring function is defined then
one applies a procedure to find sets of nodes with high score. Such sets of nodes are then
extracted and referred to as network communities.

Identifying such communities in networks [7,10,16,29,36] has proven to be a challenging
task [11,19,20] due to several reasons: There exist a plethora of definitions, scoring func-
tions, and methods for extracting network communities [6,27]; even if we would agree on
a single common structural definition (i.e., a single scoring function), the algorithmic for-
malizations of community detection lead to NP-hard problems [29]; And the lack of reliable
ground-truth makes the evaluation of extracted communities and comparison of algorithms
extremely difficult.

Currently, the performance of community detection methods is often evaluated by manual
inspection. For each detected community, an effort is made to interpret it as a ‘real’ community
by identifying a common property or external attribute shared by all the members of the com-
munity. For example, when examining communities in a scientific collaboration network, we
might by manual inspection discover that many of detected communities correspond to groups
of scientists working in common areas of science [25]. Such anecdotal evaluation procedures
require extensive manual effort, are non-comprehensive, and limited to small networks.

A possible solution to this problem would be to find a reliable definition of explic-
itly labeled gold-standard ground-truth communities. Using such ground-truth communities
would allow for quantitative and large-scale evaluation and comparison of network com-
munity detection methods. Such ability would enable the field to move beyond the current
standard of anecdotal evaluation of communities to a comprehensive evaluation of commu-
nity detection methods based on their performance to extract the ground-truth. Furthermore,
it would allow for the development of new community detection methods and improve the
understanding of how communities manifest themselves in networks.

1.1 Present work: structure and function

In this paper, we define a robust notion of ground-truth communities. We achieve this by
distinguishing between structural and functional definitions of communities. We argue that
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the goal of network community detection is to extract functional communities based on the
connectivity structure of the nodes in the network. We identify networks with explicitly
labeled functional communities and then present a methodology that allows us to evaluate
different structural definitions of communities.

Generally, after some community detection algorithm identifies communities based on
the network structure, the essential next step is to interpret the communities by identifying a
common external property or a function that the members of a given community share and
around which the community organizes [8]. For example, given a protein–protein interaction
network of a cell, one first identifies communities based on the structure of the network
and then examines that these communities correspond to real functional units of a cell.
Thus, the goal of community detection is to identify sets of nodes with a common (often
external/latent/unobserved) function based on the connectivity structure of the network. In
this context, a common function can be a common role, affiliation, or attribute [14]. In
our protein interaction network example above, such common function of nodes would be
‘belonging to the same functional unit.’ Or, in a social network, common function would be
‘belonging to the same social circle.’

Thus, community detection methods identify communities based on the network struc-
ture, while the detected communities are then evaluated based on their function. Thus, we
distinguish between structural and functional definitions of communities. Structural defin-
itions are based on the structure of the connectivity between a set of nodes (e.g., a set of
nodes with high Modularity score [25]). On the other hand, functional definitions of network
communities are based on common function or role that the community members share (e.g.,
proteins of the same functional unit). Generally, the basic premise behind the network com-
munity detection is that functional communities have distinct structural patterns, and thus,
one may be able to identify them based on the network structure.

1.2 Present work: networks with ground-truth communities

Our goal here is to obtain high-quality labels of ground-truth communities so that we can
then devise a methodology to compare and evaluate various structural definitions of network
communities.

While explicitly labeled structural communities are nearly impossible to obtain, our main
insight here is that there exist networks where functional communities are explicitly declared
in the data. Thus, we use sets of nodes with a common function to define ground-truth
communities.

We gathered 230 networks from a number of different domains and research areas where
nodes explicitly state their ground-truth functional community memberships. The size of the
networks ranges from hundreds of thousand to hundreds of millions of nodes and edges. The
networks represent a wide range of edge densities, numbers of explicitly defined communities,
as well as sizes and amounts of community overlap.

Our collection consists of social, collaboration, and information networks for each of
which we find a robust functional definition of ground-truth. For example, in online social net-
works (like Orkut, LiveJournal, and Friendster), we consider explicitly defined interest-based
groups (e.g., fans of pop singer Lady Gaga, students of the same school) as ground-truth func-
tional communities. Nodes in these networks explicitly join such groups that organize around
specific topics, interests, and affiliations [8,14]. We also consider the product co-purchasing
network from Amazon where we define ground-truth using hierarchically nested product
categories. Here, all members (i.e., products) of the same ground-truth community share a
common function or purpose. Last, in the scientific collaboration network of DBLP, we use
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publication venues as proxies for ground-truth research communities. Our reasoning here
is that in scientific collaboration networks, real communities would correspond to areas of
science. Thus, we use journals and conferences as proxies for (heavily overlapping) scientific
communities.

1.3 Present work: methodology and findings

The availability of ground-truth allows us to examine how well various structural definitions
of network communities correspond to functional communities (i.e., ground-truth commu-
nities). A good structural definition of a community would be such that it would correspond
to connectivity patterns that correspond to functional communities. Our experiments show
a clear connection between functional and structural definitions: We show that functional
communities exhibit distinct connectivity patterns. This means that we can evaluate different
structural definitions based on their ability to identify ground-truth communities.

We study 13 commonly used structural definitions of communities and examine their
quality, sensitivity, and robustness. Each such definition corresponds to a scoring function
that scores a given set of nodes how ‘community-like’ it is, i.e., a scoring function assigns
high score to sets of nodes that closely resemble functional communities. By comparing
correlations of scores that different structural definitions assign to ground-truth communi-
ties, we find that the 13 definitions naturally group into four distinct classes. These classes
correspond to definitions that consider: (1) only internal community connectivity, (2) only
external connectivity of the nodes to the rest of the network; (3) both internal and external
community connectivity, and (4) network modularity.

We then consider an axiomatic approach and define four intuitive properties that communi-
ties would ideally have. Intuitively, a ‘good’ community is cohesive, compact, and internally
well connected while being also well separated from the rest of the network. This allows us to
characterize which connectivity patterns a given structural definition detects and which ones
it misses. Next, we also investigate the robustness of community scoring functions based
on four types of randomized perturbation strategies. Overall, evaluation shows that among
the scoring functions considered here those that are based on triadic closure [35] and the
Conductance score [31] best capture the structure of ground-truth communities.

Last, we also investigate a task of discovering all members of a community given a single
member node. We extend the local spectral clustering algorithm [3] into a parameter-free
community detection method that scales to networks of hundreds of millions of nodes. Our
method recovers ground-truth communities with 30 % relative improvement in the F1-score
over the current local graph partitioning methods.

To the best of our knowledge, our work is the first to use social and information networks
with explicit community memberships to define an evaluation methodology for comparing
network community detection methods based on their accuracy on real data. We believe
that the present work will bring more rigor to the standard for the evaluation of community
detection methods. All our datasets can be downloaded at http://snap.stanford.edu.

