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Abstract In this work, we propose a new method to find homogeneous object groups in a
single vertex-labeled graph. The basic premise is that many prevalent datasets consist of mul-
tiple types of information: graph data to represent the relations between objects and attribute
data to characterize the single objects. Analyzing both information types simultaneously
can increase the expressiveness of the resulting patterns. Our patterns of interest are sets of
objects that are densely connected within the associated graph and as well show high similar-
ity regarding their attributes. As for attribute data it is known that full-space clustering often
is futile, we have to analyze the similarity of objects regarding subsets of their attributes. In
order to take full advantage of all present information, we combine the paradigms of dense
subgraph mining and subspace clustering. For our approach, we face several challenges to
achieve a sound combination of the two paradigms. We maximize our twofold clusters accord-
ing to their density, size, and number of relevant dimensions. The optimization of these three
objectives usually is conflicting; thus, we realize a trade-off between these characteristics to
obtain meaningful patterns. We develop a redundancy model to confine the clustering to a
manageable size by selecting only the most interesting clusters for the result set. We prove the
complexity of our clustering model and we particularly focus on the exploration of various
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pruning strategies to design the efficient algorithm GAMer (Graph & Attribute Miner). In
thorough experiments on synthetic and real world data we show that GAMer achieves low
runtimes and high clustering qualities. We provide all datasets, measures, executables, and
parameter settings on our website http://dme.rwth-aachen.de/gamer.

Keywords Subspace clustering · Dense subgraph mining · Pruning techniques

1 Introduction

The analysis of graph data is an important and challenging data mining topic. Out of the wide
range of different graph mining tasks, this work focuses on the problem of identifying groups
of vertices within a single large graph, such that the members of a group are strongly related to
each other. For a traditional graph description, consisting of a set of vertices and a set of edges
between pairs of vertices, this problem is known as dense subgraph mining [2]. Here a group
of vertices is regarded as highly related if the vertices are densely connected to each other. For
example, functionally related genes are grouped together in gene interaction networks, people
showing the same friendship relations in social networks, or sensors communicating to each
other in sensor networks. The advances in data recording together with a general attempt of
collecting as much information as possible have led to heterogeneous databases, which, in our
case, go beyond the mere relationship information of objects. In many applications typically
a lot of attribute information is available for the objects. Restricting the data representation
to, e.g., a vector representation of the attribute information for each object, transforms our
original task of finding groups of vertices to the task of traditional clustering [15]. Here a
group of objects is regarded as highly related if the objects show high similarity to each other
regarding their attributes. For example, genes are clustered based on similar expression levels,
people in social networks based on their common interests, or sensors in sensor networks
according to similar measurements as temperature and humidity. Both information types
together can be modeled as a vertex-labeled graph, in which vertices represent objects, edges
represent relations between them, and feature vectors associated with the vertices represent
the attributes for each object (cf. Fig. 1).

Since each paradigm—dense subgraph mining and traditional clustering—groups the
objects based only on a single type of information, namely graph data or attribute data,
the resulting groupings might be highly differing and contradicting. Thus, for applications
where both data categories are available, a simultaneous use of both information types for the
process of clustering promises more meaningful and accurate results. Therefore, combined

Fig. 1 Combination of graph & attribute data and one potential twofold cluster (highlighted in yellow) with
two relevant dimensions (color figure online)
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clustering approaches have been recently introduced, which try to determine groups that are
densely connected within the graph as well as similar according to their attribute values. As
shown, e.g., in [16,36], such combined clustering methods can outperform methods using
just a single data source.

The main problem of almost all combined clustering approaches, however, is the consid-
eration of all attribute dimensions for determining the similarity. Often, some dimensions
are not relevant for all clusters, which is why clusters are located in subsets of the dimen-
sions. For example, in social networks, it is very unlikely that people are similar within all of
their characteristics. A continuative aspect is the decreasing discrimination power of distance
functions with increasing dimensionality of the data space due to the curse of dimensionality
[5]. The distances between objects grow more and more alike, thus all objects seem equally
similar based on their attribute values. Since clusters are strongly obfuscated by irrelevant
dimensions and distances are not discriminable any more, searches in the full-space are futile
or lead to very questionable clustering results. As a solution, subspace clustering methods
[19,30] were introduced, especially useful for high-dimensional data like genes. Consis-
tently, also combined clustering models should analyze subsets of the attributes. However,
this aspect is not adequately considered by the models.

Our novel approach combines graph data and attribute data to identify groups according
to their density of connections as well as similarity of their attribute values. In contrast to
other approaches, however, we consider subsets of the dimensions to realize meaningful
similarity determination. In Fig. 1 for example we are able to identify the cluster {1, 2, 5, 6}
because the objects are similar in two attributes and the density of the subgraph is high.
A clustering procedure like this is advantageous for a variety of applications: Besides the
already mentioned example of gene analysis, highly connected groups of people in social
networks (graph density) can be used for target and viral marketing based on their specific
preferences (attribute subset). In sensor networks, an aggregated transmission of specific
sensor measurements (attribute subset) of communicating sensors (graph density) leads to
improved energy efficiency and thus longer lifetime of the network.

A sound combination of the paradigms subspace clustering and dense subgraph mining
has to be unbiased in the sense that none of the paradigms is preferred over the other. Most
combined clustering models focus on graph properties as determining maximal sets whose
density is large enough. In Fig. 1, for example, the largest clique (a certain type of dense
subgraphs) is {2, 3, 5, 6}; however, the vertices of this clique show similar behavior only in
one of their three attributes. Even worse, preferring just high-dimensional clusters leads to
{1, 4, 6}; this cluster cannot be reconciled with the graph structure. Obviously, the cluster
properties ‘density/connectedness’, ‘dimensionality’, and ‘size’ are usually contradictory.
Thus, a clustering model has to realize a reasonable trade-off. The challenge tackled by our
approach is the optimization of all three goals simultaneously to ensure their equality. This
enables both paradigms to act on an equal footing in order to obtain meaningful and consistent
clusters. Vertex group {1, 2, 5, 6} and vertex group {2, 3, 5} could be possible clusters for
such an optimization. In both clusters all vertices have similar values in two attributes and
the density of the subgraphs is negligibly smaller than in cliques.

A further important observation is that overlaps between clusters are quite reasonable.
While the cluster {1, 2, 5, 6} might be of interest for video game producers, the cluster
{2, 3, 5} might be of interest for sports wear retailers. Persons thus can be assigned to more
than one product target group. Also for the application of gene interaction networks and sensor
networks it holds that genes can belong to more than one functional module and sensors to
more than one aggregation unit. Highly overlapping clusters, however, often imply nearly
the same interpretations. Thus, a strong overlap usually indicates redundancy. Especially in
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the area of subspace clustering, where for each cluster exponentially many projections in
its subspaces exist, considering redundancy is indispensable [24]. Also in the field of graph
mining, avoiding redundant patterns is studied [4]. The importance of a proper treatment of
redundancy is hence increased for the combined consideration of subspace clustering and
subgraph mining. However, this aspect is rarely treated accurately by previous approaches.
Our model successfully avoids redundancy in the clustering result, while generally allowing
the clusters to overlap.

In this work, we will present our new GAMer (Graph & Attribute Miner) approach, an
earlier version of which already appeared in [11]. Besides presenting the theoretical clustering
model which we introduced in [11], this article proves important complexity results and
focuses on the algorithmic solution of the problem by introducing various pruning techniques.
These techniques allow for an efficient computation of our overall clustering model. The main
contributions of our work are the following:

– We introduce a novel cluster model, which equitably joins the paradigms of subspace
clustering and dense subgraph mining.

– We define a novel clustering model, which includes a redundancy model to avoid unnec-
essary increase of the result set and at the same time permits overlaps between clusters
in general.

– We develop the algorithm GAMer, which exploits various pruning strategies for the
efficient calculation of the defined clustering.

Before presenting our approach the following section examines existing approaches and
their drawbacks in the analysis of attribute and graph data.

2 Related work

Generally speaking, the aim of clustering is to group objects into so-called clusters such that
similar objects belong to the same cluster and dissimilar objects belong to different clusters.

Clustering vector data. Traditional clustering for vector data evaluates clusters regarding
all attributes in the full data space. Independent of the clustering model, they do not scale to
high-dimensional data due to the irrelevance of some attributes for individual clusters [5,15].
Since dimensions are mostly not globally irrelevant, which is why global dimensionality
reduction techniques like PCA [17] are not applicable, subspace clustering methods detect
relevant subspace projections for each cluster individually [19,30]. This is also important for
our task, because we cannot expect that densely connected groups are similar in all attributes;
they belong to different subspaces.

In contrast to traditional clustering algorithms which mostly partition the data into clusters,
subspace clustering algorithms allow the clusters to overlap because in many applications it
is possible that one object belongs to several groups, e.g. in different subspaces. However, by
allowing overlapping clusters, the problem of redundancy arises: If clusters highly overlap,
they are very similar to each other. A subspace clustering approach that ignores this fact
will output a huge amount of clusters, which nearly represent the same information. For this
reason, recent subspace clustering approaches [14,24,27] use redundancy models to confine
the output to the most interesting clusters and thus get a reasonable result size.

In [28], recent subspace clustering approaches are compared and evaluated. A distinction
between cell-based [13,32,35,42], density-based [18], and clustering-oriented [3,25] meth-
ods is made. Cell-based approaches have shown to be very efficient and generate high-quality
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clusterings. None of the proposed subspace clustering methods, however, considers graph
data.

Clustering graph data. Clustering graph data has been done in different ways [2]: For
our purpose of finding groups in networks, we focus on methods mining densely connected
subgraphs in one large graph. Methods as [7,22,23,33] perform a graph partitioning while
others assume that the given graph naturally divides into (possibly overlapping) dense sub-
graphs, e.g. cliques [41] or γ -quasi-cliques [1,21,31,45]. None of these approaches, however,
considers attribute data for the objects.

As in the area of subspace clustering, by using non-partitioning approaches and allow-
ing the patterns (e.g. quasi-cliques) to overlap, we encounter the problem of redundancy
in the output set. For frequent subgraph mining, the problem of redundancy between sub-
graphs has recently been tackled by some approaches [4,47]. However, in the field of graph
clustering/dense subgraph mining the problem of redundancy has not yet been researched
thoroughly.

