
Knowl Inf Syst (2014) 41:697–725
DOI 10.1007/s10115-013-0674-2

REGULAR PAPER

High utility K-anonymization for social network
publishing

Yazhe Wang · Long Xie · Baihua Zheng ·
Ken C. K. Lee

Received: 8 June 2012 / Revised: 30 June 2013 / Accepted: 14 July 2013 / Published online: 24 July 2013
© Springer-Verlag London 2013

Abstract Privacy and utility are two main desiderata of good sensitive information publish-
ing schemes. For publishing social networks, many existing algorithms rely on k-anonymity
as a criterion to guarantee privacy protection. They reduce the utility loss by first using the
degree sequence to model the structural properties of the original social network and then
minimizing the changes on the degree sequence caused by the anonymization process. How-
ever, the degree sequence-based graph model is simple, and it fails to capture many important
graph topological properties. Consequently, the existing anonymization algorithms that rely
on this simple graph model to measure utility cannot guarantee generating anonymized social
networks of high utility. In this paper, we propose novel utility measurements that are based
on more complex community-based graph models. We also design a general k-anonymization
framework, which can be used with various utility measurements to achieve k-anonymity
with small utility loss on given social networks. Finally, we conduct extensive experimen-
tal evaluation on real datasets to evaluate the effectiveness of the new utility measurements
proposed. The results demonstrate that our scheme achieves significant improvement on the
utility of the anonymized social networks compared with the existing anonymization algo-
rithms. The utility losses of many social network statistics of the anonymized social networks
generated by our scheme are under 1 % in most cases.
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1 Introduction

Social networks have been growing rapidly in recent years. More and more people start
using online social network applications to communicate with their families, friends, and
colleagues, etc.. The popularity of social networking is undeniable. Statistical studies show
that social networking sites now reach 82 % of the worldwide online population, representing
1.2 billion users around the world. In October 2011, social networking ranked as the most
popular content category in worldwide engagement, accounting for 19 % of all time spent
online [7]. As people constantly share information through social networks, social networks
have became important data sources of various domains, e.g., marketing, social psychology,
and homeland security. On the one hand, it is beneficial to release social network data to
the public for data mining and analysis activities. On the other hand, most real-world social
network data contain sensitive information about the users. How to publish social network data
without disclosing the privacy of the users becomes a realistic concern [2,3,18,19,31,36,39].

Among many social network-related privacy problems, the re-identification attack [19] is
one of the most concerned. Given a social network modeled as an undirected graph G with
vertices representing individuals and edges representing connections among the individuals,
a published (modified) version of G, denoted as G∗, suffers from the re-identification attack if
any vertexv in G∗ can be mapped to an individual in G. Existing researches have demonstrated
that even though all unique identities (e.g., names, social security numbers) were removed,
adversaries could still re-identify a vertex in a published social network with high confidence
based on the topological structure around it, such as vertex degree (i.e., the number of
connections), neighborhood, and subgraph.

To resist the structure-based re-identification attack, the notion of k-anonymity [29] has
been widely adopted. By k-anonymity, every vertex in G∗ is made indistinguishable from at
least k −1 other vertices. For example, if the degree of each vertex is considered to be known
to the adversary, by inserting some fake edges and/or deleting some existing edges, we make
at least k vertices of the published social network share the same degree (i.e., k-anonymity
in terms of the vertex degree). Thereafter, the probability that the adversary successfully
re-identifies one vertex based only on the degree information will not exceed 1/k.

Logically, a larger k provides a stronger privacy protection, but it does come with a price.
In an extreme case, a social network G could be anonymized into a fully connected graph
G∗, in which each vertex is connected to all the other vertices and all the vertices appear
identical. However, G∗ actually loses all the structural properties of G and hence is useless
for data mining and analysis activities. The cost of the anonymization is quantified by the
utility loss. Ideally, we prefer that the anonymized social network protects the privacy with the
smallest utility loss, so that the data mining and analysis results derived from the anonymized
social network are very similar to those from the original one. Although the utility issue in
publishing tabular data has been well addressed [17,18,25], it is not fully studied in social
network publishing.

1.1 Motivation and challenges

Most existing works anonymize a social network by performing edge insertion and/or deletion
operations. They reduce the utility loss by minimizing the changes on the graph degree
sequence (i.e., minimizing the L1 distance). However, the degree sequence is a fairly simple
graph model. It only captures limited structural properties of the graph. Thus, the utility model
that solely aims at preserving the graph degree sequence in the anonymization algorithm may
fail to safeguard many valuable graph properties. We demonstrate this observation using a
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(a) (b) (c) (d)

Fig. 1 Examples of the 2-degree anonymity achieved by adding or deleting edges. a Social network G.
b Published G∗

1. c Published G∗
2. d Published G∗

3

Table 1 Properties of the
original and anonymized graphs

Graphs � DS(L1) APL CC BTW CLN

G N.A. 2.07 3.75 0.50 0.50

G∗
1 2 2.00 3.50 0.54 0.52

G∗
2 2 1.86 3.00 0.41 0.55

G∗
3 2 2.21 4.25 0.43 0.47

simple example. Given a social network G in Fig. 1a, three graphs G∗
1, G∗

2, and G∗
3 are formed

that all satisfy 2-degree anonymity (i.e., there are at least two vertices sharing the same
degree), as illustrated in Fig. 1b–d, respectively. G∗

1 and G∗
2 are formed by inserting an edge

between vertices f, h and vertices c, h, respectively, while G∗
3 is formed by deleting the edge

between vertices d and e. Existing works adopt the L1 distance between the degree sequences
(DSs) of the anonymized graph and the original graph as the measurement of the utility loss.
With the degree sequences of G, G∗

1, G∗
2, and G∗

3 illustrated in the figures, respectively,
we can easily observe that based on this common measurement, G∗

1, G∗
2, and G∗

3 cause the
same utility loss. However, if considering other important graph structural properties, such
as average path length (APL), average betweenness (BTW), clustering coefficient (CC), and
average closeness (CLN), we find that these anonymized graphs actually have very different
structural properties, as illustrated in Table 1. Among the three anonymized graphs, G∗

1
is the most similar one with the original graph G in terms of APL, BTW, CC, and CLN,
while G∗

2 and G∗
3 are much more different from G. Consequently, the simple graph degree

sequence-based utility model cannot capture the utility differences among G∗
1, G∗

2, and G∗
3,

and naturally the k-anonymization algorithms developed based on the simple graph degree
sequence-based utility model might not be able to generate anonymized social networks with
high utility.

Motivated by the fact that most existing k-anonymization algorithms for social network
publishing are mainly developed based on the simple degree sequence utility model and may
cause significant utility loss, we want to design a new utility measurement based on more
complex graph models to guide the anonymization process, then to generate high utility
anonymized social networks. However, this is a challenging task due to the following issues.
The first issue is that the usage of the published anonymized social network is unknown.
The social network is a complex data structure and has many topological properties (utility),
such as degree distribution, eigenvector, and clustering coefficient. Different applications
may have different preferences toward which network properties should be preserved in the
published network data. Moreover, there are many data mining tasks focusing on discovering
unknown network properties. Therefore, we want to find an efficient measurement to capture
many important network structural properties in general. The second issue is that the utility
loss measurement needs to be quantitative and easy to calculate. In order to search for an
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optimal anonymized social network G∗ “closest” to the original social network G in terms of
the utility, we need to quantitatively evaluate the difference (utility loss) between G and G∗
with high efficiency. There are some well-known metrics that represent the general structural
features of G to some degree, but they are difficult to calculate. For example, the average
path length reflects the small-world properties of social networks, but the calculation is
based on the expensive all-pair shortest path operation. Another example is the eigenvector,
which has been proved to be strongly correlated with many network topological features.
However, it requires expensive matrix decomposition to calculate the eigenvector, and re-
calculation is necessary when edge operations are performed. The third issue is that the
existing anonymization algorithms designed to minimize the utility loss based on the simple
graph degree sequence model are not directly applicable to optimize the utility loss based on
other new utility measurements, and new algorithms need to be developed accordingly.

1.2 Contributions

Optimizing the utility during the social network anonymization process is a challenging
problem, and it cannot be perfectly solved in one effort. We take the initiative to explore
this problem in this paper. We propose to build the utility loss measurement based on the
community-based graph model instead of the simple degree sequence-based graph model.
The community structure reflects locally inhomogeneous edge distribution among the ver-
tices of the network, with high density of edges between vertices within communities and
low density of edges between vertices from different communities. It is a central organizing
principle of complex social networks and has strong correlation with many other important
social network topological features such as betweenness, eigenvector, and clustering coef-
ficient [27]. Thus, it captures the main topological features of a social network better than
the simple degree sequence model. In addition, we try to minimize the impact of the edge
operations to this community-based graph model during the anonymization process, so that
we can generate an anonymized G∗ that is structurally similar to G with respect to many
important graph properties. The influence of the edge insertion or deletion operations during
the anonymization process can be easily reflected by the changes on the edge distribution
within or between communities, thus can be quantitatively evaluated.

To sum up, the main contributions of this work are fourfolded as listed in the following:

1. We identify the ineffectiveness of the common utility measurement adopted by many
existing k-anonymization algorithms on preserving the structural features (i.e., utility)
of the published social networks;

2. We propose new utility loss measurements built on the community-based graph models
to better capture the impact of the anonymization process on the social network topology.
We consider both the flat community model and the hierarchical community model.

