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Abstract Matrix factorization, when the matrix has missing values, has become one of the
leading techniques for recommender systems. To handle web-scale datasets with millions of
users and billions of ratings, scalability becomes an important issue. Alternating least squares
(ALS) and stochastic gradient descent (SGD) are two popular approaches to compute matrix
factorization, and there has been a recent flurry of activity to parallelize these algorithms.
However, due to the cubic time complexity in the target rank, ALS is not scalable to large-scale
datasets. On the other hand, SGD conducts efficient updates but usually suffers from slow
convergence that is sensitive to the parameters. Coordinate descent, a classical optimization
approach, has been used for many other large-scale problems, but its application to matrix
factorization for recommender systems has not been thoroughly explored. In this paper, we
show that coordinate descent-based methods have a more efficient update rule compared
to ALS and have faster and more stable convergence than SGD. We study different update
sequences and propose the CCD++ algorithm, which updates rank-one factors one by one.
In addition, CCD++ can be easily parallelized on both multi-core and distributed systems.
We empirically show that CCD++ is much faster than ALS and SGD in both settings. As an
example, with a synthetic dataset containing 14.6 billion ratings, on a distributed memory
cluster with 64 processors, to deliver the desired test RMSE, CCD++ is 49 times faster than
SGD and 20 times faster than ALS. When the number of processors is increased to 256,
CCD++ takes only 16 s and is still 40 times faster than SGD and 20 times faster than ALS.

Keywords Recommender systems ·Missing value estimation ·Matrix factorization ·
Low rank approximation · Parallelization · Distributed computing

1 Introduction

In a recommender system, we want to learn a model from past incomplete rating data such
that each user’s preference over all items can be estimated with the model. Matrix factor-
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794 H.-F. Yu et al.

Table 1 Comparison between CCD++ and other state-of-the-art methods for matrix factorization

ALS SGD CCD++

Time complexity per iteration O(|�|k2 + (m + n)k3) O(|�|k) O(|�|k)

Convergence behavior Stable Sensitive to parameters Stable

Scalability on distributed systems Not scalable Scalable Scalable

ization was empirically shown to be a better model than traditional nearest neighbor-based
approaches in the Netflix Prize competition and KDD Cup 2011 [1]. Since then, there has
been a great deal of work dedicated to the design of fast and scalable methods for large-scale
matrix factorization problems [2–4].

Let A ∈ R
m×n be the rating matrix in a recommender system, where m and n are the

number of users and items, respectively. The matrix factorization problem for recommender
systems is

min
W∈Rm×k

H∈Rn×k

∑

(i, j)∈�
(Ai j − wT

i h j )
2 + λ

(‖W‖2F + ‖H‖2F
)
, (1)

where � is the set of indices for observed ratings; λ is the regularization parameter; ‖ · ‖F

denotes the Frobenius norm; wT
i and hT

j are the i th and the j th row vectors of the matrices W
and H , respectively. The goal of problem (1) is to approximate the incomplete matrix A by
W H T , where W and H are rank-k matrices. Note that, the well-known rank-k approximation
by singular value decomposition (SVD) cannot be directly applied to (1) as A is not fully
observed.

Regarding problem (1), we can interpret wi and h j as the length-k feature vectors for
user i and item j . The interaction/similarity between the i th user and the j th item is mea-
sured by wT

i h j . As a result, solving problem (1) can be regarded as a procedure to find a
“good” representation for each user and item such that the interaction between them can well
approximate the real rating scores.

In recent recommender system competitions, we observe that alternating least squares
(ALS) and stochastic gradient descent (SGD) have attracted much attention and are widely
used for matrix factorization [2,5]. ALS alternatively switches between updating W and
updating H while fixing the other factor. Although the time complexity per iteration is
O(|�|k2 + (m + n)k3), [2] shows that ALS is well suited for parallelization. It is then
not a coincidence that ALS is the only parallel matrix factorization implementation for
collaborative filtering in Apache Mahout.1

As mentioned in [3], SGD has become one of the most popular methods for matrix factor-
ization in recommender systems due to its efficiency and simple implementation. The time
complexity per iteration of SGD is O(|�|k), which is lower than ALS. However, as compared
to ALS, SGD needs more iterations to obtain a good enough model, and its performance is
sensitive to the choice of the learning rate. Furthermore, unlike ALS, parallelization of SGD
is challenging, and a variety of schemes have been proposed to parallelize it [6–10].

This paper aims to design an efficient and easily parallelizable method for matrix fac-
torization in large-scale recommender systems. Recently, [11] and [12] have showed that
coordinate descent methods are effective for non-negative matrix factorization (NMF). This
motivates us to investigate coordinate descent approaches for (1). In this paper, we propose
a coordinate descent-based method, CCD++, which has fast running time and can be eas-
ily parallelized to handle data of various scales. Table 1 shows a comparison between the

1 http://mahout.apache.org/.
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state-of-the-art approaches and our proposed algorithm CCD++. The main contributions of
this paper are as follows:

• We propose a scalable and efficient coordinate descent-based matrix factorization method
CCD++. The time complexity per iteration of CCD++ is lower than that of ALS, and it
achieves faster convergence than SGD.
• We show that CCD++ can be easily applied to problems of various scales on both shared-

memory multi-core and distributed systems.

Notation The following notation is used throughout the paper. We denote matrices by upper-
case letters and vectors by bold-faced lowercase letters. Ai j denotes the (i, j) entry of the
matrix A. We use �i to denote the column indices of observed ratings in the i th row and �̄ j

to denote the row indices of observed ratings in the j th column. We denote the i th row of W
by wT

i and the t th column of W by w̄t ∈ R
m :

W =

⎡

⎢⎢⎣

...

wT
i
...

⎤

⎥⎥⎦ =
[· · · w̄t · · ·

]
.

Thus, both wi t (i.e., the t th element of wi ) and w̄ti (i.e., the i th element of w̄t ) denote the
same entry, Wit . For H , we use similar notation h j and h̄t .

The rest of the paper is organized as follows. An introduction to ALS and SGD is given in
Sect. 2. We then present our coordinate descent approaches in Sect. 3. In Sect. 4, we present
strategies to parallelize CCD++ and conduct scalability analysis under different parallel
computing environments. We then present experimental results in Sect. 5. Finally, we show
an extension of CCD++ to handle L1-regularization in Sect. 6 and conclude in Sect. 7.

2 Related work

As mentioned in [3], the two standard approaches to approximate the solution of problem
(1) are ALS and SGD.

In this section, we briefly introduce these methods and discuss recent parallelization
approaches.

2.1 Alternating least squares

Problem (1) is intrinsically a non-convex problem; however, when fixing either W or H ,
(1) becomes a quadratic problem with a globally optimal solution. Based on this idea, ALS
alternately switches between optimizing W while keeping H fixed and optimizing H while
keeping W fixed. Thus, ALS monotonically decreases the objective function value in (1)
until convergence.

