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Abstract Compressed representations have become effective to store and access large Web
and social graphs, in order to support various graph querying and mining tasks. The existing
representations exploit various typical patterns in those networks and provide basic navigation
support. In this paper, we obtain unprecedented results by finding “dense subgraph” patterns
and combining them with techniques such as node orderings and compact data structures.
On those representations, we support out-neighbor and out/in-neighbor queries, as well as
mining queries based on the dense subgraphs. First, we propose a compression scheme for
Web graphs that reduces edges by representing dense subgraphs with “virtual nodes”; over
this scheme, we apply node orderings and other compression techniques. With this approach,
we match the best current compression ratios that support out-neighbor queries (i.e., nodes
pointed from a given node), using 1.0-1.8bits per edge (bpe) on large Web graphs, and
retrieving each neighbor of a node in 0.6—1.0 microseconds (j.s). When supporting both out-
and in-neighbor queries, instead, our technique generally offers the best time when using little
space. If the reduced graph, instead, is represented with a compact data structure that supports
bidirectional navigation, we obtain the most compact Web graph representations (0.9—1.5 bpe)
that support out/in-neighbor navigation; yet, the time per neighbor extracted raises to around
5-20ps. We also propose a compact data structure that represents dense subgraphs without
using virtual nodes. It allows us to recover out/in-neighbors and answer other more complex
queries on the dense subgraphs identified. This structure is not competitive on Web graphs,
but on social networks, it achieves 4—13 bpe and 8—12 s per out/in-neighbor retrieved, which
improves upon all existing representations.
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1 Introduction

Web graphs represent the link structure of the Web. They are usually modeled as directed
graphs where nodes represent pages and edges represent links among pages. On the other
hand, social networks represent relationships among social entities. These networks are mod-
eled by undirected or directed graphs depending on the relation they model. For instance,
the friendship relation in Facebook is symmetric and, then, it is modeled by an undirected
graph, whereas the “following” relation on Twitter and LiveJournal is not symmetric, and
therefore, it is modeled by a directed graph.

The link structure of Web graphs is often used by ranking algorithms such as PageRank
[10] and HITS [38], as well as for spam detection [6,50], for detecting communities [27,
39], and for understanding the structure and evolution of the network [26,27]. A social
network structure is often used for mining and analysis purposes, such as identifying interest
groups or communities, detecting important actors [51,57], and understanding information
propagation [17,37,45]. Those algorithms use a graph representation that supports at least
forward navigation (i.e., to the out-neighbors of a node or those pointed from it), and many
require backward navigation as well (i.e., to the in-neighbors of a node or those that point
to it).

Managing and processing these graphs are challenging tasks because Web graphs and
social networks are growing in size very fast. For instance, a recent estimation of the indexable
Web size states that it is over 7.8 billion pages (and thus, around 200 billion edges),! and
Facebook has over 950 million active users worldwide.> Google has recently augmented the
user search experience by introducing the knowledge graph,® which models the relationship
of about half-million entities over 3.5 billion relationships among the entities. This knowledge
graph is used in addition to the Web graph to improve the search efficacy.

Different approaches have been used to manage large graphs. For instance, streaming and
semi-streaming techniques can be applied with the goal of processing the graph sequentially,
ideally in one pass, although a few passes are allowed. The idea is to use main memory
efficiently, avoiding random access to disk [25]. External memory algorithms define memory
layouts that are suitable for graph algorithms, where the goal is to exploit locality in order
to reduce I/O costs, reducing random accesses to disk [56]. Another approach is the use
of distributed systems, where distributed memory is aggregated to process the graph [53].
However, depending on the problem, the synchronization and communication required may
impose I/O costs similar to those of the external memory approach.

Compressed data structures aim to reduce the amount of memory use by representing
graphs in compressed form while being able to answer the queries of interest without decom-
pression. Even though these compressed structures are usually slower than uncompressed
representations, they are still much faster than incurring I/O costs: They can be orders of
magnitude faster when they can fit completely in main memory graphs that would otherwise
require disk storage. When considering a distributed scenario, they allow the graphs to be
deployed on fewer machines, yielding important savings in communication costs and energy.

1 www.worldwidewebsize.com, on August 6, 2012.

B http://newsroom.tb.com/content/default.aspx?NewsAreald=22, considering June 2012.
3 http://googleblog.blogspot.com/2012/05/introducing-knowledge- graph-things-not.html.
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Several proposals use compressed data structures for Web graphs, mainly enabling
out-neighbor queries [4,7,21,32]; yet, some also support bidirectional navigation (i.e.,
handle out/in-neighbor queries) [11,20]. Some more recent ones address social networks
[9,19,23,43].

In this paper, we introduce new approaches to develop competitive compressed data struc-
tures for managing and processing large Web and social graphs. The main contributions of
this work follow:

e We enhance an existing technique to detect bicliques [16] so that it detects more general
“dense subgraphs.” These include cliques, bicliques, and in general not necessarily dis-
joint pairs of node sets where all in the first set point to all in the second set.* We study
the effectiveness of the technique and demonstrate that it captures a fair amount of the
structure of Web graphs (more than 90 %) and social networks (around 60 %), improving
upon the detection of bicliques (where the sets must be disjoint). We show how to process
large graphs in the secondary memory. This new graph mining technique is key to the
success of the compressed representations we develop.

e We apply their “virtual node mining” technique [16] on the discovered dense subgraphs,
which replaces the edges of the dense subgraph by a virtual node with fewer links.
We then list the nodes in the BFS order of Apostolico and Drovandi [4] and use their
encoding. The result is a Web graph representation with out-neighbor query support that
is either very close to or better than, in space and time, the best current representation
[32]: On large Web graphs, it uses 1.0-1.8 bits per edge (bpe) and retrieves each neighbor
in 0.6—1.0 microsecond (ps). We show, however, that our technique is more robust as it
performs equally well on the transposed Web graph, whereas the one by Grabowski and
Bieniecki [32] performs significantly worse.

e By maintaining the BFS ordering after virtual node mining, but now using a bidirectional
representation (k2-tree) on the resulting graph [11], we obtain the smallest existing rep-
resentation with out/in-neighbor support: 0.9-1.5bpe, much smaller than in the previous
item. The price is that the query time is higher: 5-20 s per extracted neighbor.

e We design a novel compressed data structure to represent the dense subgraphs that does
not use virtual nodes. This representation supports not only out/in-neighbor navigation,
but also various graph mining queries based on the dense subgraphs discovered, such
as listing cliques and bicliques, retrieving density and size of the subgraphs, finding
node participation in different subgraph patterns, and so on. While this technique is
not competitive with the previous one on Web graphs (yet, it supports other queries),
it excels in social networks, where it achieves the best spaces so far with support for
out/in-neighbor queries: 4-13 bpe and 8—12 s per retrieved neighbor.

Conference versions of this work appeared in SNA-KDD workshop [35] and in SPIRE
[36]. This article extends that work with a thorough analysis of the quality of the dense
subgraph finding algorithm, a secondary memory variant of the algorithm, its application to
the transposed Web graphs, improved combinations of the scheme with BFS orderings, and
the study of other graph mining queries.

In all the experiments we described in this paper, we used a Linux PC with 16 processors
Intel Xeon at 2.4 GHz, with 72GB of RAM, and 12MB of cache. We used g++ compiler
with full optimization.

4 The term “dense subgraph” appears in the literature with different meanings [41], but in this paper, we use
it to mean the described generalization of cliques and bicliques.
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2 Related work

We divide this section in two parts. First, we survey compression techniques for Web and
social graphs, and the supported queries. Second, we discuss compact data structures based
on bitmaps and symbol sequences that provide guarantees in terms of space and access times.
Such structures are the basis for the compressed data structure we present in Sect. 5.

2.1 Compressed representations for Web and social graphs

Compressing Web graphs has been an active research area for some time. Suel and Yuan [52]
built a tool for Web graph compression distinguishing global links (pages on different hosts)
from local ones (pages on the same host) and combining different coding techniques, such
as Huffman and Golomb codes. Adler and Mitzenmacher [1] achieved compression by using
similarity. The idea was to code an adjacency list by referring to an already coded adjacency
list of another node that points to many of the same pages. They used this idea with Huffman
coding to achieve compression of global links. Randall et al. [48] proposed lexicographic
ordering of URLs as a way to exploit locality (i.e., that pages tend to have hyperlinks to other
pages on the same domain) and similarity of (nearby) adjacency lists for compressing Web
graphs.

Later, Boldi and Vigna [7] proposed the WebGraph framework. This approach also exploits
power-law distributions, similarity and locality using URL node ordering. Essentially, given
a node ordering that enhances locality and similarity of nearby lists, WebGraph uses an
encoding based on gaps and pointers to near-copies that takes advantage of those properties.
The main parameters of this compression technique are w and m, where w is the window
size and m is the maximum reference count. The window size means that the list /; can only
be expressed as a near-copy of /;_, to [;_1, whereas the reference count of list/; is ¥ (I;) = 0
if it is not expressed as a near-copy of another list, or r(/;) = r(l;) + 1 if /; is encoded as
a near-copy of list /;. Increasing w and m improves compression ratio, but also increases
access time.

In a later work, Boldi et al. [8] explored existing and novel node ordering methods, such
as URL, lexicographic, Gray ordering, etc. More recently, Boldi et al. [9] designed node
orderings based on the clustering methods and achieved improvements on compressing Web
graphs and social networks with a clustering algorithm called layered label propagation
(LLP). A different and very competitive node ordering was proposed by Apostolico and
Drovandi [4]. Their approach orders the nodes based on a breadth-first traversal (BFS) of the
graph, and then, they used their own encoding that takes advantage of BFS. They encode the
out-degrees of the nodes in the order given by the BFS traversal, plus a list of the edges that
cannot be deduced from the BFS tree. They achieve compression by dividing those lists into
chunks and taking advantage of locality and similarity. The compression scheme works on
chunks of / nodes. Parameter / (called the level) provides a tradeoff between compression
performance and time to retrieve the adjacency list of a node.