Combined clustering approaches. Apart from the previously mentioned approaches, there
exist methods that consider both information types: vector data and graph data. Some of these
techniques [8,20] consider attribute data only in a post-processing step after determining
subgraphs. Thus, attributes do not influence the resulting subgraph structures. In [16] the
network topology is transformed into a (shortest path) distance and is combined with the
feature distance such that any distance-based clustering algorithm can be applied afterward.
Using combined distance functions like this leads to results that are difficult to interpret as
no conclusions about cluster structures in the graph are possible. Similarly, the methods of
[29,36] use a weighted combination of the network information with the attribute information
but apply the principle of spectral clustering to determine the actual groupings. In contrast
to [16], which transforms the graph to distance values, the approach by [40] transforms the
feature information into an edge-weighted similarity graph and determines dense subgraphs
based on the original graph and the similarity graph. Directly operating on the original data, the
method of [9] extends the k-center problem by requiring that each group has to be a connected
subgraph. All the previous approaches [9,16,29,36,40] cannot detect similarities between
objects based on subsets of their attributes because they use full-space similarity. Since such
similarity values are often not discriminable [5], they unconsciously use only the graph
information for clustering, making the desired combination meaningless. Furthermore, these
approaches determine disjoint, or almost disjoint, clusters. In general, methods performing
a graph partitioning, e.g. by exploiting the idea of spectral clustering, are not suited in our
scenario since we want to permit overlaps between the clusters. In [48] and [49] categorical
attribute values are modeled as additional structural nodes into the original graph. Due to
these structural nodes, new paths between vertices with similar feature values arise. Although
objects in one cluster do not necessarily show similarity in all attributes, they are only
pairwise similar and no specific relevant attribute subset can be defined for the clusters.
In [38] graphs with labeled vertices are considered. This approach detects patterns that are
quasi-cliques where all vertices have a set of labels in common. However, the approach only
considers categorical labels and cannot handle data with continuous attributes. CoPaM [26]
is the only approach so far that deals with subspace clustering and dense subgraph mining.
Though, it considers the density and the subspace cardinality only as minimal threshold
constraints. Since CoPaM solely optimizes the number of vertices, density and subspaces are
just incidental. In our approach, however, we balance these measures yielding an unbiased
combination of subspace clustering and dense subgraph mining.

Besides the already mentioned disadvantages of all existing combined clustering meth-
ods, one major drawback is their missing or limited redundancy handling. Especially, for
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approaches analyzing subsets of attributes, as CoPaM for the combined clustering paradigm,
this redundancy removal is essential. CoPaM, however, does not consider redundancy of the
resulting maximal subgraphs, which thus can potentially overlap to a high extent. In our
approach, redundant clusters are removed from the output.

3 A combined clustering model

In this section, we present our model for the detection of densely connected subgraphs that
exhibit feature similarity in subsets of the dimensions—called twofold clusters. Our model
combines subspace clustering with dense subgraph mining. To this end, we model attribute
data together with graph data. Formally, the input is a vertex-labeled graph G = (V, E, l)
with vertices V , edges E ⊆ V × V and a labeling function l : V → R

d where Dim =
{1, . . . , d} is the set of dimensions. We assume an undirected graph without self-loops, i.e.
(v, u) ∈ E ⇔ (u, v) ∈ E and (u, u) �∈ E . As an abbreviation we use l(O) = {l(o) | o ∈ O}
to denote the set of vectors associated with the set of vertices O ⊆ V and x[i] to refer to the
i-th component of a vector x ∈ R

d .
We introduce in Sect. 3.1 the cluster definition that defines the properties a single valid

cluster has to fulfill. In Sect. 3.2, our clustering criteria are defined, which favor the selection
of the most interesting clusters. Since many similar clusters can be valid, this definition is
crucial to prevent high redundancy in the output. The complexity of our clustering model
is analyzed in detail in Sect. 3.3. We conclude in Sect. 3.4 with a discussion of the model’s
parameters and we provide guidelines how to set their values.

3.1 Cluster definition

Our twofold clusters should represent meaningful subspace clusters and at the same time
meaningful dense subgraphs. Therefore we combine established definitions of both para-
digms. For subspace clustering the cell-based methods show high-quality results and they
are efficiently computable [28]. Thus, we choose this paradigm for our model and use a clus-
ter definition similar to the one used by [32]. A subspace cluster is a set of objects along with
a set of relevant dimensions. Within the relevant dimensions, the objects are very similar, i.e.
the variation of their attribute values is restricted to a maximal width w. For the non-relevant
attributes the values differ to a higher extent.

Definition 1 (Subspace cluster property) Given a set of vectors X ⊆ R
d and a set of dimen-

sions S ⊆ Dim, the tuple (X, S) is a subspace cluster (with respect to the maximal width w)
if:

– ∀i ∈ S : ∀x1, x2 ∈ X : |x1[i] − x2[i]| ≤ w

– ∀i ∈ Dim\S : ∃x1, x2 ∈ X : |x1[i] − x2[i]| > w

In Fig. 2, the vectors l(O1) and the dimensions S1 are a valid subspace cluster for w = 0.5.
Another subspace cluster is (l(O4), S4). By normalizing attributes, different w values per
dimension can be realized and by choosing w = 0, categorical data can be analyzed if
categories are represented by natural numbers.

For identifying dense subgraphs we use the notion of quasi-cliques [21]. Within a quasi-
clique O , each vertex v ∈ O has to be connected to a certain minimal percentage of vertices
of O . This minimal degree reflects the density more accurately than the average degree of
the vertices. Furthermore, the strict complete pairwise connectivity as for usual cliques is
relaxed with this definition.
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Fig. 2 Exemplary groups and their properties

Definition 2 (Quasi-clique property) A set of vertices O ⊆ V within a graph G = (V, E, l)
is a γ -quasi-clique if

min
v∈O

{degO (v)} ≥ �γ · (|O| − 1)� .

Here, degO (v) is the degree of vertex v within vertex set O , i.e. degO (v) = |{o ∈ O | (v, o) ∈
E}|. The density of a quasi-clique is defined by:

γ (O) = minv∈O {degO(v)}
|O| − 1

In Fig. 2, the set O2 is a 0.5-quasi-clique with maximal number of vertices. Each vertex
is connected to at least 3 other vertices within the group.

Quasi-cliques describe object sets based on their connectivity; these groups are dense
but potentially have only few (or even no) relevant dimensions. Contrarily, subspace clusters
describe object sets based on their similarity in subspaces; these subspaces are large in general
but the underlying subgraph is potentially not dense (or even not connected). For this reason,
our twofold clusters have to fulfill both properties simultaneously. We formalize:

Definition 3 (Twofold cluster) Given a graph G = (V, E, l), a twofold cluster C = (O, S)

with respect to the thresholds smin, γmin, nmin is a set of vertices O ⊆ V and a set of
dimensions S ⊆ Dim with the following properties:

– (l(O), S) fulfills the subspace cluster property with |S| ≥ smin

– O fulfills the quasi-clique property with γ (O) ≥ γmin

– the induced subgraph of O is connected and |O| ≥ nmin

With the three minimum-thresholds we are able to parametrize the requirements for a
twofold cluster; these are the properties that are important for subspace clusters and dense
subgraphs. Additionally, we have to ensure the connectivity of our vertex sets. If γmin < 0.5,
a quasi-clique does not necessarily need to be connected [45]. For a twofold cluster, however,
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the connectivity is reasonable and enforced by our definition. For example, in Fig. 2, we get
the twofold cluster (O3, S3) by choosing nmin = 3, smin = 2, γmin = 0.5. The previous
examples for subspace clusters or quasi-cliques, however, are not valid twofold clusters
because at least one of our properties is violated by these sets. With Definition 3, we get
more meaningful clusters.

3.2 Clustering definition

With the beforehand introduced definition we are able to determine the set of all valid twofold
clusters Clusters. Without any constraints this set can be large because we permit overlapping
clusters in general (cf. Fig. 1). For example, by choosing smin = 1 the cluster (O2, S2) in Fig. 2
is also valid. This cluster, however, intuitively provides only little novel information compared
to the cluster (O3, S3); the vertices differ only marginally and we have less dimensions.
By introducing a clustering definition, i.e. by determining a meaningful subset Result ⊆
Clusters, we focus on the most interesting clusters. Redundant clusters, which provide only
little additional information, are not included in our result. The interestingness of clusters is
presented in Sect. 3.2.1, our redundancy model is presented in Sect. 3.2.2. In Sect. 3.2.3, the
overall clustering is defined.

3.2.1 Quality function

To confine the Result ⊆ Clusters to the most interesting clusters, a measure for the qual-
ity of a cluster is necessary. The interestingness of our twofold clusters cannot be solved
trivially. Usually, subspace clustering models try to maximize the dimensionality of clusters
while dense subgraph methods maximize either the number of vertices or the density of the
subgraph. Optimizing all these properties, however, results in conflicting objective functions.
For example it is possible that a set of vertices has a high density and by adding just one
vertex to this set, e.g. to achieve a maximal cluster size, the density dramatically drops to
a low value. It is thus mandatory to trade off these characteristics of clusters to realize a
sound and unbiased synthesis of subspace and subgraph mining. Our quality function rates
the interestingness of a twofold cluster based on these three aspects.

Definition 4 (Quality of a twofold cluster) Given a twofold cluster C = (O, S), the quality
of C is defined by Q(C) = γ (O)a · |O|b · |S|c.

By this quality function we get a flexible model that is easily adaptable. With a = c =
0, b = 1, for example, we account only for the number of vertices as in many other models.
With a = b = c = 1, however, we rate all aspects equally. For example, in Fig. 2, we thus get
for the cluster C2 = (O2, S2) and C3 = (O3, S3) the quality values Q(C2) = 0.5 ·7 ·1 = 3.5
and Q(C3) = 10.8.

3.2.2 Redundancy model

With our redundancy model we identify clusters that contribute only little to the informa-
tion content of the final result. Previous approaches use the maximality of patterns (with
respect to objects or dimensions) to exclude other patterns that correspond to subsets of the
objects/dimensions. In our model we have two reasons why this is not meaningful. First, the
maximal clusters may differ only in few objects/dimensions as well; in this case, they provide
no novel knowledge and the result size can still be large. Second and even more problematic,
the maximal clusters are not necessarily the most interesting clusters in our model.
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The quality function is important to identify the redundant clusters. A cluster C can only
be redundant compared to a cluster C ′ if the quality of C is lower. If the cluster C had a
higher quality, then it should not be reported as redundant with respect to C ′; the user is more
interested in C . Thus, Q(C) < Q(C ′) must hold for the redundancy of C with respect to C ′.

Furthermore, the cluster C induces redundancy with respect to C ′ if it does not describe
novel structural information. We define a cluster C = (O, S) as structural similar to C ′ if
most of its vertices and relevant dimensions are already covered by the cluster C ′ = (O ′, S′):
If the fraction |O∩O ′|

|O| is large, only a small percentage of C’s objects are not contained in C ′;
we do not have a large information gain based on the object grouping of C . The same holds
for the set of relevant dimensions. If all three indicators are valid, the cluster C is redundant
with respect to C ′. We denote this by C ≺red C ′ and we formally define:

Definition 5 (Binary redundancy relation) Given the redundancy parameters robj , rdim ∈
[0, 1], the binary redundancy relation ≺red is defined by: For all twofold clusters C =
(O, S), C ′ = (O ′, S′):

C ≺red C ′ ⇔ Q(C) < Q(C ′) ∧ |O ∩ O ′|
|O| ≥ robj ∧ |S ∩ S′|

|S| ≥ rdim

The parameters robj , rdim intuitively represent the percentage of already covered objects
and dimensions of the cluster C under consideration. Note that our redundancy relation is
non-transitive, i.e. we can have clusters {Ca, Cb, Cc} with Ca ≺red Cb, Cb ≺red Cc but
¬(Ca ≺red Cc). Furthermore, ≺red is irreflexive, i.e. a cluster is never redundant to itself,
and ≺red is asymmetric, i.e. we cannot get Cb ≺red Ca if Ca ≺red Cb holds.