The rest of the paper is organized as follows. Section 2 describes the datasets and defines
the notions of ground-truth communities in each dataset. Section 3 shows the distribution of
the properties of ground-truth communities and the structural characteristics of ground-truth
communities. Section 4 describes the structural definitions of communities that we consider
in this paper and discusses the relationship among the definitions. In Sect. 5, we evaluate
the structural definitions of communities on two aspects. First, we study what connectivity
patterns various definitions prefer and which they penalize. Second, we evaluate the robust-
ness of community structure by using a set of randomized community perturbation strategies.
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Section 6 considers the problem of identifying ground-truth communities from seed nodes.
Section 7 discusses related work. We conclude in Sect. 8.

Last, we also note that a shorter version of this paper appeared at the IEEE International
Conference on Data Mining (ICDM) [38].

2 Ground-truth communities

We begin by explaining the intuition behind the definition the ground-truth communities.
We distinguish between structural and functional definitions of communities. A structural
definition of communities is a set of nodes with a particular connectivity structure (e.g., set
of nodes with high edge density or set of nodes with high Modularity score). A functional
definition of communities is a set of nodes with a common function, which can be common
role, affiliation, or attribute [8,14].

With these two definitions of communities, community detection process generally fol-
lows a two-step procedure: First one discovers communities based on a structural definition.
And then one argues that the discovered communities correspond to functional communi-
ties. For example, Palla et al. [26] identified structural communities by identifying sets of
overlapping k-cliques on protein–protein interaction networks. Then, they found that these
structurally defined communities of proteins correspond to functional modules of proteins. In
this example, communities are extracted based on the structural definition and then evaluated
based on the functional definition by arguing that ‘belonging to the same functional module’
is the common function of nodes. An issue with this approach is that it is ad hoc and that the
evaluation of extracted structural communities is manual—each extracted community has to
be manually inspected.

Our approach takes the different direction: We first identify large-scale datasets where
functional communities are already labeled, and then we evaluate community detection meth-
ods based on their ability to extract ground-truth functional communities.

Overall we consider 230 large social, collaboration and information networks, where for
each network we have a graph and a set of functionally defined ground-truth communities.
Members of these ground-truth communities share a common function, property or purpose.
Networks that we study come from a wide range of domains and sizes. Table 1 lists the
networks and their properties.

2.1 Ground-truth communities in social networks

First, we consider three online social networks: the LiveJournal blogging community [5], the
Friendster online network [23], and the Orkut social network [23]. In these networks, users

Table 1 230 Social, collaboration, and information networks with explicit ground-truth communities

Dataset N E C S A

LiveJournal 4.0M 34.9M 311,782 40.06 3.09

Friendster 117.7M 2,586.1M 1,449,666 26.72 0.32

Orkut 3.0M 117.2M 8,455,253 34.86 95.9

Ning (225 nets) 7.0M 35.5M 137,177 46.89 0.92

Amazon 0.33M 0.92M 49,732 99.86 14.83

DBLP 0.42M 1.34M 2,547 429.79 2.56

N number of nodes, E number of edges, C number of communities, S average community size, and A
community memberships per node. Ning statistics are aggregated over 225 different subnetworks

123



186 J. Yang, J. Leskovec

create explicit functional groups to which other users then join. Such groups serve as orga-
nizing principles of nodes in social networks. Groups range from small to very large and are
created based on specific topics, interests, hobbies, and geographical regions. For example,
LiveJournal categorizes communities into the following types: culture, entertainment, expres-
sion, fandom, life/style, life/support, gaming, sports, student life, and technology. There are
over 100 communities in LiveJournal with ‘Stanford’ in their name, and they range from
communities based on different classes, student ethnic communities, departments, activity
and interest-based groups, varsity teams, etc. Overall, there are over three hundred thousand
explicitly defined communities in LiveJournal.

Similarly, users in Friendster as well as in Orkut define topic-based communities that
others then join. Both networks have more than a million explicitly defined groups and
each user can join to one or more such groups. We consider each group as a ground-truth
community.

Last, we have a set of 225 different online social networks [15] that are all hosted by the
Ning platform. It is important to note that each Ning network is a separate social network—an
independent Web site with a separate user community. For example, the NBA team Dallas
Mavericks and diabetes patients network TuDiabetes all use Ning to host their separate
online social networks. After joining a specific network, users then create and join groups.
For example, in TuDiabetes, Ning network groups form around specific types of diabetes,
parenting children with diabetes, different geographical regions, age groups, and similar.
Note that these are exactly the properties around which we expect communities to form in
a network of diabetes patients. Again, we use such explicitly defined functional groups as
ground-truth communities.

As we see in Table 1, ground-truth communities in social networks are quite diverse.
For example, communities in Friendster are about twice smaller than communities in Ning
or LiveJournal. Communities in Orkut overlap heavily as people are members of many
communities at the same time, while for example, in Friendster, most nodes do not belong
to any community.

2.2 Ground-truth communities in product networks

The second type of a network we consider is the Amazon product co-purchasing network [18].
The nodes of the network represent products and edges link commonly co-purchased prod-
ucts. Each product (i.e., node) belongs to one or more hierarchically organized product cate-
gories, and products from the same category define a group which we view as a ground-truth
community. Note that here the definition of ground-truth is somewhat different. In this case,
nodes that belong to a common ground-truth community share a common function or purpose.

Ground-truth communities in product networks (Table 1) are larger than in social net-
works and include around 100 nodes on the average. Given the hierarchical categorization
of products, we also note that an average product belongs to 14 categories, i.e., ground-truth
communities.

2.3 Ground-truth communities in collaboration networks

Finally, we also consider the DBLP scientific collaboration network [5], where nodes repre-
sent authors and edges connect authors that have co-authored a paper. To define ground-truth
in this setting, we reason as follows. Functional communities in a scientific domain cor-
respond to people working in common areas and subareas of science. However, note that
publication venues serve as good proxies for scientific areas: People publishing in the same
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conference form a scientific community. Thus, we use publication venues (i.e., conferences,
journals) as ground-truth communities, which serve as proxies for highly overlapping scien-
tific communities around which the collaboration network then organizes.

Ground-truth communities in the DBLP network (Table 1) are the largest and moderately
overlap with nodes being part of about 2.5 different communities on the average.

To conclude, we note that all our networks and the corresponding ground-truths are com-
plete and publicly available at http://snap.stanford.edu. For each of these networks, we iden-
tified a sensible way of defining ground-truth communities that serve as organizational units
of these networks. We were careful to define ground-truth communities based on common
affiliation, social circle, role, activity, interest, function, or some other property around which
networks organize into communities [8,14]. Even though our networks come from very dif-
ferent domains and have very different motivation for the formation of communities, the
results we present here are consistent and robust. Our work is consistent with the premise
that is implicit in all network community literature: members of real communities share some
(latent/unobserved) property or affiliation that serves as an organizing principle of the nodes
and makes them well connected in the network. Here, we use these groups around which
communities organize to explicitly define ground-truth. And, as we will later see, the ground-
truth communities exhibit connectivity patterns that match our intuition of communities as
densely connected sets of nodes.

2.4 Data preprocessing

To represent all networks in a consistent way, we consider each network as an unweighted
undirected static graph. Because members of the group may be disconnected in the network,
we consider each connected component of the group as a separate ground-truth community.
However, we allow ground-truth communities to be nested and to overlap, i.e., nodes can be
members of multiple communities at once.

