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Abstract Learning from high-dimensional data is usually quite challenging, as captured by
the well-known phrase curse of dimensionality. Data analysis often involves measuring the
similarity between different examples. This sometimes becomes a problem, as many widely
used metrics tend to concentrate in high-dimensional feature spaces. The reduced contrast
makes it more difficult to distinguish between close and distant points, which renders many
traditional distance-based learning methods ineffective. Secondary distances based on shared
neighbor similarities have recently been proposed as one possible solution to this problem.
However, these initial metrics failed to take hubness into account. Hubness is a recently
described aspect of the dimensionality curse, and it affects all sorts of k-nearest neighbor
learning methods in severely negative ways. This paper is the first to discuss the impact of
hubs on forming the shared neighbor similarity scores. We propose a novel, hubness-aware
secondary similarity measure simhubs and an extensive experimental evaluation shows it to
be much more appropriate for high-dimensional data classification than the standard simcoss

measure. The proposed similarity changes the underlying kNN graph in such a way that
it reduces the overall frequency of label mismatches in k-neighbor sets and increases the
purity of occurrence profiles, which improves classifier performance. It is a hybrid measure,
which takes into account both the supervised and the unsupervised hubness information. The
analysis shows that both components are useful in their own ways and that the measure is
therefore properly defined. This new similarity does not increase the overall computational
cost, and the improvement is essentially ‘free’.

This is an extended version of the paper Hubness-aware Shared Neighbor Distances for High-dimensional
k-Nearest Neighbor Classification, which was presented at the Data Mining: Data Preparation and Analysis
special session of the Hybrid Artificial Intelligence conference (HAIS 2012) [1].
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1 Introduction

Machine learning in many dimensions is often rendered very difficult by an interplay of several
detrimental factors, commonly referred to as the curse of dimensionality. In high-dimensional
spaces, all data is sparse, as the requirements for proper density estimates rise exponentially
with the number of features. Empty space predominates [2] and data lies approximately on the
surface of hyper-spheres around cluster means, that is, in distribution tails. Relative contrast
between distances on sample data is known to decrease with increasing dimensionality, as the
distances concentrate [3,4]. The expectation of the distance value increases, but the variance
remains constant. It is therefore much more difficult to distinguish between close and distant
points. This has a profound impact on nearest neighbor methods, where inference is done
based on the k examples most similar (relevant) to the point of interest. The very concept of
a nearest neighbor was said to be much less meaningful in high-dimensional data [5].

Difficulty in distinguishing between relevant and irrelevant points is, however, not the only
aspect of the dimensionality curse which burdens k-nearest neighbor–based inference. The
recently described phenomenon of hubness is also considered to be highly detrimental. The
term was coined after hubs, very frequent neighbor points which dominate among all
the occurrences in the k-neighbor sets of inherently high-dimensional data [6,7]. Most other
points either never appear as neighbors or do so very rarely. They are referred to as anti-hubs.

The skewness of the k-occurrence distribution has a geometric interpretation and does
not reflect the underlying semantics of the data. This was first noticed in music retrieval
applications [8,9] and is still an unresolved issue [10–14]. Some songs were very frequently
retrieved by the recommendation systems, but were in fact irrelevant for the considered
queries. Their occurrences were simply an artifact of the employed similarity measures,
when applied to high-dimensional audio data.

There is no easy way out, as demonstrated in [15], since dimensionality reduction tech-
niques fail to eliminate the neighbor occurrence distribution skewness for any reasonable
dimensionality of the projection space. The skewness decreases only when the data are pro-
jected onto spaces below the intrinsic dimensionality of the data, where some potentially
relevant information is irretrievably lost. It is therefore necessary to work under the assump-
tion of hubness when using nearest neighbor methods for analyzing high-dimensional data.