Buehrer and Chellapilla [16] exploited the existence of many groups consisting of sets of
pages that share the same outlinks, which defines complete bipartite subgraphs (bicliques).
Their approach is based on reducing the number of edges by defining virtual nodes that
are artificially added in the graph to connect the two sets in a biclique. They applied this
process iteratively on the graph until the edge reduction gain is no longer significant. Then,
they applied delta codes on the edge-reduced graph. However, they did not report times
for extracting neighbors. They called this scheme as virtual node mining (VNM). Anh and
Moffat [3] also exploit similarity and locality of adjacency lists, but they divide the lists into
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groups of & consecutive lists. A model for a group is built as a union of the group lists. They
reduced lists by replacing consecutive sequences in all £ lists by a new symbol. The process
can be made recursive by applying it to the n/h representative lists. They finally applied
codes such as ¢-codes [7] over all lists. This approach is somehow similar to that of Buehrer
and Chellapilla [16], but Anh and Moffat[3] do not specify how they actually detect similar
consecutive lists.

Grabowski and Bieniecki [32] (see also [31]) recently provide a very compact and fast
technique for Web graphs. Their algorithms are based on blocks consisting of multiple adja-
cency lists in a way similar to Anh and Moffat work [3], reducing edge redundancy, but they
use a compact stream of flags to reconstruct the original lists. Their encoding is basically
a reversible merge of all lists. The parameter £ sets the number of adjacency lists stored in
blocks. Increasing the value of 7 improves compression rate at the cost of access time.

Another approach that can also be seen as decreasing the number of total edges and
adding virtual nodes was proposed by Claude and Navarro [21]. This approach is based on
Re-Pair [40], a grammar-based compressor. Re-Pair repeatedly finds the most frequent pair
of symbols in a sequence of integers and replaces it with a new symbol.

Most of the Web graph compression schemes (as the ones described above) support out-
neighbor queries, that is, the list of nodes pointed from a given node, just as an adjacency
list. Being able to solve in-neighbor queries (i.e., the list of nodes pointing to a given node) is
interesting for many applications from random sampling of graphs to various types of mining
and structure discovery activities, as mentioned in Sect. 1. It is also interesting in order to
represent undirected graphs without having to store each edge twice.

Brisaboa et al. [11] exploited the sparseness and clustering of the adjacency matrix
to reduce space while providing out/in-neighbor navigation in a natural symmetric form,
using a structure called k2tree. They have recently improved their results by applying BFS
node ordering on the graph before building the k2tree [12]. This achieves the best known
space/time tradeoffs supporting out/in-neighbor access for Web graphs. The k2tree scheme
represents the adjacency matrix by a k>-ary tree of height 1 = [log, n] (where n is the
number of vertices). It divides the adjacency matrix into k% submatrices of size n”/k>. Com-
plete empty subzones are represented just with a 0-bit, whereas nonempty subzones are
marked with a 1-bit and recursively subdivided. The leaf nodes contain the actual bits of
the adjacency matrix, in compressed form. Recently, Claude and Ladra [23] improved the
compression performance on Web graphs by combining the k2tree with the Re-Pair-based
representation [21]. Another representation able to solve out/in-neighbors [20] was obtained
by combining the Re-Pair-based representation [21] with compact sequence representations
[22] of the resulting adjacency lists. The times for out- and in-neighbor queries are not
symmetric.

Some recent works on compressing social networks [19,43] have unveiled compres-
sion opportunities as well, although in much less degree than on Web graphs. The
approach by Chierichetti et al. [19] is based on the Webgraph framework [7], using
shingling ordering (based on Jaccard coefficient) [13,28] and exploiting link reciprocity.
Even though they achieve interesting compression for social networks, their approach
requires decompressing the graph in order to retrieve the out-neighbors. Maserrat and
Pei [43] achieve compression by defining an Eulerian data structure using multi-position
linearization of directed graphs. This scheme is based on decomposing the graph into
small dense subgraphs and supports out/in-neighbor queries in sublinear time. Claude
and Ladra [23] improve upon this scheme by combining it with the use of compact data
structures.
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2.2 Compact data structures for sequences

We make use of compact data structures based on bitmaps (sequences of bits) and sequences
of symbols. These sequences support operations rank, select and access. Operation
rankp(b,i) on the bitmap B[1, n] counts the number of times bit b appears in the pre-
fix B[1,i]. Operation selectp(b, i) returns the position of the ith occurrence of bit b in
B (and n + 1 if there are no i b’s in B). Finally, operation accessp (i) retrieves the value
B[i]. A solution requiring n + o(n) bits and providing constant time for rank/select/access
queries was proposed by Clark [24], and good implementations are available (e.g., RG [29]).
Later, Raman et al. [49] managed to compress the bitmap while retaining constant query
times. The space becomes n Hy(B) + o(n) bits, where Hy(B) is the zero-order entropy of
B, Hyo(B) = 72 log ,:’—0 + %L log ,:’—1 < 1, where B has ng zeros and n| ones (we use binary
logarithms by default). Good implementations are also available (i.e., RRR [22]).

The bitmap representations can be extended to compact data structures for sequences
S[1, n] over an alphabet ¥ of size o. The wavelet tree (WT) [33] supports rank/select/access
queries in O (log o) time. It uses bitmaps internally, and its total space is n log o 4 o(n) logo
bits if representing those bitmaps using RG, or nHy(S) + o(n)logo bits if using RRR,
where Hy(S) = ZCEE %‘ log % < logo, n. being the number of occurrences of ¢ in S. As
our alphabets will be very large, we use the version “without pointers” [22], which saves
an extra space of the form O (o logn). Another sequence representation (GMR) [30] uses
nlogo + no(logo) bits and supports rank and access in time O (loglogo), and select in
O(1) time.

3 Dense subgraphs

In this section, we describe the algorithm to discover dense subgraphs, such as bicliques,
cliques, and generalizations, and study the quality of our algorithm. This technique is the
basis for all the compressed representations that follow.

3.1 Basic notions

We represent a Web graph as a directed graph G = (V, E) where V is a set of vertices
(pages) and E € V x V is a set of edges (hyperlinks). For an edge ¢ = (u, v), we call u
the source and v the center of e. In social networks, nodes are individuals (or other types
of agents) and edges represent some relationship between the two nodes. These graphs
can be directed or undirected. In case they are undirected, we make them directed by rep-
resenting both reciprocal directed edges. Thus, from now on we consider only directed
graphs.

We follow the idea of “dense communities” in the Web described by Kumar et al. [39]
and Dourisboure et al. [27], where a community is defined as a group of pages related to
a common interest. Such Web communities are characterized by dense-directed bipartite
subgraphs. In fact, Kumar et al. [39] summarize that a “random large enough and dense
bipartite subgraph of the Web almost surely has a core (a complete bipartite subgraph)”,
which they aim to detect. Left sets of dense subgraphs are called Fans, and right sets are
called Centers. In this work, we call the sets Sources (S) and Centers (C), respectively, which
is the same naming given by Buehrer and Chellapilla [16]. One important difference of our
work from Kumar et al. [39] and Dourisboure et al. [27] is that we do not remove edges before
applying the discovery algorithm. In contrast, both works [27,39] remove all nepotistic links,
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that is, links between two pages that belong to the same domain. In addition, Dourisboure
et al. [27] removes isolated pages, that is, pages with zero out-neighbors and in-neighbors.

For technical reasons that will be clear next, we will add all the edges (u, u) to our directed
graphs. We use a small bitmap of | V| bits to mark which nodes u actually had a self-loop. We
use this bitmap to remove the spurious self-loops from the edges output by our structures.

We also note that the discovery algorithms are applied over Web graphs with natural node
ordering [9], which is basically URL ordering, because they provide better results than using
other node orderings.

We will find patterns of the following kind.

Definition 3.1 A dense subgraph H(S,C) of G = (V, E) is a graph G'(SU C, § x C),
where S,C C V.

Note that, Definition 3.1 includes cliques (S = C) and bicliques (S N C = ), but
also more general subgraphs. Our goal is to represent the |S| - |C| edges of a dense sub-
graph using O(|S| + |C|) space. Two different techniques to do so are explored in Sects. 4
and 5.

3.2 Discovering dense subgraphs

In this section, we describe how we discover dense subgraphs. Even finding a clique of a
certain size is NP-complete, and the existing algorithms require time exponential on that size
(e.g., Algorithm 457 [15]). Thus, we need to resort to fast heuristics for our huge graphs of
interest. Besides, we want to capture other types of dense subgraphs, not just cliques. We
first use a scalable clustering algorithm [16], which uses the idea of “shingles” [28]. Once
the clustering has identified nodes whose adjacency lists are sufficiently similar, we run a
heavier frequent itemset mining algorithm [16] inside each cluster. This mining algorithm
is the one that finds sets of nodes S that point to all the elements of another set of nodes C
(they can also point to other nodes).

This algorithm was designed to find bicliques: A node u cannot be in S and C unless
(u, u) is an edge. As those edges are rare in Web graphs and social networks, this algorithm
misses the opportunity to detect dense subgraphs and is restricted to find bicliques.

To make the algorithm sensitive to dense subgraphs, we insert all the edges {(u, u), u € V'}
in E, as anticipated. This is sufficient to make the frequent itemset mining algorithm find
the more general dense subgraphs. The spurious edges added are removed at query time, as
explained.