3 Characteristics of ground-truth communities

In this section, we examine properties of ground-truth communities. First we study size and
overlap distributions of communities and then proceed to examine finer structural properties
of ground-truth communities.

3.1 Global properties of ground-truth communities

We start by analyzing the distribution of the properties of ground-truth communities. Figure 1
gives the distributions (complementary CDF) of community sizes which are the number of
the nodes in the communities. Notice that all distributions are heavily skewed with most
ground-truth communities being small, while large communities also exist. For example,
largest social communities contain between one and ten thousand people, while product
communities can be even larger.

To get a sense of how much communities overlap, we also examine how many communities
a node belong to. Figure 2 plots the distribution of the number of community memberships
that a node belongs to. Again, we observe heavy tails with most nodes belonging to only a
small number of communities and few nodes belonging to many.

We further examine the properties of community overlaps. We focus on characterizing
the overlap between pairs of ground-truth communities. We show the distribution of the
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(f) DBLP

Fig. 1 Ground-truth community size distribution. Complementary cumulative distribution function of the size
of ground-truth communities. The size of a ground-truth community denotes the number of nodes belonging
to the ground-truth community
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Fig. 2 Node membership distribution. Complementary cumulative distribution function of the node mem-
berships (the number of communities nodes belong to)

absolute overlap sizes (the number of the nodes in the overlap) in Fig. 3. We observe that
the distributions follow a power law, as also observed by Palla et al. [26] on detected (rather
than ground-truth) communities.

Last, we also study on the relative size of community overlaps. Relative sizes of over-
laps are of our interest as they can characterize how ground-truth communities overlap: Do
ground-truth communities overlap in a nested structure? Or, do they overlap only for a small
fraction of members? We measure the fraction f of the size of the overlap A∩ B between two
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Fig. 3 Community overlap distribution. Complementary cumulative distribution function of the size of over-
laps between pairs of ground-truth communities. The size of an overlap is the number of the nodes that belong
to the overlap
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Fig. 4 Relative size of community overlaps. Histogram of the fraction of the relative overlap size.
When ground-truth communities A, B overlap A ∩ B, then the fraction of the relative overlap size is
|A ∩ B|/min(|A|, |B|), where min(x, y) is the smaller of x and y

communities A, B to the size of the smaller community, min(|A|, |B|) ( f = |A ∩
B|/min(|A|, |B|)). If the fraction of overlap is close to 1, the network has a nested structure
where the smaller community is included by the larger community. On the other hand, f
being close to 0 means that most communities are non-overlapping. We plot the histogram of
the overlap fraction in Fig. 4. The Amazon network shows high probability at f = 1 because
the ground-truth communities form a nested structure by construction. In social networks and
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the DBLP network, most overlaps take a small fraction of individual communities, which is
reasonable as each community has its own special interests.

3.2 Structural characteristics of ground-truth communities

In this subsection, we show that ground-truth communities that we defined have distinct
connectivity properties. We show that our ground-truth communities, which are sets of nodes
sharing common functions or properties (i.e., functional communities), also exhibit distinctive
structural properties. The experiments confirm the premise that the functional communities
exhibit distinct structural connectivity patterns and can thus be discovered based on the
network connectivity structure.

We compare structural properties of a ground-truth community Ci to those of a set of
nodes that do not form a ground-truth community with the goal to establish how ground-truth
communities structurally differ from non-communities. For each ground-truth community
Ci , we sample a ‘non-community’ C̃i , a set of nodes outside Ci to which we compare Ci . To
make our experiments realistic, we add three constraints to C̃i :

1. C̃i has the same number of nodes as Ci

2. C̃i is connected
3. Members of C̃i have the same distribution of shortest path distances as Ci

The last constraint is an approximation for the ideal that we want Ci and C̃i to have simi-
lar ‘compactness’ or ‘connectedness.’ To achieve these constraints, we proceed as follows.
We take a node u ∈ Ci uniformly at random and compute the distance histogram Hu(k) =
|{v ∈ Ci : d(u, v) = k}| that is the number of other member nodes who are k-hop away
from u (k = 0, 1, 2, . . .). Then, we pick ũ �∈ Ci from which we generate C̃i by adding Hu(k)

nodes from the k-hop neighbors of u′. For example, if Hu(0) = 1, Hu(1) = 3, Hu(2) = 5,
C̃i contains ũ, 3 neighbors of ũ, and 5 2-hop neighbors of ũ. At the same time, we only
choose the nodes that are connected to at least one of the other members of C̃i to guarantee
the connectedness of C̃i .

We then measure the structural properties of Ci and C̃i . For a set of nodes S (S = Ci

or C̃i ) that has nS member nodes and mS edges among its member nodes, we measure the
following:

• Clustering coefficient (CCF) is the average clustering coefficient between the member
nodes of S [35].

• Average degree (AvgDeg) is the average number of node degree to other member nodes.
(2mS/nS) [27].

• Edge density (Density) is the fraction of pairs of member nodes that have an edge
(4mS/(nS(nS − 1))) [27].

• Cohesiveness captures the intuition that a good community should be internally well and
evenly connected, i.e., it should be relatively hard to split a community into two subcom-
munities [19]. We capture this intuition by defining cohesiveness as the Conductance of
the internal cut: maxS′⊂S φ(S′) where φ(S′) is the Conductance of S′ measured in the
induced subgraph by S. We will precisely define Conductance later, but intuitively, the
more cohesive the community, the more edges have to be cut in order to further split the
community and thus the higher the Conductance score of the internal cut.

Table 2 shows the ratio between the average value of Ci and that of C̃i for the 3 proper-
ties. We observe that groups show 18 % higher clustering coefficient, 51 % higher average
degree, 39 %higher edge density, and 102 % higher cohesiveness than sets of randomly chosen
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Table 2 Comparison between ground-truth communities (functional communities) and sets of randomly
chosen connected nodes

Dataset CCF AvgDeg Density Cohesiveness

LiveJournal 1.18 1.79 1.54 2.68

Friendster 1.13 1.82 1.61 1.24

Orkut 1.11 1.47 1.45 1.17

Ning 1.48 1.39 1.20 1.31

Amazon 1.06 1.29 1.25 3.66

DBLP 1.09 1.33 1.30 2.06

Average 1.18 1.51 1.39 2.02

Ratio between the community scores of a ground-truth community over those of a set of connected nodes with
the same size and the same distance distribution. CCF clustering coefficient, AvgDeg average degree of a node
to other member nodes, Density the fraction of pairs of members that have an edge, Cohesiveness the highest
Conductance among possible internal cuts. Values higher than 1 mean that ground-truth communities achieve
higher score than corresponding non-community sets of nodes

connected sets of nodes. This shows that the members of functional communities tend to be
more cohesively and densely connected and thus exhibit distinct connectivity patterns.

4 Community scoring functions

In community detection, one aims to identify sets of nodes that correspond to communities.
One way to formalize this process is to design a scoring function that for a set of nodes outputs
a quality score that characterizes how much the connectivity structure of a given set of nodes
resembles that of a community. The idea then is that given a community scoring function,
one can then find sets of nodes with high score and consider these sets as communities.