Under this alternating optimization scheme, (1) can be further separated into many inde-
pendent least squares subproblems. Specifically, if we fix H and minimize over W , the
optimal w∗i can be obtained independently of other rows of W by solving the regularized
least squares subproblem:

minwi

∑

j∈�i

(Ai j − wT
i h j )

2 + λ‖wi‖2, (2)

which leads to the closed form solution
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w∗i = (H T
�i

H�i + λI )−1 H T ai , (3)

where H T
�i

is the submatrix with columns {h j : j ∈ �i }, and aT
i is the i th row of A with

missing entries filled by zeros. To compute each w∗i , ALS needs O(|�i |k2) time to form the
k×k matrix H T

�i
H�i and additional O(k3) time to solve the least squares problem. Thus, the

time complexity of a full ALS iteration (i.e., updating W and H once) is O(|�|k2+(m+n)k3).
In terms of parallelization, [2] points out that ALS can be easily parallelized in a row-by-

row manner as each row of W or H can be updated independently. However, in a distributed
system, when W or H exceeds the memory capacity of a computation node, the parallelization
of ALS becomes more challenging. More details are discussed in Sect. 4.3.

2.2 Stochastic gradient descent

Stochastic gradient descent (SGD) is widely used in many machine learning problems [13],
and it has also been shown to be effective for matrix factorization [3]. In SGD, for each
update, a rating (i, j) is randomly selected from �, and the corresponding variables wi and
h j are updated by

wi ← wi − η
(

λ
|�i |wi − Ri j h j

)
,

h j ← h j − η
(

λ

|�̄ j |h j − Ri jwi

)
,

where Ri j = Ai j − wT
i h j , and η is the learning rate. For each rating Ai j , SGD needs O(k)

operations to update wi and h j . If we define |�| consecutive updates as one iteration of
SGD, the time complexity per SGD iteration is thus only O(|�|k). As compared to ALS,
SGD appears to be faster in terms of the time complexity for one iteration, but typically it
needs more iterations than ALS to achieve a good enough model.

However, conducting several SGD updates in parallel directly might raise an overwriting
issue as the updates for the ratings in the same row or the same column of A involve the
same variables. Moreover, traditional convergence analysis of standard SGD mainly depends
on its sequential update property. These issues make parallelization of SGD a challenging
task. Recently, several update schemes to parallelize SGD have been proposed. For example,
“delayed updates” are proposed in [6] and [14], while [9] uses a bootstrap aggregation scheme.
A lock-free approach called HogWild is investigated in [10], in which the overwriting issue
is ignored based on the intuition that the probability of updating the same row of W or H is
small when A is sparse. The authors of [10] also show that HogWild is more efficient than the
“delayed update” approach in [6]. For matrix factorization, [7] and [8] propose distributed
SGD (DSGD)2, which partitions A into blocks and updates a set of independent blocks in
parallel at the same time. Thus, DSGD can be regarded as an exact SGD implementation
with a specific ordering of updates.

Another issue with SGD is that the convergence is highly sensitive to the learning rate η. In
practice, the initial choice and adaptation strategy for η are crucial issues when applying SGD
to matrix factorization problems. As the learning rate issue is beyond the scope of this paper,
here we only briefly discuss how the learning rate is adjusted in HogWild and DSGD. In
HogWild [10], η is reduced by multiplying a constant β ∈ (0, 1) at each iteration. In DSGD,
[7] proposes using the “bold driver” scheme, in which, at each iteration, η is increased by
a small proportion (5 % is used in [7]) when the function value decreases; when the value
increases, η is drastically decreased by a large proportion (50 % is used in [7]).

2 In [8], the name “Jellyfish” is used.
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Table 2 The statistics and parameters for each dataset

Dataset Movielens1m Movielens10m Netflix Yahoo-music Synthetic-u Synthetic-p

m 6,040 71,567 2,649,429 1,000,990 3,000,000 20,000,000

n 3,952 65,133 17,770 624,961 3,000,000 1,000,000

|�| 900,189 9,301,274 99,072,112 252,800,275 8,999,991,830 14,661,239,286

|�Test| 100,020 698,780 1,408,395 4,003,960 90,001,535 105,754,418

k 40 40 40 100 10 30

λ 0.1 0.1 0.05 1 0.001 0.001

2.3 Experimental comparison

Next, we compare various parallel matrix factorization approaches: ALS,3 DSGD,4 and
HogWild 5 on the movielens10m dataset with k = 40 and λ = 0.1 (more details on the
dataset are given later in Table 2 of Sect. 5). Here, we conduct the comparison on an 8-core
machine (see Sect. 5.2 for the detailed description of the experimental environment). All
8 cores are utilized for each method.6 Figure 1 shows the comparison; “−s1” and “−s2”
denote two choices of the initial η.7 The reader might notice that the performance difference
between ALS and DSGD is not as large as in [7]. The reason is that the parallel platform used
in our comparison is different from that used in [7], which is a modified Hadoop distributed
system.

In Fig. 1, we first observe that the performance of both DSGD and HogWild is sen-
sitive to the choice of η. In contrast, ALS, a parameter-free approach, is more sta-
ble, albeit it has higher time complexity per iteration than SGD. Next, we can see that
DSGD converges slightly faster than HogWild with both initial η’s. Given the fact that
the computation time per iteration of DSGD is similar to that of HogWild (as DSGD
is also a lock-free scheme), we believe that there are two possible explanations: (1)
the “bold driver” approach used in DSGD is more stable than the exponential decay
approach used in HogWild; (2) the variable overwriting might slow down convergence
of HogWild.

3 Coordinate descent approaches

Coordinate descent is a classic and well-studied optimization technique [15, Section 2.7].
Recently, it has been successfully applied to various large-scale problems such as linear SVMs
[16], maximum entropy models [17], NMF problems [11,12] and sparse inverse covariance
estimation [18]. The basic idea of coordinate descent is to update a single variable at a time
while keeping others fixed. There are two key components in coordinate descent methods:

3 Intel MKL is used in our implementation of ALS.
4 We implement a multi-core version of DSGD according to [7].
5 HogWild is downloaded from http://research.cs.wisc.edu/hazy/victor/Hogwild/ and modified to start from
the same initial point as ALS and DSGD.
6 In HogWild, seven cores are used for SGD updates, and one core is used for random shuffle.
7 for −s1, initial η = 0.001; for −s2, initial η = 0.05.
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Fig. 1 Comparison between ALS, DSGD, and HogWild on the movielens10m dataset with k = 40 on a
8-core machine (−s1 and −s2 stand for different initial learning rates)

one is the update rule used to solve each one-variable subproblem, and the other is the update
sequence of variables.

In this section, we apply coordinate descent to attempt to solve (1). We first form the
one-variable subproblem and derive the update rule. Based on the rule, we investigate two
sequences to update variables: item/user-wise and feature-wise.

3.1 The update rule

If only one variable wi t is allowed to change to z while fixing all other variables, we need to
solve the following one-variable subproblem:

min
z

f (z) =
∑

j∈�i

(
Ai j − (wT

i h j − wi t h j t )− zh jt

)2 + λz2. (4)

As f (z) is a univariate quadratic function, the unique solution z∗ to (4) can be easily
found:

z∗ =
∑

j∈�i
(Ai j − wT

i h j + wi t h j t )h jt

λ+∑
j∈�i

h2
j t

. (5)

Direct computation of z∗ via (5) from scratch takes O(|�i |k) time. For large k, we can
accelerate the computation by maintaining the residual matrix R,

Ri j ≡ Ai j − wT
i h j , ∀(i, j) ∈ �.