The clustering algorithm represents each adjacency list with P fingerprints (hash values),
generating a matrix of fingerprints of |V | rows and P columns. Then, it traverses the matrix
column-wise. At stage i, the matrix rows are sorted lexicographically by their first i column
values, and the algorithm groups the rows with the same fingerprints in columns 1 to i. When
the number of rows in a group falls below a small number, it is converted into a cluster formed
by the nodes corresponding to the rows. Groups that remain after the last column is processed
are also converted into clusters.

On each cluster, we apply the frequent itemset mining algorithm, which discovers dense
subgraphs from the cluster. This algorithm first computes frequencies of the nodes mentioned
in the adjacency lists and sorts the list by decreasing frequency of the nodes. Then, the nodes
are sorted lexicographically according to their lists. Now each list is inserted into a prefix
tree, discarding nodes of frequency 1. This prefix tree has a structure similar to the tree
obtained by the hierarchical termset clustering [47]. Each node p in the prefix tree has a
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Fig. 1 Dense subgraph
representation

(a) Traditional Representation (b) Bipartite Representation

label (consisting of the node id), and it represents the sequence [(p) of labels from the
root to the node. Such node p stores also the range of graph nodes whose list start with
I(p).

Note that, a tree node p at depth ¢ = |[(p)| representing a range of s graph nodes identifies
a dense subgraph H (S, C), where S is the graph nodes in the range stored at the tree node,
and C is the graph nodes listed in /(p). Thus, |S| = s and |C| = ¢. We can thus point out all
the tree nodes p where s - ¢ is over the size threshold and choose them from largest to lowest
saving (which must be recalculated each time we choose the largest).

Figure 1a shows a dense subgraph pattern with the traditional representation, and Fig. 1b
shows the way we represent them using the discovery algorithm described.

The whole algorithm can be summarized in the following steps. Figure 2 shows an example.

Step 1 Clustering-1 (build hashed matrix representing G) We traverse the graph specified
as set of adjacency lists, adding edges (u, u). Then, we compute a hash value H associated
with each edge of the adjacency list P times and choose the P smallest hashes associated
with each adjacency list. Therefore, for each adjacency list, we obtain P hash values.
This step requires O (P|E|) time.

Step 2 Clustering-2 (build clusters) We build clusters consisting of groups of similar
hashes, by sorting the hash matrix by columns, and select adjacency lists associated with
clusters based on hashes. This requires O(P|V|log|V|) time.

Step 3 Mining-1 (reorder cluster edges) We compute edge frequencies on each cluster,
sorting them from largest to smallest (discarding edges with frequency of 1), and reorder
them based on that order. This step takes O (|E|log|E|) time.

Step 4 Mining-2 (discover dense subgraphs and replacing) We compute a prefix tree
for each cluster, with tree nodes labeled with the node id of edges. Dense subgraphs
(G'(SUC, S x C)) with higher edge saving (|| x |C|) are identified in the tree. The
overall step is bounded to O (| E|log |E]) time.

Therefore, the overall algorithm time complexity, taking P as a constant, is bounded by
O(IE|log|E)).

In Sect. 4, the dense subgraphs found H (S, C) will be replaced by a new virtual node
whose in-neighbors are S and whose out-neighbors are C. As the result is still a graph, the
dense subgraph discovery process can be repeated on the resulting graph. In Sect. 5, instead,
the graph H (S, C) will be extracted only from the original graph and represented using a
compact data structure.
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Step 1 Step 3 Cluster 1
Edge Freq.
1:7 1: 17823
1: 12378 A B 2:5 2:17823
2:12378 A B 3:5 3:17823
3:12378 A B 4:2 5:17823
5:123578 A B 5:1 6:17823
6:123678 »| AB 6:1 7: 1784
7: 1478 AB 7:7 8:1784
8:1478 A B 8:7
10: 1 10 11 15
. .
1511011 15 BE 1 Step 4 Cluster 1
BE {1,2,3,5,6}
7
Step 2 {1,2,3,5,6}
8
10: 1 10 11 15
1:12378 15: 1 10 11 15 {1,2,3.56}
2212378
3312378 cluster 2 2 S=(7 8)
5:123578
6: 123678 {1,2,3,5,6} C=(178 4)
7: 1478 ~ g
8:1478
3 S=(12356)
cluster 1 {1,2,3,5,6} C=(17823)
e —

Fig. 2 Example of the dense subgraph discovery process

Table 1 Compression metrics using different P values with eu-2005

P # Cliques |Cliques| # Bicliques Edges Nodes Ratio
33,482 248,964 58,467 17,208,908 2,357,455 7.30
34,237 246,022 60,226 17,199,357 2,426,753 7.08
34,863 245,848 60,934 17,205,357 2,524,240 6.81

3.3 Evaluation of the discovery algorithm

First, we evaluate the sensibility of the number of hashes (parameter P) used in the first step
of our clustering. For doing so, we use a real Web graph (eu-2005, see Table 7). We measure
the impact of P in various metrics that predict compression effectiveness. Table 1 shows the
number of discovered cliques (# Cliques), total number of edges in those cliques (|Cliques|),
number of bicliques (# Bicliques), total number of edges in cliques and bicliques (Edges),
total number of nodes participating in cliques and bicliques (Nodes), and the ratio between
both (Ratio, which gives the reduction factor using our technique of Sect. 5). All these metrics
show that using P = 2 is slightly better than using other values. When increasing P, the
algorithm discovers more and smaller cliques and bicliques, but the overall compression in
terms of representing more edges with fewer vertices is better with P = 2.
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Table 2 Synthetic clique graphs with different number of nodes (Nodes), edges (Edges), maximum clique
size (M C), and total number of vertices participating in cliques (R)

Name Nodes Edges d MC R avg size
PL 999,993 9,994,044 9.99 0 0 -
V16 65,536 610,500 9.31 15 6,548 9.5
V16 65,536 1,276,810 19.48 30 3,785 17.09
Vie 65,536 2,161,482 32.98 50 2,398 27.21
Vie 65,536 4,329,790 66.06 100 1,263 51.83
V17 131,072 1,214,986 9.26 15 13,130 9.48
V17 131,072 2,542,586 19.39 30 7,589 17.05
V17 131,072 4,309,368 32.87 50 4,790 27.23
V17 131,072 8,739,056 66.67 100 2,495 52.95
V20 1,048,576 9,730,142 9.76 15 104,861 9.50
V20 1,048,576 20,293,364 19.60 30 60,822 17.02
V20 1,048,576 34,344,134 32.90 50 38,544 27.07
V20 1,048,576 69,324,658 66.18 100 20,102 52.10

Column d gives the average number of edges per node, and the last column is the average clique size

Second, we evaluate our subgraph discovery algorithm. For doing so, we use the GTgraph
suite of synthetic graph simulators.® From this suite, we use the SSCA#2 generator to create
random-sized clique graphs [5, 18]. We use the parameter MaxCliqueSize to set the maximum
size of cliques (MC), set the Scale parameter to 16, 17, or 20, so as to define 216 217 op
220 vertices on the graph, and set the parameter ProbIntercliqueEdges = 0.0 (which tells the
generator to create a clique graph, that is, a graph consisting of isolated cliques). Therefore,
with this generator, we can control precisely the actual cliques present in the graph, and their
corresponding sizes. We call those real cliques.

We also use the generator R-MAT of the suite to create a power-law graph without any
cliques. The properties of the synthetic clique graphs and the power-law graph used are
described in Table 2. The first graph, PL, is the power-law graph, whereas the others are clique
graphs (V16,V17,V20). Finally, we define new graphs (PL-V16, PL-V17, and PL-V20),
which are the result of merging graphs PL with V16, PL with V17, and PL with V20. The
merging process is done by computing the union of the edge sets belonging to the PL graph
and one of the clique graphs. That is, both PL and Vxx share the same set of nodes (called 1 to
|V]), and we take the union of the edges in both graphs. We apply our dense graph discovery
algorithm on those merged graphs, whose features are displayed in Table 3. Figure 3 (left)
shows the out-degree histogram for PL, V17 (with MC = 100), and PL-V17 graphs. We
evaluate the ability of our discovery algorithm to extract all the real cliques from these
graphs.

For evaluation purposes, we also use MCL (Markov Cluster Process), a clustering algo-
rithm [54] (and later mathematically analyzed [55]), which has been mostly applied in bioin-
formatic applications [14], but also in social network analysis [44]. MCL simulates a flow,
alternating matrix expansion and matrix inflation, where expansion means taking the power
of a matrix using the matrix product, and inflation means taking the Hadamard power fol-
lowed by a diagonal scaling. MCL deals with both labeled and unlabeled graphs, while the

5 Available at www.cse.psu.edu/~madduri/software/GTgraph.
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Table 3 Synthet.lc merged Name Nodes Edges MC d
power-law and clique graphs
PL-V16 999,993 10,604,408 15 10.6
PL-V16 999,993 11,270,660 30 11.27
PL-V16 999,993 12,155,249 50 12.15
PL-V16 999,993 14,323,320 100 14.32
PL-V17 999,993 11,208,968 15 11.20
PL-V17 999,993 12,536,277 30 12.53
PL-V17 999,993 14,303,175 50 14.30
PL-V17 999,993 18,732,584 100 18.73
PL-V20 1,048,576 19,724,071 15 18.81
PL-V20 1,048,576 30,287,168 30 28.88
PL-V20 1,048,576 44,337,825 50 42.28
PL-V20 1,048,576 79,317,960 100 75.64
Synthetic graph histograms V17 MC100 Average Relative Error
100000 5T * R
I pLVITMCID X PLY200UR - -
, 10000 045 8 RV 8
£ . . 8
2 1000 g N
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degree Maximum Clique Size

Fig. 3 Outdegree histograms (/eff) and average relative error (right) in synthetic graphs

clustering we use deals only with unlabeled graphs. We compare our clustering against MCL
clustering,® by changing the first steps (finding clusters) in our discovery algorithm.