In practice, nearly all scoring functions build on the intuition that communities are sets of
nodes with many connections between the members and few connections from the members
to the rest of the network. There are many possible ways to mathematically formalize this
intuition. We gather 13 commonly used scoring functions or, equivalently, 13 structural
definitions of network communities. Some scoring functions are well known in the literature,
while others are proposed here for the first time.

Given a set of nodes S, we consider a function f (S) that characterizes the community
quality of a given set of nodes S. Let G(V, E) be an undirected graph with n = |V | nodes and
m = |E | edges. Let S be the set of nodes, where nS is the number of nodes in S, nS = |S|;
mS the number of edges in S, mS = |{(u, v) ∈ E : u ∈ S, v ∈ S}|; cS , the number of edges
on the boundary of S, cS = |{(u, v) ∈ E : u ∈ S, v �∈ S}|; and d(u) is the degree of node
u. We consider 13 scoring functions f (S) that capture the notion of quality of a network
community S. The experiments we will present later reveal that scoring functions naturally
group into the following four classes:

(A) Scoring functions based on internal connectivity:

• Internal density: f (S) = mS
nS(nS−1)/2 is the internal edge density of the node set S [27].

• Edges inside: f (S) = mS is the number of edges between the members of S [27].
• Average degree: f (S) = 2mS

nS
is the average internal degree of the members of S [27].

• Fraction over median degree (FOMD):
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f (S) = |{u:u∈S,|{(u,v):v∈S}|>dm }|
nS

is the fraction of nodes of S that have internal degree
higher than dm , where dm is the median value of d(u) in V .

• Triangle participation ratio (TPR):

f (S) = |{u:u∈S,{(v,w):v,w∈S,(u,v)∈E,(u,w)∈E,(v,w)∈E}�=∅}|
nS

is the fraction of nodes in S that
belong to a triad.

(B) Scoring functions based on external connectivity:

• Expansion measures the number of edges per node that point outside the cluster: f (S) =
cS
nS

[27].

• Cut ratio is the fraction of existing edges (out of all possible edges) leaving the cluster:
f (S) = cS

nS(n−nS)
[10].

(C) Scoring functions that combine internal and external connectivity:

• Conductance: f (S) = cS
2mS+cS

measures the fraction of total edge volume that points
outside the cluster [31].

• Normalized Cut: f (S) = cS
2mS+cS

+ cS
2(m−mS)+cS

[31].

• Maximum-ODF (Out Degree Fraction):

f (S) = maxu∈S
|{(u,v)∈E :v �∈S}|

d(u)
is the maximum fraction of edges of a node in S that point

outside S [9].
• Average ODF: f (S) = 1

nS

∑
u∈S

|{(u,v)∈E :v �∈S}|
d(u)

) is the average fraction of edges of nodes

in S that point out of S [9].

• Flake ODF: f (S) = |{u:u∈S,|{(u,v)∈E :v∈S}|<d(u)/2}|
nS

is the fraction of nodes in S that have

fewer edges pointing inside than to the outside of the cluster [9].

(D) Scoring function based on a network model:

• Modularity: f (S) = 1
4 (mS − E(mS)) is the difference between mS , the number of edges

between nodes in S, and E(mS), the expected number of such edges in a random graph
with identical degree sequence [24].

4.1 Experimental result: four classes of scoring functions

We examine relationship of the 13 community scoring functions we introduced. For each of
the 10 million ground-truth communities in our networks, we compute a score using each
of the 13 scoring functions. We then create a correlation matrix of scoring functions and
threshold it. Figure 5 shows connections between scoring functions with correlation ≥0.6 on
the LiveJournal network.

We observe that scores naturally group into four clusters. This means that scoring func-
tions of the same cluster return heavily correlated values and quantify the same aspect of
connectivity structure. Overall, none of the scoring functions are negatively correlated, which
means that none of them systematically disagree. Interestingly, Modularity is not correlated
with any other scoring function (average degree is the most correlated at 0.05 correlation).

We observe very similar results in all other network datasets that we considered in this
study.

The experiment demonstrates that even though many different structural definitions of
communities have been proposed, these definitions are heavily correlated. Essentially, there
are only 4 different structural notions of network communities as revealed by Fig. 5. For
brevity, in the rest of the paper, we present results for 6 representative scoring functions
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Fig. 5 Correlations of community scoring functions. Two scoring functions are connected by an edge if the
values output by scoring functions are correlated with correlation coefficient ≥0.6. Notice four distinct classes
of scoring functions

(denoted as blue nodes in Fig. 5): 4 from the two large clusters and 2 from the two small
clusters.

We also note that here we computed the values of the 13 scores on ground-truth communi-
ties. In reality, the aim of community detection is to find sets of nodes that maximize a given
scoring function. Exact maximization of these functions is typically NP-hard and leads to its
own set of interesting problems. (Refer to [19] for discussion.)

5 Evaluation of community scoring functions

The second main purpose of our paper is to develop an evaluation methodology for network
community detection. Based on ground-truth communities, we now aim to compare and eval-
uate different community scoring functions. We focus on two aspects of community scoring
functions: how well the community scoring function can detect communities (Sect. 5.1) and
how robust the community scoring function is to noise in network structure as well as node
labeling (Sect. 5.2).

5.1 Detecting communities

Our goal is to rank different structural definitions of network communities (i.e., community
scoring functions) by their ability to detect ground-truth communities. We adopt the following
axiomatic approach. First, we define four community ‘goodness’ metrics that formalize the
intuition that ‘good communities’ are both compact and well connected internally while
being relatively well separated from the rest of the network.

The difference between community scoring functions from Sect. 4 and the goodness
metrics defined above is that a community scoring function quantifies how community-like
a set is, while a goodness metric in an axiomatic way quantifies a desirable property of a
community. A set with high goodness metric does not necessarily correspond to a community,
but a set with high community score should have a high value on one or more goodness
metrics. In other words, the goodness metrics shed light on various (in many cases mutually
exclusive) aspects of the network community structure.
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Using the notation from Sect. 4, we define four goodness metrics g(S) for a node set S:

• Separability captures the intuition that good communities are well separated from the rest
of the network [10,31], meaning that they have relatively few edges pointing from set S
to the rest of the network. Separability measures the ratio between the internal and the
external number of edges of S: g(S) = mS

cS
.

• Density builds on intuition that good communities are well connected [10]. It measures
the fraction of the edges (out of all possible edges) that appear between the nodes in S,
g(S) = mS

nS(nS−1)/2 .

• Cohesiveness characterizes the internal structure of the community. Intuitively, a good
community should be internally well and evenly connected, i.e., it should be relatively hard
to split a community into two subcommunities. We characterize this by the Conductance
of the internal cut. Formally, g(S) = maxS′⊂S φ(S′) where φ(S′) is the Conductance of
S′ measured in the induced subgraph by S. Conductance essentially corresponds to the
ratio of the edges in S′ that point outside the set and the edges inside the set S′. A good
community should have high cohesiveness (high internal Conductance) as it should require
deleting many edges before the community would be internally split into disconnected
components [19].

• Clustering coefficient is based on the premise that network communities are manifestations
of locally inhomogeneous distributions of edges, because pairs of nodes with common
neighbors are more likely to be connected with each other [35].