In terms of Ri j , the optimal z∗ can be computed by:

z∗ =
∑

j∈�i
(Ri j + wi t h j t )h jt

λ+∑
j∈�i

h2
j t

. (6)
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When R is available, computing z∗ by (6) only costs O(|�i |) time. After z∗ is obtained, wi t

and Ri j , ∀ j ∈ �i , can also be updated in O(|�i |) time via

Ri j ← Ri j − (z∗ − wi t )h jt , ∀ j ∈ �i , (7)

wi t ← z∗. (8)

Note that (7) requires O(|�i |) operations. Therefore, if we maintain the residual matrix R,
the time complexity of each single variable update is reduced from O(|�i |k) to O(|�i |).
Similarly, the update rules for each variable in H , h jt for instance, can be derived as

Ri j ← Ri j − (s∗ − h jt )wi t , ∀i ∈ �̄ j , (9)

h jt ← s∗, (10)

where s∗ can be computed by either:

s∗ =
∑

i∈�̄ j
(Ai j − wT

i h j + wi t h j t )wi t

λ+∑
i∈�̄ j

w2
i t

, (11)

or

s∗ =
∑

i∈�̄ j
(Ri j + wi t h j t )wi t

λ+∑
i∈�̄ j

w2
i t

. (12)

With update rules (7)–(10), we are able to apply any update sequence over variables in W
and H . We now investigate two main sequences: item/user-wise and feature-wise update
sequences.

3.2 Item/user-wise update: CCD

First, we consider the item/user-wise update sequence, which updates the variables corre-
sponding to either an item or a user at a time.

ALS can be viewed as a method, which adopts this update sequence. As mentioned in
Sect. 2.1, ALS switches the updating between W and H . To update W when fixing H
or vice versa, ALS solves many k-variable least squares subproblems. Each subproblem
corresponds to either an item or a user. That is, ALS cyclically updates variables with the
following sequence:

W︷ ︸︸ ︷
w1, . . . ,wm,

H︷ ︸︸ ︷
h1, . . . , hn .

In ALS, the update rule in (3) involves forming a k × k Hessian matrix and solving a least
squares problem, which takes O(k3) time. However, it is not necessary to solve all subprob-
lems (2) exactly in the early stages of the algorithm. Thus, [19] proposed a cyclic coordinate
descent method (CCD), which is similar to ALS with respect to the update sequence. The
only difference lies in the update rules. In CCD, wi is updated by applying (8) over all ele-
ments of wi (i.e., wi1, . . . , wik) once. The entire update sequence of one iteration in CCD
is

W︷ ︸︸ ︷
w11, . . . , w1k︸ ︷︷ ︸

w1

, . . . , wm1, . . . , wmk︸ ︷︷ ︸
wm

,

H︷ ︸︸ ︷
h11, . . . , h1k︸ ︷︷ ︸

h1

, . . . , hn1, . . . , hnk︸ ︷︷ ︸
hn

. (13)

Algorithm 1 describes the CCD procedure with T iterations. Note that if we set the initial
W to 0, then the initial residual matrix R is exactly equal to A, so no extra effort is needed
to initialize R.
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Algorithm 1 CCD Algorithm xx
Input: A, W , H , λ, k, T
1: Initialize W = 0 and R = A.
2: for i ter = 1, 2, . . . , T do
3: for i = 1, 2, . . . , m do � Update W .
4: for t = 1, 2, . . . , k do
5: Obtain z∗ using (6).
6: Update R and wi t using (7) and (8).
7: end for
8: end for
9: for j = 1, 2, . . . , n do � Update H .
10: for t = 1, 2, . . . , k do
11: Obtain s∗ using (12).
12: Update R and h jt using (9) and (10).
13: end for
14: end for
15: end for

As mentioned in Sect. 3.1, the update cost for each variable in W and H , taking wi t and
h jt for instance, is just O(|�i |) or O(|�̄ j |). If we define one iteration in CCD as updating
all variables in W and H once, the time complexity per iteration for CCD is thus

O

⎛

⎝

⎛

⎝
∑

i

|�i | +
∑

j

|�̄ j |
⎞

⎠ k

⎞

⎠ = O(|�|k).

We can see that an iteration of CCD is faster than an iteration of ALS when k > 1, because
ALS requires O(|�|k2+ (m+ n)k3) time at each iteration. Of course, each iteration of ALS
makes more progress; however, at early stages of this algorithm, it is not clear that this extra
progress helps.

Instead of cyclically updating through wi1, . . . , wik , one may think of a greedy update
sequence that sequentially updates the variable that decreases the objective function the most.
In [12], a greedy update sequence is applied to solve the NMF problem in an efficient manner
by utilizing the property that all subproblems in NMF share the same Hessian. However,
unlike NMF, each subproblem (2) of problem (1) has a potentially different Hessian as
�i1 	= �i2 for i1 	= i2 in general. Thus, if the greedy coordinate descent (GCD) method
proposed in [12] is applied to solve (1), m different Hessians are required to update W ,
and n Hessians are required to update H . The computation of Hessian for wi and h j needs
O(|�i |k2) and O(|�̄ j |k2) to compute, respectively. The total time complexity of GCD to
update W and H once is thus O(|�|k2) operations per iteration, which is the same complexity
as ALS.

3.3 Feature-wise update: CCD++

The factorization W H T can be represented as a summation of k outer products:

A ≈ W H T =
k∑

t=1

w̄t h̄
T
t , (14)

where w̄t ∈ R
m is the t th column of W , and h̄t ∈ R

n is the t th column of H . From the
perspective of the latent feature space, w̄t and h̄t correspond to the t th latent feature.
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Algorithm 2 CCD++ Algorithm
Input: A, W , H , λ, k, T
1: Initialize W = 0 and R = A.
2: for i ter = 1, 2, . . . do
3: for t = 1, 2, . . . , k do
4: Construct R̂ by (16).
5: for inneri ter = 1, 2, . . . , T do � T CCD iterations for (17).
6: Update u by (18).
7: Update v by (19).
8: end for
9: Update (w̄t , h̄t ) and R by (20) and (21).
10: end for
11: end for

This leads us to our next coordinate descent method, CCD++. At each time, we select a
specific feature t and conduct the update

(w̄t , h̄t )← (u∗, v∗),

where (u∗, v∗) is obtained by solving the following subproblem:

min
u∈Rm ,v∈Rn

∑

(i, j)∈�

(
Ri j + w̄ti h̄t j − uiv j

)2 + λ(‖u‖2 + ‖v‖2), (15)

where Ri j = Ai j − wT
i h j is the residual entry for (i, j). If we define

R̂i j = Ri j + w̄ti h̄t j , ∀(i, j) ∈ �, (16)

(15) can be rewritten as:

min
u∈Rm ,v∈Rn

∑

(i, j)∈�
(R̂i j − uiv j )

2 + λ(‖u‖2 + ‖v‖2), (17)

which is exactly the rank-one matrix factorization problem (1) for the matrix R̂. Thus, we
can apply CCD to (17) to obtain an approximation by alternatively updating u and updating
v. When the current model (W, H) is close to an optimal solution to (1), (w̄t , h̄t ) should
be also very close to an optimal solution to (17). Thus, the current (w̄t , h̄t ) can be a good
initialization for (u, v). The update sequence for u and v is

u1, u2, . . . , um, v1, v2, . . . , vn .