Different metric spaces exhibit different degrees of hubness, so choosing a proper distance
measure becomes a non-trivial task. The apparent inadequacy of many common metrics
(Manhattan, Euclidean, etc.) in high-dimensional data has motivated some researchers to
start using higher-order secondary distances based on shared nearest neighbor similarity
scores. This approach has frequently been used in clustering applications [16–21]. The basic
idea is that the similarity between two points can be measured by the number of k-nearest
neighbors that they have in common. This is somewhat similar to collaborative filtering, where
the purchase set intersections are used to determine similarity between different customers.

Turning a similarity score into a distance is a trivial task. We will address the details in
Sect. 2.1. Shared neighbor distances are considered by some as a potential cure for the curse
of dimensionality [22].

Even though the shared neighbor distances have mostly been considered in the context
of clustering, we will focus on the supervised learning case and show their usefulness in
k-nearest neighbor (kNN) classification.
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Hubness exhibits a dual influence on shared neighbor distances. As the secondary met-
ric is introduced, the overall hubness in the data must also change. We will show that
even though the skewness in the k-occurrence distribution is somewhat reduced, some
non-negligible hubness still remains and using the hubness-aware classification meth-
ods yields definite improvements. More importantly, the hubness in the original metric
space has a profound impact on how the shared neighbor similarity scores are formed
in the first place. Hubs are very frequent neighbors so they become very frequently
shared neighbors as well. As we have already mentioned, hubs are usually points where
the semantics of the similarity measure is most severely compromised, so relying on
them when defining a secondary distance is not a very wise choice. This is why we
have proposed a new hubness-aware method for calculating shared neighbor similari-
ties/distances [1].

The paper is structured as follows. In Sect. 2, we outline the basic concepts in defining the
shared neighbor distances and discuss some recent findings in learning under the assumption
of hubness. We proceed by considering how the two might be successfully combined and
propose a new way to define shared neighbor similarities in Sect. 3. In Sect. 4, we test
our hypothesis on several high-dimensional synthetic and image datasets and examine the
findings.

2 Related work

2.1 Shared neighbor distances

Regardless of the skepticism expressed in [5], nearest neighbor queries have been shown
to be meaningful in high-dimensional data under some natural assumptions [23], at least
when it comes to distinguishing between different clusters of data points. If the clus-
ters are pairwise stable, that is, inter-cluster distances dominate intra-cluster distances,
the neighbors will tend to belong to the same cluster as the original point. An obvi-
ous issue with this line of reasoning is that cluster assumption violation is present
to different degrees in real-world data, so that sometimes the categories do not cor-
respond well to the aforementioned clusters. Nevertheless, this observation motivated
the researchers to consider using secondary distances based on the ranking induced by
the original similarity measure [22]. A common approach is to count the number of
shared nearest neighbors (SNN) between pairs of points for a given, fixed neighborhood
size.

Let D = (x1, y1), (x2, y2), . . . (xn, yn) be the data set, where each xi ∈ R
d . The xi

are feature vectors which reside in some high-dimensional Euclidean space, and yi ∈
c1, c2, . . . cC are the labels. Denote by Dk(xi ) the k-neighborhood of xi . A shared neighbor
similarity between two points is then usually defined as:

simcoss(xi , x j ) = |Ds(xi ) ∩ Ds(x j )|
s

(1)

where we have used s to denote the neighborhood size, since we will use these similarity
measures to perform k-nearest neighbor classification and the neighborhood sizes in these
two cases will be different. The simcoss similarity can easily be transformed into a distance
measure in one of the following ways [22]:
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dinvs(xi , x j ) = 1 − simcoss(xi , x j )

dacoss(xi , x j ) = arccos(simcoss(xi , x j ))

dlns(xi , x j ) = − ln(simcoss(xi , x j )) (2)

All three of the above given distance measures produce the same ranking, so they are essen-
tially equivalent when being used for k-nearest neighbor inference. We based all our subse-
quent experiments on dinvs(xi , x j ).

In shared neighbor distances, all neighbors are treated as being equally relevant. We
argue that this view is inherently flawed and that its deficiencies become more pronounced
when the dimensionality of the data is increased. Admittedly, there have been some previous
experiments on including weights into the SNN framework for clustering [24], but these
weights were associated with the positions in the neighbor list, not with neighbor objects
themselves. In Sect. 3, we will discuss the role of hubness in SNN measures.