5.1.1 Experimental setup

We are interested in quantifying how ‘good’ are the communities chosen by a particular
scoring function f (S) by evaluating their goodness metric. We formulate our experiments as
follows: For each of 230 networks, we have a set of ground-truth communities Si . For each
community scoring function f (S), we rank the ground-truth communities by the decreasing
score f (Si ). We measure the cumulative running average value of the goodness metric g(S)

of the top-k ground-truth communities (under the ordering induced by f (Si )).
The intuition for the experiments is the following. A perfect community scoring function

would rank the communities in the decreasing order of the goodness metric, and thus, the
cumulative running average of the goodness metric would decrease monotonically with k.
Whereas if a hypothetical community scoring function would randomly rank the communi-
ties, then the cumulative running average would be a constant function of k.

5.1.2 Experimental results

We found qualitatively similar results on all our datasets. In this section, we only present
results for the LiveJournal network. Results are representative for all other networks. We
point the reader to the appendix of the paper for a complete set of results (Figs. 10 and 11).

Figure 6a shows the results by plotting the cumulative running average of separability
score for LiveJournal ground-truth communities ranked by each of the six community scoring
functions. Curve ‘U’ presents the upper bound, i.e., it plots the cumulative running average
of separability when ground-truth communities are ordered by decreasing separability. If the
scoring function would order communities exactly by their value of the goodness score, then
optimal curve ‘U’ would be achieved.

We observe that Conductance (C) and cut ratio (CR) give near optimal performance, i.e.,
they nearly perfectly order the ground-truth communities by separability. On the other hand,
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Fig. 6 Cumulative average of goodness metrics for LiveJournal communities ranked by each of the six
representative scoring functions. C conductance and T TPR, with high and monotonically decreasing values
perform best

we observe Triad participation ratio (T) and Modularity (M) score ground-truth communities
in the inverse order of separability (especially for k < 100), which means that they both
prefer densely linked sets of nodes.

Similarly, Fig. 6b, c, and d shows the cumulative running average of community density,
cohesiveness, and clustering coefficient. We observe that all scoring functions (except Modu-
larity) rank denser, more cohesive and more clustered ground-truth communities higher. For
the density metric, the fraction over median degree (D) score performs best for high values of
k followed by Conductance (C) and Flake ODF (F). In terms of cohesiveness and clustering
coefficient, the Triad participation ratio (T) score gives by far the best results. In all cases,
the only exception is the Modularity, which ranks the communities in nearly reverse order of
the goodness metric (the cumulative running average increases as a function of k). We note
that these are all well-known issues of Modularity [11], but they get further attenuated when
tested on ground-truth communities.

The curves in Fig. 6 illustrate the ability of the scoring functions to rank communities for
the LiveJournal communities. To further quantify this, we perform the following experiment.
For a given goodness metric g and for each scoring function f , we measure the rank of each
scoring function in comparison with other scoring functions at every value of k. For example,
in Fig. 6a, the rank at k = 100 of Conductance is 1, Cut ratio 2, Flake ODF 3, FOMD 4,
Modularity 5, and TPR 6. For every k, we rank the scores and compute the average rank over

123



196 J. Yang, J. Leskovec

Table 3 Average scoring function rank for each goodness metric

Scoring function Separability Density Cohesiveness Clustering

Conductance (C) 1.0 3.5 3.4 3.1

Flake ODF (F) 3.9 3.6 3.5 4.3

FOMD (D) 4.9 3.0 2.9 2.9

TPR (T) 4.5 2.3 2.1 1.2

Modularity (M) 4.0 5.5 5.7 3.9

Cut ratio (CR) 2.6 3.1 3.2 5.5

Conductance gives the highest separability, while Triad participation ratio (TPR) scores best on the remaining
metrics
Best performing scores are bolded

all values of k, which quantifies the ability of the scoring function to identify communities
with high goodness metric.

Table 3 shows the average rank for each score and each goodness metric. An average rank
of 1 means that a particular score always outperforms other scores, while rank of 6 means
that the score gives worst ranking out of all 6 scores. We observe that Conductance (C) per-
forms best in terms of separability but relatively bad in the other three metrics. For density,
cohesiveness, and clustering coefficient, Triad participation ratio (T) is the best. Perhaps not
surprisingly, Triad participation ratio scores badly on separability of ground-truth communi-
ties. Thus, Conductance is able to identify well-separated communities, but performs poorly
in identifying dense and cohesive sets of nodes with high clustering coefficient. On the other
hand, triad participation ratio gives the worst performance in terms of separability but scores
the best for the other three metrics.

We conclude that depending on the network, different structural notions of network com-
munities might be appropriate. When the network contains well-separated non-overlapping
communities, Conductance is the best scoring function. When the network contains dense
heavily overlapping communities, then the Triad participation ratio defines the most appropri-
ate notion of a community. Further research is needed to identify most appropriate structural
definitions of communities for various types of networks and functional communities. For
example, in social networks, we have both identity-based and bond-based communities [28],
and they may in fact have different structural signatures.

Figures 10 and 11 in the appendix show the results for all the networks, where we find
similar trends. Interestingly, in Figs. 10 and 11, we also observe that the average goodness
metric of the top k communities remains flat but then quickly degrades. We observe the same
pattern in all our datasets. Thus, for the remainder of the paper, we focus our attention on a
set of the top 5,000 communities of each network based on the average rank over the 6 scores.

5.2 Robustness to perturbation

In this subsection, we evaluate community scoring functions using a set of perturbation
strategies. We develop a set of strategies to generate randomized perturbations of ground-
truth communities, which allows us to investigate robustness and sensitivity of community
scoring functions. Intuitively, a good community scoring function should be such that it is
stable under small perturbations of the ground-truth community but degrades quickly with
larger perturbations.

Our reasoning is as follows. We desire a community scoring function that scores well
when evaluated on a ground-truth community but scores low when evaluated on a perturbed
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community. In other words, an ideal community scoring function should give a maximal value
when evaluated on the ground-truth community. If we consider a slightly perturbed ground-
truth community (i.e., a node set that differs very slightly from the ground-truth community),
we would want the score to be nearly as good as the score of the original ground-truth
community. This would mean that the scoring function is robust to noise. However, if the
ground-truth community is perturbed so much that it resembles a random set of nodes, then
a good scoring function should give it a low score.

5.2.1 Community perturbation strategies

We proceed by defining a set of community perturbation strategies. To vary the amount of
perturbation, each perturbation strategy has a single parameter p that controls the intensity of
the perturbation. Given p and a ground-truth community defined by its members S, the com-
munity perturbation starts with S and then modifies it (i.e., changes its members) by executing
the perturbation strategy p|S| times. We define the following perturbation strategies:

• NodeSwap perturbation is based on the mechanism where the community memberships
diffuse from the original community through the network. We achieve this by picking a
random edge (u, v) where u ∈ S and v �∈ S and then swap the memberships (i.e., remove
u from S and add v). Note that NodeSwap preserves the size of S but if v is not connected
to the nodes in S, then NodeSwap makes S disconnected.

• Random takes community members and replaces them with random non-members. We
pick a random node u ∈ S and a random v �∈ S and then swap the memberships. Like
NodeSwap, Random maintains the size of S but may disconnect S. Generally, Random
will degrade the quality of S faster than NodeSwap, since NodeSwap only affects the
‘fringe’ of the community.