The higher the redundancy parameter robj /rdim , the more objects/dimensions of C have
to be covered by C ′. For the extremal case of robj = rdim = 1, C’s objects/dimensions have
to be a subset of the ones of C ′. In this case, only few clusters are redundant. By choosing
smaller values, the redundancy occurs more often. Considering the clusters C2 = (O2, S2)

and C3 = (O3, S3) in Fig. 2, we get C2 ≺red C3 for robj = rdim = 0.5. By choosing
robj = 1, rdim = 0.5, however, none of the clusters is redundant compared to the other.

To identify a cluster as redundant, all three indicators have to occur. It is not enough that
e.g. the set of objects is covered; if considerably many other dimensions are comprised, the
cluster will still not be redundant.

3.2.3 Determining overall clustering

Up to now we defined a binary relation for pairwise redundancy of clusters. The final step is
to define the overall clustering, i.e. given the set of all twofold clusters Clusters we want to
get a meaningful subset Result ⊆ Clusters.

Since redundant clusters provide only little novel information, they are not beneficial for
the user. Thus, the final clustering has to fulfill the redundancy-free property: The result set
must not contain clusters of which one is redundant to another. To achieve this property it
would be sufficient to remove all clusters from Clusters that are redundant to at least one
other cluster. Formally we would get Result = {C ∈ Clusters | ¬∃C ′ ∈ Clusters : C ≺red

C ′}. This solution, however, is too naive for our model because our redundancy relation is
non-transitive. For the clustering {Ca, Cb, Cc}, introduced in the non-transitivity discussion
above, a removal of all possibly redundant clusters would result in just {Cc}. However, the
result {Ca, Cc} is more useful since these clusters are also pairwise non-redundant and we
additionally get Ca .

123



252 S. Günnemann et al.

Evidently, we need our result to fulfill a second property – the maximality property: For
all clusters C not selected for the result set, there is at least one selected cluster to which C is
redundant. Thus, if we select C the redundancy-free property would be violated. Our overall
clustering result is:

Definition 6 (Optimal twofold clustering) Given the set of all twofold clusters Clusters,
the optimal twofold clustering Result ⊆ Clusters fulfills:

– redundancy-freeness property: ¬∃Ci , C j ∈ Result : Ci ≺red C j

– maximality property: ∀Ci ∈ Clusters\Result : ∃C j ∈ Result : Ci ≺red C j

The maximality property ensures that our optimal result contains the most interesting
clusters. In our previous example with {Ca, Cb, Cc}, e.g., the clustering {Cb} is not optimal.
Although, no further cluster can be added without introducing redundancy to the result, the
second criterion is violated since Ca ≺ Cb does not hold. Thus we get the desired maximal
result of Result = {Ca, Cc}. With our optimal twofold clustering the output is confined to
the most interesting clusters and redundant clusters are avoided. Due to the meaningful result
size and by incorporating attribute information in subspaces with the paradigm of dense
subgraphs, the user is able to extract novel knowledge.

3.3 Complexity analysis

In this section, we analyze the complexity of our clustering model. First we show that the
overall complexity of our model, i.e. for generating the twofold clusters and selecting the
optimal clustering, is #P-hard. We denote this problem as OV E R AL L . Second, however,
we show that if the set of twofold clusters Clusters is already given, selecting the optimal
clustering Result ⊆ Clusters can be done in polynomial time. We denote this subproblem
as SE L ECT .

3.3.1 Complexity of the overall result determination

Theorem 1 Given a vertex-labeled graph G = (V, E, l), determining the optimal clustering
according to Def. 6 is #P-hard with respect to the number of vertices V .

We prove the #P-hardness of our overall result determination (OV E R AL L) by a polyno-
mial reduction from the #P-hard problem M AXC L I QU E [10] of finding the number of all
maximal cliques with at least k nodes in a graph G = (V, E). We prove that OV E R AL L
can be used to solve M AXC L I QU E , i.e.

M AXC L I QU E ≤P OV E R AL L

Proof Input Mapping: We use the original graph G and choose γmin = 1, nmin = k, smin =
0, robj = 1, rdim = 0, a = 0, b = 1, c = 0.

Output Mapping: The cardinality of the result Result obtained by OV E R AL L corre-
sponds to the number of maximum cliques in the graph.

(1): The set of twofold clusters only contains all cliques (γmin = 1) of at least size k
(nmin = k). As for usual cliques, the attribute values do not matter (smin = 0).

(2): Only subsets of clusters induce redundancy, i.e.

C = (O, S) ≺red C ′ = (O ′, S′)

⇔ Q(C) < Q(C ′) ∧ |O ∩ O ′|
|O| ≥ 1 ∧ |S ∩ S′|

|S| ≥ 0

⇔ |O| < |O ′| ∧ O ⊆ O ′ ⇔ O ⊂ O ′
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Consequently, for a maximal cluster Cm there exists no C with Cm ≺red C . Accordingly, for
each non-maximal cluster Cn , there exists a maximal cluster with Cn ≺red Cm .

(3): Since the optimal twofold clustering is maximal and redundancy-free, Result con-
tains all but only the maximal clusters, which correspond to the maximal cliques. Thus,
OV E R AL L generates a valid solution for M AXC L I QU E . ��

3.3.2 Complexity of selecting the final clustering

While the overall complexity of our model is #P-hard, we can show that the subproblem of
redundancy elimination can be solved efficiently.

Theorem 2 Given a set of twofold clusters Clusters, the optimal clustering according to
Def. 6 can be determined in quadratic time with respect to the number of clusters.

To prove this theorem we provide an algorithm calculating the optimal result. We assume
that the set of all valid clusters Clusters is given. If a cluster C is not selected for the
result, there must exist another cluster Cr in the result with C ≺red Cr (cf. maximality).
Particularly, Cr must have a higher quality than C . As a consequence our clustering result
always contains the most interesting cluster denoted by C+

1 . Since this cluster has the highest
quality, it cannot be redundant to another cluster. Furthermore, all clusters that are redundant
to C+

1 cannot be selected for the result and thus can be removed from our set of clusters
Clusters. From the remaining clusters again the cluster C+

2 with the highest quality has to
be selected for our result. This cluster is not redundant to C+

1 (the redundancy-free property
is still fulfilled) and also not redundant to all remaining clusters (they have lower quality).
To ensure the maximality, we select C+

2 and we can remove all clusters being redundant to
C+

2 . These steps are repeated until no clusters remain.
Thus, our optimal twofold clustering can be calculated with the procedure that is illustrated

in Fig. 3. At the beginning, our result set is empty (Result = ∅) and clusters are ranked in
descending order based on their quality values. In each step, we remove the first cluster C
from the queue. If there exists a cluster C ′ ∈ Result with C ≺red C ′, the cluster is rejected.
Otherwise, we add C to Result and select the next cluster. Based on this procedure we can
infer the following corollary.

Corollary 1 The clustering result based on Definition 6 contains the most interesting (top
ranked), non-redundant clusters. This set of clusters is unique.

To analyze the worst case runtime complexity of the algorithm, we can distinguish
two phases: In the first phase we have to sort the clusters, i.e. the complexity is
O (|Clusters| · log (|Clusters|)). In the second phase, each cluster is compared to the
current result set to evaluate the redundancy. In the worst case, each cluster is non-
redundant and we have to compare the i th cluster against i − 1 many clusters resulting in
∑|Clusters|

i=1 i − 1 = (|Clusters|−1)·(|Clusters|−2)
2 many comparisons. Since the result set, how-

ever, is usually much smaller than the number of clusters, the bound |Clusters| · |Result | is
often more precise. Thus, the overall complexity is given by the following theorem:

Fig. 3 Ranking of clusters to
determine the optimal clustering
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Theorem 3 Given a set of twofold clusters Clusters, the optimal clustering Result accord-
ing to Def. 6 can be determined in time

O (|Clusters| · log (|Clusters|) + |Clusters| · |Result |) = O (|Clusters|2)

Since computing the optimal result is polynomial with respect to the number of clusters,
however, #P-hard with respect to the number of vertices, the number of clusters has to depend
superpolynomially on the number of vertices. Otherwise, i.e. assuming a polynomial bound,
the overall complexity would also be polynomial. Thus, the number of clusters can be large
in general and highlights the need for removing redundant clusters as proposed by our model.

Corollary 2 Given a vertex-labeled graph G = (V, E, l), the number of twofold clusters
Clusters cannot be polynomially bounded with respect to the number of vertices V .

3.4 Discussion of parameters

With our GAMer model, we propose a flexible clustering approach, which can easily be
adapted based on the users’ needs. Even though a high flexibility is beneficial for the analysis,
it may also hinder the model’s application in practice since different parameters have to be
set up. Thus, in the following, we recommend specific parameter settings, which can act as
a starting point for an in-depth analysis of the data under consideration.

First, the user is able to adapt the quality assessment of the individual clusters (cf. Def. 4).
If no specific preferences are given, we recommend the choice of a = b = c = 1. In this
case, all characteristics are equally important, which leads a sound synthesis of subspace
clustering and dense subgraph mining.

Second, the redundancy between different clusters can be controlled by robj and rdim (cf.
Def. 5). By selecting larger values, a higher overlap between the clusters is allowed. For many
applications, however, we recommend the parameter setting robj , rdim → 0 since it leads to
an easy interpretation of the clustering result: two clusters are either disjoint with respect to
their objects or with respect to their dimensions. Thus, an object is not clustered twice within
a single dimension. Please note that this result is still superior to projected clustering, which
requires disjoint object sets.