2.2 Hubs: very frequent nearest neighbors

High dimensionality gives rise to hubs, influential objects which frequently occur as neighbors
to other points. Most instances, on the other hand, are very rarely included in k-neighbor
sets, thereby having little or no influence on subsequent classification. What this change in
the k-occurrence distribution entails is that potential errors, if present in the hub points, can
easily propagate and compromise many k-neighbor sets. Furthermore, hubness is a geometric
property of inherently high-dimensional data, as the points closer to the centers of hyper-
spheres where most of the data lies tend to become very similar to many data points and are
hence often included as neighbors [7]. This means that hubness of a particular point has little
to do with its semantics. Hubs are often not only neighbors to objects of their own category,
but also neighbors to many points from other categories as well. In such cases, they exhibit
a highly detrimental influence and this is why hubness of the data usually hampers k-nearest
neighbor classification.

Hubness has only recently come into focus, but some hubness-aware algorithms have
already been proposed for clustering [25], instance selection [26], outlier and anomaly detec-
tion [15,27] and classification [6,28–32], which we will discuss below.

Let us introduce some notation. Denote by Rk(xi ) the reverse neighbor set of xi , so
the number of k-occurrences is then Nk(xi ) = |Rk(xi )|. This total number of neighbor
occurrences includes both the good occurrences, where the labels of points and their neighbors
match and the bad occurrences where there is a mismatch between them. Formally, Nk(xi ) =
G Nk(xi )+ B Nk(xi ), the former being referred to as the good hubness and the latter as the bad
hubness of xi . The bad hubness itself can be viewed as a composite quantity, comprising all
the class-specific k-occurrences where label mismatch occurs. Let Nk,c(xi ) = |x ∈ Rk(xi ) :
y = c| denote such class-specific hubness. The total occurrence frequency is then simply
Nk(xi ) = ∑

c∈C Nk,c(xi ). Calculating all the Nk(xi ) equals building an occurrence model,
which can be used to somehow estimate all the implied posterior class probabilities in the
point of interest p(y = c|xi ∈ Dk(x)). This observation served as the basis for several recent
hubness-aware approaches [28–31].

2.3 Hubness-aware classification methods

The basic k-nearest neighbor method [33] is very simple, but has nevertheless been proven
to exhibit certain beneficial asymptotic properties [34–37]. A label in the point of interest
is decided upon by a majority vote of its nearest neighbors. Many extensions of the basic
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algorithm have been developed over the years, improving the original approach in various
ways. [38–45] The k-nearest neighbor classification is still widely used in many practical
applications, with a recent focus on time series analysis [46,47] and imbalanced data classi-
fication [48–53].

Hubness in high-dimensional data, nevertheless, affects kNN in some severely negative
ways [6,7,15]. This is why several hubness-aware classification algorithms have recently
been proposed. An effective vote weighting scheme was first introduced in [6], assigning to
each neighbor a weight inversely correlated with its bad hubness. More specifically, wk(xi ) =
e−hb(xi ,k), where hb(xi , k) = (B Nk(xi ) − μB Nk )/σB Nk is the standardized bad hubness. We
will refer to this approach as hubness-weighted k-nearest neighbor (hw-kNN).

Fuzzy measures based on Nk,c(xi ) have been introduced in [28], where the fuzzy k-nearest
neighbor voting framework was extended to include hubness information (h-FNN). This was
further refined in [30] by considering the self-information of each individual occurrence.
Anti-hubs were therefore treated as more informative. Intuitively, such neighbor points are
more local to the point of interest, as they are not frequent neighbors. The algorithm was
named hubness information k-nearest neighbor (HIKNN).

Along with the fuzzy approaches, a naive Bayesian model was desribed in [29], where the
algorithm naive hubness-Bayesian kNN (NHBNN) was proposed for probabilistic k-nearest
neighbor classification in high-dimensional data.