3. We design a general framework to anonymize social networks and minimize the utility
loss evaluated by our new measurements. This framework is general and can potentially
be used with other utility models.

4. We conduct extensive experiments to verify the effectiveness and efficiency of our pro-
posed approach. The results show that our scheme achieves significant improvement on
the utility of the anonymized social networks compared with the existing anonymization
algorithms. In most cases, our algorithm generates anonymized social networks with
utility loss less than 1 % on many important network statistics.

The rest of the paper is organized as follows. Section 2 presents preliminaries. Section 3
details the community structure-based utility models, including a flat community model and
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a hierarchical community model. Section 4 presents a k-anonymization framework based
on the described utility models. Section 5 provides privacy analysis of our scheme against
the minimality attack and reviews-related works. Section 6 reports the experimental results.
Finally, Sect. 7 concludes the paper.

2 Preliminaries

We model the social network as an undirected graph G(V, E), where a vertex set V rep-
resents entities (e.g., persons and organizations) and an edge set E represents relationships
between entities (e.g., friendship and collaboration). Notation e(vi , v j ) ∈ E represents an
edge between two connected vertices vi and v j . We use the notation |S| to refer to the cardinal-
ity of a set S. For ease of presentation, we use “graph” and “social network” interchangeably
in our discussion.

2.1 Structural re-identification attack

Social network publishing faces various challenges in privacy protection, and we only focus
on the identity disclosure problem in this work. We assume that the entities’ identities in
the original social network G are sensitive, and hence, they should be hidden in a published
social network G∗, as specified in Definition 1. An attacker, on the other hand, aims to identify
some target entities as vertices in G∗ by using her background knowledge about the targets.
We use F to denote a background knowledge function that an attacker uses to determine the
characteristics of an entity and F(v) to represent the characteristics of an entity v with respect
to F . If F is performed based on the graph structure, such as the number of connections of
a vertex (called degree), neighborhood, and subgraph, we call this kind of attack structural
re-identification attack, which is formally defined in Definition 2.1

Definition 1 (Published social network) The published version G∗(V ∗, E∗) of a social net-
work G(V, E) is obtained by removing all the vertex identity information of G and with possi-
ble structural modifications (e.g., edge and/or vertex insertion and/or deletion) ). G∗(V ∗, E∗)
is published and used as G for data mining and analysis activities.

Definition 2 (Structural re-identification attack) Given a social network G(V, E), its pub-
lished version G∗(V ∗, E∗), the background knowledge function F , and a target entity vt ∈ V ,
the structural re-identification attack searches for all the vertices in G∗ that could provide the
same result for F as vt , i.e., VF(vt ) = {v ∈ V ∗|F(v) = F(vt )}. If |VF(vt )| � |V ∗|, then vt

has a high probability to be re-identified.

2.2 K-Anonymity and utility loss

K -anonymity is a widely adopted notion to prevent the structural re-identification attack on
social networks [19,31,36,38,39], as formally defined in Definition 3.

Definition 3 (K -Anonymity) Given a published social network G∗(V ∗, E∗) and the
attacker’s background knowledge F, G∗ satisfy k-anonymity with respect to F , iff for each
v ∈ V ∗, there are at least k − 1 other vertices v′ ∈ V ∗ with F(v′) = F(v).

1 The attacker could possess some non-structural information about the targets as well (e.g., the labels of
vertices and edges), but in this paper, we only consider the structural background knowledge.
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Given a published k-anonymized graph with respect to the background knowledge F ,
assume that an attacker knows that there is an entity vt in the social network with the back-
ground knowledge F(vt ). She performs the re-identification attack and finds x vertices with
the same F value of F(vt ). According to the k-anonymity notion, x ≥ k. Without further
information, the attack could not differentiate these x vertices and the probability for her to
identify vt among these vertices is 1

x ≤ 1
k . Therefore, the k-anonymity notion prevents the

re-identification attack by providing an upper bound (i.e., 1
k ) to the re-identification proba-

bility. The higher the k value is, the smaller the upper bound is and hence the lower the risk to
the users privacy is. Please note that we need to specify the type of background knowledge F
that an attacker has in order to formally define k-anonymity (e.g., k-degree anonymity [19],
k-neighborhood anonymity [36]). However, when the meaning of F is clear in the context,
we use k-anonymity in this paper for the brevity of presentation.

Various approaches have been proposed to anonymize a social network. In this work, we
focus on the approaches based on edge modification, that is, to anonymize a graph via inserting
and/or deleting edges. It is expected that an anonymized social network is structurally different
from the original one, and hence it loses some utility compared with the original one. Ideally,
social network publishing should take both the privacy and utility into consideration. In other
words, k-anonymity-based social network publishing should publish social network G∗ that
satisfies k-anonymity and meanwhile has as small utility loss as possible.

3 Utility measurement

Our goal in this work is to design a high utility social network anonymization scheme.
Therefore, the key issue to address first is how to properly measure the utility loss of a
published social network. As discussed in Sect. 1, the utility measurement based on the
simple graph degree sequence model cannot capture many important social network topology
changes. Hence, we want to design a more proper utility model that can better capture the
complex social network structure properties.

In this work, we propose to build our utility loss measurement based on the community-
based graph models. The community structure is a central organizing principle of many real
social networks. Generally, it reflects locally inhomogeneous edge distribution among the
vertices of a network, with high density of edges (i.e., strong connections) between vertices
within one community and low density of edges (i.e., weak connections) between vertices
from different communities. Given a fixed community organization, the influence of an edge
insertion or deletion can be reflected by the changes on the edge distribution within or
between communities. In addition, many researches have demonstrated that the community
structure has a strong correlation with many other important topological features of social
networks such as betweenness, eigenvector, and clustering coefficient [27]. Therefore, we
believe that the impact of an anonymization process on the community organization also
reflects its influence on other social network topological features. Our experimental study to
be presented in Sect. 6 will further verify this point.

There are various ways to model social network communities [27]. In this paper, we
consider both the flat community model and the hierarchical community model, and our utility
loss measurement is built around the idea of measuring the edge distribution changes within
and among the communities. Therefore, the anonymization algorithm designed to minimize
the utility loss preserves the graph community structure via preserving the edge distribution
among fixed community partitions. In the following subsections, we will introduce our utility
models in detail.
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Fig. 2 An example of the flat
community model

Table 2 Edge distribution
sequence and utility loss based on
the flat community model

(Anonymized) graphs E S
〈

n11|E | ,
n12|E | ,

n22|E |
〉

U L(G, G∗)

G
〈

3
10 , 1

10 , 6
10

〉
N.A.

G∗
1

〈
3
11 , 1

11 , 7
11

〉
0.0727

G∗
2

〈
3
11 , 2

11 , 6
11

〉
0.1636

G∗
3

〈
3
9 , 1

9 , 5
9

〉
0.0888

3.1 Flat community-based utility model

First, we introduce a utility measurement based on the flat community model. The flat com-
munity model is defined as a non-overlapping partition of graph vertices, so that the vertices
within one partition (community) are connected with edges of high density and the ver-
tices from different communities are connected with edges of low density. Given a graph
G(V, E), we assume that the graph is divided into m disjoint communities, denoted as
CG = {C1, C2, . . . , Cm}, such that ∀v ∈ V , there is one community Ci containing v. For
example, in Fig. 2, the social network G is divided into 2 communities as indicated by the
dash circles. Community C1 contains vertices {a, b, c}, and C2 contains {d, e, f, g, h}.

Here, we explain how to quantitatively measure the utility loss of a given modified
(anonymized) graph G ′(V ′, E ′) based on the community model compared with the orig-
inal graph G(V, E). The algorithm used to generate communities will be introduced later.
Suppose the community structure of a graph G(V, E) is available, we can quantitatively
capture the edge distribution within and among the communities via an edge distribution
sequence, denoted as E S. To be more specific, we first count, i) for any community Ci , the
number of edges that connect vertices within Ci , denoted as nii , and ii) for any pair of com-
munities Ci and C j (i 	= j), the number of edges that connect vertices from Ci to vertices
from C j , denoted as ni j . Thereafter, the percentage of edges distributed within community Ci

is nii|E | , and the percentage of edges distributed across Ci and C j is
ni j
|E | . The edge distribution

sequence E S is then defined as
〈

n11|E | ,
n12|E | , . . . ,

ni j
|E | , . . . ,

nmm|E |
〉
, (1 ≤ i ≤ j ≤ m). For instance,

based on the community model of G depicted in Fig. 2, there are 3 and 6 edges lying within
community C1 and community C2, respectively, and one edge lying across them. Since the
total number of edges in G is 10, E SG = 〈 3

10 , 1
10 , 6

10

〉
. Table 2 lists the E Ss of the original

graph G and its three anonymized counterparts.
Given an original graph G and its modified (anonymized) version G ′, we assume their

corresponding edge distribution sequences are E SG and E SG ′ , respectively. Compared with
G, the utility loss caused by G ′, denoted as U L(G, G ′), is measured by the L1 distance
between E SG and E SG ′ , as defined in Equation (1). Using this utility loss measurement, we
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list the utility loss of all three anonymized graphs in Table 2. We observe that the anonymized
graph G∗

1 causes the smallest utility loss. This is consistent with our observations made in
Sect. 1.