Last, the user has to specify the characteristics that each individual cluster has to fulfill (cf.
Def. 3). Actually, the parameters smin, γmin , and nmin do not influence the characteristics of
the clusters, but they simply control the number of valid clusters. That is, by lowering these
thresholds, the set Clusters gets larger. Indeed, the overall clustering is quite robust if the
threshold values are selected sufficiently small. For small thresholds, the set Clusters would
contain – besides the most interesting clusters – also clusters with low quality values. These
uninteresting clusters, however, would mostly be excluded from the clustering result due to
our redundancy model. Thus, if no further knowledge is given, one could simply ignore the
thresholds. Please note, however, that as a consequence the runtime of the algorithm might
increase since more clusters need to be analyzed. Furthermore, often only quasi-cliques with a
density of at least 0.5 are considered interesting, as they are connected “tightly and relatively
evenly” (cf. [45]). Thus, one should restrict the set of valid clusters a-priori by the three
thresholds (e.g. γmin = 0.5, nmin = 4, smin = 2) to achieve far lower runtimes of the overall
algorithm. Overall, only the parameter w is important for the clusters’ characteristics, and it
is easy to set since it simply controls the maximal extent of a cluster in the attribute space.
Furthermore, heuristics to select the parameter w based on the given data are discussed in
[32,43].
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In summary, the proposed default parameters can be used to get a first understanding of the
data’s clustering structure. Moreover, for an in-depth analysis, our model offers the necessary
flexibility by varying the individual properties.

4 The GAMer Algorithm

In the following section, we introduce our algorithm GAMer for efficiently determining the
optimal twofold clustering. The algorithm interweaves the processes of calculating twofold
clusters and of selecting the optimal clustering among these. By utilizing model-specific
properties based on the cluster and clustering definition, we are able to exclude those vertex
sets from our considerations that cannot be valid clusters or that might be valid clusters but will
not be selected for the final result anyway because of the redundancy criteria. Through this
early pruning we reduce the amount of analyzed vertex sets. Furthermore, our interweaved
execution of both processes is preferable over a sequential one because it further increases
the pruning potential.

4.1 Pruning based on cluster definition

In a naive approach we would have to check 2|V | many subsets O ⊆ V whether they fulfill our
twofold cluster definition. Instead, we use Definition 3 systematically for the early pruning of
vertex sets that cannot lead to valid clusters. The combination of our two properties, subspace
cluster and quasi-clique, is crucial.

4.1.1 Initial pruning

Based on our subspace cluster property, two neighboring vertices can only belong to the same
cluster if they are similar (i.e. their variation is smaller than w) in at least smin dimensions.
Thus, we remove all edges of our graph whose adjacent vertices do not fulfill this property.
These edges cannot contribute to any cluster. We just retain the edges

Enew = {(u, v) ∈ E | ∃S ⊆ Dim : |S| ≥ smin ∧ ∀d ∈ S : |u[d] − v[d]| ≤ w}.
Furthermore, our twofold clusters have to reach a minimal density and a minimal size. Thus,
each vertex has to exceed the degree of �γmin · (nmin − 1)� (after removing the edges in the
previous step) to be a potential cluster object. Vertices that do not fulfill this property are
removed, i.e. we just retain vertices with

degV (v) ≥ �γmin · (nmin − 1)� .

By removing vertices, the degrees of other vertices can decrease accordingly. Thus, we
iteratively check the minimal degree of the vertices until no more vertices can be removed.
By this initial pruning our graph gets more sparse and might be even decomposed in several
connected components. Since a twofold cluster must be connected, each component can be
processed separately, which is more efficient than handling the original graph.

4.1.2 Efficient enumeration of twofold clusters

To enumerate the vertex sets in our graph, we use the set enumeration tree [34]. A complete
tree for a graph with four vertices is depicted in Fig. 4. Each node of the tree represents a set
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Fig. 4 Exemplary set enumeration tree and pruned vertex sets

of vertices O ⊆ V . All nodes of the tree together represent the powerset of V , which is the
set of all potential clusters. On level i of the tree the cardinality of the sets is i . To build the
tree a total order ≺ of the vertices is needed. In Fig. 4, we use the order v1 ≺ v2 ≺ v3 ≺ v4.
Each node O is associated with a candidate set candO , which contains all vertices that are
ordered behind the vertices in O (candO = {

vi ∈ V | ∀v j ∈ O : v j ≺ vi
}
). A child node O ′

extends its parent node O through one of the vertices in candO . Thus, the subtree of a node
O represents all potential node sets X such that O ⊂ X ⊆ O ∪ candO . Please note that it is
possible to use different orderings of vertices in each tree node O to sort the vertices from
candO . This property will be beneficial for the overall algorithm in Sect. 4.3.

By pruning the set enumeration tree we narrow down the search space of vertex sets that
we have to check against our cluster property. Note that the quasi-clique property is not
monotone [31], and thus, we cannot simply prune a whole subtree if the parent node is not
a valid cluster. Instead we prune a vertex v from the candidate set of a node O , if {v} ∪ O
could never result in a valid cluster, not even by adding further vertices. If we were able to
remove e.g. the vertex v3 from the set cand{v1}, the highlighted 2|cand(O)|−1 many subsets in
Fig. 4 would disqualify themselves as clusters without further analysis.

The vertices to be pruned can be inferred from our cluster definition. In contrast to the
initial pruning step where the subspace cluster property and the quasi-clique property are used
separately for pruning, we now integrate both paradigms in combined pruning techniques to
achieve synergetic effects and thus a higher efficiency gain. We use the pruning techniques
described in the following sections to avoid generating invalid clusters.

4.1.3 Pruning by subspace diameter

In [31] it is shown that the diameter of a γmin-quasi-clique is restricted by an upper bound
k(γmin). Thus, each quasi-clique X containing the vertex t has to be a subset of t’s k-
neighborhood N V

k (t), i.e. X ⊆ N V
k (t). The neighborhood is given by:

N V
k (t) = {v ∈ V | dV (t, v) ≤ k}

Here, dV (t, v) is the number of edges in the shortest path between t and v using only vertices
from V .

Considering a vertex set O and a candidate set candO , we therefore can delete all vertices
from candO that are not contained in

⋂
u∈O N V

k (u), since by adding one of these vertices
to O we would lose the quasi-clique property. Note that our vertex sets O incrementally
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grow by adding single vertices according to the set enumeration tree. Thus, the current set
O is obtained by a step O = O ′ ∪ {t} with t ∈ candO ′ where candO ′ is known. Since
candO ⊆ cand ′

O has to hold, we can incrementally determine candO by just checking the
neighborhood of the ‘novel’ vertex t , i.e. candO = {v ∈ candO ′ | t ≺ v ∧ v ∈ N V

k (t)}.
If we were only searching for quasi-cliques, we could just use the edge information for

pruning (like in the Quick algorithm [21]). However, as our clusters also have to fulfill the
subspace cluster property, our pruning technique additionally uses the attributes of the vertices
for excluding unpromising vertices. Note that at this step in the algorithm the subspace S(O)

is already known and it holds that |S(O)| ≥ smin (otherwise we would not have to process
this subtree as it would not contain any valid cluster). To form a valid cluster, a set of vertices
has to be a subspace cluster in at least smin dimensions. Every vertex v that could be an
element of a cluster C = (X, S) with X ⊃ O has to ‘fit’ into the subspace S(O) in at least
smin many dimensions, i.e. the distance between v and any vertex from O may not be higher
than w in the corresponding dimensions.

To use this fact for pruning we restrict the k-neighborhood of the vertex t ∈ O to the
vertices that also ‘fit’ into the subspace of O:

N V
k (t, O) = {x ∈ N V

k (t) | |{d ∈ S(O) | ∀u ∈ O : |u[d] − x[d]| ≤ w}| ≥ smin}
We can now prune the candidate set using the new k-neighborhood, i.e. the set candO contains
just the vertices {v ∈ candO ′ | t ≺ v ∧ v ∈ N V

k (t, O)}.
The concept of this pruning technique is depicted in Fig. 5. Let us assume the parameters

are set to smin = 2, w = 1 and the maximal diameter be computed as k(γmin) = 2. Thus,
the current subspace of the set O is given by S(O) = {1, 2}. Using the traditional pruning
technique, i.e. just considering the graph information, we are only able to prune the vertex
y since its shortest path to t is longer than k = 2. Following our new definition we see
that also u can be pruned. Although u is similar to t in 2 dimensions, it is only similar in
1 < smin dimension with respect to the current subspace S(O) since dimension 3 is currently
not relevant. Thus, if we added u to O , we would violate the subspace cluster property. We
can safely prune the vertex u from candO . Accordingly, our novel procedure only retains the
vertices x and w as candidates.

Considering vertex x we can further enhance the effectiveness of our pruning technique.
Vertex x is part of the 2-neighborhood of t as there exists a path of length 2 between t and
x (path t − u − x). However, since the vertex u is pruned from the candidate set, the path
t − u − x is not valid when restricting to vertices of the candidate set; thus, the vertex x

Fig. 5 Pruning of vertices based on diameter and neighborhood calculations
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also has to be excluded as the new shortest path between t and x has length 3. Thus, for the
neighborhood/shortest path computation it is not allowed to use the whole set V but only the
non-pruned vertices. Formally, we recursively have to determine the neighborhood

Non Prunedi+1 = N Non Prunedi
k (t, O) starting with Non Pruned0 = V

until a fixpoint is reached, i.e. Non Prunedi = Non Prunedi+1 holds.

Definition 7 (Subspace k-neighborhood) The subspace k-neighborhood
SN V

k (t, O) of a vertex t ∈ O is the largest set
Non Pruned ⊆ V with N Non Pruned

k (t, O) = Non Pruned.

Overall, the set candO contains just those vertices of candO ′ that are also located in t’s
subspace k-neighborhood, i.e. candO = {v ∈ candO ′ | t ≺ v ∧ v ∈ SN V

k (t, O)}. In our
algorithm we efficiently determine this subspace neighborhood by a (restricted) depth-first
search in the graph. Starting the depth-first search in the vertex t we can stop the traversal
at a vertex v if either the path is longer than k or the subspace property is violated. Thus, in
our example the traversal in the vertex u does not continue, we do not reach the vertex x in 2
steps and x is finally pruned. Overall our pruning technique integrating subspace properties
prunes all vertices except of w, which shows the superiority over the traditional graph based
approach.

4.1.4 Pruning by subspace vertex degrees

Our algorithm uses several pruning techniques based on the vertex degrees. In traditional
quasi-clique mining [21] these pruning methods just consider graph information, while our
novel pruning technique again integrates edge and attribute information to achieve higher
pruning effectiveness. To apply the pruning techniques, we generally have to distinguish
between the “indegree” indeg and the “exdegree” exdeg of a vertex u with respect to the
sets O and candO . In traditional quasi-clique mining these two definitions are given as

indegO (u) = |{x ∈ O|(u, x) ∈ E}|, exdegO(u) = |{x ∈ candO |(u, x) ∈ E}|
Considering Fig. 6 we get indegO(u) = 4 and exdegO(u) = 3. The indegree describes

the number of adjacent vertices of u in the set O (marked in red), and the exdegree describes
the number of adjacent vertices in the candidate set candO (marked in blue). Both values
are used to estimate the possible size and density of quasi-cliques that contain the vertex u.
Considering the vertex t , we get indegO (t) = 1 and exdegO(t) = 2.

Using the notion of indegree and exdegree, the methods of [21,46] introduce different
pruning techniques. In general, the smaller the indegree/exdegree values of a vertex, the
higher the chance to prune this vertex. Thus, our goal is to derive more accurate estimations
for the indegree/exdegree values, i.e. smaller values should be determined by considering the
special characteristics of our twofold clusters.