We will see in Sect. 4.3 that these hubness-aware algorithms are in fact well suited for
dealing with the secondary SNN distances.

3 Hubness-aware shared neighbor distances

Since hubness affects the distribution of neighbors, it must also affect the distribution of
neighbors shared between different points. Each xi is shared between Ns(xi ) data points and
participates in

(Ns (xi )
2

)
similarity scores. Hub points, by the virtue of being very frequent

neighbors, are expected to arise quite frequently as shared neighbors in pairwise object
comparisons. What this means, however, is that sharing a hub s-neighbor is quite common
and not very informative. This is consistent with observations in [30]. Rarely shared neighbors
(anti-hubs), on the other hand, carry information more local to the points of interest and should
be given preference when calculating similarities. Figure 1 outlines this observation.

Fig. 1 An illustrative example.
x1 and x2 share two neighbors,
Ds (x1) ∩ Ds (x2) = {xa , xb}.
The two shared neighbors are not
indicative of the same level of
similarity, as xb is a neighbor
only to x1, x2 and one other
point, while xa is a more
frequently shared neighbor
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Fig. 2 A binary example where
the shared neighbors have
significantly different occurrence
profiles. xa is equally often
present as a neighbor to objects
from both categories, while xb is
almost exclusively in s-neighbor
sets of the second class. By
favoring xb over xa in the
similarity score, the average
intra-class similarity is expected
to increase and the inter-class
similarity decreases

Each neighbor point can, depending on its hubness, contribute to many pairwise
similarities. Some of these similarities will be between the elements from the same class and
some between the elements from different classes. Therefore, we can expect some neighbors
to contribute more to the intra-class similarities and some more to the inter-class similarities,
depending on the class distribution in their occurrence profiles. Clearly, hubs which occur
almost exclusively as neighbors to points from a single category ought to be preferred to
those which occur inconsistently among various categories in the data. This is illustrated in
Fig. 2. The purity of the reverse neighbor sets can clearly be exploited for improving class
separation.

In order to refine the basic shared neighbor similarity, we will give preference to less
frequent and good neighbor points and reduce the influence of bad hubs. We propose a new
SNN similarity measure:

simhubs(xi , x j ) =
∑

x∈Ds (xi )∪Ds (x j )
In(x) · (max Hs − H(Rs(x)))

s · max Hs · max In
(3)

In(x) = log
n

(Ns(x))
; max In = log n (4)

H(Rs(x)) = H(Y |x ∈ Ds) = −
∑

c∈C

Ns,c(x)

Ns(x)
log

Ns,c(x)

Ns(x)
; max Hs = log c (5)

Though it may seem slightly complicated, simhubs is in fact very simple and intuitive.
The denominator merely serves the purpose of normalization to the [0, 1] range. Each shared
neighbor is assigned a weight which is a product of two quantities. Occurrence informa-
tiveness (In(x)) increases the voting weights of rare neighbors. The reverse neighbor set
entropy (H(Rs(x))) measures the non-homogeneity (inconsistency) in occurrences. When
subtracted from the maximum entropy (max Hs), it represents the information gain from
observing the occurrence of x , under the uniform label assumption. The labels are, of course,
not uniformly distributed, but it is convenient to have (max Hs − H(Rs(x))) ≥ 0. For the
purposes of calculating In(x) and H(Rs(x)), x is treated as its own 0th nearest neighbor, in
order to avoid zero divisions for points which have not previously occurred as neighbors on
the training data. In other words, Ns(x) := Ns(x) + 1, Ns,y(x) := Ns,y(x) + 1, where y is
the label of x. The simhubs similarity can be turned into a distance measure in the same way
as the simcoss , as previously demonstrated in Eq. 2.