U L(G, G ′) = ||E SG − E SG ′ ||1 =
∑

1≤i≤m

|E SG [i] − E SG ′ [i]| (1)

There are various community detection algorithms proposed in the literature. In this paper,
we adopt the modularity-based method, one of the most popular community detection meth-
ods, to generate the flat community model. Modularity is a quality function defined based on
null model to express the “strength” of the communities. By assumption, high values of mod-
ularity indicate good community partitions. To the interests of running time, we implement
the greedy modularity maximization algorithm proposed by Newman [24]. It is an agglom-
erative clustering method, where groups of vertices (partitions) are successively joined to
form larger communities. It starts with every vertex as one partition. Then, at each step, an
edge is added to join the partition such that the maximum increase or minimum decrease
in modularity w.r.t. the previous configuration can be achieved. The algorithm terminates
until one unified partition is formed. Among all partition configurations generated at each
step of this process, the one with the largest value of modularity is returned as the result.
The complexity of the algorithm is O((|V | + |E |) × |V |), and it has been demonstrated to
perform well on large social networks. However, we want to emphasize that our utility model
is independent of the algorithm used for generating communities and any algorithm that can
generate good community partitions is applicable.

3.2 Hierarchical community-based utility model

Besides the well-studied flat community structure, some recent studies suggest that the com-
munities of social networks often exhibit hierarchical organization (i.e., large communities
in a social network may contain small communities). The hierarchical communities capture
the structure information of a social network from coarse to fine scale. Presumably, the graph
model based on the hierarchical community organization provides more structure informa-
tion of a graph. As a result, the utility measurement built upon the hierarchical community
model is more sensitive to the small graph structure change caused by an anonymization
process, thus provides a better control on the utility loss. In the following, we discuss how
to measure the utility loss based on the hierarchical community model.

In this paper, we use the hierarchical random graph (HRG) model proposed in Clauset
et al. [5,6] to capture the hierarchical organization of the social network communities. An
HRG of a graph G(V, E) is a binary tree, denoted as HG . Its leaf nodes correspond to the
vertices in V , and each of the non-leaf nodes r roots a subtree denoted as Tr . The vertices
in the subtree Tr are regarded as a community Cr . Thus, HG organizes the communities
hierarchically.

Each non-leaf node r of HG is associated with a connection probability pr . Here, pr is
the probability that a vertex in the left subtree T L

r linked by an edge with a vertex in the right
subtree T R

r . The larger the pr is, the stronger the connection between r ’s two subtrees is.
Mathematically, the connection probability pr is defined in Equation (2).

pr = |Er |
|T L

r | · |T R
r | (2)

where |Er | is the number of edges e(vi , v j ) ∈ E with vi ∈ T L
r and v j ∈ T R

r , and |T L
r | and

|T R
r | represent the numbers of vertices in r ’s left and right subtrees, respectively. An HRG
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Fig. 3 An example of the
hierarchical community model

Table 3 Edge distribution
sequence and utility loss based on
the HRG model

(Anonymized) graphs E S 〈r1, r2, r3, r4, r5, r6, r7〉 U L(G, G∗)

G
〈

1
10 , 1

10 , 1
10 , 2

10 , 2
10 , 2

10 , 1
10

〉
N.A.

G∗
1

〈
1
11 , 1

11 , 1
11 , 2

11 , 3
11 , 2

11 , 1
11

〉
0.1454

G∗
2

〈
1
11 , 1

11 , 1
11 , 2

11 , 2
11 , 2

11 , 2
11

〉
0.1636

G∗
3

〈
1
9 , 1

9 , 1
9 , 2

9 , 1
9 , 2

9 , 1
9

〉
0.1777

of the graph shown in Fig. 1a is depicted in Fig. 3. The connection probability pr4 of node
r4 is 1 as all the nodes in the left subtree (i.e., node a and node b) connect to all the nodes in
the right subtree (i.e., node c). On the other hand, the connection probability pr6 of node r6

is 1
3 as |Er6 | = |{e(g, d), e(g, f )}| = 2, |T L

r6
| = |{e, d, f }| = 3, and |T R

r6
| = |{g, h}| = 2.

Given the HRG model of a graph, we observe that the edges of the graph actually
distribute on all the non-leaf nodes ri , i.e., ∪ri Eri = E . We then generate the edge
distribution sequence E S based on the edge distribution on these non-leaf nodes. Thus,

E S =
〈 |Er1 |

|E | ,
|Er2 |
|E | , . . . ,

|Erm |
|E |

〉
, where m is the total number of non-leaf nodes on HG . Again,

we define the utility loss based on the L1 distance of the E Ss of the original and anonymized
graphs. Table 3 lists the E Ss of the original graph G and its three anonymized versions
based on the HRG model together with their corresponding utility loss. Consistent with our
expectation, we find that G∗

1 causes the smallest utility loss. This simple example used in this
paper is only able to demonstrate that the utility measurements based on the flat community
model and the HRG model both have the potential to help to identify good anonymization
options. We will conduct comprehensive experiments on real social networks to evaluate the
performance of both community models in Sect. 6.

Given a social network G, the optimal HRG that fits it can be determined using the
Markov chain Monte Carlo method (MCMC) proposed in Clauset et al. [6]. It first defines
a likelihood function L to evaluate the fitness of a given HRG HG to G, with L(HG) =∏

r∈HG

[
p pr

r (1 − pr )
1−pr

]|T L
r |·|T R

r |
. The higher this likelihood score is, the better the HG

captures the topological structure of G. Then, the MCMC method samples the space of
all possible HRGs with the probability proportional to L and returns the one having the
maximum L value. The MCMC method creates Markov chain by defining several transitions
to transfer an HRG HG to a new H′

G . It calculates the logarithm of L of each HRG during
sampling and accepts a transaction HG → H′

G if � log L = log L(H′
G) − log L(HG) ≥ 0.

Otherwise, the transaction is accepted with probability exp(log L(H′
G)− log L(HG)). In the

worst case, the time complexity of the MCMC method is exponential. However, it is stated
in Clauset et al. [6] that in practice, MCMC converges to plateau roughly after O(|V |2)
steps.
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4 HRG-based K -anonymization

After introducing the community-based graph models and the corresponding utility loss
measurements, we are ready to present our high utility k-anonymization algorithm that
anonymizes a given social network via edge operations with the utility loss as small as
possible. In the following, we first present the basic idea of the algorithm and then detail
its three main components, i.e., estimating local structure information, generating candidate
edge operations, and refining the graph. Notice that although we only focus on k-degree
anonymity in this section, our approach is general and it is applicable to other k-anonymity-
based privacy protection schemes on social networks (e.g., k-neighborhood anonymity). We
will briefly discuss how to adjust this approach to support k-neighborhood anonymity in
Sect. 4.6.

4.1 Basic idea and algorithm framework

The k-anonymization problem on social networks is NP-hard.2 Instead of searching for an
optimal solution (i.e., a k-anonymized graph with the smallest utility loss) which is compu-
tationally expensive, in the paper, we design a greedy strategy that may derive suboptimal
results. Following the works in the literature, we only consider achieving k-anonymity via
performing a sequence of edge operations on the social network. As a result, the utility loss
is affected by both the number of edge operations performed and the impact of each edge
operation on the utility loss. Consequently, our greedy strategy is trying to approach the
optimal solution by finding a short edge operation sequence to anonymize the social network
with each edge operation causing a small utility loss. The basic idea of our algorithm is as
follows. Given a graph G, the attack model F , and the privacy requirement k, we carefully
perform one edge operation at a time on G to approach k-anonymity against the attacks under
F . On the one hand, to make the number of performed edge operations as small as possible,
we choose the edge operation that directs the current G toward its “nearest” k-anonymized
graph. Here, “nearest” k-anonymized graph refers to the graph that satisfies k-anonymity with
the smallest number of edge operations, which is denoted as G∗ to facilitate our explanation.
On the other hand, among all the possible edge operations that can direct G toward G∗, at
each time, we perform the one which causes the smallest utility loss based on our utility loss
measurement introduced in Sect. 3.

In this process, the knowledge of G∗ is essential, which, however, is unknown and hard
to locate. Given the fact that forming G∗ directly is not always possible, we try to estimate
G∗ to derive the local structure information of its vertices (e.g., the vertex degree and/or the
neighbor degree of each vertex), which, based on the given graph G, F and k, is possible.
Then, according to the local structure information of G∗, a set of candidate edge operations
leading G toward G∗ can be generated and we always perform the one that causes the smallest
utility loss first.

Algorithm 1 sketches a high-level outline of our high utility k-anonymization algorithm.
It takes a graph G, the attacker’s background knowledge F , and the privacy parameter k
as inputs, and outputs a modified graph G ′ that is k-anonymized and meanwhile has small
utility loss. Initially, the algorithm constructs and maintains a flat/hierarchical community
model of G as MG (line 1). Then, it sets G ′ to G and sets the local structure information
L S∗ as an estimation of G∗ based on G, F and k (lines 2–3). Thereafter, it generates a set of

2 Zhou et al provide the NP-hardness proof in Zhou and Pei [37] by an induction from the k-anonymity
problem in relational data.
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Algorithm 1 high utility k-anonymization algorithm

Input:Graph G(V, E), F , and k.
Output:K -anonymized graph G′.