To measure how similar are discovered and real clique sets, we compute the average relative
error (ARE), which is the average of the absolute difference between true and discovered
cliques:

1 C_p
ARE:izu’ (1)

IRI % 7

where r; and 7; are the real and discovered clique sizes, and |R| is the number of real cliques.
We consider a real clique to be “discovered” if we find more than half of its vertices.
We also evaluate the discovery algorithm based on precision and recall:

>k IRCEN DCE|

P 7 2

precision ZiER \DCE] 2)

recall = 2.icr|RCE N DCE] 3)
2ier|IRCE| 7

6 Available at http://micans.org/mcl/.
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Table 4 Time required per retrieved clique of different sizes

Name MC |A] avg tms |AIM avgM tmsM ptmsM
PL-V16 15 6,501 9.00 236.1 5,810 7.96 4,359.2 1,938.5
PL-V16 30 3,766 16.53 336.4 3,596 15.18 7,877.3 3,129.1
PL-V16 50 2,389 26.58 305.1 2,331 25.40 11,190.4 5,089.2
PL-V16 100 1,261 51.08 590.0 1,242 50.80 19,839.7 9,363.1
PL-V17 15 13,071 9.00 120.5 12,032 8.30 2,048.4 977.9
PL-V17 30 7,565 16.53 129.8 7,321 15.83 3,226.3 1,612.3
PL-V17 50 4,776 26.70 203.1 4,706 26.21 4,886.3 2,394.1
PL-V17 100 2,492 51.85 318.2 2,481 51.89 10,153.5 4,446.1
PL-V20 15 104,771 9.06 103.1 103,437 9.31 580.2 103.6
PL-V20 30 60,773 16.56 150.3 60,614 16.97 614.6 152.4
PL-V20 50 38,524 26.62 155.4 38,473 27.09 639.7 248.2
PL-V20 100 20,095 51.62 178.6 20,097 52.11 1,371.1 505.7

where RCE is the node set of a real clique and DCE is the node set of the corresponding
discovered clique.
In addition, we compare the number of discovered cliques (| A|) with respect to real cliques:

A
recall NumCliques = % . “4)

In order to compare the clustering algorithms, we first measure execution times. We exe-
cute the version of the discovery algorithm that uses MCL only with one iteration with / = 2.0
(default setting for Inflation parameter). We also execute our clustering, where we use 40 to
100 iterations in order to reach similar clustering quality (yet, our iterations are much faster
than that of MCL). Table 4 shows the number of discovered cliques (]A|), average sizes
(avg), and the average time in milliseconds (tms) to retrieve a clique when using our dense
subgraph algorithm. We also add the corresponding values obtained using MCL clustering
(JAIM, avgM). The MCL execution time (tmsM) considers sequential time, whereas ptmsM
considers parallel execution time with 16 threads. Our current discovery algorithm imple-
mentation is sequential; its parallel version, which is under construction, should improve
execution times. Still, already our sequential algorithm is an order of magnitude faster than
sequential MCL. Our approach works better than MCL for graphs that have fewer cliques,
as in PL-V16 and PL-V17. In such cases, even our sequential time with multiple iterations is
much faster than one iteration of the parallel MCL with 16 threads. For graphs that contain
more cliques and small MC values, the time of our sequential algorithm is comparable to
parallel MCL using 16 threads; yet, as the cliques grow, MCL does not scale well and even
its parallel version becomes slower than ours.

Figure 3 (right) shows that ARE (Eq. 1) values are very low in our strategy (<0.06, i.e.,
6 %) and the error grows slightly when the number of cliques increases in graphs. However,
changing our clustering algorithm to MCL, the average relative error increases when the
graph contains smaller or fewer cliques hidden in the graph. On the other hand, in all cases,
we have a precision of 1.0, which means that we only recover existing cliques. Figure 4 (left)
shows recall (Eq. 3), and again, we observe that our discovery algorithm behaves very well
(more than 0.93, i.e., 93 %) for different number and size of cliques hidden in the graphs.
In contrast, MCL is very sensitive to the number and size of cliques, being less effective
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Fig. 4 Recall on the number of vertices (leff) and on the number of cliques (right) discovered in synthetic
graphs

Table 5 Compression (bpe) and

time using MCL with different ~ Mcwi¢  Inflation () Ours
inflation / values for dblp-2011 12 14 2.0 3.0 4.0
bpe 8.76 9.43 10.17 10.44 1051 841
tms 116,093 36,258 11,643 5736 5,671 5449
ptms 17,313 5,509 2,072 1,526 1,710
Table 6 Compression (bpe) and . .
time using MCL with different Metric Inflation (D Ours
inflation values I for eu-2005 12 1.4 2.0 3.0 4.0
bpe 3.46 3.13 3.18 3.21 3.25 2.67
tms — - — - — 2,874
ptms 65,359 62,297 59,535 59,285 89,066 -

for fewer or smaller cliques. We see a similar behavior in Fig. 4 (right), where we measure
recallNumCliques (Eq. 4).

To summarize, with our discovery strategy, we discover 98-99 % of the cliques [Fig. 4
(right)] and find their correct vertices with average relative errors between 1 and 6 % [Fig. 3
(right)]. The performance is better for larger cliques. One possible reason is that the clustering
algorithm we use tends to find greater similarity on those adjacency lists that have more
vertices in common.

We also evaluate the impact in scalability and compression (described in Sect. 5) using
MCL over a real undirected social graph (dblp-2011, see Table 7). We execute MCL with
different values for the inflation parameter (/). Table 5 shows the compression (bpe) and
sequential execution time (tms) and parallel execution with 16 threads (ptms). It also shows
that our clustering approach outperforms MCL, achieving less space than its slowest con-
struction within the time of its fastest construction.

To confirm the scalability problems of MCL, we also execute it over a larger graph, namely
eu-2005 (which is the smallest Web graph we use, see Table 7). We use different / values,
from I = 1.2to I = 4.0 (using I = 6.0 takes more than 2 days). We use parallel MCL with
16 threads; sequential MCL was disregarded since the parallel execution is already several
orders of magnitude slower than our sequential algorithm. Table 6 shows the results, where
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Table 7 Main statistics of the Web graphs we used in our experiments

Dataset V1] |E1] dl |E2| d2

eu-2005 862,664 19,235,140 22.30 18,733,713 21.72
indochina-2004 7,414,866 194,109,311 26.18 191,606,827 25.84
uk-2002 18,520,486 298,113,762 16.10 292,243,663 15.78
arabic-2005 22,744,080 639,999,458 28.14 631,153,669 27.75

The average neighbors per node are d1 and d2

we also give the achieved compression in bpe using our compressed structure with compact
data structures (Sect. 5). Using the compression scheme described in Sect. 4 is an order of
magnitude faster. This confirms that the clustering we use in our discovery algorithm is much
more scalable than MCL.

The MCL scalability issue has been reported in several works [34,42,44,46]. In fact,
Mishra et al. [46] reports that MCL performs poorly in sparse graphs. Macropol and Singh
[42] proposed a scalable discovery algorithm for best clusters (based on a score metric) for
labeled graphs. Their clustering algorithm is similar to ours, but for labeled graphs. They use
Local Sensitive Hashing (LSH) and achieve better performance than MCL. Additionally, the
time complexity of our algorithm is O (E log E), while a straightforward implementation of
MCL is O(V?) time, as mentioned in the MCL web site FAQ section.” Another issue with
MCL is that it does not guarantee good effectiveness on directed graphs.®

4 Using virtual nodes

In this section, we describe compact graph representations based on using virtual nodes to
compress the dense subgraphs. Depending on the representation of the final graph, we obtain
various structures supporting out-neighbor and out/in-neighbor navigation.

In a first phase, we apply the discovery of dense subgraphs explained in Sect. 3. Then,
we apply the idea of virtual nodes [16] over the original graph, to factor out the edges of the
dense subgraphs found. Given a dense subgraph H (S, C), we introduce a new virtual node
w in V and replace all the edges in S x C by those in (S x {w}) U {w} x C).

As the result is still a graph, we iterate on the process. On each iteration, we discover
dense subgraphs in the current graph and replace their edges using virtual nodes. We refer to
this approach as dense subgraph mining (DSM).

The outcome of this phase is a graph equivalent to the original one, in the sense that we
must expand paths that go through virtual nodes to find all the direct neighbors of a node.
The new graph has much fewer edges and a small amount of virtual nodes in addition to the
original graph nodes.

On a second phase, we apply different state-of-the-art compression techniques and node
orderings over this graph to achieve compression and fast out- and out/in-neighbor queries.

This process has three parameters: E S specifies the minimum size |S| - |C| of the dense
subgraphs we want to capture during the discovery, 7 is the number of iterations we carry
out to discover dense subgraphs, and P is the number of hashes used in the clustering stage
of the dense subgraph discovery algorithm.

7 http://micans.org/mcl/man/mclfaq.html#howfast.
8 http://micans.org/mcl/man/mclfaq.html#goodinput.
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Table 8 Main statistics on the DSM reduced graphs

Dataset T V3| |E3| d3  |E2|/|E3| |VN| ET (min)
eu-2005 10 1,042,260 3,516,473 337 532 179,596  3.45

5 1,019,699 3,776,194 370 4.96 157,035 245
indochina-2004 10 8,079,568 21,313,402  2.63 8.99 664,703 35.0

5 8,030,729 22,186,260 276  8.63 615,864 243
uk-2002 10 19,842,886 54,391,059 274 537 1,322,400  65.8

S 19,767,439 56,329,408 2.84 5.18 1,246,953  44.2
arabic-2005 10 26,193,219 74,071,714 282 8.52 3,449,139 185.1

5 25805521 78,919,645 3.05 7.9 3,061,441 1303

As explained, we input the graph in natural ordering to the DSM algorithm. If we retain
this order on the output and give virtual nodes identifiers larger than those of the original
nodes, we can easily distinguish which nodes are virtual and which are original. If, instead,
use a different ordering on the output, such as BFS, we need an additional bitmap to mark
which nodes are virtual.