When the rank is equal to one, (5) and (6) have the same complexity. Thus, during the CCD
iterations to update ui and v j , z∗ and s∗ can be directly obtained by (5) and (11) without
additional residual maintenance. The update rules for u and v at each CCD iteration become
as follows:

ui ←
∑

j∈�i
R̂i jv j

λ+∑
j∈�i

v2
j

, i = 1, . . . , m, (18)

v j ←
∑

i∈�̄ j
R̂i j u j

λ+∑
i∈�̄ j

u2
i

, j = 1, . . . , n. (19)
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After obtaining (u∗, v∗), we can update (w̄t , h̄t ) and R by

(w̄t , h̄t )← (u∗, v∗). (20)

Ri j ← R̂i j − u∗i v∗j , ∀(i, j) ∈ �, (21)

The update sequence for each outer iteration of CCD++ is

w̄1, h̄1, . . . , w̄t , h̄t , . . . , w̄k, h̄k . (22)

We summarize CCD++ in Algorithm 2. A similar procedure with the feature-wise update
sequence is also used in [20] to avoid the over-fitting issue in recommender systems.

Each time when the t th feature is selected, CCD++ consists of the following steps to
update (w̄t , h̄t ): constructing O(|�|) entries of R̂, conducting T CCD iterations to solve
(17), updating (w̄t , h̄t ) by (20) and maintaining |�| residual entries by (21). Since each CCD
iteration in Algorithm 2 costs only O(|�|) operations, the time complexity per iteration for
CCD++, where all k features are updated by T CCD iterations, is O(|�|kT ).

At first glance, the only difference between CCD++ and CCD appears to be their different
update sequence. However, such difference might affect the convergence. A similar update
sequence has also been considered for NMF problems, and [21] observes that such a feature-
wise update sequence leads to faster convergence than other sequences on moderate-scale
matrices. However, for large-scale sparse NMF problems, when all entries are known, the
residual matrix becomes a m× n dense matrix, which is too large to maintain. Thus, [11,12]
utilize the property that all subproblems share a single Hessian, where there are no missing
values, to develop techniques that allow efficient variable updates without maintenance of
the residual.

Due to the large number of missing entries in A, problem (1) does not share the above
favorable property. However, as a result of the sparsity of observed entries, the residual
maintenance is affordable for problem (1) with a large-scale A. Furthermore, the feature-
wise update sequence might even bring faster convergence as it does for NMF problems.

3.4 Exact memory storage and operation count

Based on the analysis in Sects. 3.2 and 3.3, we know that, at each iteration, CCD and CCD++
share the same asymptotic time complexity, O(|�|k). To clearly see the difference between
these two methods, we do an exact count of the number of floating operations (flops) for each
method.

Rating storage. An exact count of the number of operations depends on how the residual
matrix (R) of size m × n is stored in memory. The update rules used in CCD and CCD++
require frequent access to entries of R. If both observed and missing entries of R can be
stored in a dense format, random access to any entry Ri j can be regarded as a constant time
operation. However, when m and n are large, computer memory is usually not enough to
store all m × n entries of R. As |�| � m × n in most real-word recommender systems,
storing only observed entries of R (i.e., �) in a sparse matrix format is a more feasible way to
handle large-scale recommender systems. Two commonly used formats for sparse matrices
are considered: compressed row storage (CRS) and compressed column storage (CCS). In
CRS, observed entries of the same row are stored adjacent to each other in the memory, while
in CCS, observed entries of the same column are stored adjacent to each other.

The update rules used in CCD and CCD++ access R in two different fashions. Rules such
as (6) and (7) in Algorithm 1 and (18) in Algorithm 2 need to access observed entries of
a particular row (i.e., �i ) fast. In this situation, CRS provides faster access than CCS as
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observed entries of the same row are located next to each other. On the other hand, rules
such as (12) and (9) in Algorithm 1 and (19) in Algorithm 2 require fast accesses to observed
entries of a particular column (i.e., �̄ j ). CCS is thus more favorable for such rules.

In fact, if only one copy R is stored in either CCS or CRS format, the update rules can
no longer be computed in O(|�i |) or O(|�̄ j |) time. For instance, assume only a copy of
R in CCS is available, locating the observed entries of a single row (i.e., Ri j ∀ j ∈ �i )
requires at least n operations. In the worst case, it might even costs |�| operations to identify
the locations of |�i | entries. Thus, there is no way to compute rules such as (6) and (18)
in O(�i ) time. In contrast, if a copy of R in CRS is also available, the time to access the
observed entries of row i is only |�i | operations. As a result, to efficiently access both rows
and columns in R, in both CCD and CCD++, two copies of R are maintained in the memory:
one is in CRS format and the other is in CCS format.

Another concern is about the storage of R̂ in CCD++. Since R̂ exists only when solving
each subproblem (17), there is no need to allocate extra storage for R̂. In fact, R̂ and R can
share the same memory in the following implementation of Algorithm 2:

• For rule (16) in Line 4, reuse R to store R̂:

Ri j ← Ri j + w̄ti h̄t j , ∀(i, j) ∈ �,

• For rules (18) and (19), use R to update u and v.
• For rule (21) in Line 9, use the following to update the real “residual”:

Ri j ← Ri j − w̄ti h̄t j , ∀(i, j) ∈ �.

Operation count. In CCD, the update rules (6) and (12) take about 6|�i | and 6|�̄ j | flops,
respectively. For update rule (7), it takes about 3|�i |flops to compute values Ri j , ∀(i, j) ∈ �i

in CRS format and store those values to the copy of the residual in CCS format. Similarly,
update rule (9) takes about 3|�̄ j |flops to update the residual R. As a result, one CCD iteration,
where (m + n)k variables are updated, requires

⎛

⎝
(

m∑

i=1

(6+ 3)|�i |
)
+

⎛

⎝
n∑

j=1

(6+ 3)|�̄ j |
⎞

⎠

⎞

⎠× k = 18|�|k flops. (23)

In CCD++, the construction of R̂ (16) and the residual (21) require 2× 2|�| flops due to
the two copies of R. The update rules (18) and (19) cost 4|�i | and 4|�̄ j | flops, respectively.
Therefore, one CCD++ iteration with T inner CCD iterations, where (m + n)kT variables
are updated, takes

⎛

⎝4|�| + T

⎛

⎝
m∑

i=1

4|�i | +
n∑

j=1

4|�̄ j |
⎞

⎠+ 4|�|
⎞

⎠× k = 8|�|k(T + 1) flops. (24)

Based on the above counting results, if T = 1, where the same number of variables are
updated in one iteration of both CCD and CCD++, CCD++ is 1.125 faster than CCD. If
T > 1, the ratio between the flops required by CCD and CCD++ to update the same number
of variables, 9T

4(T+1)
, can be even larger.

3.5 An adaptive technique to accelerate CCD++

In this section, we investigate how to accelerate CCD++ by controlling T , the number of
inner CCD iterations for each subproblem (17). The approaches [11,21], which apply the
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feature-wise update sequence to solve NMF problems, consider only one iteration for each
subproblem. However, CCD++ can be slightly more efficient when T > 1 due to the benefit
brought by the “delayed residual update.” Note that, R and R̂ are fixed during CCD iterations
for each rank-one approximation (17). Thus, the construction of R̂ (16) and the residual update
(21) are only conducted once for each subproblem. Based on the exact operation counts in
(24), to update (m+n)kT variables, (16) and (21) contribute 8|�|k flops, while (18) and (19)
contribute 8|�|kT flops. Therefore, for CCD++, the ratio of the computation effort spend on
the residual maintenance over that spent on real variable updating is 1

T . As a result, given the
same number of variable updates, CCD++ with T CCD iterations is

Flops of T CCD++ iterations with 1 CCD iteration

Flops of 1 CCD++ iterations with T CCD iterations
= 8|�|k(1+ 1)T

8|�|k(T + 1)
= 2T

T + 1

times faster than CCD++ with only one CCD iteration. Moreover, the more CCD iterations we
use, the better the approximation to subproblem (17). Hence, a direct approach to accelerate
CCD++ is to increase T . On the other hand, a large and fixed T might result in too much
effort on a single subproblem.