Degree values with respect to subspaces The basic idea of our pruning is introduced by
the example in Fig. 6. Considering the traditional – just graph based – definitions for the
indegree and exdegree we get in Fig. 6 the values indegO (u) = 4 and exdegO(u) = 3.
However, in our model the vertices of a cluster do not only have to fulfill the quasi-clique
property but also the subspace cluster property. Let us assume the parameters with respect
to the subspace cluster property are set to smin = 2 and w = 1. We see that x can only be
added to the set O if we just consider subsets of the subspace S = {1, 3}. If we would select
the second dimension, e.g. the subspace {1, 2}, the subspace property would be violated by
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Fig. 6 Example for novel
indegree and exdegree definitions
based on subspaces

O ∪ {x}. Thus, intuitively the indegree for the vertex x is zero or undefined for subspaces
including dimension 2.

Considering the traditional exdegree, x contributes to the exdegree of u since both vertices
are adjacent. However, examining e.g. the subspace {1, 2}, we know that O ∪{x} cannot lead
to a valid cluster. Thus, x should not contribute to the exdegree of u in this subspace. If we use
the subspace {1, 3}, x can be added to O . However, in this subspace, u and x are not similar.
They cannot both belong to a valid subspace cluster, and hence, u’s exdegree should not
include x . Generally, an edge between vertices u, x should only be considered if both vertices
together can belong to a subspace cluster C = (X, S) with O ∪ {u, x} ⊆ X ⊆ O ∪ candO

and |S| ≥ smin . In our example, x should not contribute to the exdegree of u at all.
In contrast, the vertices y and u can be added to O together; y should contribute to

the exdegree of u. Similarly, z and u can belong to a valid subspace cluster; z should also
contribute to u’s exdegree. However, since {y}∪ O leads to a subspace cluster in the subspace
{2, 3} and {z}∪O in {1, 3}, it would not make sense if both vertices contributed to the exdegree
of u at the same time. Of course, if we look at the subspace {3}, both vertices contribute to
u’s exdegree; however, {3} is not a valid subspace since smin = 2.

Abstracting from this example, we see that the currently considered subspace S determines
the vertices which contribute to the degree of u. Thus, we can determine for each dimension
d ∈ S(O) an individual indegree and exdegree which provides an upper bound for the
corresponding value for any subspace containing the dimension d .

Definition 8 (Dimension-wise indegree and exdegree) The indegree and exdegree of a vertex
u with respect to the vertex set O , the candidate set candO , and the dimension d are

indegO(u, d) =
{ |{x ∈ O | (u, x) ∈ E}| if u[d] ∈ [upper [d] − w, lower [d] + w]

−1 else

exdegO(u, d) =
⎧
⎨

⎩

−1 if indegO(u, d) = −1
|{x ∈candO | (u, x)∈ E ∧ indegO (x, d) �=−1
∧|u[d] − x[d]| ≤ w}| else

with upper [d] = maxo∈O{o[d]} and lower [d] = mino∈O{o[d]}.
By using the values upper [d] and lower [d], we can easily check whether the adding of a

vertex u to O violates the subspace property. In Fig. 6, for example, we get upper [d1] = 2
and lower [d1] = 2. Thus, any vertex with an attribute value between [2 − 1, 2 + 1] = [1, 3]
in this dimension can potentially lead to a cluster. If the attribute value of a vertex u is not
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in this range, we cannot get a valid cluster. Thus, in this case we set indegO(u, S) = −1 to
indicate that u cannot belong to a cluster in this subspace. Consequently, we are also able to
set the vertex’s exdegree to −1 if the indegree equals −1.

If a vertex x ∈ candO should contribute to u’s exdegree in the dimension d , it has
to fulfill three requirements: First, it has to be adjacent to u. Second, its indegree is not
undefined (�= −1) since otherwise x cannot belong to the subspace S. Last, the vertices need
to have similar attribute values in dimension d since otherwise they cannot belong to the
same cluster.

Besides including subspace characteristics, one further advantage of our definition is the
dependency between the exdegree and indegree values. While traditionally both values are
computed independently, in our method the exdegree can be substantially lowered by taking
the indegrees of the neighboring vertices into account.

Deriving single bounds for pruning To apply the pruning techniques introduced in [21,46]
we need a single indegree/exdegree value per object. The smaller the indegree/exdegree value,
the higher the chance to prune a vertex. Though, we have to guarantee that vertices belonging
to valid clusters are not pruned; thus, we have to perform an optimistic estimation for the
overall degrees of a vertex u: As the subspace of a valid cluster has to contain at least smin

dimensions, we choose the smin-highest value over all dimensions d ∈ S(O) as the indegree
or exdegree of the vertex:

Definition 9 (Subspace indegree and exdegree) The subspace indegree and subspace exde-
gree of a vertex u with respect to the vertex set O and the candidate set candO are defined
as:

indegO
new(u) = smin-highest value from list [indegO(u, d) | d ∈ S(O)]

exdegO
new(u) = smin-highest value from list [exdegO(u, d) | d ∈ S(O)]

For vertex u in our example we would get indegO
new(u) = 4 as the attribute values of u fit

into the range of O in any dimension. For the exdegree of the vertex u in the first dimension,
we can only count vertex z; thus, we get exdegO(u, d1) = 1. In the second dimension y
contributes to u: we get exdegO(u, d2) = 1. In the third dimension both vertices increase
the exdegree of u, i.e. exdegO(u, d3) = 2. Since each valid subspace has to cover at least
smin = 2 dimensions, we select the second highest value and we get an overall value of
exdegO

new(u) = 1. This value is considerably smaller than the traditional exdegree of 3.
Even by selecting smin = 1, our pruning yields a tighter estimation; we then get an exdegree
of 2. As our indegree and exdegree definitions just add further restrictions to the original
definitions, the following inequalities hold:

Corollary 3 (Bounds for the indegree and exdegree values) Given a set O and the corre-
sponding candidate set candO , the following bounds hold for each u ∈ O ∪ candO :

indegO
new(u) ≤ indegO(u), exdegO

new(u) ≤ exdegO(u)

The inequalities ensure that our novel pruning method yields tighter estimations of the
degrees than just using graph based pruning. Nevertheless, we realize an efficient computation
of the degrees. Overall, this contributes to a more efficient cluster computation as we can
prune more vertices from the candidate set without losing valid clusters.

4.1.5 Summary

In this section, we proposed several pruning techniques that are based on our cluster definition.
Our pruning techniques jointly exploit the attribute data of the vertices and the graph data
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for pruning. We have shown that by taking both data types into account we are often able to
obtain smaller candidate sets and thus a higher pruning effectiveness. The introduced pruning
techniques enable a quick identification of subtrees in the set enumeration tree that cannot
lead to valid clusters. In GAMer we (mostly) traverse the set enumeration tree in a depth-first
manner, we check the cluster properties for the current vertex set, and we prune subtrees with
our methods above. Thus, we can efficiently generate all twofold clusters.

4.2 Pruning based on clustering definition

Since our clustering model does not allow any redundant clusters in the result set, it is worth-
while to early prune whole sets of (potential) clusters that would not be selected for the result
set anyway – already before checking their validity. Through the beforehand introduced prun-
ing, we avoid analyzing invalid clusters; in the following we additionally avoid generating
valid ones that are redundant and thus are not allowed for the result.

4.2.1 Pruning of cluster collections

The following pruning methods utilize our clustering definition or redundancy model respec-
tively. Please keep in mind that our redundancy relation is not transitive; thus, we cannot easily
discard redundant clusters. As mentioned in Sect. 3.3.2, we can use a ranking of clusters to
enable the efficient determination of our optimal clustering (cf. Fig. 3). We use this rank-
ing idea for our algorithm. In the set enumeration tree, however, we do not want to check
each node individually for its validity. Thus, we represent sets of not yet analyzed nodes by
so-called cluster collections that are also included in our ranking. Each cluster collection
represents a subtree in our set enumeration tree, i.e. a set of potential clusters. The basic
idea of our method is to exclude those cluster collections Colli from validity considerations
for which a cluster Cr exists such that all clusters represented by Colli are redundant with
respect to the corresponding Cr . Thus, if Cr is added to Result , we can immediately remove
the whole collection – and thus the whole subtree – from our queue. This idea is illustrated in
Fig. 7. The cluster collection CollA represents three clusters (not yet knowing whether they
are valid ones) and each of these possible sets is redundant to the cluster C+

1 . If we select C+
1

for the result we can directly remove CollA and thus a whole set of not yet analyzed clusters.
Definition 10 formalizes the stored information within a cluster collection and shows

the link to the set enumeration tree. Based on an already analyzed node O ⊆ V in the set
enumeration tree and its (pruned) candidate set candO , a cluster collection represents all
nodes X with O ⊂ X ⊆ O ∪ candO . Thus, a cluster collection represents all potential
clusters within the subtree of O .

Definition 10 (Cluster collection) A cluster collection Coll =(O, candO , S(O), Qmax , Cr )

consists of:

– A set of vertices O ⊆ V and the (pruned) candidate set candO

Fig. 7 Extended ranking that considers clusters and cluster collections
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– The relevant dimensions S(O) of the subspace cluster of O
– An upper bound Qmax for the quality of all represented clusters, i.e.

∀X : O ⊂ X ⊆ O ∪ candO it holds: X induces a valid cluster C ⇒ Qmax ≥ Q(C)

– An anchor cluster Cr , to which all represented clusters are redundant, i.e.
∀X : O ⊂ X ⊆ O ∪ candO it holds: X induces a valid cluster C ⇒ C ≺red Cr

The maximal quality Qmax is required for inserting the cluster collection at the correct
position within the ranking. Furthermore, we need this quality as well as the subspace S
and the vertex sets to calculate whether the cluster collection is redundant with respect to
other clusters. In the remainder of this subsection, we will provide bounds for the maximal
possible overlap between the objects/dimensions of the represented clusters and the ones of
Cr , and we derive bounds for the maximal possible quality of the represented clusters. Based
on these bounds we can ensure that any vertex set X with O ⊂ X ⊆ (O ∪ candO) will be
redundant to Cr . Thus, by pruning the cluster collection, we do not wrongly discard some
valid clusters.

A cluster collection represents a whole set of potential clusters without actually generating
them. If we discard such a collection we get a high efficiency gain. During the enumeration
of our clusters, i.e. while traversing the set enumeration tree, we use two different techniques
to generate such cluster collections and their corresponding anchor clusters Cr .

Superset collection The first technique is illustrated on the left hand side of Fig. 8. The
aim of this technique is to prevent the processing of a subtree rooted by the set O if CO =
(O, S(O)) is a valid cluster and every possible cluster in the subtree would be redundant
with respect to the cluster CO . We aim at excluding redundant supersets of the anchor cluster
CO . This constellation occurs especially when the quality function prefers clusters with high
density or dimensionality.