Procedure:
1: MG = constructCommunityModel(G);
2: G′(V ′, E ′) = G(V, E);
3: L S∗ = estimate(G, F, k);
4: while G′ is not k-anonymized do
5: Sop = findCandidateOp(G′, L S∗, MG );
6: while Sop 	= ∅ do
7: operation op = Sop .min_op();
8: execute(op, G′);
9: Sop = findCandidateOp(G′, L S∗, MG );
10: end while
11: if G′ is not k-anonymized then
12: L S∗=refine(G, L S∗, G′);
13: end if
14: end while
15: return G′;

candidate edge operations (i.e., edge insertion operations or edge deletion operations) based
on current G ′ and the estimated target L S∗. The candidate operations are maintained by a set
Sop together with the utility loss caused by each edge operation that is calculated based on
the community model MG (line 5). At each step, our algorithm performs the edge operation,
which causes the smallest utility loss on G ′, and then regenerates the candidate operation set
based on the updated G ′ (lines 7–9). This process continues until Sop becomes empty (lines
6–9). After performing all the identified candidate edge operations, there are two possible
outcomes depending on whether the current G ′ is k-anonymized. If G ′ is k-anonymized, the
algorithm terminates and returns G ′ as the result (line 12). Otherwise, G ′ does not satisfy the
privacy requirement, i.e., the k-anonymized graph with the local structure information L S∗
is not achievable. We need to refine the target L S∗ via small adjustments and continue the
previous process (line 11). We would like to point out that when refining the target L S∗, we
only consider additive adjustment, which makes L S∗ changing toward the local structure of a
complete graph. Thus, in the worst case, G ′ will be modified toward the complete graph, which
always satisfies the privacy requirement (if |V | ≥ k).3 Therefore, our algorithm is convergent.

In the following, we detail the three key components involved in Algorithm 1, i.e., esti-
mating local structure information, generating candidate edge operations, and refining local
structure information.

4.2 Estimating local structure information

Deriving local structure information of G∗ (i.e., the k-anonymized graph with the smallest
number of edge operations) is essential as it sets up the target for our anonymization algorithm.
In this section, we explain how this task is performed. As stated earlier, we only focus
on the k-degree anonymity for presentation simplicity. Since the privacy requirement sets
constraint on the vertex degree of the target anonymized graph, we estimate the degree
sequence DS∗ as the local structure information of G∗. Degree sequence DS of a graph

3 We want to highlight that the additive adjustment only applies to the refining local structure information
step of Algorithm 1 (i.e., lines 10–11). In other part of the algorithm (e.g., lines 5–9 where edge operations are
performed to change the current graph toward the target graph), we consider both the edge addition operations
and the edge deletion operations.
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G(V, E) is a vector of size |V | with each element DS[i] ∈ DS representing the degree of
vertex vi in G. We further assume the degree sequence is sorted by the non-ascending order
of its elements (i.e., DS[1] ≥ DS[2] ≥ . . . ≥ DS[|V |]). There are some observations that
can guide the estimation. First, DS∗ shares equal size with DS, because we only consider
graph modification via edge operations but not vertex operations. Second, DS∗ must be
k-anonymized since DS∗ is the degree sequence of a k-degree anonymized graph G∗. In
other words, for each element DS∗[i] ∈ DS∗, there are at least k − 1 other elements sharing
the same value as DS∗[i]. Third, because that DS∗ is the degree sequence of the “nearest”
k-anonymized graph G∗, the L1 distance between DS∗ and DS should be minimized. Based
on the above observations, we employ the dynamic programming method proposed in Liu
and Terzi [19] to find optimal DS∗ in O(|V |2) times. A greedy algorithm is also available
in Liu and Terzi [19] with time complexity O(k|V |). We ignore the detail because they are
not the focus of our work.

4.3 Generating candidate edge operation set

Once DS∗ that represents the target local structure information is ready, we need to find
candidate edge operations that can convert G ′ to a k-anonymized graph with its degree
sequence matching DS∗. Before we introduce the detailed algorithm, we first define three
basic types of edge operations, i.e., edge insertion, edge deletion, and edge shift, denoted
as ins(vi , v j ), del(vi , v j ), and shi f t ((vi , v j ), (vi , vk)). As suggested by their names,
ins(vi , v j ) is to insert a new edge that links vertex vi to vertex v j , and del(vi , v j ) is to
remove the edge between vi and v j . Operation shi f t ((vi , v j ), (vi , vk)) is to replace the
edge e(vi , v j ) with edge e(vi , vk). Notice that edges e(vi , v j ) and e(vi , vk) of any edge shift
operation are carefully selected so that the edge shift operation does not change the edge
distribution of the constructed community model, thus causes zero change to the utility loss.
For example, as shown in Fig. 2, G is partitioned into two communities. Edge e(c, d) is the
crossing edge between these two communities. An edge shift operation shi f t ((c, d), (c, h))

shifts the end point d of this edge to vertex h. Since d and h are in the same community,
there is still one edge lying between these two communities; thus, it does not change the
edge distribution on the flat community model. The edge shift operation based on the flat
community model is formally expressed in Definition 4. Similarly, the edge shift operation
can also be defined on the hierarchical community model, as defined in Definition 5. Due to
this unique feature, edge shift operations should receive a higher priority when modifying
the graph to achieve k-anonymity.

Definition 4 (Edge shift on flat community model) Given a graph G(V, E), the corresponding
flat community model CG , an edge e(vi , v j ) ∈ E , and a vertex vk ∈ V such that e(vi , vk) 	∈ E ,
if v j and vk are in the same community, an edge shift shi f t ((vi , v j ), (vi , vk)) could be
performed to replace e(vi , v j ) with e(vi , vk).

Definition 5 (Edge shift on HRG) Given a graph G(V, E), the corresponding HRG HG ,
an edge e(vi , v j ) ∈ E , and a vertex vk ∈ V such that e(vi , vk) 	∈ E , let r be the lowest
common ancestor of v j and vk on HG . If vi is not in the subtree of r , an edge shift operation
shi f t ((vi , v j ), (vi , vk)) could be performed to replace e(vi , v j ) with e(vi , vk).

The goal of the edge operations is to modify the graph, such that its new degree sequence
DS′ matches the target degree sequence DS∗. Consequently, the degree difference sequence
δ = (DS∗ − DS′) can give some guidance. Each element δ[i] ∈ δ with δ[i] > 0 (i.e.,
DS′[i] < DS∗[i]) indicates that a vertex in G ′(V ′, E ′) with degree DS′[i] needs to increase
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Fig. 4 The degree sequence of
G and candidate operations

its degree, i.e., it should have more edges connected to. We maintain DS′[i]s with δ[i] > 0
via a set DS+ and maintain all vertices v ∈ V ′ that have degree DS′[i] via a set V S+, which
includes all the vertices that may require edge insertion operation. Similarly, each element
δ[ j] ∈ δ with δ[ j] < 0 (i.e., DS′[ j] < DS∗[ j]) indicates that a vertex in G ′ with degree
DS′[ j] needs to decrease its degree, i.e., it should have less edges connected to. We maintain
D′[ j]s with δ[ j] < 0 via a set DS− and maintain all the vertices v ∈ V ′ that have degree
DS′[ j] via a set V S−, which includes all vertices that may require edge deletion operation.
Notice that a degree value of DS′[i] or DS′[ j] may correspond to multiple vertices in G ′, and
we treat them equally in our work. In addition, if the degree DS′[i] (DS′[ j]) only appears
once in DS+ (DS−), we cannot perform edge insertion (deletion) to connect (disconnect) two
vertices vl , vk both with the degree of DS′[i] (DS′[ j]), and hence, we mark these vertices
mutual exclusive, denoted as E X (vl , vk) = T rue. The mutual exclusive set is formally
defined in Definition 6.

Definition 6 (Mutual exclusive set) Given a difference sequence δ = (DS∗ − DS′) of the
target degree sequence DS∗ and the degree sequence DS′ of the current graph G ′(V ′, E ′),
we define the degree set DS+ = {DS′[i] ∈ DS′|δ[i] > 0} and the vertex set V S+ =
{v j ∈ V ′|∃DS′[i] ∈ DS+, d(v j ) = DS′[i]} with d(v j ) referring to the degree of the
vertex v j . Let Gd = {v j |v j ∈ V S+ ∧ d(v j ) = d} and Dd = {DS′[i]|DS′[i] ∈ DS+ ∧
DS′[i] = d}. If |Dd | = 1, the set Gd = {v1, v2, . . . , vt } is a mutual exclusive set, denoted
as {v1, v2, . . . , vt }E X and each pair of vertices vl , vk ∈ Gd is mutual exclusive to each
other, denoted as E X (vl , vk) = T rue. The mutual exclusive set on DS− can be defined
analogously.

Back to the graph G depicted in Fig. 1a. Its degree sequence DS and the target 2-degree
anonymized degree sequence DS∗ are shown in Fig. 4. We derive δ = (DS∗ − DS) =
(0, 1, 0, 0, 0, 0, 0, 1) and find δ[2] = δ[8] = 1 > 0. Hence, DS[2](= 3) and DS[8](= 1)

are inserted into DS+. Then, all the vertices in G with degree being 3 or 1 are inserted into
V S+ ( V S+ = {c, f, g h}). Notice that {c, f, g} is a mutual exclusive set. As there is no
element of δ with its value smaller than 0, DS− = V S− = ∅.