4.1 Dense subgraph mining effectiveness

In the experiments of this section, we use Web graph snapshots available from the WebGraph
project.” Table 7 gives the main statistics of the Web graphs used. We define G1(V1, E1) as
the original Web graph and G2(V2, E2) as the result of removing the («, u) edges from G1
(as explained, we will store a bitmap marking which of those edges were originally present).
Algorithm DSM will operate on G2 (where it will start by adding (u, u) for every node). We
call G3(V3, E3) the outcome of the DSM algorithm, where V3 = V1 U VN, VN are the
virtual nodes added, and E3 are the resulting edges in G3. We always use P = 2 for DSM.

Table 8 shows the main statistics of G3, using ES = 6 and carrying out T iterations. The
table also shows the number of virtual nodes (| VN|), the resulting average arity (d3), the size
gain estimation based on the edge reduction, given by |E2|/|E3|, and the total execution
time (ET) in minutes. The edge reduction is significant, from 5X to 9X, whereas the increase
in nodes is moderate, 7-20 %.

4.2 Performance evaluation with out-neighbor support

In this section, we evaluate the space and time performance when supporting out-neighbor
queries, by applying DSM and then state-of-the-art compression on the resulting graph. For
the second phase, we use BV (version 3.0.1 from WebGraph, which uses LLP ordering [9])
and AD (version 0.2.1 of their software, '? giving it the input in natural order [4]). We compare
our results with the best alternatives, including BV [9], AD [4], and GB [32]. Combining
DSM with GB was slightly worse than GB standalone, so we omit that combination. We also
omit other representations that have been superseded over time [21].

Table 9 shows the compression achieved with the combinations. The parameters for each
of the techniques are tuned to provide the best performance. We refer to BV as applying BV
with parameters m = 100 and w = 7, where m is the maximum reference chain and w is

9 Available at law.dsi.unimi.it.

10" Available at http://www.dia.uniroma3.it/~drovandi/software.php.
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Table 9 Compression performance inbpe, with support for out-neighbor queries

Dataset eu-2005 indochina-2004 uk-2002 arabic-2005
BV,i100w7 3.74 1.50 2.38 1.79
ADg 3.64 1.60 2.64 2.26
GB12g 1.83 1.09 1.76 1.35
DSM+ESx-T10+BV 3.06 1.48 2.68 2.06
DSM-ESx-T5+ADy4 2.44 1.18 2.05 1.56
DSM-ESx-T5+ADg 2.30 1.06 1.87 1.45
DSM-ESx-T10+AD4 2.32 1.14 2.01 1.51
DSM-ESx-T10+ADg 2.20 1.03 1.83 1.40

The best-performing one per graph is in bold and the second best in italics

the window size [those parameter values improve compression, but increase access times a
little, as observed in Fig. 5 (left)]; AD; as using AD with parameter /; and GBy, as using GB
with parameter /. For our representations, we add a bitmap of length |V| marking which
nodes have a self-loop (as our technique otherwise loses this information). We use RRR for
compressing the self-loop bitmap. We compute bits per edge (bpe) as the total amount of bits
of the compressed graph plus the self-loop bitmap, divided by E'1.

We refer to DSM-ESx-Ty as using ES = x and iterating DSM for T = y times. We
tuned our combinations using DSM with BV,;;3,,7 (DSM-ESx-Ty+BV) and DSM with ADg
(DSM-ESx-Ty+ADg). Using DSM with BV, we found that the best E S values were 30 for
eu-2005 and 100 for indochina-2004, uk-2002, and arabic-2005; while the best 7' value was
10. On the other hand, the best ES value when combining DSM with AD was 10 for eu-
2005 and arabic-2005, and 15 for indochina-2004 and uk-2002. Those are the x values that
correspond to ESx in the table.

Table 9 shows GB outperforms BV and AD by a wide margin. Among our representations,
the one using 7 = 10 combined with ADg gives the best results. Overall, in most datasets, the
best compression ratio for accessing out-neighbors is achieved by GB12g, but our technique is
very close for datasets uk-2002 and arabic-2005, and we slightly outperform it for indochina-
2004. Only for the smallest graph, eu-2005 is GB12g better by far. Nevertheless, as observed in
Fig. 5 (right), over transposed graphs, our technique achieves better compression and access
time than GBj, and the sum favors our techniques when supporting in- and out-neighbors
(i.e., when storing both the direct and reverse graphs).

Figure 5 (left) shows the space/time tradeoffs achieved using BV, AD, and GB (using
parameter value h = 8§, 32, 64, 128), compared to using DSM before applying BV or AD.
When combining DSM with BV, we used the optimum E S values mentioned above and used
BV with parameters w = 7, and m = 3, 100, and 1,000. When combining with AD, we also
use the optimum E'S value and test different values of / for AD in the second phase. We did
not use a greater 7 because the edge reduction obtained did not compensate the extra virtual
nodes added. We compute the time per edge by measuring the total time, 7, needed to extract
the out-neighbors of all vertices in G1 in a random order, and then dividing ¢ by the total
number of recovered edges (i.e., |E1|).

We observe that both BV and AD improve when combined with DSM. In particular, the
combination of DSM with AD dominates BV, AD, and DSM plus BV. It achieves almost the
same space/time performance as GB, which dominates all the others, and surpasses it in graph
in-2004. Only in the smallest graph, eu-2005, does GB clearly dominate our combination.
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Fig. 6 Space/time efficiency with out/in-neighbor queries

Figure 5 (right) shows the same results on the transposed graphs. Note that, the DSM
preprocessing is the same for the original and the transposed graphs, so we preprocess the
graph once and then represent the reduced original and transposed graphs. On the transposed
graphs, we observe that the alternative that combines DSM with BV actually performs worse
than plain BV on large graphs. GB does not perform as well as on the original graphs, but on
eu-2005, it is the best alternative. AD behaves very well on uk-2002, but our best combination
outperforms it over the other datasets. In fact, our best combination is one of the two best
alternatives in all datasets.

Figure 6 shows the space required to store the original plus the transposed graphs, com-
bined with the time for out-neighbor queries (which is very similar to that for in-neighbor
queries; these are run on the transposed graph). It can be seen that our new combinations of
DSM plus AD dominate most of the space/time tradeoff, except on eu-2005. However, a data
structure specific for out/in-neighbor queries (k2part [23]) offers comparable (and in some
graphs much better) time performance, but we outperform it in space, considerably on some
graphs.

Next, we will consider a truly bidirectional representation for the reduced graph, obtaining
much less space with higher query time.

4.3 Performance evaluation with out/in-neighbor support
In this section, we combine the output of DSM with a compression technique that supports

out/in-neighbor queries: the k2tree [11]. We use the best current implementation [12]. We
apply dense subgraph discovery with parameters ES = 10, 15,100 and 7 = 5, 10. In all
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Table 10 Compression performance when combining with k2trees

Dataset eu-2005 indochina-2004 uk-2002 arabic-2005
k2treeNAT 3.45 1.35 2.77 2.47
k2treeBFS 3.22 1.23 2.04 1.67
DSM-ES10-T5 + k2treeNAT 2.76 1.36 2.40 1.76
DSM-ES10-T10 + k2treeNAT 2.71 1.34 2.40 1.76
DSM-ES15-T5 + k2treeNAT 2.65 1.27 2.28 1.67
DSM-ES15-T10 + k2treeNAT 2.59 1.27 2.27 1.66
DSM-ES100-T5 + k2treeNAT 2.56 1.16 2.13 1.52
DSM-ES100-T10 + k2treeNAT 2.48 1.14 2.08 1.47
DSM-ES10-T5 + k2treeBFS 2.21 0.90 1.56 1.12
DSM-ES10-T10 + k2treeBFS 2.11 0.87 1.53 1.08
DSM-ES15-T5 + k2treeBFS 2.11 0.87 1.54 1.14
DSM-ES15-T10 + k2treeBFS 2.21 0.89 1.57 1.08
DSM-ES100-T5 + k2treeBFS 2.54 0.95 1.67 1.21
DSM-ES100-T10 + k2treeBFS 2.45 0.93 1.64 1.18

cases, process DSM is run over the graph in natural order. We denote k2treeBF'S the variant
that switches to BFS order on G3 when applying the k2tree representation, and k2treeNAT
the variant that retains natural order.

Table 10 shows the compression achieved. We observe that the compression ratio is
markedly better when using BFS ordering. In particular, the setting ES = 10, T = 10,
and k2treeBFS is always the best. The space is also much better than that achieved by repre-
senting the original plus transposed graphs in Sect. 4.2.

Figure 7 shows the space/time tradeoff when solving out-neighbor queries (in-neighbor
times are very similar). We include k2treeNAT [11], k2treeBFS [12], k2part [23], and disregard
other structures that have been superseded by the last k2tree improvements [20]. We also
include in the plots one choice DSM-ESx-Ty+AD from Sect. 4.2, which represents the
direct and transposed graphs using DSM and T = 10 combined with AD using various
values of /.

All those structures are clearly superseded in space by our new combinations of DSM
and k2treeBFS or k2treeNAT. Again, the combination with BFS gives much better results,
and using different ES values yields various space/time tradeoffs. On the other hand, these
smaller representations reaching 0.9—1.6 bpe on the larger graphs are also significantly slower,
requiring 5-20 s per retrieved neighbor.