To get a valid superset collection Collsup = (O, candO , S(O), Qmax , CO), we have to
ensure that each represented cluster C = (X, S) with O ⊂ X ⊆ (O ∪ candO) is redundant
with respect to CO . In the following, we introduce properties a superset collection has to
fulfill to guarantee the validity of C ≺red CO , i.e. the three conditions from Definition 5 are
true for any cluster C = (X, S) in this case. First, we assume that upper bounds for the size,
the dimensionality and the density of such clusters C = (X, S) are given by nmax , smax and
γmax .

1. Lower quality: If Qmax < Q(CO) is true, then Q(C) < Q(CO) holds for each repre-
sented C . By choosing Qmax = γ a

max · nb
max · sc

max this conclusion is obviously valid.

Fig. 8 Two types of cluster collections: superset collection (left) and subset collection (right)
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2. Object overlap: If nmax ≤ |O|
robj

is true, then |X∩O|
|X | ≥ robj holds for each represented C .

Since O ⊂ X , we get |X∩O|
|X | = |O|

|X | ≥ |O|
nmax

≥ |O|·robj
|O| = robj .

3. Dimension overlap: In any case |S∩S(O)|
|S| ≥ rdim holds for each represented C . Because

of the antimonotonicity of the subspace property for every cluster C with O ⊂ X it holds
that S ⊆ S(O). Thus, |S∩S(O)|

|S| = 1 ≥ rdim .

If the superset collection fulfills these properties for the redundancy, we store the cluster
CO and the cluster collection Collsup in the queue and we stop traversing the subtree rooted
by O . An additional benefit of this technique is that if we get nmax < nmin or γmax < γmin

we know that we cannot find a valid cluster at all in this subtree. In this case, we do not
have to search the subtree in any case, so we do not store the cluster collection and just stop
processing the subtree.

In the following we determine the upper bounds for the size, dimensionality and density
of the represented clusters C .

Theorem 4 (Upper bounds for superset collection) For every C = (X, S) with O ⊂ X ⊆
O ∪ candO the following bounds apply:
a) |S| ≤ |S(O)| =: smax

b) γ (X) ≤ min_deg
|O| =: γmax with min_deg = minv∈O(indegO

new(v) + exdegO
new(v))

c) |X | ≤ min(�min_deg
γmin

� + 1, |O ∪ candO |) =: nmax

Proof a) Because of the antimonotonicity of the subspace cluster property it holds for every
cluster C = (X, S) with X ⊃ O: S ⊆ S(O). Thus, we get |S| ≤ |S(O)|.

b) The maximal density of a cluster C = (X, S) is determined by the minimal degree of the
vertices of X :

min
v∈X

(degX (v)) ≤ min
v∈O

(indegO
new(v) + exdegO

new(v)) = min_deg

We only consider vertices from O as the vertices from candO do not have to be part of
X , and thus, a vertex from candO with a small degree does not necessarily influence the
minimal degree of the vertices of X .
Thus, for the density of the vertex set X it holds that

γ (X) = minv∈X (degX (v))

|X | − 1
≤ min_deg

|X | − 1

As X is a superset of O it holds that |X | ≥ |O| + 1 and thus

γ (X) ≤ min_deg

|O| =: γmax .

c) The maximal size nmax of a cluster C = (X, S) is also determined by the minimal degree
min_deg. Every valid cluster has to fulfill

min_deg ≥ min
v∈X

(degX (v)) ≥ �γmin · (|X | − 1)� ⇔ �min_deg

γmin
� ≥ |X | − 1

Furthermore, the size of a cluster C = (X, S) with X ⊆ (O ∪ candO ) cannot be larger
than |O ∪ candO |. Thus, the maximal size of a valid cluster is

nmax = min

(

�min_deg

γmin
� + 1, |O ∪ candO |

)

.

��
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Subset collection The second pruning technique is illustrated on the right hand side of Fig. 8.
Before a set O is extended by a single further vertex v ∈ candO , we check the validity of the
cluster obtained by the set O ∪ candO , i.e. by adding all vertices of candO simultaneously.
We denote this cluster by Cr = (Or , Sr ) with Or = O ∪ candO and Sr = S(O ∪ candO). If
Cr is a valid cluster and if every possible cluster C = (X, S) with O ⊂ X ⊂ (O ∪ candO) is
redundant with respect to Cr we can again generate a cluster collection, store it in the queue
and we can stop processing this subtree. In contrast to the previous technique we aim at
excluding redundant subsets of the anchor cluster whereas in the first technique we excluded
redundant supersets. Especially for quality functions that prefer large clusters, this is a likely
constellation.

To get a valid subset collection Collsub = (O, candO , S(O), Qmax , Cr ), we have to
ensure the redundancy of each represented cluster with respect to Cr . Thus, for every possible
cluster C = (X, S) with O ⊂ X ⊂ (O∪candO) = Or the three conditions from Definition 5
must be true. If the subset collection fulfills certain properties we can guarantee the validity
of these conditions. Again, we first assume upper bounds nmax , smax and γmax for the size,
dimensionality and density of such clusters are given.

1. Lower quality: If Qmax < Q(CO) is true, then Q(C) < Q(CO) holds for each repre-
sented C . By choosing Qmax = γ a

max · nb
max · sc

max this conclusion is obviously valid.
2. Object overlap: In any case |X∩Or ||X | ≥ robj holds for each represented C . As every possible

X in this subtree is a subset of Or , we get |X∩Or |
|X | = 1 ≥ robj .

3. Dimension overlap: If |S(O)∩Sr |
|S(O)| ≥ rdim is true, then |S∩Sr |

|S| ≥ rdim holds for each
represented C . Due to the antimonotonicity of the subspace cluster property, for every S
it holds that Sr ⊆ S ⊆ S(O). Thus, |S∩Sr ||S| = |Sr ||S| ≥ |Sr ||S(O)| = |S(O)∩Sr ||S(O)| ≥ rdim .

If the subset collection fulfills these properties for the redundancy, we store Collsub in the
queue and stop processing this subtree. Also the cluster Cr is stored as a valid cluster in the
ranking.

Theorem 5 (Upper bounds for subset collection) For every C = (X, S) with O ⊂ X ⊂
(O ∪ candO) the following bounds apply:

a) |S| ≤ |S(O)| =: smax

b) γ (X) ≤ min_deg
|O| =: γmax with min_deg = minv∈O(indegO

new(v) + exdegO
new(v))

c) |X | ≤ |O ∪ candO | − 1 =: nmax

Proof a) As in the proof of Theorem 4 a)
b) As in the proof of Theorem 4 b)
c) For every set X ⊂ (O ∪ candO) it holds that |X | ≤ |O ∪ candO | − 1.

��

4.2.2 Pruning of cluster collections with respect to non-anchor clusters

The previous techniques avoid the processing of a collection if all possible clusters in this
subtree would be redundant with respect to a certain anchor cluster Cr . If the anchor cluster
is selected for the result, we can prune the whole cluster collection. However, if Cr itself
turns out to be redundant, the corresponding subtree still has to be processed. However, if Cr

is redundant it is likely that there exists a similar cluster C∗ in the final result set such that
every cluster from the collection would be redundant with respect to C∗. In this case, we can
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also avoid the processing of the collection. The detection of such a cluster C∗ is the aim of
our next pruning technique.

Before we process a cluster collection Coll = (O, candO , S(O), Qmax , Cr ), we search
the current result for a cluster C∗ = (O∗, S∗) such that each cluster from the collection is
redundant to C∗. For this, the three properties according to Definition 5 have to hold for each
cluster C = (X, S) with O ⊂ X ⊆ O ∪ candO . Again, we introduce properties the cluster
collection has to fulfill to guarantee the redundancy of the represented clusters with respect
to C∗.

1. Lower quality: If Qmax < Q(C∗) is true, then Q(C) < Q(C∗) holds for each represented
C . This is obvious due to the definition of Qmax .

2. Object overlap: It has to hold |X∩O∗|
|X | ≥ robj for any given X . Thus, if we find a lower

bound for the number of overlapping vertices and if this smallest number of overlapping
vertices still results in redundancy with respect to the objects, any cluster of the collection
has to be redundant with respect to the objects. We show:

Theorem 6 If

|O∗ ∩ O| + max{nmin − |O| − |candO\O∗| , 0}
max{nmin , |O| + |candO\O∗|} ≥ robj

is true, then |X∩O∗|
|X | ≥ robj holds for each represented cluster C = (X, S).

Proof To get a lower bound for the number of overlapping vertices |X ∩ O∗| we assume that
the set X contains as few vertices from O∗ as possible and as many vertices from candO\O∗
as possible. As X ⊃ O , it also holds that (X ∩ O∗) ⊃ (O ∩ O∗), and thus, the overlap
X ∩ O∗ has to contain at least |O∗ ∩ O| many vertices. To get the minimum value for |X∩O∗|

|X |
, we first add all vertices from candO\O∗ to X . However, if |O| + |candO\O∗| < nmin we
have to add nmin − |O| − |candO\O∗| many vertices from O∗ to X in order to get a valid
cluster, by which the overlap increases. Thus, the minimal value for |X∩O∗|

|X | is

|O∗ ∩ O| + max{nmin − |O| − |candO\O∗| , 0}
max{nmin , |O| + |candO\O∗|}

��
3. Dimension overlap: It has to hold |S∩S∗|

|S| ≥ rdim . Thus, if we find a lower bound for the
number of overlapping dimensions and if this smallest number of overlapping dimensions
still results in redundancy with respect to the dimensions, any cluster of the collection
has to be redundant with respect to the dimensions. We show:

Theorem 7 If

smin − |S(O)\S∗|
smin

≥ rdim

is true, then |S∩S∗|
|S| ≥ rdim holds for each represented cluster C = (X, S).