The reason that we form the V S+ set and the V S− set is to facilitate the generation of
candidate edge operations. As V S+ contains those vertices that need larger degree, ins(vi , v j )

is a candidate operation, if vi , v j (i 	= j) ∈ V S+ ∧ e(vi , v j ) 	∈ E ′ ∧ E X (vi , v j ) 	= T rue.
We enumerate all the candidate edge insertion operations based on V S+ and preserve them
in a set Opins . Similarly, del(vi , v j ) is an candidate edge deletion operation, if e(vi , v j ) ∈
E ′ ∧ vi , v j (i 	= j) ∈ V S− ∧ E X (vi , v j ) 	= T rue. Again, we explore all the candidate edge
deletion operations and preserve them in a set Opdel . We also consider the candidate edge
shift operation. For a pair of vertices (v j , vk) ( j 	= k) with v j ∈ V S−∧vk ∈ V S+, if there is a
vertexvi , (i 	= j, k) such thatvi , v j andvk satisfy the condition in Definition 4 (or Definition 5
if the HRG model but not the flat community model is used), shi f t ((vi , v j ), (vi , vk)) is a
candidate. All possible edge shift operations form another set Opshi f t . We continue the
above example shown in Fig. 4. As V S− = ∅, we only need to consider possible edge
insertion operations, i.e., Opdel = Opshi f t = ∅. Based on V S+ = {c, f, g, h} and the
mutual exclusive set, we have Opins = {ins(c, h), ins( f, h)}.
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Algorithm 2 findCandidateOp algorithm

Input:G′(V ′, E ′), DS∗, community-based graph model MG .
Output: Candidate operation set Sop .

Procedure:
1: DS′ = degree sequence of G′; δ = (DS∗ − DS′);
2: DS+ = {DS′[i] | δ[i] > 0, 1 ≤ i ≤ |DS′|};
3: DS− = {DS′[ j] | δ[ j] < 0, 1 ≤ j ≤ |DS′|};
4: V S+ = V S− = ∅;
5: for each d ∈ DS+ do
6: V S+ = V S+ ∪ {vi |vi ∈ V ′, d(vi ) = d};
7: end for
8: for each d ∈ DS− do
9: V S− = V S− ∪ {v j |v j ∈ V ′, d(v j ) = d};
10: end for
11: Opins = get Op(V S+, V S+);
12: Opdel = get Op(V S−, V S−);
13: Opshi f t = get Op(V S+, V S−, MG );
14: calculate the cost of each operation in Opins , Opdel , and Opshi f t ;
15: Sop .insert (Opins , Opdel , Opshi f t );
16: return Sop ;

Given all the candidate edge operations maintained in the operation sets Opins, Opdel ,
and Opshi f t , respectively, we insert them into the candidate operation set Sop , which is
used by the high utility k-anonymization algorithm (i.e., Algorithm 1). Before inserting
the edge operations into Sop , we need to calculate the utility loss caused by each of them,
so that the edge operation causing smaller utility loss will be performed earlier. Continue
our example depicted in Fig. 4 with the utility loss calculated based on the flat com-
munity model in Fig. 3. The corresponding candidate edge operation set Sop is set to
{〈ins( f, h), 0.0727〉, 〈ins(c, h), 0.1636〉}. Algorithm 2 presents the pseudocode of finding
candidate operations.

4.4 Refining target local structure information

As mentioned above, our high utility k-anonymization algorithm generates DS∗ that estimates
the local structure information of the “nearest” k-anonymized graph as the target and performs
edge operations to change the current graph toward DS∗. However, it is possible that the k-
anonymized graph with degree sequence DS∗ is not achievable by the current executed
operation sequence. If this happens, we fine-tune DS∗ and start another round of attempt.
We prefer that the new target degree sequence is close to the old DS∗, and we only consider
additive adjustments on DS∗ to ensure the convergence of our algorithm. Hopefully, the new
target DS∗ will be achievable through our anonymization process.

In order to decide how to adjust DS∗, we first consider V S+, which contains the vertices
that have not been k-anonymized and need to increase their degrees. For any vertex vi in V S+,
we cannot find a vertex v j to form a valid ins(vi , v j ) operation to increase its degree according
to the current DS∗. Therefore, we want to find an element on DS∗ to increase its value, so that
later we could find the candidate operation that increases vi ’s degree. For each vi ∈ V S+,
we find some vertices v j ∈ V (i 	= j) that e(vi , v j ) 	∈ E ′, and E X (vi , v j ) 	= T rue. These
v j s form the candidates of which we could increase the target degree on DS∗. We could
randomly choose one among the candidate v j s to increase its target degree by a small value
(e.g., 1) on DS∗, but it may break the k-anonymity of DS∗. Therefore, instead of directly
increasing the target degree of v j on DS∗, we increase the degree of v j on DS and then we
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regenerate DS∗ based on the updated DS. As the changes made to DS are very small, the
new DS∗ should be very similar to the old one.

We only consider V S+ above because we want to make additive change to DS∗. However,
when V S+ is empty, we have to utilize V S− that contains the vertices that have not been
k-anonymized and need to decrease their degrees. Similar to above, for a vertex vi ∈ V S−,
we could find a vertex v j to reduce its target degree to make a valid candidate operation
del(vi , v j ). However, this is against our goal of only making additive change. Alternatively,
for a vertex vi ∈ V S−, we increase the degree of another vertex v j on DS whose degree
value is the closest to that of vi in G and then regenerates DS∗ based on the updated DS.
The rationale is that because v j and its corresponding vi ∈ V S− have similar degrees, they
are very likely to be anonymized to have the same degree in the anonymized graph. After the
degree of v j has been increased, vi may not need to decrease its degree any more.

4.5 Computational complexity

In this subsection, we briefly discuss the time complexity of our algorithm by analyzing the
time complexity of each step in the k-anonymization process.

Based on Sect. 4.2, estimating local structure information can be processed in O(k|V |)
time. Then, the following step is generating candidate operations. In this step, firstly, a one-
time scan on the difference sequence δ is performed to generate the vertex sets V S+ and
V S−, which takes time O(|V |). Given t = max{|V S+|, |V S−|}, it takes O(t2) time to gen-
erate all candidate operations and the total number of candidate operations generated is at
most O(t2). For each candidate operation, we need to calculate the utility loss caused based
on the given community model, which is the L1 distance of the edge distribution sequence
E S. Usually, the time complexity of calculating L1 distance is linear to the length of E S,
denoted as l. However, we observe that each edge operation only affects the number of
edges corresponding to at most one element of E S, as well as the total number of edges.
For example, if we add one edge e(c, h) in the example graph shown in Fig. 1a, then it
will only affect n12 (i.e., the number of the edges distributed between communities C1 and
C2) of the flat community model shown in Fig. 2 and increase the total number of edges
by 1. Suppose E S and E S′ are the edge distribution sequence of the original graph and
that of the modified graph via adding e(c, h), the L1 distance between them is calculated

as following: ||E S − E S′||1 = ∑
i j

(
ni j
|E | − ni j

|E |+1

)
−

(
n12|E | − n12|E |+1 ) + (| n12|E | − n′

12|E |+1 |
)

=(
1

|E | − 1
|E |+1

) ∑
i j ni j −

(
n12|E | − n12|E |+1

)
+

(
| n12|E | − n′

12|E |+1 |
)

. With
∑

i j ni j being calculated

only once within O(l) time, the utility loss of every candidate operation can be easily cal-
culated in constant time. This observation also applies to the HRG model. Consequently,
calculating the utility loss scores of all candidate operations can be proceed in O(l + t2)

time including spotting the operation with the lowest utility loss score. To sum up, the overall
computation time of the second step is O(|V |)+O(l+t2). In the worst case, when all vertices
need to increase or decrease their degree, t = max{|V S+|, |V S−|} = |V |. For the flat com-
munity model, l = m2 with m being the number of communities in the model. For the HRG
model, l = |V | − 1. Therefore, the upper bound of the value of l is |V |2. Consequently, the
worst-case time complexity of generating candidate operations is O(|V |2). However, in the
real cases, the degree sequence of a social network usually follows power-law distribution,
resulting in low frequencies of the vertices sharing large degree and high frequencies of the
vertices having small degree. In other words, in a social network, it is very likely that a large
amount of low-degree vertices already satisfy k-degree anonymity and hence do not need
to change their degrees, i.e., t << |V |. And then, the number of communities m is also far
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smaller than |V |. Therefore, the running time of the candidate operation generation process
most likely will be much smaller than that in the worst case.

The running time of the refinement process depends on the size of the remaining V S+
or V S− sets. Suppose the size is t , then the time complexity of this process is O(t |V |).
Generally, t << |V |, thus t |V | << |V |2.

Based on the above analysis, the worst-case computational complexity of one iteration of
the k-anonymization process is O(|V |2), but the real running time of this process in most
cases is much shorter. As it is hard to anticipate the number of iterations the algorithm will
run before convergence, we will conduct experiments to further test the time performance of
our algorithm in Sect. 6.

4.6 Discussion

As mentioned before, the proposed high utility anonymization framework is general and it
is applicable to other k-anonymity schemes besides k-degree anonymity. In the following,
we briefly explain how to extend the framework (as defined in Algorithm 1) to support k-
neighborhood anonymity. Due to the focus of this work, we only present how to estimate the
local structure information and how to generate candidate edge operations in the context of
k-neighborhood anonymity.