4.4 Scalability

Even if we aim at fitting the final compressed graph in main memory, the original graph
G2 may be much larger and prevent a direct in-memory application of the first phase of the
algorithm, DSM. We consider this problem in this section.

A simple approach to this problem is to maintain G(V, E) = G2(V2, E2) on disk and
use the main memory to keep the matrix of hash values of size P x |V| described in Step
1 (recall Sect. 3.2), taking advantage of the fact that |V | < | E|. Given that each row of the
P x |V| matrix (formed by P hashes associated with an adjacency list) can be computed
independently of each other, and this step requires only one traversal over the graph. This
step is also suitable for data streaming or for computing each group of rows in parallel.
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Fig. 7 Space/time efficiency with out/in-neighbor queries

Step 2 runs on main memory for storing and sorting the matrix by columns. Once the
matrix has been sorted, we proceed to create the actual clusters in Step 3, where we need
to access the actual graph stored on disk. Thus, after Step 2, we obtain the set of node ids
for each cluster. With this information, we can load from disk only the blocks we need for a
set of clusters. In this part, it is important that, thanks to the locality of reference found on
Web graphs, there is a high probability that clusters are formed by nearby adjacency lists that
reside on the same or a few disk blocks. We refer to this number of disk blocks as k. Steps 3
and 4 require to keep blocks where current clusters reside in order to find dense subgraphs and
replace adjacency lists with virtual nodes and their definitions. Since replacing with virtual
nodes reduces edges, the graph is smaller at the end of each iteration. After the replacements
are done, disk blocks are written back to disk. Thus, considering T iterations and k disk
blocks for maintaining adjacency lists, the worst-case I/O cost of the complete algorithm
is O(T((|E| + |V|)/B + k)), where B is the disk block size. The algorithm needs only a
few iterations in practice (at most 7 = 10), and k& is usually rather small, which makes the
algorithm almost I/O optimal in practice.

However, since Web graphs expose locality of reference, we can also divide the graph
into multiple parts and process each part independently, at the cost of losing some inter-part
dense subgraphs. Doing so, we can reduce the memory and processing time according to
the needs of each part. Processing each part independently is also attractive for parallel and
distributed processing.

This is done in three stages. First, we apply DSM (in main memory or on disk) over
each part (parts can be just node ranges in natural order). Second, we remap virtual node
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Table 11 Compression of graph eu-2005 divided in different number of parts

NP max(|V2| + |E2|) k V3| + | E3| |E2|/|E3| [VN| bpe
1 19,514,936 105,653 4,620,439 5.32 179,596 2.20
5 5,057,710 50,971 4,687,354 5.10 155,944 2.25
10 3,561,390 32,290 4,709,537 5.07 154,821 2.28
20 2,674,977 19,308 4,783,414 4.96 148,615 2.29

identifiers so that they are globally unique. Third, we merge all the reduced graphs and apply
AD reordering and encoding.

We evaluated the partitioning scheme to measure the impact of locality of reference on how
well compression and disk block requirements behave. In this case, we took the smallest Web
graph, eu-2005, and evaluated compression using different numbers of parts. We separate
the nodes dividing the node identifiers by the number of parts, N P. We first apply DSM-
ES15-T10 (with ES = 15 and T = 10) on all parts, then remap the nodes, and finally
merge and apply ADg. Table 11 shows the number of disk blocks k (for a block size of 4 KB)
required for sets of 1,000 clusters. The value of k displayed in Table 11 considers the first
iteration and all parts. It shows that, when we use 20 parts, we can still obtain good results
on reducing edges, disk block requirements, and compression performance measured in bpe.
Since our last stage, using AD, is applied over the merged edge-reduced graph, the memory
requirement depends basically on the edge compression gain (| E2|/| E3|). We also show the
space requirement for the input graph as max(|V2|+|E2|) on a part and the number of nodes
and edges required to store G3 (|V 3| + |E3]).

We also experimented with a larger dataset, uk-2005-05,!! which has 77,741,046 nodes
and 2,965,197,340 edges. We divide the graph into 10 parts. This yields parts with a minimum
of about 217 and a maximum of about 410 million edges. We achieve 1.65 bpe and a neighbor
retrieval time of about 0.54 pus. These results show that using, say, DSM — ES15 — T10 plus
A Dg provides a scalable approach for large Web graphs. In contrast, using A Dg standalone,
we obtain 2.34bpe. Using BV standalone, we achieve 2.12bpe at maximum compression,
where queries are not supported. Using GB with i1 = 64, we achieve 1.75 bpe and a neighbor
retrieval time of 0.36 s, whereas using 27 = 128 thebpe is 1.59 and query time is 0.65 ps.
Therefore, the main conclusions we had reached, that our new scheme and GB provide similar
performance on Web graphs and dominate all the other approaches, seem to be robust and
remain valid on much larger graphs.

The conclusions obtained on bidirectional representations also remain valid, that is, our
representations supporting out/in-neighbor queries are much smaller yet slower. Combining
the results of DSM with 10 parts with k2treeBFS on graph uk-2006-05 yields 1.29 bpe and a
neighbor retrieval time of 12.4 .s. The standalone k2treeBFS obtains 1.78 bpe with a retrieval
time of 4.12 s.

5 Compact data structure for dense subgraphs
In this section, we present a new compressed graph representation based on dense subgraphs

that supports out/in-neighbor as well as various mining queries. We extract dense subgraphs
essentially as in Sect. 3 and represent them using compact data structures based on bitmaps

1T Available at http://law.dsi.unimi.it/webdata/uk-2006-05.
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Fig. 8 Dense subgraph (a) Pattern extraction (b) Our compressed representation
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and symbol sequences (described in Sect. 2.2). Recalling Definition 3.1, our goal will be to
represent the |S| - |C| edges of a dense subgraph H (S, C) in space proportional to |S| +
|C| — |S N C|. Thus, the bigger the dense subgraphs we detect, the more space we save at
representing their edges. This representation will not use virtual nodes, and its output is not
anymore a graph. As a result, we cannot iterate on the discovery algorithm in order to find
dense subgraphs involving virtual nodes.

5.1 Extracting dense subgraphs

We extract dense subgraphs using the algorithms described in Sect. 3. We use three parame-
ters: P, the number of hashes in the clustering stage of the dense subgraph discovery, a list of
E S values, where E S is the minimum | S| - |C| size of dense subgraphs found, and threshold.
Parameters P and E S are the same as before; yet, now we use a decreasing list of E£'S values.
The discovery algorithm continues extracting subgraphs of a size ES; until the number of
subgraphs drops below threshold on a single iteration; then, E S is set to the next value in
the list for the next iteration. Note that, in this case, we do not use the parameter 7 (number of
iterations), since the number of iterations will depend on the number of extracted subgraphs
on each iteration and the threshold value. The goal of having the E S list in decreasing order
is to avoid that extracting a small dense subgraph precludes the identification of a larger dense
subgraph, which gives a higher benefit. Note that, this was not so critical in Sect. 4, where
we were allowed to iterate over the dense subgraph discovery process and let virtual nodes
participate in larger dense subgraphs.

5.2 Representing the graph

After we have extracted all the interesting dense subgraphs from G(V, E), we represent G
as the set of dense subgraphs plus a remaining graph.

Definition 5.1 Let G(V, E) be a directed graph, and let H(S,, C,) be edge-disjoint dense
subgraphs of G. Then, the corresponding dense subgraph representation of G is (H, R),
where H = {H(S1,C1),..., H(Sy,Cn)} and R = G — |J H(S,, C,) is the remaining
graph.

Figure 8a shows the adjacency list representation for the graph presented in Fig. 1, where

we have already added the self-loops. We also show a dense subgraph, and a remaining
subgraph. Figure 8b shows our compact representation.
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Algorithm 1: Construction of X and B

Input: Subsets Sy, ..., Sy and Cy, ..., Cy
Output: Sequence X and Bitmap B
X < ¢
B «¢;
fori < Oto N do

L < S;—Ci;

M < $;NC;;

R« Cj— 5

X<« X:L:M:R;

B < B :10/L110MI10lRI
end
return X, B;

5.3 Compact representation of H

Let H = {Hi,..., Hy} be the dense subgraph collection found in the graph, based on
Definition 5.1. We represent H as a sequence of integers X with a corresponding bitmap B.
Sequence X = X : X» :...: Xy represents the sequence of dense subgraphs, and bitmap
B = B : By : ... By is used to mark separations in each subgraph. We now describe how a
given X, and B, represent the dense subgraph H, = H(S,, C,).

We define X, and B, based on the overlapping between the sets S and C. Sequence X, will
have three components: L, M, and R, written one after the other in this order. Component L
lists the elements of S — C. Component M lists the elements of S N C. Finally, component
R lists the elements of C — S. Bitmap B, = 10/£110M110/RI gives alignment information
to determine the limits of the components. In this way, we avoid repeating nodes in the
intersection and have sufficient information to determine all the edges of the dense subgraph.
Figure 8b shows this representation for our example, which has just one dense subgraph.
Algorithm 1 describes how X and B are built.

We compress the graph G = H U R, using sequence X and bitmap B for H. For R, we
use some bidirectional compressed graph representation.

To support our query algorithms, X and B are represented with compact data structures for
sequences that implement rank/select /access operations. We use WTs [33] for sequence X
and compressed bitmap representation RRR [49] for bitmap B. The total space is | X | Hy(X)+
o(|X|logo) + | X|Ho(B) bits, where o < |V is the number of vertices in subgraph . The
|X|Ho(X)+o(]X|lg o) owes to the wavelet tree representation, whereas | X |Ho(B) +o(| X|)
owes to the bitmap B. Note that, | X| is the sum of the number of nodes of the dense subgraphs
in H, which can be much less than the number of edges in the subgraph it represents.