• Expand perturbation grows the membership set S by expanding it at the boundary. We
pick a random edge (u, v) where u ∈ S and v �∈ S and add v to S. Adding v to S will
generally decrease the quality of the community. Expand preserves the connectedness of
S but increases the size of S.

• Shrink removes members from the community boundary. We pick a random edge (u, v)

where u ∈ S, v �∈ S and remove u from S. Shrink will decrease the quality of S and result
in a smaller community while preserving connectedness.

For a given S, let h(S, p) denote a perturbed version of the community generated by the
perturbation h of intensity p.

We now quantify the difference of the score between the unperturbed ground-truth com-
munity and its perturbation. We use the Z -score, which measures in the units of standard
deviation how much the scoring function changes as a function of perturbation intensity p.
For ground-truth community Si , the Z -score Z( f, h, p) of community scoring function f
under perturbation strategy h with intensity p is as follows:

Z( f, h, p) = Ei [ f (Si ) − f (h(Si , p))]√
V ari [ f (h(Si , p))] ,

where Ei [·], V ari [·] are the mean and the variance over communities Si , and f (h(Si , p))

is the community score of perturbed Si under perturbation h with intensity p. To measure
f (h(Si , p)), we run 20 trials of h(Si , p) and compute the average value of f . Z -score
is the difference between the average community score of true communities f (Si ) and the
average community scores of perturbed communities f (h(Si , p)) normalized by the standard
deviation of community scores of perturbed communities. Since f (h(Si , p)) are independent
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for each i , Ei [ f (h(Si , p))] follows a normal distribution by the Central Limit Theorem.
Thus, P(z < Z( f, h, p)) gives the probability that Ei [ f (h(Si , p))] > Ei [ f (Si )] where
z is a standard normal random variable. We measure f so that lower values mean better
communities, i.e., we add a negative sign to TPR, Modularity and FOMD. High Z -scores
mean that Ei [ f (Si )] is likely to be smaller than Ei [ f (h(Si , p))] and that Si is better than
h(Si , p) in terms of f .

5.2.2 Experimental results

For each of the 6 community scoring functions, we measure Z -score for perturbation intensity
p ranging between 0.01 and 0.6. This means that we randomly swap between 1 and 60 % of
the community members and measure the Z -score for each scoring function. For small p,
small Z -scores are desirable since they indicate that the scoring function is robust to noise.
For high perturbation intensities p, high Z -scores are preferred because this suggests that
the community scoring function is sensitive, i.e., as the community becomes more ‘random,’
we want the scoring function to significantly increase its value.

Figure 7 shows the Z -scores as a function of perturbation intensity p in the LiveJournal
online social network. We plot the Z -score for each of the 6 community scoring functions.
As expected, the Z -scores increase with p, which means that as the community gets more
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Fig. 7 Z -scores as a function of the perturbation intensity. C conductance and T Triad participation ratio best
detect the perturbations of LiveJournal ground-truth communities
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perturbed, the value of the score tends to decrease. The faster the increase the more sensitive
and thus the better the score. For example, in LiveJournal, under the NodeSwap perturbation
Conductance (C) exhibits the highest Z -score after p > 0.2, and it has the steepest curve.
Triad participation ratio (T) also exhibits desirable behavior. On the other hand, Modularity
(M) score does not change much as we perturb the ground-truth communities. This means that
Modularity is not good at distinguishing true communities from randomized sets of nodes.
Figure 12 and 13 in the appendix give the same plot for all other networks. We observe
similar results.

Interestingly, Modularity (M) fails to achieve increasing Z -score as a function of perturba-
tion intensity p in all the networks except the Ning networks. We note that the key difference
in Ning is the size of networks: Ning networks contain 3,000 nodes in average, whereas
the other 5 networks contain at least almost a million nodes. Thus, our results show that,
while Modularity works well in distinguishing true communities in small networks, it fails in
large networks. Interestingly, this observation is consistent with the theoretical limitation of
Modularity known as ‘the resolution limit’ [11]. Fortunato and Barthélemy [11] proved that
Modularity is unable to distinguish communities when the network is too ‘large’ compared
to community sizes, and this explains the failure of Modularity for 5 large networks other
than Ning. Since the size of communities is generally less than 100 regardless of the network
size (Table 1 and reference [20]), most communities are too ‘small’ for Modularity in these
large-scale networks.

5.2.3 Sensitivity of community scoring functions

We also quantify the sensitivity of community scoring functions by computing the increase
of the Z -score between small (p = 0.05) and large perturbations (p = 0.2). As noted above,
we prefer a community scoring function with fast increase of the Z -score as the community
perturbation intensity increases. Table 4 displays the difference of the Z -score between a large
and a small perturbation: Z( f, h, 0.2) − Z( f, h, 0.05). We compute the average increment
across all the 230 networks. A high value of increment means that the score is both robust
and sensitive. The score is robust because, at small perturbation (p = 0.05), it maintains
low Z -value, while at large perturbation (p = 0.2), it has high Z -value and thus the overall
Z -score increment is high.

Conductance is the most robust score under NodeSwap and Shrink. The Triad participa-
tion ratio (T) is the most robust under Random and Expand. In both cases, Conductance fol-
lows Triad participation ratio closely. We note that the clique percolation method (CPM) [26],
which is the state-of-the-art overlapping community detection method, implicitly optimizes

Table 4 Average absolute increment of the Z -score between small and large community perturbations

Scoring function NodeSwap Random Expand Shrink

Conductance (C) 1.06 1.59 0.50 0.45

Flake ODF (F) 0.51 1.15 0.11 0.41

FOMD (D) 0.18 0.57 0.19 0.12

TPR (T) 0.37 1.85 0.74 0.21

Modularity (M) 0.23 0.14 0.03 0.15

Cut ratio (CR) 0.53 0.83 0.13 0.43

Best performing scores are bolded
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the Triad participation ratio. CPM will add a node to a community only if the node forms
a clique (i.e., a triangle) in the community, and the Triad participation ratio of the detected
communities will be 1.

5.2.4 Bias of scoring functions

The experiments so far revealed surprisingly large differences in the robustness of different
community scoring functions. Interestingly, we also observed that Modularity prefers large
communities (score increases under Expand). To further investigate the bias of different
community scoring functions on the size of the underlying network community, we perform
the following experiment. We measure how the Z -score changes as a function of the size of
the community while keeping perturbation intensity constant. In particular, we calculate the
Z -score of each ground-truth community Si at perturbation intensity level p = 0.2, and plot
it as a function of the community size |Si |. Figure 8 shows the results for the LiveJournal
communities. Since p = 0.2 represents relatively large perturbation, high Z -scores are
desirable.