A k-neighborhood anonymized graph G ′(V ′, E ′) requires that for any vertex v ∈ V ′, there
are at least k − 1 other vertices sharing isomorphic neighborhood with v. The neighborhood
N B(v) of v is a subgraph containing all the vertices within a certain distance d to v and
the edges among these vertices. The diameter d decides the size of the neighborhood. To
simplify our discussion, we only consider the neighborhood within distance of 1, which is
also a common practice assumed by other works [36]. Unless otherwise noted, the term
neighborhood only refers to the neighborhood with d = 1.

The local structure information used by k-neighborhood anonymization is the neighbor-
hood subgraph of every vertex. Like using the degree sequence to capture the local degree
information of graphs in the k-degree anonymization process, we use the neighborhood set
N S to record the local neighborhood N B(vi ) of every vertex vi of a graph and we try to
generate the neighborhood set N S∗ of the “nearest” anonymized graph G∗. Again, for a
given graph G, its “nearest” anonymized graph G∗ refers to an anonymized graph that satis-
fies k-neighborhood anonymity and meanwhile is generated via the smallest number of edge
operations. As the generation of G∗ is not always possible, we use the neighborhood set N S∗
of G∗ as the estimation of the local structure information of G∗.

Given G and the privacy parameter k, N S∗ has the following properties. First, N S∗ has
the same size as N S. Second, N S∗ is k-anonymized, meaning that for each N B∗(vi ) ∈ N S∗,
it has at least k − 1 other isomorphic subgraphs in N S∗. Third, the sum of the graph edit
distance from each N B∗(vi ) to its corresponding N B(vi ) is minimized (i.e., the number of
edge operations of changing G to G∗ is minimized). Again, take the graph shown in Fig. 1a
as an example. Assume parameter k = 2, the neighborhood N S(vi ) and its corresponding
target neighborhood N S∗(vi ) of every vertex vi are depicted in Fig. 5. We group all the
vertices vi sharing the same isomorphic neighborhood in the target anonymized graph into
one equivalent group EG, i.e., ∀vi , v j ∈ EG, N S∗(vi ) = N S∗(v j ). As shown in the figure,
the vertices {a, b} are in the same equivalent group, so as the vertices {c, g}, {e, h}, and
{d, f }.

After obtaining the N S∗, we need to find candidate operations that can direct the current
graph to a k-neighborhood anonymized graph with its neighborhood set captured by N S∗. In
order to do this, we first identify the vertices whose neighborhoods do not match their target
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Fig. 5 An example of the vertices’ neighborhoods and the estimated target neighborhoods

(a) (b)

Fig. 6 An example of 2-neighborhood anonymization. a del(e, d) changes N B(d), N B(e), N B( f ). b An
example output

neighborhoods and store them in a set V S. And then, for each of these vertices vi ∈ V S,
all the viable edge operations that can lead N B(vi ) toward N B∗(vi ) are added into the
candidate operation set. Continue the previous example. It is observed that, to transform their
current neighborhoods to the target neighborhoods, both vertex e and vertex d need to delete
one edge(vertex) from their neighborhoods, respectively. Consequently, the edge deletion
operation del(e, d) qualifies as a candidate operation. Given a set of candidate operations,
we calculate the utility loss for each of them and perform the one with the smallest utility
loss. Then, we update V S and regenerate the candidate operation set.

Obviously, each candidate edge operation serves at least one vertex vi by converting the
neighborhood of vi to its target neighborhood N S∗(vi ). For example, operation del(e, d)

serves vertex e and vertex d . However, we want to highlight that an edge operation may
affect the neighborhoods of some vertices v j , which it does not mean to affect, and hence the
corresponding target neighborhoods N S∗(v j ) might no long be applicable after the candidate
edge operation is performed. For instance, del(e, d) will also affect the neighborhood of f .
Notice that this issue does not exist in k-degree anonymity as a given edge operation only
changes the degrees of the two vertices of the edge. In order to make the target neighborhoods
consistent in an iteration of the algorithm, we identify all the vertices whose neighborhoods
are not supposed to be affected but are changed, as well as the vertices in the same equivalent
groups with them, and then exclude them from the updated set V S when we regenerate the
candidate operations. The process repeats until no candidate operation is generated. If the
obtained graph G ′ is k-anonymized, the algorithm stops. If not, we regenerate the target
N S∗ based on the current obtained G ′. In this step, the previously excluded vertices in the
above iteration are considered and their new target neighborhoods are regenerated. To ensure
the convergence of the algorithm, we could slightly bias toward choosing edge insertion
operations among the candidate operations.

Continue the above example. Since there is only one candidate operation del(e, d), we
have no other choices but perform it. All the neighborhoods affected by this operation are
illustrated in Fig. 6a including vertices e, d and f . As this edge deletion operation is to
serve vertices e and d , the vertex that it does not mean to affect but is actually affected is
f . Consequently, all the vertices that are within the same equivalent group as f (i.e., vertex
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d) should be excluded when we regenerate the candidate edge operations after performing
del(e, d). However, we find that after performing this operation, no candidate operations can
be found. As the graph is already 2-anonymized, the algorithm completes. The generated
2-neighborhood anonymized graph is shown in Fig. 6b.

5 Privacy analysis and related works

In this section, we analyze the privacy of our k-degree anonymity scheme against the mini-
mality attacks and then review related works.

5.1 Privacy analysis

The minimality attack first discussed in Wong et al. [30] is a well-known attack on the k-
anonymity schemes on tabular data. As stated in Wong et al. [30], in order to preserve the
utility of the published data, the k-anonymity mechanisms all have the underlying principle of
minimizing the distortion to the original data. In other words, the k-anonymity algorithms only
distort the data when necessary. Sometimes, this information can be used by the adversary
to launch the minimality attack to the published data to infer the sensitive values of some
individuals and jeopardize the privacy. In the following, we discuss the minimality notions
defined in our k-degree anonymity algorithm and show that these notions will not lead to a
minimality attack.

The first minimality notion used in our algorithm is minimizing the distortion on the degree
sequence (i.e., minimize the number of edges modified). We use this notion to generate the
objective degree sequence (i.e., the degree sequence of the published graph). We assume that
in the worst case, the adversary has the background knowledge of both the identity and the
degree of every individual in the social network. Figure 7a shows the adversary’s worst-case
background knowledge of the social network depicted in Figs. 1a and 7b lists the degree of
the vertices in the published 2-degree anonymized graph in Fig. 1c. The adversary’s goal is
to map the real identities of the individuals to the vertex IDs of the published graph. With
the notion of minimality in anonymization, the adversary reasons that there must be only one
vertex of degree 3 and one vertex of degree 1 having their degrees increased, and the degrees
of other vertices remain. Therefore, the adversary infers that Alice with degree 4 must be
mapped to a vertex also with degree 4 in the published graph. Since there are 2 vertices c
and d with degree 4, without any extra information, the probability of Alice mapped to any
of them is equal (i.e., 1

2 ). However, Bob with degree 3 can be mapped to either a vertex with
degree 4 or a vertex with degree 3. Because that there are totally 3 individuals with degree 3 in
the original social network, the probability of Bob being the one that has the degree increased
(i.e., mapped to a vertex with degree 4) is 1

3 , and the probability that his degree is unchanged is
2
3 . Therefore, the probability of Bob mapped to vertex c or d is 1

3 × 1
2 = 1

6 , and the probability
of him mapped to vertex g or f is 2

3 × 1
2 = 1

3 . Similarly, the mapping probability of every
individual is inferred as shown in Fig. 7c. Lemma 1 proofs that the mapping probabilities
inferred by the adversary with the minimality notion will not exceed 1

k .

Lemma 1 Given a published k-degree anonymized social network, which is constructed
by minimizing the distortion on the degree sequence, we assume that in the worst case, an
attacker knows the real identity and degree of every individual in the social network, and she
is also aware of the minimality notion. The attacker cannot map an individual to any vertex
with probability larger than 1

k .
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(a) (b)

(c)

Fig. 7 Minimality attack: attacker’s worst-case background knowledge, vertex degree of the published graph,
and inference probability

Proof We denote the inferred mapping probability of an individual x to a vertex v in the
published graph with degree d as px

v . px
v = p1 × p2, where p1 is the probability that x is

mapped to a vertex with degree d , and p2 equals to the probability that among all the vertices
with degree d, x is mapped to the vertex v. In the worst case, with the minimality notion,
the attacker can infer p1 with the maximum probability 1. According to the k-anonymity
condition, there must be at least k vertices in the published graph sharing the degree d .
Without any extra information, the attacker can only infer the mapping from x to every
one of these vertices with equal probabilities. Therefore, the maximum value of p2 is 1

k .
Therefore, px

v ≤ 1 × 1
k = 1

k . ��
The second minimality notion used in our algorithm is modifying the vertices degree to

achieve the desired anonymity by adding and deleting edges that make the smallest changes to
the community-based utility model, which is captured by the flat or hierarchical community
model of the graph and represented by the edge distribution sequence. For the adversary
to utilize this notion to infer the details of the edge modification (anonymization) process,
and then, possibly to further infer the user identities, she has to know the utility loss caused
by the possible edge operations. However, in order to calculate the utility loss, she has to
know the community model based on which the utility measurement is generated. Without
the exact community model, the attacker could not utilize this minimality notion to make
inferences and perform attack. Therefore, in order to prevent the adversary to make use of the
second minimality notion, when publishing the anonymized graph, the community model
constructed should be kept in secret. Moreover, revealing the community model will also
provide the adversary extra information about the original graph besides the vertex degree,
which is against the worst-case assumption of our privacy scheme that the adversary only
knows the degree information of the vertices. This further convinces that the community
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model should not be disclosed. However, we do not mind whether the adversary knows the
algorithm used to construct the community model. This is because that the adversary, based on
the construction algorithm and the vertex degree, cannot reconstruct the community model.