We propose a technique to adaptively determine when to stop CCD iterations based on the
relative function value reduction at each CCD iteration. At each outer iteration of CCD++,
we maintain the maximal function value reduction from past CCD iterations, dmax. Once
the function value reduction at the current CCD iteration is less than εdmax for some small
positive ratio ε, such as 10−3, we stop CCD iterations, update the residual by (21) and switch
to the next subproblem. It is not hard to see that the function value reduction at each CCD
iteration for subproblem (17) can be efficiently obtained by accumulating reductions from
the update of each single variable. For example, updating ui to the optimal u∗i of

min
ui

f (ui ) =
∑

j∈�i

(R̂i j − uiv j )
2 + λu2

i ,

decreases the function by

f (ui )− f (u∗i ) = (u∗i − ui )
2

⎛

⎝λ+
∑

j∈�i

v2
j

⎞

⎠ ,

where the second term is exactly the denominator of the update rule (18). As a result, the
function value reduction can be obtained without extra effort.

Next, we show an empirical comparison between CCD and CCD++, where we include
four settings with the netflix dataset on a machine with enough memory:

• CCD: item/user-wise CCD,
• CCD++T1: CCD++ with fixed T = 1,
• CCD++T5: CCD++ with fixed T = 5,
• CCD++F: CCD++ with our adaptive approach to control T based on the function value

reduction (ε = 10−3 is used).

In Fig. 2, we clearly observe that the feature-wise update approach CCD++, even when
T = 1, is faster than CCD, which confirms our analysis above and the observation for NMF
in [21]. We also observe that larger T improves CCD++ in the early stages, though it also
results in too much effort during some periods (e.g., the period from 100 to 180 s in Fig. 2).
Such periods suggest that an early termination might help. We also notice that our technique
to adaptively control T can slightly shorten such periods and improve the performance.
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Fig. 2 Comparison between CCD and CCD++ on netflix dataset. Clearly, CCD++, the feature-wise update
approach, is seen to have faster convergence than CCD, the item/user-wise update approach.

4 Parallelization of CCD++

With the exponential growth of dyadic data on the web, scalability becomes an issue when
applying state-of-the-art matrix factorization approaches to large-scale recommender sys-
tems. Recently, there has been growing interest in addressing the scalability problem by
using parallel and distributed computing. Both CCD and CCD++ can be easily parallelized.
Due to the similarity with ALS, CCD can be parallelized in the same way as ALS in [7]. For
CCD++, we propose two versions: one version for multi-core shared-memory systems and
the other for distributed systems.

It is important to select an appropriate parallel environment based on the scale of the
recommender system. Specifically, when the matrices A, W and H can be loaded in the
main memory of a single machine, and we consider a distributed system as the parallel
environment, the communication among machines might dominate the entire procedure. In
this case, a multi-core shared-memory system is a better parallel environment. However, when
the data/variables exceed the memory capacity of a single machine, a distributed system, in
which data/variables are distributed across different machines, is required to handle problems
of this scale. In the following sections, we demonstrate how to parallelize CCD++ under both
these parallel environments.

4.1 CCD++ on multi-core systems

In this section, we discuss the parallelization of CCD++ under a multi-core shared-memory
setting. If the matrices A, W and H fit in a single machine, CCD++ can achieve significant
speedup by utilizing all cores available on the machine.

The key component in CCD++ that requires parallelization is the computation to solve
subproblem (17). In CCD++, the approximate solution to the subproblem is obtained by
updating u and v alternately. When v is fixed, from (18), each variable ui can be updated
independently. Therefore, the update to u can be divided into m independent jobs, which can
be handled by different cores in parallel.
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Given a machine with p cores, we define S = {S1, . . . , Sp} as a partition of row indices
of W {1, . . . , m}. We decompose u into p vectors u1, u2, . . . , up , where ur is the subvector
of u corresponding to Sr . A simple strategy is to make equal-sized partitions (i.e., |S1| =
|S2| = · · · = |Sp| = m/p). The workload on the r th core to update ur equals

∑
i∈Sr

4|�i |,
which is not the same for all cores. As a result, this strategy leads to load imbalance, which
reduces core utilization. An ideal partition can be obtained by solving

min
S

⎛

⎝ p
max
r=1

∑

i∈Sr

|�i |
⎞

⎠−
⎛

⎝
p

min
r=1

∑

i∈Sr

|�i |
⎞

⎠ ,

which is a known NP-hard problem. Hence, for multi-core parallelization, instead of being
assigned to a fixed core, we assign jobs dynamically based on the availability of each core.
When a core finishes a small job, it can always start a new job without waiting for other cores.
Such dynamic assignment usually achieves good load balance on multi-core machines. Most
multi-core libraries (e.g., OpenMP8 and Intel TBB9) provide a simple interface to conduct
this dynamic job assignment. Thus, from now, partition Sr will refer to the indices assigned
to the r th core as a result of this dynamic assignment. Such an approach can be also applied
to update v and the residual R.

We now provide the details. At the beginning for each subproblem, each core c constructs
R̂ by

R̂i j ← Ri j + w̄ti h̄t j , ∀(i, j) ∈ �Sr , (25)

where �Sr =
⋃

i∈Sr
{(i, j) : j ∈ �i }. Each core r then

updatesui ←
∑

j∈�i
R̂i jv j

λ+∑
j∈�i

v2
j

∀i ∈ Sr . (26)

Updating H can be parallelized in the same way with G = {G1, . . . , G p}, which is a partition
of row indices of H , {1, . . . , n}. Similarly, each core r

updatesv j ←
∑

i∈�̄ j
R̂i j ui

λ+∑
i∈�i

u2
i

∀ j ∈ Gr . (27)

As all cores on the machine share a common memory space, no communication is required
for each core to access the latest u and v. After obtaining (u∗, v∗), we can also update the
residual R and (w̄r

t , h̄
r
t ) in parallel by assigning core r to perform the update:

(w̄r
t , h̄

r
t )← (ur , vr ). (28)

Ri j ← R̂i j − w̄ti h̄t j , ∀(i, j) ∈ �Sr , (29)

We summarize our parallel CCD++ approach in Algorithm 3.

4.2 CCD++ on distributed systems

In this section, we investigate the parallelization of CCD++ when the matrices A, W and
H exceed the memory capacity of a singe machine. To avoid frequent access from disk, we
consider handling these matrices with a distributed system, which connects several machines
with their own computing resources (e.g., CPUs and memory) via a network. The algorithm

8 http://openmp.org/.
9 http://threadingbuildingblocks.org/.
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Algorithm 3 Parallel CCD++ on multi-core systems
Input: A, W , H , λ, k, T
1: Initialize W = 0 and R = A.
2: for i ter = 1, 2, . . . , do
3: for t = 1, 2, . . . , k do
4: Parallel: core r constructs R̂ using (25).
5: for inneri ter = 1, 2, . . . , T do
6: Parallel: core r updates ur using (26).
7: Parallel: core r updates vr using (27).
8: end for
9: Parallel: core r updates w̄r

t and h̄
r
t using (28).