We observe that under NodeSwap Conductance is the most robust score and that as the
community size increases, robustness of Conductance slightly decreases. For Random and
Expand, the Triad participation ratio score performs best over the whole range of network
community sizes. Generally, best performing scores tend to be more sensitive on small
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Fig. 8 Z -scores as a function of the community size
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Algorithm 1 Community detection from a seed node
Require: Graph G(V, E), seed node s, scoring function f

(1) Compute a random walk scores ru from seed node s using PageRank-Nibble [3].
(2) Order nodes u by the decreasing value of ru/d(u), where d(u) is the degree of u.
(3) Compute the community scoring function f (Sk ) of the first k nodes fk = f (Sk = {ui |i ≤ k})

for every k.
(4) Detect local minimal of f (Sk ) and detect one or more communities
if we want to detect one community then

Find the index k∗ at the first local optima of fk .
return Ŝ = {vi |i ≤ k∗}

else
Find the indices k∗

j at every local optima of fk .

return Ŝ j = {vi |i ≤ k∗
j }

end if

communities. The exception is Modularity. The results for Modularity are consistent with
the resolution limit [11] mentioned previously. The Z -score of Modularity is very close to 0
for communities smaller than 100 members, i.e., Modularity cannot distinguish a community
and a perturbed community when the community is smaller than around 100 nodes due to
resolution limit. However, for large communities, Modularity score shows high Z -scores,
except under the Expand perturbation, where it favors larger null communities in most
networks. We note that we find similar results in other networks (Figs. 14 and 15 in the
Appendix).

6 Discovering communities from a seed node

Now we focus on the task of inferring communities given a single seed node. We consider two
tasks that build on two different viewpoints. The first task is motivated by a community-centric
view where we discover all members of community S given a single member s ∈ S. The
second task is motivated by a node-centric view where we want to discover all communities
that a single node s belongs to. This means we discover both the number of communities s
belongs to and the members of these communities.

6.1 Proposed method

We extend the local spectral clustering algorithm [4,32] into a scalable parameter-free com-
munity detection method. The benefits of our method are: First, the method requires no input
parameters and is able to automatically detect the number of communities as well as the
members of those communities. Second, the computational cost of our method is propor-
tional to the size of the detected community (not the size of the network). Thus, our method
is scalable to networks with hundreds of millions of nodes.

Our method (Algorithm 1) builds on the findings in Sect. 5: First, we aim to find sets
of well-connected nodes around node s. We achieve this by defining a local partitioning
method based on random walks starting from a single seed node [3]. In particular, we use
the PageRank-Nibble random walk method that computes the PageRank vector with error
< ε in time O(1/ε) independent of the network size [4]. The nodes with high PageRank
scores from s correspond to the well-connected nodes around s. Moreover, the random walk
is ‘truncated’ as it sets PageRank scores ru to 0 for nodes u with ru < ε, for some small
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Fig. 9 Two community scoring
functions f (Conductance) and
f ′ (Triad participation ratio)
evaluated on a set Sk of top k
nodes with highest random walk
proximity score to seed node s.
Local optima of f (Sk )

correspond to detected
communities (denoted by stars
for Conductance and a square for
TPR)
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constant ε [3]. This way the computational cost is proportional to the size of the detected
community and not the size of the network.

After the PageRank-Nibble assigns the proximity scores ru , we sort the nodes in decreasing
proximity ru and proceed to the second step of our algorithm which extends the approach of
Spielman and Teng [32]. We evaluate the community score on a set Sk of all the nodes up
to kth one (note that by construction Sk−1 ⊂ Sk). This means that for a chosen community
scoring function f , we compute f (Sk) of the set Sk that is composed of the top k nodes with
the highest random walk score ru . The local minima of the function f (Sk) then correspond
to extracted communities.

We detect local minima of f (Sk)using the following heuristic. For increasing k = 1, 2, . . .,
we measure f (Sk). At some point k∗, f (Sk) will stop decreasing and this k∗ becomes our
candidate point for a local minimum. If f (Sk) keeps increasing after k∗ and eventually
becomes higher than α f (Sk∗), we take k∗ as a valid local minimum. However, if f (Sk) goes
down again before it reaches α f (Sk∗), we discard the candidate k∗. We experimented with
several values of α and found that α = 1.2 gives good results across all the datasets.

For example, Fig. 9 plots f (Sk) for two community scoring functions f (Conductance)
and f ′ (Triad participation ratio). We identify the local optima (denoted by stars and squares)
and use the nodes in the corresponding sets Sk as the detected communities.

Note that our method can detect multiple communities that the seed node belongs to by
identifying different local minima of f (Sk). However, we assume that the communities are
nested (smaller communities are contained in the larger ones) even though the ground-truth
communities may not necessarily follow such a nested structure. Also, note that our method
is parameter-free. Our method differs from local graph clustering approaches [3,32] in two
aspects. First, instead of sweeping only using Conductance, we consider sweeping using
other scoring functions. Second, we find the local optima of the sweep curve instead of the
global optimum—this change gives a large improvement over the conventional local spectral
clustering approaches [3,32].

6.2 Detecting a community from a single member

We first consider the task where we aim to reconstruct a single ground-truth community S
based on one member node s. For each community S, we pick a random member node s as
a seed node and compare the community we detect from s with the ground-truth community
S. Starting from node s, we generate a sweep curve f (Sk). Let k∗ be the value of k where
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Table 5 Performance of our 6 methods and 2 baselines (LC, CPM) at detecting communities from a seed
node

F1-score C F D T M CR LC CPM

LJ 0.64 0.64 0.62 0.57 0.15 0.61 0.54 0.43

FS 0.23 0.22 0.24 0.25 0.24 0.18 0.13 0.14

Orkut 0.21 0.19 0.19 0.18 0.20 0.09 0.20 0.13

Ning 0.24 0.19 0.10 0.19 0.08 0.19 0.17 0.11

Amazon 0.87 0.75 0.73 0.79 0.06 0.85 0.74 0.85

DBLP 0.61 0.61 0.65 0.66 0.04 0.61 0.46 0.53

Avg. F1 0.46 0.43 0.42 0.44 0.13 0.42 0.37 0.36

Avg. prec 0.50 0.53 0.52 0.55 0.13 0.53 0.49 0.38

Avg. rec 0.60 0.47 0.51 0.47 0.71 0.49 0.65 0.69

Best performing scores are bolded

f (Sk) achieves the first local minima. We then use the set Sk∗ as the detected community.
Now, given the ground-truth community S and the detected community Sk∗ , we evaluate how
well-detected Sk∗ corresponds to ground-truth S. For this purpose, we compute precision,
recall, and the F1-score between Sk∗ and S. For all metrics, the score of 1 means that detected
Sk∗ perfectly matches ground-truth S. We consider 6 community scoring functions f (·) and
compare the performance of our method to two standard community detection methods: local
spectral clustering (LC) [3] and the 3-clique clique percolation method (CPM) [26].

Table 5 shows the performance of the proposed method for each scoring function and
for the two baselines. First 5 rows show the F1-score for each of the datasets, and the last
3 rows show the average F1-score, precision and recall over all the datasets. We observe
that the Conductance (C) gives the best average F1-score and outperforms all other scores
on LiveJournal (LJ), Orkut, Amazon, and Ning. For Friendster (FS) and DBLP, the Triad
participation ratio (T) performs best. This agrees with our intuition that for networks, like
LiveJournal, that have fewer community overlaps scoring functions that focus on good sepa-
rability perform well. In networks where nodes belong to multiple communities (like DBLP
where authors publish at multiple venues), the Triad participation ratio (T) performs best.
We also note that the average F1-score of Conductance is 0.46, while the baselines CPM and
LC achieve F1-score of only 0.36 and 0.37, respectively. Note this is 10 % absolute and 30 %
relative improvement over the baselines.