We need to point out that the above analysis is based on the assumption that the attacker
only has the background knowledge of the vertex degree. If the attacker has some extra
information about the edges among certain individuals, she might be able to infer the identities
of some vertices with a higher chance. We reserve this topic as one of the interesting problems
to be studied in the near future.

5.2 Related works

Preserving the private information in data publishing and analysis has been well recognized
in the area of data mining and data management [1]. Many works in this area focus on
tabular data publishing [18,25], and there are some works focusing on privately publishing
transactional data [13] and survey rating data [28]. A comprehensive survey is provided
in Fung et al. [11].

With the increasing popularity of social network applications, the privacy problem in
publishing social networks starts to gain a lot of attentions [20]. Structural re-identification
is one of the major privacy concerns in social network publishing. It was first addressed in
Backstrom et al. [2]. The initial study demonstrates that simply removing the identification
information of entities is not sufficient to protect privacy. The identities of vertices can be
inferred by the attacker due to the structural uniqueness of some small embedded subgraphs.
The main work in Backstrom et al. [2] proves that subgraphs, which are maliciously planted
by the attacker (i.e., active attack) and naturally exist in the social network (i.e., passive
attack), can be used to identify entities. However, it does not provide any effective solution
to defend these attacks. Later, work presented in Hay et al. [15] further points out that the re-
identification power of an attacker depends on both the descriptive power of her background
knowledge and the structural similarity of vertices. Various classes of structural attacks are
thereafter proposed based on different types of attackers’ background knowledge, including
vertex refinement queries, subgraph queries, and hub-fingerprint queries.

To conquer structural re-identification attacks, various protection schemes have been pro-
posed [3,14,15]. For example, the random permutation approach protects privacy by ran-
domly deleting and inserting m edges [14]. Although the method is simple, it does not
provide any quantified guarantee on both privacy and utility. Graph generalization-based
approach [15] partitions vertices of a social network into small blocks. Then, it abstracts the
social network into a super graph, in which super nodes represent blocks of vertices and super
edges between super nodes represent the connections between vertices within corresponding
blocks. The super graph is then released with the statistical information of the super nodes
and super edges (e.g., the number of vertices and edges covered by a super node, and the
number of edges represented by a super edge). To guarantee privacy, this method requires
partitions of size at least k. However, the structural uncertainty introduced by the general-
ization significantly tampers the utility of the released graph. Work presented in Bhagat et
al. [3] also considers using graph partitioning to protect privacy, but it focuses on labeled
bipartite graphs.

The notion of k-anonymity [29], which has been widely used as a criterion for tabular data
privacy protection, has also been applied to social network publishing. Based on the types
of attackers’ background knowledge, various k-anonymity schemes and the corresponding
k-anonymization algorithms have been proposed [19,31,36,38,39] (see [38] for a brief sur-
vey). All these algorithms try to modify graphs to achieve k-anonymity based on edge/node
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modifications (i.e., addition and/or deletion) and try to preserve the utility of the released
social network data. The k-degree anonymity scheme is developed against the attackers with
knowledge of entity degree [19]. It requires that for a vertex v, there are at least k − 1 other
vertices having the same degree as v. Scheme proposed in Zhou and Pei [36] considers the
attackers with vertex neighborhood information and a graph is k-anonymous; if for any vertex
v, there are at least k − 1 other vertices having isomorphic neighborhoods. Due to the unpre-
dictability of attackers’ background knowledge, techniques against multiple structural attacks
have also been proposed. For instance, k-automorphism modifies the graph such that for each
vertex, there exists at least k − 1 other structurally equivalent vertices [39] and k-symmetry
utilizes the social network structure symmetry to make changes to the graph [31]. Generally
speaking, most, if not all, of these algorithms employ the number of edge/node changes as the
only measurement to quantify the utility loss, which is not effective, as explained in Sect. 1.
The focus of this work is to design a more effective utility measurement.

Recently, researchers also try to protect the identity privacy and link privacy in a unified
anonymization model [4]. They present the k-security model, by which the attacker should
not be able to map any vertex to an entity with probability larger than 1/k based only on
the published social network, and not be able to determine two entities linked by a path of
certain length with a probability of more than 1/k. They solve this problem by forming k
pairwise isomorphic subgraphs via edge addition and deletion. Yet, it still counts the number
of edges modified to measure the utility loss, only with an additional condition that requires
the number of added edges to be almost same as the number of deleted edges. This utility
measure still purely relies on the degree sequence model, which might not be directly related
to other graph properties.

In addition to the structural re-identification problem, some other privacy concerns in
publishing social network have been considered as well. For example, the problem of pro-
tecting sensitive relationships between entities in social networks is addressed in Zheleva and
Getoor [35]. The main idea is to use edge deletion or graph generalization methods to reduce
the probability of predicting sensitive edges in the published graph. Along the same line,
some works propose random edge permutation methods to provide link obfuscation [32,33].
Ying and Wu [33] study the impact of the edge permutation techniques on the eigenval-
ues, while [32] designs a randomization scheme named LORA to obfuscate edge existence
based on the HRG model to preserve critical graph statistical properties of released graphs.
Although we also utilize the HRG model to design our utility measurement in this paper, the
purpose and the solution are very different. The purpose of our work is to protect the node
identity privacy while LORA protects the link privacy. And then, LORA obfuscates edge
existence by performing random edge permutation. The HRG model is used to capture the
link probabilities among the nodes in the graph. It permutes the existing edge randomly with
some equivalent edges so that the link probabilities on the HRG model will not be changed.
However, our work protects node identity by performing targeted edge addition and dele-
tion to achieve k-anonymity. We use the HRG model to capture the hierarchical community
structure of the graph. The selected edges are added or deleted to achieve k-anonymity while
minimizing the changes to the edge distribution within and among the captured hierarchical
communities. The study in Ying and Wu [34] shows that various similarity metrics can be
exploited to improve the accuracy of sensitive link prediction in a randomized graph. How-
ever, no effective solutions are given to counter this attack. Liu et al. [21] present edge weight
perturbing techniques to protect private edge weight information in the published graph and
to retain the shortest paths and the approximate cost of the paths between certain pairs of
entities. The techniques proposed in above works for link privacy protection are not directly
applicable to protect the node identity privacy.
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Unlike the works introduced above which protect privacy by transforming the social
networks prior publishing and releasing the altered or generalized graphs, some other works
consider only releasing answers to specific queries. To ensure privacy, random noise is added
to the true answer before releasing. Many recent works on private query answering use the
notion of differential privacy [9], which is a very strong privacy notion. It injects controlled
level of noise to the output result to guarantee that the query results on two “neighboring”
input datasets are indistinguishable. The neighboring datasets are defined as the insertion or
removal of a single record on tabular data. The query sensitivity is defined to measure the
maximum difference between the query results on two neighboring inputs. It decides how
much noise should be injected. Differential privacy works best with insensitive queries since
it introduces low level of errors. High-sensitivity queries require so much noise that the results
are useless. A comprehensive survey of results on tabular data is presented in Dwork [8].

Generally, there are two adaptations of differential privacy on graphs, namely edge-
differential privacy and node-differential privacy according to their definition on neighboring
graphs and their protections on the privacy of graph edges and nodes, respectively. How to
accurately estimate the degree distribution of a social network under k-edge-differential pri-
vacy is studied in Hay et al. [16]. [23,26] propose the methods to publish differentially private
graph models, based on which synthetic graphs that mimic important properties of the orig-
inal graph can be generated. These works focus on protecting the edge-differential privacy,
which is less sensitive with guaranteed results accuracy. On the other hand, under the defin-
ition of the node-differential privacy, many graph queries, including those simple ones (e.g.,
average node degree and graph diameter), are highly sensitive. As no meaningful results can
be derived, the privacy can be guaranteed. Different from edge-differential privacy, our work
focuses on protecting node privacy. That is why we still follow the notion of k-anonymity in
this work, and our objective is to improve the utility of the published graph.

Another line of research deals with the distributed graph reconstruction problem [10].
It assumes a group of authorities with each owning a local piece of a graph and wants to
reassemble these pieces privately. A set of cryptographic protocols have been designed to
solve the problem [10]. And then, Gao et al. [12] study a problem of preventing outsourced
graphs from neighborhood attacks. It transforms the original graph into a link graph stored
locally at the client side and a set of outsourced graphs at the server side. Its objective is
to process the shortest distance query efficiently with low costs on the client side and to
guarantee that the data stored at the server side do not leak private information. However, in
this paper, we consider the centralized graph publishing problem. Therefore, our discussion
is orthogonal to these works.