10: Parallel: core r updates R using (29).
11: end for
12: end for

to parallelize CCD++ on a distributed system is similar to the multi-core version of parallel
CCD++ introduced in Algorithm 3. The common idea is to enable each machine/core to solve
subproblem (17) and update a subset of variables and residual in parallel.

When W and H are too large to fit in memory of a single machine, we have to divide
them into smaller components and distribute them to different machines. There are many
ways to divide W and H . In the distributed version of parallel CCD++, assuming that the
distributed system is composed of p machines, we consider p-way row partitions for W
and H : S = {S1, . . . , Sp} is a partition of the row indices of W ; G = {G1, . . . , G p} is a
partition of the row indices of H . We further denote the submatrices corresponding to Sr

and Gr by W r and Hr , respectively. In the distributed version of CCD++, machine r is
responsible for the storage and the update of W r and Hr . Note that, the dynamic approach
to assign jobs in Sect. 4.1 cannot be applied here because not all variables and ratings are
available on all machines. Partitions S and G should be determined prior to any computa-
tion.

Typically, the memory required to store the residual R is much larger than for W and H ,
and thus, we should avoid communication of R. Here, we describe an arrangement of R on a
distributed system such that all updates in CCD++ can be done without any communication
of the residual. As mentioned above, machine r is in charge of updating variables in W r and
Hr . From the update rules of CCD++, we can see that values Ri j , ∀(i, j) ∈ �Sr are required
to update variables in W r , while values Ri j , ∀(i, j) ∈ �̄Gr are required to update Hr , where
�Sr =

⋃
i∈Sr
{(i, j) : j ∈ �i }, and �̄Gr =

⋃
j∈Gr
{(i, j) : i ∈ �̄ j }. Thus, the following

entries of R should be easily accessible from machine r :

�r = �Sr ∪ �̄Gr = {(i, j) : i ∈ Sr or j ∈ Gr }.
Thus, only entries Ri j , ∀(i, j) ∈ �r are stored in machine r . Specifically, entries corre-
sponding to �Sr are stored in CRS format, and entries corresponding to �̄Gr are stored in
CCS format. Thus, the entire R has two copies stored on the distributed system. Assuming
that the latest Ri j corresponding to �r is available on machine r , the entire w̄t and h̄t are
still required to construct the R̂ in subproblem (17). As a result, we need to broadcast w̄t and
h̄t in the distributed version of CCD++ such that a complete copy of the latest w̄t and h̄t is
locally available on each machine to compute R̂:

R̂i j ← Ri j + w̄ti h̄t j ∀(i, j) ∈ �r . (30)

During T CCD iterations, machine r needs to broadcast the latest copy of ur to other machines
before updating vr and broadcast the latest vr before updating ur .
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Algorithm 4 Parallel CCD++ on distributed systems
Input: A, W , H , λ, k, T
1: Initialize W = 0 and R = A.
2: for i ter = 1, 2, . . . do
3: for t = 1, 2, . . . , k do
4: Broadcast: machine r broadcasts w̄r

t and h̄
r
t .

5: Parallel: machine r constructs R̂ using (30).
6: for inneri ter = 1, 2, . . . T do
7: Parallel: machine r updates ur using (26).
8: Broadcast: machine r broadcasts ur .
9: Parallel: machine r updates vr using (27).
10: Broadcast: machine r broadcasts vr .
11: end for
12: Parallel: machine r updates w̄r

t , h̄
r
t using (28).

13: Parallel: machine r updates R using (31).
14: end for
15: end for

After T alternating iterations, each machine r has a complete copy of (u∗, v∗), which
can be used to update (w̄r

t , h̄
t
t ) by (28). The residual R can also be updated without extra

communication by
Ri j ← R̂i j + w̄ti h̄t j ∀(i, j) ∈ �r , (31)

as (w̄r
t , h̄

r
t ) is also locally available on each machine r .

The distributed version of CCD++ is described in Algorithm 4. In summary, in distributed
CCD++, each machine r only stores W r and Hr and residual matrices RSr : and R:Gr . In an
ideal case, where |Sr | = m/p, |Gr | = n/p,

∑
i∈Sr
|�i | = |�|/p and

∑
j∈Gr
|�̄ j | = |�|/p,

the memory consumption on each machine is mk/p variables of W , nk/p variables of H and
2|�|/p entries of R. As all communication in Algorithm follows the same scenario: each
machine r broadcasts the |Sr | (or |Gr |) local variables to other machines and gathers the
remaining m− |Sr | (or n− |Gr |) latest variables from other machines. Such communication
can be achieved efficiently by an Allgather operation, which is a collective operation defined
in the Message Passing Interface (MPI) standard.10 With a recursive-doubling algorithm,
Allgather operations can be done in

α log p + p − 1

p
Mβ, (32)

where M is the message size in bytes, α is the startup time per message, independent of the
message size and β is transfer time per byte [22]. Based on Eq. (32), the total communication
time of Algorithm 4 per iteration is

(
α log p + 8(m + n)(p − 1)β

p

)
k(T + 1),

where we assume that each entry of W and H is a double-precision floating-point number.

4.3 Scalability analysis of other methods

As mentioned in Sect. 2.1, ALS can be easily parallelized when entire W and H can fit in
the main memory of one computer. However, it is hard to be scaled up to very large-scale

10 http://www.mcs.anl.gov/research/projects/mpi/.
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recommender systems when W or H cannot fit in the memory of a single machine. When
ALS updates wi , H�i is required to compute the Hessian matrix (H T

�i
H�i + λI ) in Eq.

(3). In parallel ALS, even though each machine only updates a subset of rows of W or H
at a time, [2] proposes that each machine should gather the entire latest H or W before the
updates. However, when W or H is beyond the memory capacity of a single machine, it is
not feasible to gather entire W or H and store them in the memory before the updates. Thus,
each time when some rows of H or W are not available locally but are required to form the
Hessian, the machine has to initiate communication with other machines to fetch those rows
from them. Such complicated communication could severely reduce the efficiency of ALS.
Furthermore, the higher time complexity per iteration of ALS is unfavorable when dealing
with large W and H . Thus, ALS is not scalable to handle recommender systems with very
large W and H .

Recently, [7] proposed a distributed SGD approach, DSGD, which partitions A into blocks
and conducts SGD updates with a particular ordering. Similar to our approach, DSGD stores
W , H and A in a distributed manner such that each machine only needs to store (n+m)k/p
variables and |�|/p rating entries. Each communication scenario in DSGD is that each
machine sends m/p (or n/p) variables to a particular machine, which can be done by a
send–receive operation. As a result, the communication time per iteration of DSGD is αp+
8mkβ. Thus, both DSGD and CCD++ can handle recommender systems with very large W
and H .

5 Experimental results

In this section, we compare CCD++, ALS and SGD in large-scale datasets under serial, multi-
core and distributed platforms. For CCD++, we use the implementation with our adaptive
technique based on function value reduction. We implement ALS with the Intel Math Kernel
Library.11 Based on the observation in Sect. 2, we choose DSGD as an example of the parallel
SGD methods because of its faster and more stable convergence than other variants. In this
paper, all algorithms are implemented in C++ to make a fair comparison. Similar to [2], all
of our implementations use the weighted λ-regularization.12

Datasets. We consider four public datasets for the experiment: movielens1m, movie-
lens10m, netflix and yahoo-music. These datasets are extensively used in the literature to
test the performance of matrix factorization algorithms [3,7,23]. The original training/test
split is used for reproducibility.