5.4 Neighbor queries

We answer out/in-neighbor queries as described by Algorithms 2 and 3. Their complexity is
O((loutput|+ 1) log o), which is away from optimal by a factor O (log o). To exemplify the
treatment of (u, u) edges, these algorithms always remove them before delivering the query
results (as explained, more complex management is necessary if the graph actually contains
some of those edges). Note this finds only the edges represented in component H; those in R
must be also extracted, using the out/in-neighbor algorithm provided by the representation
we have chosen for it.

We explain how the out-neighbors algorithm works; the case of in-neighbors is analogous.
Using selectx (u, i), we find all the places where node u is mentioned in X. This corresponds
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Algorithm 2: Find out-neighbors

Input: Sequence X, Bitmap B and vertex u
Output: List of out-neighbors of u

out < ¢,
occur < ranky (u, | X|);
for i < 1to occur do

y < selecty (u,i);
p < selectg(0,y +1);

m <— o mod 3;
if m = 1 then

end
else if m = 2 then

end
else
s <« 1;
e <« 0;

end
for j < stoedo
d < accessx (j);
if (d # u ) then
‘ out < out : d;
end
end

end
return out

o<« p—y{=rankg(l,p) };

s <= selectp(l,o0+1)—(0o+ 1)+ 1;
e <« selectg(l,0+3) — (0 +3);

s < selectg(l,0) —o+1;
e < selectg(l,0+2) — (0 +2);

Algorithm 3: Find in-neighbors

Input: Sequence X, Bitmap B and vertex u
Output: List of in-neighbors of u

in <« ¢g;

occur < ranky (u, |X|);
for i <— 1to occur do

y < selecty (u,i);

m < omod 3;
if m = 2 then

end
else if m = 0 then

end
else
s <« 1;
e < 0;

end
for j < stoedo
d < accessy (j);
if (d # u ) then
| in<in:d;
end
end

end
return in

p < selectp(0,y +1);
o< p—y{=rankg(l,p)};

s < selectg(l,o—1)— (0o —1)+ 1
e < selectg(l,0+1) — (0 + 1);

s < selectg(l,0—2) — (0 —2)+ 1
e < selectg(l,0) —o;
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Algorithm 4: Get cliques and bicliques

Input: Sequence X, bitmap B and vertex u
Output: List of allcliques and allbicliques
allcliques < ();
allbicliques < ();
n < rankg(1,|B]);
cur < 1, pl < 0;
while cur < n do
p2 < selectg (1, cur + 1);
p3 <« selectg(1, cur +2);
p4 < selectp (1, cur +3);
if p2 — pl =1A p4— p3 =1 then
s < p2—(cur+1)+1;
e < p3 — (cur +2);
clique < @
fori < stoedo
‘ clique < clique U {accessx (i)};
end
allcliques.add(clique);

end
else if p3 — p2 = 1 then
s < pl—cur+1;
m <« p2 — (cur + 1);
e < pd— (cur +3);
biclique.S < §, biclique.C < @
for i < stomdo
‘ biclique.S < biclique.S U {accessy (i)};
end
fori <~ m+1to e do
‘ biclique.C < biclique.C U {accessy (i)};
end
allbicliques.add(biclique);

end
else
\ other type of dense subgraph ;
end
cur < cur + 3, pl < p4;

end
return allcliques, allbicliques

to some X,, but we do not now where. Then, we analyze B to determine whether this
occurrence of u is inside component L, M, or R. In cases L and M, we use B again to
delimit components M and R, and output all the nodes of X, in those components. If u is in
component R, instead, there is nothing to output in the case of out-neighbor queries.

5.5 Supporting mining queries

An interesting advantage of our compressed structure is that it enables the retrieval of the
actual dense subgraphs found on the graph. For instance, we are able to recover cliques and
bicliques in addition to navigating the graph. Algorithm 4 shows how easy it is to recover all
cliques and bicliques stored in the compressed structure. This information can be useful for
mining and analyzing Web and social graphs. The time complexity is O (loutput| -logo).

Note that, we only report, in this simplified algorithm, pure cliques and bicliques. A slight
modification would make the algorithm extract the clique SN C that is inside dense subgraph
H(S, C) or the bicliques (S — C, C) or (S, C — §).

Another interesting query could be computing the density of the dense subgraphs stored
in H. Let us use a definition of density [2] that considers the connections inside a subgraph:

A subgraph G'(V', E') is y-dense if % > y. The density of a clique is always 2.
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Algorithm 5: Get all dense subgraphs with density at least y

Input: Sequence X, bitmap B and density y
Output: List /s of dense subgraphs with density at least y
Is < ()
n < rankg(1,|B|);
cur < 1, pl < 0;
while cur < n do
p2 < selectg(1, cur +1);
p3 < selectg(1, cur +2);
p4 < selectg (1, cur + 3);
V < p4—pl—-3;
E <« (p3—pl—=2)-(p4—p2-2);
g < E/(V-(V —1))2);
if (¢ > y)then
‘ Is.add((cur +2)/3);
end
cur <= cur + 3, pl < p4;

end
return /s

The density of a biclique (S, C) is ngdﬂ% Algorithm 5 computes the density of

all dense subgraphs and reports all dense subgraphs with a density over a given y.
Some of other possible mining queries are the following:

e Get the number of cliques where node u participates. We just count the number of times
node u is in the M component of X. The algorithm is similar to, say, Algorithm 2;
yet, it just identifies the component where u is and increments a counter whenever this
component is M.

e Get the number of bicliques where node u participates. This is basically the same as the
previous query; yet, this time we count when node u is in components L or R. If u is in
L,itis asource and if it is in R, it is a center.

e Get the number of subgraphs. We just compute the number of 1s in B and divide this
number by 3. This is because for every dense subgraph in X, there are 3 1s in B, as shown
in Fig. 8.

5.6 Dense subgraph mining effectiveness

We experiment with the same Web graphs of Sect. 4.1, plus various social networks that are
also available in the WebGraph site. In addition, we use the LiveJournal directed graph, avail-
able from the Stanford Network Analysis Package (SNAP) project'? (LiveJournal-SNAP).
Table 12 lists their main statistics.

We used our dense subgraph discovery algorithm with parameters ES = 500, 100, 50, 30,
15, 6, discovering larger to smaller dense subgraphs. We used threshold = 10 for eu-2005,
enron, and dblp-2011; threshold = 100 for indochina-2004, uk-2002, LiveJournal-2008, and
LiveJournal-SNAP and threshold = 500 for arabic-2005.

Table 12 also gives some performance figures on our dense subgraph mining algorithm.
On Web graphs (where we give the input to the mining algorithm in natural order), 91-95 %
of the edges are captured in dense subgraphs, which would have been only slightly less if we
had captured only bicliques [16]. Finding dense subgraphs, however, captures the structure
of social networks much better than just finding bicliques, improving the percentage of edges
captured from 46-55 to 48—65 %. Note also that the fraction of edges in dense subgraphs is

12 Available at snap.stanford.edu/data.
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Table 12 Number nodes and edges of graphs, and performance of subgraph mining algorithms

Data set Nodes Edges |H|/|E| (bicliques) (%)  |H|/|E] (dense) (%)
eu-2005 862,664 19,235,140 91.30 91.86
indochina-2004 7,414,866 194,109,311 93.29 94.51
uk-2002 18,520,486 298,113,762 90.80 91.41
arabic-2005 22,744,080 639,999,458 94.16 94.61
enron 69,244 276,143 46.28 48.47
dblp-2011 986,324 6,707,236 49.88 65.51
LiveJournal-SNAP 4,847,571 68,993,773 53.77 56.37
LiveJournal-2008 5,363,260 79,023,142 54.17 56.51

On the top we list the Web graphs and at the bottom the social networks

Table 13 Fraction and average size of cliques, bicliques, and the rest of dense graphs found

Data set Cliques Bicliques Dense subgraphs
Fraction (%) Size Fraction (%) Size Fraction (%) Size

eu-2005 7.19 7.44 46.67 18.67 46.14 20.73
indochina-2004 6.53 5.18 34.55 22.47 58.92 20.54
uk-2002 3.56 4.47 42.16 17.84 54.28 21.92
arabic-2005 3.76 4.32 42.09 23.05 54.15 22.44
enron 0.07 3.33 67.20 13.09 32.73 20.75
dblp-2011 18.22 3.95 27.76 8.37 54.02 6.91
LiveJournal-SNAP 2.41 3.47 57.99 9.64 39.60 10.53
LiveJournal-2008 2.37 3.44 59.77 9.75 37.86 10.47

much lower on social networks, which anticipates the well-known fact that Web graphs are
more compressible than social networks.

Table 13 complements this information with the fraction of cliques, bicliques, and other
dense subgraphs, with respect to the total number of dense subgraphs found, as well as their
average size. This shows that pure cliques are not very significant and that more than half of
the times the algorithm is able to extend a biclique to a more general dense subgraph, thereby
improving the space usage.

The next experiments consider the final size of our representation. For the component H,
we represent sequence X using WT or GMR, and for bitmap B, we use RG or RRR. These
implementations are obtained from the library libeds.'® For WT, we used the variant “without
pointers.” For the component R, we use either k2tree [12] or MPy [23], the improvement
over the proposal of Maserrat and Pei [43]. Although we use the most recent version of
the k2tree, we use it with natural node ordering to maintain consistency between the node
names in H and R. An alternative would have been to use BFS ordering for both, that
is, reordering before applying the dense subgraph mining, but this turned out to be less
effective.