6 Experimental evaluation

In this section, we present our comprehensive experimental study to demonstrate the advan-
tages of the newly proposed high utility k-anonymization scheme. We focus on the k-degree
anonymity and implement the anonymization algorithms based on both the flat community
model and the hierarchical community model, referred as Flat and HRG, respectively. Mean-
while, we implement two existing k-degree anonymization algorithms proposed in Liu and
Terzi [19] as competitors. Note that [19] is the only work in the literature focusing on k-degree
anonymity, and the algorithms are designed to preserve the graph utility based on the simple
degree sequence model. The first probing method only considers edge addition operations,
and the second greedy swap method considers both edge addition and deletion operations.
We refer them as Prob. and Swap, respectively.
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Table 4 Properties of the datasets

Dataset |V | |E | Density APL CC BTN CLN

dblp 1,000 2,190 0.0044 5.72 0.19 2,358 0.181

2,000 4,117 0.0021 6.37 0.17 5,372 0.163

3,000 6,268 0.0014 6.38 0.18 8,066 0.162

4,000 9,026 0.0011 6.24 0.19 10,475 0.165

5,000 12,049 0.0010 6.14 0.19 12,839 0.168

6,000 15,559 0.0009 6.06 0.20 15,183 0.170

7,000 19,552 0.0008 5.96 0.21 17,347 0.172

dogster 1,000 24,198 0.048 2.24 0.21 620 0.452

3,000 68,034 0.015 2.61 0.16 2,428 0.388

5,000 96,748 0.008 2.83 0.14 4,586 0.358

7,000 118,905 0.005 2.95 0.12 6,841 0.343

9,000 138,586 0.003 3.06 0.11 9,260 0.332

10,000 147,795 0.003 3.09 0.11 10,439 0.329

We use utility loss and time efficiency as the main performance metrics. The former eval-
uates the utility loss caused by various k-anonymization algorithms, and the latter evaluates
the running time of these algorithms. Following the works in the literature, we evaluate the
utility loss of different algorithms by the changes caused on a set of common graph met-
rics, including average path length (APL), clustering coefficient (CC), average betweenness
(BTW), and average closeness (CLN). As these metrics of different graphs have different
scales, we report the normalized change ratio of each graph metric.

Two real datasets are used in our simulation, namely dblp and dogster. The former is
extracted from dblp (http://dblp.uni-trier.de/xml), and the latter is crawled from a dog-theme
online social network (http://www.dogster.com). We sample different-sized subgraphs from
these datasets. To ensure that the general structural properties, especially the community
structure, of the sampled subgraphs are consistent with the original graph, we adopt the
snowball algorithm [22] to sample the graph. The properties of the sampled subgraphs are
summarized in Table 4. In general, dblp contains sparse graphs with average vertex degree
within the range of 2–3, and dogster contains dense graphs with average degree within the
range of 10–20.

6.1 Utility loss versus graph size

In the first set of experiments, we evaluate the graph utility loss of different-sized graphs
under different k-anonymization methods. We set the anonymity requirement as k = 25. We
will evaluate the utility loss with different k values in the next subsection.

First, we report the change ratio of different structural properties of graphs with various
sizes in Figs. 8 and 9. As observed, in most of the cases, both Flat and HRG perform very
well on preserving the graph utility in terms of the four common graph metrics. In general,
the graph property change ratio caused by our methods is within the range of (0.01 %, 1 %),
which is around 10–100 times better than that of the existing Swap and Prob. methods.4 Only
with a few exceptions, the Prob. method performs better than our methods. For instance, on

4 The y-axis is in logarithm scale.
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(a) (b) (c) (d)

Fig. 8 Graph property change ratio versus graph size on dblp graphs (k = 25). a APL. b CC. c BTN. d CLN

(a) (b) (c) (d)

Fig. 9 Graph property change ratio versus graph size on dogster graphs(k = 25). a APL. b CC. c BTN.
d CLN

the dblp graphs with 1,000 and 2,000 vertices and the dogster graph with 5,000 vertices,
it provides better results than our methods on the CC metric. However, we could not figure
out the exact reason that explains these exceptions. One possibility is that it happens that the
community models constructed on these graphs do not capture the CC property very well. It
may be interesting to study the bias of each anonymization scheme toward different graph
structural properties in the future works. In addition, we observe that Swap performs better
than Prob. on the sparse dblp graphs. Oppositely, Prob. performs better than Swap on the
dense dogster graphs. However, the performance of our methods is stable on both datasets.
Finally, we find that the HRG algorithm that runs based on the hierarchical community model
generally generates graphs with higher utility than the Flat algorithm that is developed based
on the flat community model. The reason is that the complex HRG model captures more
information of the graph structure, and it is more sensitive to the small number of edge
modifications. Therefore, the anonymization algorithm that evaluates the utility loss of the
possible edge operations based on this model is more accurate, thus generates the graphs that
better represent the features of the original graphs.

6.2 Utility loss versus k

In the second set of experiments, we evaluate the impact of the privacy requirement k on the
graph property change ratio of different methods. Here, the size of the graph is fixed to 5,000
vertices.

Figures 10 and 11 present the results on both datasets. As observed, the privacy requirement
(i.e., k) has no obvious impact on the performance of Swap. This is because, Swap method
has to perform a large number of edge operations even for a small k. When k increases,
the number of newly performed edge operations, compared with the total number of edge
operations, is very small. On the other hand, the impact of k on Flat, HRG, and Prob. is
much more significant. Their utility losses increase as k increases. This is because that all
these methods need to perform more edge operations to achieve k-anonymity with larger
k. Similar with the observation in the above subsection, in most of the cases, our Flat and
HRG approaches outperform the others in terms of the utility loss on every evaluated graph
metrics.
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(a) (b) (c) (d)

Fig. 10 Graph property change ratio versus k on dblp graphs (|V | = 5000). a APL. b CC. c BTN. d CLN

(a) (b) (c) (d)

Fig. 11 Graph property change ratio versus k on dogster graphs(|V | = 5000). a APL. b CC. c BTN. d CLN

(a) (b)

Fig. 12 The running time versus graph size. a dblp. b dogster

6.3 Running time

In our last set of experiments, we investigate the time performance of our Flat and HRG
anonymization processes and compare it with that of the existing Prob. and Swap algorithms.
First, we report the running time of the algorithms with graphs of different sizes in Fig. 12
with k set to 25. Generally, the running time increases as the graph size increases, and the
Prob. approach achieves the best time performance, while the Swap method performs the
worst. The time performance of our community model-based approaches is in between of
the Prob. and Swap methods. Meanwhile, we find that the running time is sensitive to the
graph density. For the sparse dblp graphs (see Fig. 12a), the running time of all the algorithms
is short (e.g., under 140 s) and our community model-based algorithms definitely can find a
k-anonymized graph within 40 s. However, for the dense dogster graphs, all the algorithms
have to spend much longer time (e.g., up to thousands of seconds). The reason is that in
the sparse dblp graphs, there are many vertices with the same low degree (e.g., 1 and 2),
which already satisfy k-anonymity, while the vertices in the dense dogster graphs tend to
have more diverse degrees. Therefore, the dogster graphs have more vertices whose degree
need to be changed to achieve k-anonymity compared with the dblp graphs of the same size,
thus cause more candidate edge operations. Moreover, we find that HRG runs slower than
Flat in most of the cases. This is probably because that the HRG method which is developed
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(a) (b)

Fig. 13 The running time versus k (|V | = 5000). a dblp. b dogster

based on the more complex hierarchical community model is more sensitive to every single
edge operation.

Next, we evaluate the time performance of different algorithms with graph size fixed to
5,000 vertices and the privacy parameter k varying. The results are depicted in Fig. 13. We
observe that for both datasets, the running time of Swap is not sensitive to the changes of
the privacy parameter k and it always remains on a high level. This is because that the Swap
method always performs large number of edge modifications even with small k. While for
the other three algorithms, the running time shows an increasing trend as k increases. This
is because that in order to achieve anonymity with larger k, usually more edges need to
be modified. Generally, the running time of our community model-based methods lies in
between the running time of Prob. and that of Swap. We believe that the great increase in
running time of our community model-based algorithms with very large k (e.g., 50, 100) is
caused by the greatly increased number of candidate operations.

6.4 Discussion

To sum up, our experiments use different graph metrics to evaluate the utility loss of the
proposed community model-based methods. The experimental results clearly verify that the
community structure has high correlation with other key structure features of social networks.
The flat and HRG models developed based on the community structure successfully capture
most, if not all, core features of the social networks, and our anonymization algorithms which
employ these models are the most effective for preserving the graph utility. In addition, we
also evaluate the running time of different algorithms. The results demonstrate that with a
relatively small but reasonable privacy parameter k, our community model-based methods
show acceptable convergence time compared with the existing algorithms. However, the
running time may increase rapidly when k is very large (e.g., 50) due to the sharp increase
in the number of candidate operations.

We also compare the anonymization algorithms based on the flat and hierarchical commu-
nity models, respectively. According to the experimental results, the hierarchical community
model-based method is able to generate anonymized graphs with higher utility but longer
convergence time.

7 Conclusion

Privacy and utility are two main components of a good privacy protection scheme. Existing
k-anonymization approaches on social networks provide good protection for entities’ identity
privacy. However, with a simple graph degree sequence-based utility model, they fail to gen-
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erate anonymized graphs with high utility. Motivated by this issue, in this paper, we propose
novel high utility social network anonymization approaches to achieve good privacy protec-
tion with low utility loss. In our approaches, the utility measurement is designed based on
more complex graph community models, including the flat community model and the hierar-
chical community model. Experimental evaluations on real datasets show that our approaches
outperform the existing approaches in terms of the utility with comparable running time.

In the near future, we would like to further improve the time performance of our approaches
and meanwhile evaluate them on larger social networks and for other k-anonymization models
(e.g., k-neighborhood anonymity). In addition, instead of developing the anonymization
approaches to preserve general graph structure properties, we would like to study privacy
preserving methods that could provide high utility for particular graph mining applications.
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