Proof For the subspace S of any cluster from the collection it holds that S ⊆ S(O) (anti-
monotonicity). Furthermore, S has to fulfill the minimum dimensionality smin . To get a lower
bound for the number of overlapping relevant dimensions |S ∩ S∗| we assume that S cov-
ers as many dimensions from S(O)\S∗ as possible. If |S(O)\S∗| < smin we have to add
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Algorithm 1: GAMer algorithm (main method)

1 Result = ∅ // current result set
2 queue = ∅ // priority queue containing clusters and collections,

// sorted by their quality values in descending order
3 perform initial pruning // cf. Section 4.1.1
4 sort vertices v ∈ V descendingly by their vertex degree
5 for v ∈ V do
6 DF S_traversal({v}, V ) // start one layer below the empty root
7 V = V \{v} // only vertices ordered behind v must be considered

8 while queue �= ∅ do
9 remove first object Obj from queue

10 if Obj is cluster then
11 // check redundancy
12 for C ∈ Result do
13 if( Obj ≺red C) goto line 8 // discard redundant cluster

14 Result = Result ∪ {Obj} // cluster is non-redundant
15 else // Obj is collection Coll = (O, candO , S, Qmax , Cr )

16 if anchor cluster Cr ∈ Result then
17 goto line 8 // discard whole collection

18 // else check redundancy w.r.t. non-anchor clusters (cf. Sec. 4.2.2)
19 for C ∈ Result do
20 if Coll is redundant to C then
21 goto line 8 // discard whole collection

22 // collection is non-redundant, restart traversal

23 sort vertices v ∈ candO descendingly by indegO
new(v)

24 for v ∈ candO do
25 DF S_traversal(O ∪ {v}, candO )

26 candO = candO\{v} // consider only vertices ordered behind v

27 return Result

smin − |S(O)\S∗| many dimensions from the subspace S∗ in order to get a valid cluster. The
minimal overlap of the subspaces S and S∗ can be computed as smin − |S(O)\S∗|. Thus, the
minimal value for |S∩S∗|

|S| is smin−|S(O)\S∗|
smin

. ��
If all three properties are fulfilled by the cluster collection, we can prune the collection

Coll because it is guaranteed that each of the represented clusters is redundant with respect
to C∗.

4.2.3 Summary

In this section, we introduced several pruning techniques that are based on our clustering
definition. While the pruning techniques proposed in the last section aimed at pruning subtrees
of the set enumeration tree that cannot contain valid clusters at all, the techniques introduced
here prune subtrees that only contain redundant clusters. By using these techniques we can
avoid generating the set of all valid clusters and thus obtain a more efficient computation.

4.3 Overall algorithm

In our GAMer algorithm the method of the set enumeration tree, for generating the clusters,
and the priority queue, for ranking the clusters, are nested. The pseudo codes are given in
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Algorithms 1 and 2. After performing the initial pruning (line 3), we start the depth-first
traversal of the set enumeration tree with the nodes containing just a single vertex (i.e. one
layer below the empty root; line 6). During the depth-first traversal (function DF Straversal,
Alg. 2) clusters and/or cluster collections are inserted into the queue. At the beginning, we
prune the candidate set of the current node (line 28) according to the techniques introduced
in Sect. 4.1. Thus, the search space is substantially narrowed. Furthermore, this step leads
to compact cluster collections and thus to a more accurate estimation of their redundancy. If
the current node represents a valid cluster CO , we insert it into the queue (line 31), which
is sorted according to the corresponding quality values. After this, we apply our pruning
based on cluster collections: We generate the collections (line 32 and 41) and we check their
redundancy with respect to the clusters CO or Cr respectively (line 35 and 42). If one of these
collections is redundant, we currently stop the traversal of this subtree, insert the collection
into the queue and hopefully prune the whole subtree later on. If the collections are not
redundant, we further have to descend into the subtrees and recursively invoke the traversal
function for each vertex in the pruned candidate set (line 47). Note that the candidate set is
sorted based on the indegree (indegO

new(u)) of the vertices. Thus, vertices potentially leading
to clusters with high density are processed first, increasing the probability to generate the
most interesting clusters first.

If the current depth-first traversal is finished (since either the collections are redundant or
all vertices/clusters are processed) the algorithm returns to the queue processing step (lines
8 ff., Alg. 1). At each time we select the top ranked, i.e. highest quality, object from the
queue (line 9). If it is a cluster, we check the redundancy with respect to clusters in the actual
result set Result . If it is redundant, we discard the cluster (line 13) and proceed with the
next object. If the cluster is non-redundant, we add it to the Result . If the object is a cluster
collection Coll = (O, candO , S, Qmax , Cr ), we first check if the anchor cluster Cr is already
included in the result (line 16). If so, we can safely prune the whole collection/subtree. If
Cr �∈ Result , we apply our pruning based on non-anchor clusters. Thus, the collection is
potentially rejected. If even this pruning is not successful, we further have to traverse the
set enumeration tree at the corresponding subtree (the previous stopping position; stored
within the collection) as shown in lines 22–26. We refine this subtree, i.e. we generate further
clusters and cluster collections that are inserted into the queue.

Because the queue is ranked based on the (estimated) quality values, we aim for the most
interesting parts of the set enumeration tree. This way, in later steps we can discard many
redundant cluster collections. We mainly generate clusters that are selected later on for the
result and that are non-redundant. Overall, we use the subspace property, the quasi-clique
property and the redundancy model simultaneously to achieve a speed-up of our algorithm.

5 Experiments

5.1 Experimental setup

We compare our GAMer method to CoPaM [26], the only method which also considers
subspaces and dense subgraphs. To include a further competitor we extend Cocain [45] to
handle our data. Originally, this method considers a set of graphs to find sets of vertices
forming quasi-cliques in several of these graphs. Since we use attribute data, we generate
one graph per dimension and retain only those edges of the original graph connecting vertices
with similar attribute values in this dimension; thus, our Cocain◦ method simulates subspace
clustering. Furthermore, we implement two baseline algorithms to analyze the efficiency of
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Algorithm 2: GAMer algorithm (DF S_traversal method)
Input: current vertex set O , previous candidate set candO ′
28 determine and prune candO (based on candO ′ ) // cf. Section 4.1
29 determine CO = (O, S(O)) // current cluster
30 if CO is valid twofold cluster then
31 insert CO into queue
32 determine superset collection Collsup
33 if nmax < nmin or γmax < γmin then
34 return; // no further clusters in this subtree possible

35 if Collsup is redundant to CO then
36 insert Collsup into queue
37 return; // (currently) stop DFS traversal

38 determine Cr = (O ∪ candO , S(O ∪ candO )) // look ahead
39 if Cr is valid twofold cluster then
40 insert Cr into queue
41 determine subset collection Collsub
42 if Collsub is redundant to Cr then
43 insert Collsub into queue
44 return; // (currently) stop DFS traversal

45 sort vertices v ∈ candO descendingly by indegO
new(v)

46 for v ∈ candO do
47 DF S_traversal(O ∪ {v}, candO )

48 candO = candO\{v} // consider only vertices ordered behind v

GAMer. These baseline algorithms generate the same clustering result as GAMer but do
not simultaneously use the subspace and subgraph properties for generation and pruning of
clusters. The first algorithm Seq SubGraph starts by generating all quasi-cliques (based on
[21]) and after this it checks the subspace property of these sets. The approach Seq SubSpace
starts by generating all subspace clusters (based on the Apriori principle) and afterward
checks the quasi-clique property. At the end both algorithms remove the redundant clusters.
Overall, these algorithms sequentially check the properties of twofold clusters. By default
for our approaches, CoPaM and Cocain◦, we use the parameter setting γmin = 0.5, smin =
1, nmin = 10. The redundancy parameters for GAMer are set to robj = rdim = 0.5.

For our evaluation, we use synthetic data and several publicly available real world datasets.
We provide all datasets and their descriptions as well as executables, parameter settings and
evaluation measures on our website. We use gene data and their interactions obtained from
[37,39] (3548 vertices; 8334 edges; 115 dimensions), patent information1 (492007 vertices;
528333 edges; 5 dimensions), an extract of the Arxiv database2 (13003 vertices; 120213
edges; 300 dimensions) and a co-author graph extracted from the DBLP database3 (2482
vertices; 7438 edges; 11 dimensions). Furthermore, we generate synthetic data where the
properties of the data can be specified. Our generator adapts the planted partitions model [6].
Intuitively, given the desired number of clusters and the vertices belonging to each cluster,
we randomly add edges between and within the different clusters according to a specified
density. Please note that we allow overlapping clusters, i.e. some vertices might belong to
multiple clusters. The fraction of overlap can be controlled by the user. To generate the

1 http://www.nber.org/patents/.
2 http://www.cs.cornell.edu/projects/kddcup/datasets.html.
3 http://dblp.uni-trier.de.

123

http://www.nber.org/patents/
http://www.cs.cornell.edu/projects/kddcup/datasets.html
http://dblp.uni-trier.de


A synthesis of subspace clustering and dense subgraph mining 269

feature vectors, we specify the overall dimensionality of the data and we provide the number
of relevant dimensions for each cluster. Given these information, we randomly select for
each cluster a set a relevant dimensions. Please note that each cluster is associated with an
individual set of relevant dimensions. By default we generate 20 dimensional data with 80
clusters, each with 15 vertices. 6 % of the clusters’ vertices belong to more than one cluster,
i.e. the data contains slightly overlapping clusters. The clusters’ density is 0.6 and each cluster
is associated with 5–10 relevant dimensions.

The efficiency of the approaches is measured by their runtime. For comparability all exper-
iments were conducted on Opteron 2.3GHz CPUs and Java6 64 bit. For the clustering quality
we calculate the F1 value, which is commonly used in evaluation of subspace clustering
[12,28]. It is the harmonic mean of recall (“are all objects of the hidden cluster detected?”)
and precision (“how accurately is the cluster detected?”) values, respectively. The F1 value
of the entire clustering is the average of all clusters’ F1 values.

5.2 Scalability on synthetic data

In the first experiment in Fig. 9a, we increase the database size by varying the number of
clusters and keeping the number of objects per cluster fixed. Our GAMer algorithm is several
orders of magnitude faster than the competing approaches (please note the logarithmic scale).
Especially, the Seq SubSpace baseline method increases heavily and is not applicable on
datasets with more than 1500 vertices. This approach generates a huge amount of subspace
clusters, that, however, are not connected and hence are not valid clusters. The pruning in
this approach is very limited. By incorporating the graph structure we can early reject vertex
sets, which is exploited by our GAMer.

In the next experiment in Fig. 9b, we increase the database size by varying the number
of objects per cluster and keeping the number of overall clusters fixed. This is even more
challenging because by hiding larger clusters we consequently get larger candidate sets in the
set enumeration tree and thus more nodes have to be analyzed. While all runtimes increase,
our GAMer is still the most efficient approach. We see that our baseline algorithms, CoPaM,
and Cocain◦ are already not applicable for small datasets. The various pruning strategies of
GAMer enable the efficient generation of the clustering solution.

Figure 10 analyzes the effects when the data dimensionality is increased. The slopes of
all curves are nearly identical. The high runtime of Seq SubSpace indicates that graph based
pruning is more effective than subspace pruning. However, a combination of both is even

(a) (b)

Fig. 9 Scalability of the algorithms with respect to the database size. a Varying number of clusters. b Varying
number of vertices per cluster

123



270 S. Günnemann et al.

Fig. 10 Scalability of the
algorithms with respect to the
database dimensionality

Fig. 11 Clustering quality
versus noise

better because the absolute runtime of GAMer is still the lowest, as also indicated by the
previous experiments.