Last, we observe that some methods detect larger communities than necessary (higher
recall, lower precision). Modularity (M) most severely overestimates community size. Con-
ductance (C) and both baselines (CR and CPM) exhibit similar behavior but to a lesser extent.
On the contrary, Flake ODF (F), Fraction over median (D), Triad participation ratio (T), and
Cut ratio (CR) tend to underestimate the community size (higher precision than recall).

6.3 Detecting all communities that a seed node belongs to

We also explore the second task where we want to detect all the communities to which a
given seed node s belongs. In this task, we are given a node s that is a member of multiple
communities, but we do not know which and how many communities s belongs to. We
detect multiple communities by detecting all the local minima (and not just the first one)
of the sweep curve. This way our method detects both the number and the members of
communities.
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Table 6 Average F-score between detected communities and the ground-truth communities to which a seed
node belongs to, when the seed node belongs to g different communities

Network g (Number of communities)

1 2 3 4 ≥5 All nodes

LJ 0.52 0.59 0.52 0.42 0.38 0.53

FS 0.13 0.10 0.08 0.05 0.02 0.13

Orkut 0.21 0.17 0.13 0.11 0.10 0.20

Ning (225 nets) 0.11 0.09 0.07 0.06 0.05 0.11

Amazon 0.59 0.73 0.69 0.66 0.55 0.61

DBLP 0.34 0.24 0.20 0.21 0.16 0.33

For each dataset, we sample a node s, detect communities Ŝ j , and compare them
to the ground-truth communities Si that node s belongs to. To measure correspondence
between the true and the detected communities, we match ground-truth communities to
detected communities by the Hungarian matching method [17]. We then compute the average
F1-score over the matched pairs. We use Conductance as the community scoring function
and report results in Table 6.

Note that this task is harder than the previous one as here we aim to discover multiple com-
munities simultaneously. Whereas the previous task evaluated our method for each ground-
truth community, here, we first sample node s and then search for the communities Si that
s belongs to. Therefore, larger ground-truth communities will be included in Si more often.
Since larger ground-truth communities are less well separated [20], this makes the task harder.

Table 6 reports the average F1-score as a function of the number of communities g that
the seed node s belongs to. Given that this is a harder task, we observe overall lower values of
the F-score. Moreover, we also expect the performance to decrease as node s belongs to more
and more communities. In fact, we observe that the performance degrades with increasing the
number of communities g. Interestingly, in LiveJournal and Amazon, it appears to be easier
to detect communities of nodes that belong to 2 communities than to detect a community of
a node that belongs to only a single community. This is due to the fact that single community
nodes reside on the border of the community, and consequently, Conductance produces
communities that are too small [20].

7 Related work

Generally, there are two approaches toward understanding the characteristics of network
community structure and the community scoring functions (i.e., objective functions for com-
munity detection).

First way is theoretical analysis, which has been performed for a few most widely
used functions such as Modularity [11] and Conductance [3,13]. For example, Gleich and
Seshadhri [13] mathematically proved the existence of node sets with high conductance in
networks with high clustering coefficient. Fortunato and Barthelemy [11] showed that Mod-
ularity may not detect communities that have too few edges compared to the total number of
edges in the network. More general theoretical analysis includes the work of Meilǎ [22], which
studied the axiomatic criterion for community scores such as stability [34]. Although these
theoretical attempts provide rigorous results, they cover only a few different scoring functions.
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To consider a broader range of community scoring functions, therefore, we take a different
way, an empirical analysis, which allows us to evaluate any community scoring function.

Empirical approach analyzes how community scoring functions behave on real-world
networks. One recent example is by Leskovec et al. [19], which evaluated a wide range of
community scoring functions on large-scale real-world networks. However, there are two
crucial differences in our work here. First, Leskovec et al. [19] used detected communi-
ties by the local spectral method [3] for the evaluation. Using communities detected by a
specific community detection method would introduce a bias introduced by the detection
method [1]. In this paper, our evaluation is free from such bias as we adopt ground-truth
communities, which are explicitly declared by individual nodes. Second, Leskovec et al. [19]
provides qualitative evaluation by showing the Network Community Profile plot [20] for
each community scoring function. Here, we aim to quantify the robustness and sensitivity
of community scoring functions to compare which scoring functions are better than others.
We also note that empirical approach can be done with synthetic benchmarks such as in
Shi et al. [30]; however, using synthetic benchmarks generates further biases due to natural
deficiencies of synthetically generate networks.

Another related line of research is data-driven analysis of community detection algorithms.
For example, Ahn et al. [2] employed community quality metrics based on the purity of
node attributes to evaluate the performance of community detection methods. Abrahao et al.
[1] showed that the communities detected by different communities exhibit fundamentally
different structural properties. In this paper, however, we use data-driven evaluation metric
to assess the performance of community detection on ground-truth communities. Our quality
metrics directly focus on the correspondence between the detected and the ground-truth
communities (as in Lin et al. [21], Sun et al. [33]).

8 Conclusion

The lack of reliable ground-truth gold-standard communities has made network community
detection a very challenging task. In this paper, we studied a set of 230 different large social,
collaboration, and information networks in which we defined the notion of ground-truth
communities by nodes explicitly stating their group memberships.

We developed an evaluation methodology for comparing network community detection
algorithms based on their accuracy on real data and compared different definitions of network
communities and examined their robustness. Our results demonstrate large differences in
behavior of community scoring functions. Last, we also studied the problem of community
detection from a single seed node. We examined class of scalable parameter-free community
detection methods based on Random Walks and found that our methods reliably detect
ground-truth communities.

The availability of ground-truth communities allows for a range of interesting future direc-
tions. For example, further examining the connectivity structure of ground-truth communities
could lead to novel community detection methods [37,39,40]. Overall, we believe that the
present work will bring more rigor to the evaluation of network community detection, and
the datasets publicly released as a part of this work will benefit the research community.
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A Appendix

See Figs. 10, 11, 12, 13, 14, 15.
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Fig. 10 Average metrics of top k communities by 6 scores. C conductance, T TPR, M modularity, F flake
ODF, D FOMD, CR cut ratio
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Fig. 11 Average metrics of top k communities by 6 scores. C conductance, T TPR, M modularity, F flake
ODF, D FOMD, CR cut ratio
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Fig. 12 Z -score of 6 scores versus the perturbation intensity for each null model. C conductance, T TPR,
M modularity, F flake ODF, D FOMD, CR cut ratio
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Fig. 13 Z -score of 6 scores versus the perturbation intensity for each null model. C conductance, T TPR,
M modularity, F flake ODF, D FOMD, CR cut ratio
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Fig. 14 Z -score of 6 scores versus the community size for each null model. C conductance, T TPR,
M modularity, F flake ODF, D FOMD, CR cut ratio
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Fig. 15 Z -score of 6 scores versus the community size for each null model. C conductance, T TPR,
M modularity, F flake ODF, D FOMD, CR cut ratio
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