To conduct experiments in a distributed environment, we follow the procedure used to
create the Jumbo dataset in [10] to generate the synthetic-u dataset, a 3M by 3M sparse
matrix with rank 10. We first build the ground truth W and H with each variable uniformly
distributed over the interval [0, 1). We then sample about 9 billion entries uniformly at random
from W H T and add a small amount of noise to obtain our training set. We sample about 90
million other entries without noise as the test set.

Since the observed entries in real-world datasets usually follow power-law distributions,
we further construct a dataset synthetic-p with the unbalanced size 20M by 1M and rank 30.
The power-law distributed observed set � is generated using the Chung-Lu-Vu (CLV) model
proposed in [24]. More specifically, we first sample the degree sequence a1, . . . , am for all
the rows following the power-law distribution p(x) ∝ x−c with c = −1.316 (the parameter

11 Our C implementation is 6x faster than the MATLAB version provided by [2].
12 λ

(∑
i |�i |‖wi‖2 +

∑
j |�̄ j |‖h j‖2

)
is used to replace the regularization term in (1).
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c is selected to control the number of nonzeros). We then generate another degree sequence
b1, . . . , bn for all the columns by the same power-law distribution and normalize it to ensure∑n

j=1 b j =∑m
i=1 ai . Finally, each edge (i, j) is sampled with probability

ai b j∑
k bk

. The values

of the observed entries are generated in the same way as in synthetic-u. For training/test
split, we randomly select about 1 % observed entries as test set and the rest observed entries
as the training set.

For each dataset, the regularization parameter λ is chosen from
{1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001} with the lowest test RMSE. The parameter k of both
synthetic datasets is set according to the ground truth, and for real datasets, we choose k from
{20, 40, 60, 80, 100} with the lowest test RMSE. See Table 2 for more information about the
statistics and parameters used for each dataset.

5.1 Experiments on a single machine serial setting

We first compare CCD++ with ALS and DSGD in a serial setting.
Experimental platform. As mentioned in Sect. 2.3, we use an 8-core Intel Xeon X5570

processor with 32KB L1-cache, 256KB L2-cache, 8MB L3-cache and enough memory for
the comparison. We only use 1 core for the serial setting in this section, while we will use
multiple cores in the multi-core experiments (Sect. 5.2).

Results on training time. Figure 3 shows the comparison of the running time versus
RMSE for the four real-world datasets in a serial setting, and we observe that CCD++ is
faster than ALS and DSGD.

5.2 Experiments on a multi-core environment

In this section, we compare the multi-core version of CCD++ with other methods on a multi-
core shared-memory environment.

Experimental platform. We use the same environment as in Sect. 5.1. The processor has
8 cores, and the OpenMP library is used for multi-core parallelization.

Results on training time. We ensure that eight cores are fully utilized for each method.
Figure 4 shows the comparison of the running time versus RMSE for the four real-world
datasets. We observe that the performance of CCD++ is generally better than parallel ALS
and DSGD for each dataset.

Results on speedup. Another important measurement in parallel computing is the
speedup—how much faster a parallel algorithm is when we increase the number of cores.
To test the speedup, we run each parallel method on yahoo-music with various numbers of
cores, from 1 to 8, and measure the running time for one iteration. Although we have shown
in Sect. 2.3 that with regard to convergence DSGD has better performance than HogWild, it
remains interesting to see how HogWild performs in terms of speedup. Thus, we also include
HogWild into the comparison. The results are shown in Fig. 5. Based on the slope of the
curves, we observe that CCD++ and ALS have better speedup than both SGD approaches
(DSGD and HogWild). This can be explained by the cache-miss rate for each method. Due to
the fact that CCD++ and ALS access variables in contiguous memory spaces, both of them
enjoy better locality. In contrast, due to the randomness, two consecutive updates in SGD
usually access non-contiguous variables in W and H , which increases the cache-miss rate.
Given the fixed size of the cache, time spent in loading data from memory to cache becomes
the bottleneck for DSGD and HogWild to achieve better speedup when the number of cores
increases.
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(a) (b)

(c) (d)

Fig. 3 RMSE versus computation time on a serial setting for different methods (time is in seconds). Due to
non-convexity of the problem, different methods may converge to different values

5.3 Experiments on a distributed environment

In this section, we conduct experiments to show that distributed CCD++ is faster than DSGD
and ALS for handling large-scale data on a distributed system.

Experimental platform. The following experiments are conducted on a large-scale paral-
lel platform at the Texas Advanced Computing Center (TACC), Stampede13. Each computing
node in Stampede is an Intel Xeon E5-2680 2.7GHz CPU machine with 32 GB memory and
communicates by FDR 56 Gbit/s cable. For a fair comparison, we implement a distributed
version with MPI in C++ for all the methods. The reason we do not use Hadoop is that
almost all operations in Hadoop need to access data and variables from disks, which is quite
slow and thus not suitable for iterative methods. It is reported in [25] that ALS implemented
with MPI is 40 to 60 times faster than its Hadoop implementation in the Mahout project.
We also tried to run the ALS code provided as part of the GraphLab library14 but in our
experiments, the GraphLab code (which has an asynchronous implementation of ALS) did
not converge. Hence, we developed our own implementation of ALS, using which we report
all ALS results.

13 http://www.tacc.utexas.edu/user-services/user-guides/stampede-user-guide#compenv.
14 We downloaded version 2.1.4679 from https://code.google.com/p/graphlabapi/.
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(a) (b)

(c) (d)

Fig. 4 RMSE versus computation time on an 8-core system for different methods (time is in seconds). Due
to non-convexity of the problem, different methods may converge to different values

Fig. 5 Speedup comparison among four algorithms with the yahoo-music dataset on a shared-memory multi-
core machine. CCD++ and ALS have better speedups than DSGD and HogWild because of better locality
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Results on yahoo-music. First we show comparisons on the yahoo-music dataset, which
is the largest real-world dataset we used in this paper. Figure 6 shows the result with 4
computing nodes—we can make similar observations as in Fig. 4.

Results on synthetic datasets. When data is large enough, the benefit of distributed
environments is obvious.

For the scalability comparison, we vary the number of computing nodes, ranging from
32 to 256, and compare the time and speedup for three algorithms on the synthetic-u and
synthetic-p datasets. As discussed in Sect. 4, ALS requires larger memory on each machine.
In our setting, it requires more than 32GB memory when using 32 nodes on synthetic-p
dataset, so we run each algorithm with at least 64 nodes for this dataset. Here, we calculate
the training time as the time taken to achieve 0.01 test RMSE on synthetic-u and 0.02 test
RMSE on synthetic-p, respectively. The results are shown in Figs. 7a and 8a. We can see
clearly that CCD++ is more than 8 times faster than both DSGD and ALS on synthetic-u
and synthetic-p datasets with the number of computing nodes varying from 32 to 256. We
also show the speedup of ALS, DSGD and CCD++ on both datasets in Figs. 7b and 8b. Note
that since the data cannot be loaded in memory of a single machine, the speedup using p
machines is Tp/T32 on synthetic-u and Tp/T64 on synthetic-p, respectively, where Tp is
the time taken on p machines. We observe that DSGD achieves super linear speedup on both
datasets. For example, on synthetic-u dataset, the training time for DSGD is 2768 s using
32 machines and 218 s using 256 machines, so it achieves 2768/218 ≈ 12.7 times speedup
with only 8 times the number of machines. This super linear speedup is due to the caching
effect. In DSGD, each machine stores one block of W and one block of H . When the number
of machines is large enough, these blocks can fit into the L2-cache, which leads to dramatic
reduction in the memory access time. On the other hand, when the number of machines is
not large enough, these blocks cannot fit into cache. Thus, DSGD, which accesses entries in
the block at random, suffers from frequent cache misses. In contrast, for CCD++ and ALS,
the cache miss is not that severe even when the block of W and H cannot fit into cache since
the memory is accessed sequentially in both methods.