5.3 Quality on synthetic data

In the following experiments, we exclude the baseline algorithms because the clustering
results are identical to GAMer. In Fig. 11, we analyze the robustness of the algorithms with
respect to noise. Besides the clustered objects, we add noise objects that do not belong to
any cluster (25 % with respect to the former objects) and noise edges that connect vertices
from different clusters. Our GAMer is nearly not influenced by noise and gets high quality.
The qualities of CoPaM and Cocain◦ decrease. By adding noise, supersets of the hidden
clusters can become dense. Because both maximize the number of vertices in a cluster, they
misleadingly detect these supersets and include noise. GAMer, however, identifies the correct
clusters since they have higher density and more relevant dimensions. Our trade-off between
the three characteristics leads to better quality. By preferring maximal clusters with respect
to their size, i.e. by setting the quality parameters to a = c = 0, b = 1, as the other models
implicitly do, GAMer can also obtain perfect qualities in settings with low noise; however,
by trading off the three characteristics (a = b = c = 1), we get high qualities for all
settings.

In Fig. 12, we increase the degree of overlap, i.e. the overlapping vertices can belong to
a maximal number of clusters that is depicted on the x axis (for the degree 1, the clusters
do not overlap). Again, the high quality of GAMer is confirmed. GAMer can handle high
overlap, because we focus on the most interesting and non-redundant clusters. CoPaM and
Cocain◦ fail for these settings; the quality drops or the algorithms are not applicable at all due
to extreme memory usage. Since CoPaM and Cocain◦ maximize the number of vertices, a
high overlap leads to vertex sets combined of different clusters that are wrongly identified as
clusters. Along with the redundancy models that do not exclude these clusters, low qualities
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Fig. 12 Clustering quality
versus overlap

Fig. 13 Clustering quality versus
varying minimal density γmin

are obtained. Our redundancy model, in contrast, prevents to output uninteresting clusters
that just represent the intersection of overlapping clusters.

Next, we analyze the effects of a varying minimal density γmin . In Fig. 13, we generate
clusters with densities between 0.5 and 0.8. At the beginning (γmin = 1), none of the
algorithms gets perfect quality. Since the hidden clusters have lower densities they cannot
be detected with γmin = 1; only parts of the clusters are identified. If the minimal density is
decreased, the quality of GAMer increases. We detect more and more hidden clusters. For a
sufficiently small γmin the quality remains constantly high. Although several further subsets
fulfill these minimal density, our redundancy model concentrates on the true ones. Cocain◦
shows a different behavior. Starting with a slight increase in clustering quality, it dramatically
drops for low density values. For a low density threshold, many clusters are regarded as dense
and these redundant clusters are not excluded from the result set. Based on similar reasons,
CoPaM also shows poor clustering quality. Due to our redundancy model, GAMer is more
robust with respect to the minimal density. Another drawback of CoPaM and Cocain◦ is
that the minimal density has to be larger than 1/3 or 1/2 respectively. GAMer, however, can
operate with arbitrary densities. Overall, all experiments indicate that GAMer achieves high
clustering qualities by confining the result to the most interesting and non-redundant clusters.

5.4 Quality on real world data

For real world data, the ground truth is usually not given; determining the clustering quality
is often not possible. For our gene data, however, we can use the Go-Miner tool [44] that
assigns genes to biological categories. These classes are used as hidden clusters as also done
in [26]. For this experiment in Fig. 14, GAMer obtains the highest quality results. The limited
models of CoPaM and Cocain◦ are not able to detect meaningful clusters. Furthermore, we
calculate for this experiment the results of approaches that consider only one paradigm, i.e.
subgraph mining (maximal quasi-cliques, Quick [21]) or subspace clustering (Proclus [3]).
The quality of these two algorithms is low, indicating that a synthesis of both paradigms – as
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Fig. 14 Clustering quality and runtime of the algorithms for gene data

(a) (b)

Fig. 15 Influence of the redundancy model on the clustering result (gene data). a Influence of parameter robj .
b Influence of parameter rdim

our model does – can effectively increase the clustering quality. Considering the runtime, we
see that our approach is more than 100 times faster than CoPaM and even better compared
to Cocain◦.

Next, we analyze how the clustering quality is influenced by excluding redundant clus-
ters for the previous dataset. In Fig. 15a we vary the redundancy parameter robj . A higher
parameter assesses less clusters as redundant; thus, increasing the number of clusters in the
result. The quality decreases accordingly because we include also low quality clusters in the
result. However, it is interesting that too small values also result in low qualities. In this case,
we exclude too many and also important clusters. In Fig. 15b, we analyze the influence of
the parameter rdim . As with robj , by increasing the parameter the overall clustering quality
decreases. However, by choosing rdim too small we get a very small result set, as many
clusters are discarded as redundant. Overall, a modest removal of redundant clusters yields
high-quality results.

For our remaining datasets (DBLP, Arxiv and the Patent data), we have no information
about the hidden clusters and thus cannot compute F1 values. Thus, we analyze in Fig. 16
different properties of the clustering results determined by GAMer, CoPaM and Cocain◦.
The first observation is that the runtimes of CoPaM and Cocain◦ are orders of magnitude
higher than the runtime of GAMer. For the Patent data CoPaM did not finish within 2 days;
even worse Cocain◦ only finished on the DBLP data. Our approach is very efficient due to
the developed pruning techniques. Considering the number of generated clusters, the huge
result size of CoPaM becomes apparent. CoPaM excludes nearly no clusters; the redundancy
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Fig. 16 Clustering properties for different real world dataset (not listed methods did not finish within 2 days)

model is too simple and the clusters highly overlap. The user cannot analyze such huge result
sets. In our approach we permit an overlap of clusters in a more meaningful manner by
determining only the most interesting and non-redundant clusters. A detailed analysis of the
Arxiv data reveals the basic problem: While in our approach just 4 vertices are included in
more than 10 clusters, in CoPaM 781 vertices are in more than 10 clusters. CoPaM generates
highly overlapping clusters; thus, generating redundant information. Our approach, however,
realizes an overlap of clusters in a more meaningful manner.

Furthermore, Fig. 16 indicates that our approach generates clusters with just slightly less
objects than CoPaM that concentrates on maximizing the number of vertices per cluster. The
difference between the average cluster sizes of CoPaM and GAMer is continuously smaller
than one standard deviation. Although GAMer implements a trade-off between different
criteria it determines clusters of comparable size and at the same time achieves considerably
higher density. The average density of the clusters detected by CoPaM is significantly smaller
than the ones of GAMer even when taking the standard deviation into account. Additionally,
for the gene data, we see that the dimensionality of GAMer’s clusters is higher, too.

In Fig. 17, we analyze the trade-off in our model by varying the quality parameters a and b.
In each case we vary just one parameter (a or b respectively) while fixing the remaining
parameters to 1. Figure 17 indicates that increasing the parameter a yields an increase of
the average density of the clustering result (solid circles, left axis). Consequently, varying
parameter b respectively, results in an increase of the average number of vertices per cluster
(non-solid circles, right axis). Our quality function enables us to control the clustering result
based on the users’ notion of interest. Our model offers a high flexibility.

5.5 Effectivity of pruning the set enumeration tree

In this section, we analyze how much the different pruning techniques contribute to the
efficiency of GAMer. For this reason, we run GAMer several times on the same dataset with
the same parameters but each time ignoring one of the pruning techniques. In Fig. 18 we
compare the runtime of the different runs. The techniques for pruning by vertex degree, upper
bound and lower bound are summarized here by the term ‘vertex-based pruning techniques’.

For this experiment, we use a synthetic dataset which consists of 996 vertices with 3542
edges, containing 80 clusters and has an overall dimensionality of 20. The cluster sizes vary
between 10 and 15 vertices, the number of relevant dimensions between 2 and 5 and the
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Fig. 17 Influence of the quality
function on the clustering result
(Arxiv data)

Fig. 18 Influence of the different pruning techniques

densities between 0.4 and 0.5. The quality parameters for all runs are set to a = c = 0 and
b = 1, thus clusters with a large number of vertices are preferred over smaller ones.

Efficiency gain of the different pruning techniques As shown in Fig. 18, using all pruning
techniques simultaneously (first bar) leads to the lowest runtime. The effect of the pruning
techniques that are based on the cluster definition is analyzed in the following: By leaving out
the pruning by subspace diameter (second bar) the runtime increases only by a small amount
(ca. 2 %). Because the vertex-based pruning techniques often exclude most of the vertices that
are also excluded by the subspace diameter pruning, we only get slightly bigger candidate
sets by skipping the subspace diameter pruning. In the next run (bar 3) we do not use the
vertex-based pruning techniques. The runtime is now two orders of magnitude higher than
the runtime for using all pruning techniques. This experiment shows that the vertex-based
pruning techniques highly contribute to the efficiency of GAMer.

Next, we analyze the effect of the pruning techniques that are based on the clustering
definition: In this setting, the pruning of subset collections (bar 4) provides a large efficiency
gain. Because of the parameters a = c = 0 and b = 1, large clusters get a higher quality than
their subsets, even if the subsets have a higher density or dimensionality. As the analyzed
technique aims at excluding redundant subsets it is especially useful in such parameter set-
tings. Contrarily, the pruning of superset collections (bar 5) only provides a small efficiency
gain here, as in our parameter setting a superset will never be redundant with respect to one
of its subsets. The last bar shows the effect of the pruning with respect to non-anchor clusters.
As shown in Fig. 18, this pruning technique also leads to a considerable efficiency gain.
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Fig. 19 Pruning using the
subspace cluster property

Efficiency gain of pruning by subspace property Last we analyze the effect of jointly using
the subspace cluster property and the quasi-clique property for pruning. In Sects. 4.1.3 and
4.1.4, we developed several pruning techniques incorporating the attribute similarity into
graph based pruning. In Fig. 19, we compare the runtime of GAMer using this specialized
pruning based on the subspace property with the runtime by neglecting this property. For the
latter case, GAMer simply applies the vertex-based pruning techniques with the traditional
indeg/exdeg definitions which consider just the graph information. Furthermore, also the
pruning by subspace diameter uses the traditional definition for the k-neighborhood which
does not take the attributes into account. The figure shows that by ignoring the attribute
values the runtime increases by an order of magnitude. Thus, the combined usage of graph
and attribute information is crucial for an efficient mining of twofold clusters.

6 Conclusion

We introduced the method GAMer for finding homogeneous groups of objects regarding
combined graph and attribute data. Our twofold clusters join the advantages of subspace
clustering and dense subgraph mining. We simultaneously account for the density, the size
and the number of relevant dimensions for each cluster to obtain the most interesting ones.
Our redundancy model confines the clustering by excluding redundant clusters that provide
no additional information. Overall, we include only the most interesting and non-redundant
clusters. Our GAMer exploits several novel pruning strategies based on the cluster defini-
tion and the redundancy model for efficiently determining this clustering result. Thorough
experiments demonstrate that GAMer constantly outperforms the competing approaches in
terms of efficiency and clustering quality. For repeatability and further research, we provide
all datasets, measures, executables, and parameter settings on our website.
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