Table 14 shows how the compression evolves depending on parameter E S, on graph dblp-
2011. ES values in Tables 14 and 15 represent the last value we consider in the E'S list. For

13 Available at http://libcds.recoded.cl.
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Table 14 Evolution of compression as E S decreases, for the dblp-2011 data set

ES

500 100 50 30 15
|X| 6.6K 75.8K 232.6K 456.8K 1.05M
|’H| in bytes 474K 168.0K 4879K 9509K 220M
RE 165.8K 636.0K 1.24M 1.92M 3.25M
|R| in bytes 7.05M 6.88M 6.70M 6.50M 6.00M
RE/|X| 25.12 8.38 5.33 4.20 3.09
bpe 8.47 8.41 8.58 8.89 9.79

Table 15 Compression performance for Web graphs, compared to other techniques

Data set G=HUR k2treeBFS DSM
ES RE/IXI bpe bpe bpe
eu-2005 6 7.29 2.67 3.22 2.11
indochina-2004 6 14.17 1.49 1.23 0.87
uk-2002 6 8.50 2.52 2.04 1.53
arabic-2005 6 11.56 1.85 1.67 1.08

DSM refers to DSM-ES10-T10+k2treeBFS

instance, ES = 100, in Table 14, means that we use the sequence of values ES = 500, 100.
As E S decreases, we capture more dense subgraphs; yet, they are of lower quality, and thus,
their space saving decreases. To illustrate this, we show the length |X| = >, [S,| + |C/| —
|S; N C,|, the number of bytes used to represent X and B (“|H| in bytes”, using WT for
X and RRR for B), and the total edges represented by H (RE = > [S;| - |C,|). All these
indicators grow as E S decreases. Then, we show the size of R in bytes (using representation
MPy, with the best k for R), which decreases with ES. As explained, what also decreases
is RE/| X|, which indicates the average number of edges represented by each node we write
in X. Finally, we write the overall compression performance achieved inbpe, computed as
bpe = (bits(H) + bits(R))/|E|. It turns out that there is an optimum E S value for each
graph, which we use to maximize compression.

Tables 15 and 16 compare the compression as we achieve with the alternatives we have
chosen for Web and social graphs. We show the last ES value used for discovering dense
subgraphs, the ratio RE/| X[, and the compression performance inbpe obtained on the Web
and social graphs. We use WT and RRR where the sampling parameter is 64 for compressing
‘H. For compressing R, we use k2treeNAT for Web graphs and MPy, for social networks, which
gave the best results (with enron as an exception, where using k2treeNAT on R provides better
compression than MPy, as displayed).

We compare the results with standalone k2treeBFS on Web graphs, k2treeNAT on enron,
and MP;, on the other social networks.

Our technique does not obtain space gains on Web graphs compared to k2treesBFS. More-
over, the variant DSM-ES10-T10+k2treeBFS of Sect. 4.3, also included in the table, is even
better.
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Table 16 Compression performance for social networks, compared to other techniques
Data set G=HUR MPy k2treeNAT BV
ES RE/|X| bpe bpe bpe bpe
enron (with k2treeNAT) 6 2.06 10.07 17.02 10.31 18.30
enron 6 2.06 15.42 17.02 10.31 18.30
dblp-2011 100 8.38 8.41 8.48 9.83 10.13
LiveJournal-SNAP 500 12.66 13.02 13.25 17.35 23.16
LiveJournal-2008 100 4.88 13.04 13.35 13.63 17.84
BV refers to BV adapted to support out/in-neighbor queries
DBLP-2011 LIVEJOURNAL-SNAP
2 I DSM-ES30-WT-r —m %0 T " DSM-ES30-WTT
DSM-ES30-GMR-r - DSM-ES30-GMR-r
DSM-ES50-WT-r @ DSM-ES50-WT-r
DSM-ES50-GMR-r -4 25 DSM-ES50-GMR-r - £
DSM-ES100-WT-r - - & DSM-ES100-WT-r -~ 4
15y DSM-ES100-GMR-r -~ DSM-ES100-GMR-r -~ -
[ DSM-ES500-WT-r - -+ o 20 DSM-ES500-WT-r - *
_g) DSM-ES500-GMR-r %+~ _g’ DSM-ES500-GMR-r — 3~
N u kY "
ERRL = . ERRE °«
o 3 L\ o . . m
£ 4 v o u > E 10 .
[i= . i A
5 %f a P ‘g i |
¥k ) i 5 X*r R
a © 5 .
0 0 :
1 2 3 4 5 6 7 2 4 6 8 10 12 14
space bpe space bpe

Fig. 9 Space/time efficiency with out-neighbor queries on social networks, for various ES values (only
component H is considered)

On social networks, the gains of our new technique are more modest with respect to
MP;.. However, we show next that our structure is faster too. Moreover, there are no other
competing techniques as on Web graphs. Our development of Sect. 4.3 does not work at all
(it reduces less than 1.5 % of edges, while increasing nodes when introducing virtual ones).
The next best result is obtained with BV (which is more effective than GB and AD for social
networks).

We note that BV is unable to retrieve in-neighbors. To carry out a fair comparison, we
follow BV authors suggestion [9] for supporting out/in-neighbor queries. They suggest to
compute the set Egym of all symmetric edges, that is, those for which both (u, v) and (v, u)
exist. Then, they consider the graph Gsym = (V, Egy;n) and G4(V, E — Ejyp,), so that storing
Gsym, Ga, and the transpose of G4 enables both types of queries. The space we report in
Table 16 for BV considers this arrangement and, as anticipated, is not competitive.

5.7 Space/time performance

Figure 9 shows the space/time tradeoffs achieved on dblp-2011 and LiveJournal-SNAP graphs
considering only the H component. We test different ES parameters. We use WT and GMR
for the structures that represent X and RRR for B. These are indicated in the plots as WT-r
and GMR-r. The sampling parameter for RRR is 16, 32, and 64, which yields a line for
each combination. Along this section, we measure out-neighbor query times, as in-neighbor
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Fig. 10 Space/time tradeoffs for social networks

queries perform almost identically. We observe that using WT provides more compression
than GMR, but it requires more time.

The plots show how using increasing ES improves space and time simultaneously, until
reaching the optimum space. Using a larger E'S value also implies fewer iterations on the
dense subgraph extraction algorithm, which dominates construction time (this is currently
0.1-0.2ms per extracted edge, but construction is not yet optimized).

‘We now consider our technique on social networks, representing H and R, the latter using
either k2tree or MPy, and compare it considering space and time with the state of the art.
This includes standalone k2trees with BFS and natural order, MP; with the best k and, as a
control value, BV with out/in-neighbor support. Now, our time is the sum of the time spent
on H and on R. We represent H using our best alternatives based on DSM-ESx-WT-r and
DSM-ESx-GMR-r.

Figure 10 compares the results on social networks. The inner figures show a closeup of
the best alternatives. While, on enron, k2¢ree with natural order is the best choice when using
little space, on the other networks, our combination of DSM and MP;, is the best, slightly
superseding standalone MPy in both space and time.

Figures 11 and 12 carry out a similar study on Web graphs. In Fig. 11, we also show
that on these graphs, DSM improves significantly in space with respect to detecting only
bicliques (“BI”’), while the time is similar. Figure 12 shows that the structure proposed in this
section is dominated in space and time by that proposed in Sect. 4. Yet, we remind that the
structure we propose in this section is able to answer various mining queries related to the
dense subgraphs found easily and using no extra space.
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Fig. 11 Space/time efficiency with out-neighbor queries on Web graphs, for various sequence representations
(only component H is considered)
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Fig. 12 Space/time tradeoffs for Web graphs
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6 Conclusion

This paper studies graph compression schemes based on finding dense subgraphs. Dense
subgraphs generalize the bicliques considered in previous work [16], and our experiments
show that this generalization pays off in terms of compression performance. We show how
previous biclique discovery algorithms can be adapted to detect dense subgraphs.

We first present a compression scheme based on factoring out the edges of dense sub-
graphs using virtual nodes, which turns out to be suitable for Web graphs. After iteratively
reducing the graph via virtual nodes, we list the nodes in BFS order and using an encoding
related to it [4]. The resulting space and time performance are very similar to the best cur-
rent representation supporting out-neighbor queries (Grabowski and Bieniecki 2011). When
supporting both out- and in-neighbor queries, instead, our technique generally offers the
best time when using little space. In case graphs do not fit in main memory, we propose a
disk-friendly approach that exploits locality of reference and data partitioning to build the
compressed structure keeping almost the same compression performance. Dividing the data
is also attractive for parallel and distributed processing.

If, instead, we combine the result of dense subgraph mining with a bidirectional represen-
tation, the k2tree [11], using BFS node ordering, the result is the most space-efficient repre-
sentation of Web graphs that supports out/in-neighbors in a few microseconds per retrieved
value.

We present a second compression scheme also based on dense subgraphs, yet using com-
pact data structures instead of virtual nodes to represent them. The result turns out to be more
suitable to compress social networks with out/in-neighbor support, achieving the least space
while supporting queries in a few microseconds. As extracting dense subgraphs is nontrivial,
and the dense subgraphs expose community substructures in social networks, these dense
subgraphs may be useful for other graph mining and analysis purposes. A distinguishing
feature of our representation is that it gives easy access to these dense subgraphs without any
additional space.

Despite the enormous progress made in the last decade on Web graph compression, the
amount of activity in this area shows that further compression is perfectly possible. The
case of social networks is more intriguing, as the techniques that had been successful on
Web graphs have much less impact and the best results are achieved using other properties
[9,43], but still the results are much poorer. Perhaps social networks are intrinsically less
compressible than Web graphs, or perhaps we have not yet found the right properties that
permit compressing them further. We believe that our extension for finding more general
dense subgraphs (not just bicliques) is an interesting step toward that goal. Another line of
development we have contributed to is that of supporting more complex operations on the
compressed representations, not only direct navigation (out-neighbors) but also bidirectional
navigation and other more complex queries (such as the mining queries we support on the
dense subgraphs found).
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