Though the speedups are smaller than in a multi-core setting, CCD++ takes the least time
to achieve the desired RMSE. This shows that CCD++ is not only fast but also scalable for
large-scale matrix factorization on distributed systems.

6 Extension to L1-regularization

Besides L2-regularization, L1-regularization is used in many applications to obtain a sparse
model, such as linear classification [26]. Replacing the L2-regularization in (1), we have the
following L1-regularized problem:

min
W∈Rm×k

H∈Rn×k

∑

(i, j)∈�
(Ai j − wT

i h j )
2 + λ

⎛

⎝
m∑

i

‖wi‖1 +
n∑

j

‖h j‖1
⎞

⎠ , (33)

which tends to yield a more sparse W and H .

6.1 Modification for each method

In this section, we explore how CCD, CCD++, ALS and SGD can be modified to solve (33).
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Fig. 6 Comparison among CCD++, ALS and DSGD with the yahoo-music dataset on a MPI distributed
system with 4 computing nodes

(a) (b)

Fig. 7 Comparison among CCD++, ALS and DSGD on the synthetic-u dataset (9 billion ratings) on a MPI
distributed system with varying number of computing nodes. The vertical axis in the left panel is the time for
each method to achieve 0.01 test RMSE, while the right panel shows the speedup for each method. Note that,
as discussed in Sect. 5.3, speedup is Tp/T32, where Tp is the time taken on p machines

CCD and CCD++. When we apply coordinate descent methods to (33), the one-variable
subproblem becomes

min
z

f (z) = f0(z)+ λ|z|, (34)

where f0(z) =∑
j∈�i

(
Ri j + wi t h j t )− zh jt

)2
. As f0(z) is a quadratic function, the solu-

tion z∗ to (34) can be uniquely obtained by the following soft thresholding operation:

z∗ = − sgn(g) max (|g| − λ, 0)

d
, (35)
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(a) (b)

Fig. 8 Comparison among CCD++, ALS and DSGD on the synthetic-p dataset (14.6 billion ratings) on a
MPI distributed system with varying number of computing nodes. The vertical axis in the left panel is the
time for each method to achieve 0.02 test RMSE, while the right panel shows the speedup for each method.
Note that, as discussed in Sect. 5.3, speedup is Tp/T64, where Tp is the time taken on p machines

where

g = f ′0(0) = −2
∑

j∈�i

(Ri j + wi t h j t )h jt , and

d = f ′′0 (0) = 2
∑

j∈�i

h2
j t .

Similar to the situation with L2-regularization, by maintaining the residual matrix R, the
time complexity for each single variable update can be reduced to O(|�i |). Thus, CCD and
CCD++ can be applied to solve (33) efficiently.

ALS. When we apply ALS to (33), the second term in each subproblem (2) is replaced
by a non-smooth term λ‖wi‖1. The resulting problem does not have a closed form solution.
As a result, an iterative method is required to solve the subproblem. If coordinate descent is
applied to solve this problem, ALS and CCD become exactly the same algorithm.

SGD. When SGD is applied to solve the non-smooth problem, the gradient in the update
rule has to be replaced by the subgradient, and thus, the update rule corresponding the (i, j)
rating becomes

wi t =
⎧
⎨

⎩
wi t − η

(
sgn(wi t )

λ
|�i | − 2Ri j h j

)
if wi t 	= 0

wi t − η
(
− sgn(2Ri j h j ) max(|2Ri j h j | − λ

|�i | , 0)
)

if wi t = 0

h jt =
⎧
⎨

⎩
h jt − η

(
sgn(h jt )

λ

|�̄i | − 2Ri jwi

)
if h jt 	= 0

h jt − η
(
− sgn(2Ri jwi ) max(|2Ri jwi | − λ

|�̄i | , 0)
)

if h jt = 0,

where Ri j = Ai j −wT
i h j . The time complexity for each update is the same as the one with

L2-regularization. Similarly, the same trick in DSGD and HogWild can be used to parallelize
SGD with L1-regularization as well.

Figure 9 presents the comparison of the multi-core version of parallel CCD++ and DSGD
with L1-regularization on two datasets: movielens10m and yahoo-music. In this compar-
ison, we use the same experimental settings and platform in Sect. 4.1.
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6.2 Experimental results

First, we compare the solution of L2-regularized matrix factorization problem (1) versus
the L1-regularized one (33) in Table 3. Although L1-regularized form achieves worse test
RMSE comparing to L2-regularized form, it can successfully yield sparse models W and H ,
which is important for interpretation in many applications.

We then compare the convergence speed of CCD++ and DSGD for solving the
L1-regularized problem (33). Figures 9a and c present the results of the objective func-
tion values versus computation time. In both figures, we clearly observe that CCD++ has
faster convergence than DSGD, which demonstrates the superiority of CCD++ to solve (33).

Table 3 The best test RMSE for each model (the lower, the better)

Movielens10m Yahoo-music

L1-regularization 0.9381 24.49

L2-regularization 0.9035 21.92

We run both CCD++ and DSGD with a large number of iterations to obtain the best test RMSE for each model

(a) (b)

(c) (d)

Fig. 9 The results of RMSE and objective function value versus computation time (in seconds) for different
methods on the matrix factorization problem with L1-regularization. Due to non-convexity of the problem,
different methods may converge to different values
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Meanwhile, Figs. 9b and d show the results of the test RMSE versus computation time. Sim-
ilar to L2-regularized case, CCD++ achieves better test RMSE than DSGD for both datasets.
However, (33) is designed to obtain better sparsity of W and H instead of improving the
generalization error of the model. As a result, the test RMSE might be sacrificed for a more
sparse W and H . This can explain the increase of test RMSE in some parts of the curves in
both datasets.

7 Conclusions

In this paper, we have shown that the coordinate descent method is efficient and scalable
for solving large-scale matrix factorization problems in recommender systems. The pro-
posed method CCD++ not only has lower time complexity per iteration than ALS, but also
achieves faster and more stable convergence than SGD in practice. We also explore differ-
ent update sequences and show that the feature-wise update sequence (CCD++) gives better
performance. Moreover, we show that CCD++ can be easily parallelized in both multi-core
and distributed environments and thus can handle large-scale datasets where both ratings
and variables cannot fit in the memory of a single machine. Empirical results demonstrate
the superiority of CCD++ under both parallel environments. For instance, running with a
large-scale synthetic dataset (14.6 billion ratings) on a distributed memory cluster, CCD++
is 49 times faster to achieve the desired test accuracy than DSGD when we use 64 processors,
and when we use 256 processors, CCD++ is 40 times faster than DSGD and 20 times faster
than ALS.
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