What is great about this new way of defining similarity is that the extra computational
cost is negligible, since all the s-neighbor sets need to be calculated anyway. One only has
to count the occurrences, which is done in O(s · n) time. Calculating all the Ds(x) neighbor
sets accurately takes �(d · n2) time in high-dimensional data, where d is the number of
features (since usually d > s), which is the time required to compute the distance matrix
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in the original metric. An approximate algorithm exists, however, which does the same in
�(d · n1+t ), t ∈ [0, 1] [54]. It is a divide and conquer method based on recursive Lanczos
bisection. In our initial experiments, very good estimates are obtained even for t = 0 (so, in
linear time!), provided that the stop criterion for subset division is set high enough, since the
accurate s-neighborhoods are computed in the leaves of the split.

It is possible to observe the simhubs similarity in terms of its constituents, as it is jointly
based on two different quantities—neighbor informativeness and neighbor occurrence purity.
These factors can be considered separately, as given in Eqs. 6 and 7.

simhubIN
s =

∑
x∈Ds (xi )∪Ds (x j )

In(x)

s · max In
(6)

simhubPUR
s =

∑
x∈Ds (xi )∪Ds (x j )

(max Hs − H(Rs(x)))

s · max Hs
(7)

In some of the experiments, we will examine the influence of each of the two constituent
measures on the final simhubs similarity score and the overall classification performance.

4 Experiments and discussion

4.1 Overview of the data

The analysis was performed on both synthetic and real-world data. In synthetic data, we
were interested only in such datasets that would pose significant difficulties for kNN-based
methods, as this fits well with the analysis of hubness and the rest of the experimental setup.
To that purpose, we have generated 10 difficult 100-dimensional Gaussian mixtures with a
significant class overlap, each comprising 10 different categories. The overlap was achieved
by randomly placing each distribution center for each feature within a certain range of another
already generated center, constraining the distance between them to a certain multiple of their
standard deviations. This is well reflected in Table 1, where we can see that these datasets
(DS1–DS10) exhibit substantial bad hubness.

Most of the analysis was done on high-dimensional image representations, but some brief
comparisons were also performed on relatively low-dimensional data, in order to gain further
insights into the potential applicability of the similarity measures (Table 2, Sect. 4.9).

Ten image datasets were selected for the basic high-dimensional experiments, as the
image data are known to exhibit significant hubness [55]. They represent different subsets
of the public ImageNet repository (http://www.image-net.org/). We have selected the same
subsets that were used in classification benchmarks in previous papers on hubness-aware
classification [1,28,30,55], to simplify the comparisons.

The images in these ten datasets (iNet3-iNet7, iNet3Imb-iNet7Imb) were represented
as 400-dimensional quantized SIFT feature vectors [56,57] extended by 16-bin color his-
tograms. SIFT features are commonly used in object recognition systems, as they exhibit
invariance to scale, rotation and translation. Each part of the representation was normalized
separately. This particular image representation may not be the best choice for the given
datasets [55], but is nevertheless a natural choice and quite challenging for kNN classifica-
tion, which makes it a good benchmark. It can be seen in Table 1 that these image datasets
exhibit substantial bad hubness.

As implied by the names, there is a correspondence between the first (iNet3..iNet7) and
the second five datasets (iNet3Imb..iNet7Imb). The latter have been obtained from the former
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Table 1 The summary of high-hubness datasets

Dataset size d C SN5 B N5 (%) max N5 SN50 B N50 (%) max N50 RImb p(cM ) (%)

(a) ImageNet data, L1 distance

iNet3 2,731 416 3 8.38 21.0 213 3.10 25.0 665 0.40 50.2

iNet4 6,054 416 4 7.69 40.3 204 3.56 46.2 805 0.14 35.1

iNet5 6,555 416 5 14.72 44.6 469 6.10 51.1 1,420 0.20 32.4

iNet6 6,010 416 6 8.42 43.4 275 3.60 51.0 836 0.26 30.9

iNet7 10,544 416 7 7.65 46.2 268 4.21 54.3 1,149 0.09 19.2

iNet3Imb 1,681 416 3 3.48 17.2 75 1.45 21.2 271 0.72 81.5

iNet4Imb 3,927 416 4 7.39 38.2 191 3.47 43.2 750 0.39 54.1

iNet5Imb 3,619 416 5 9.35 41.4 258 4.61 47.4 995 0.48 58.7

iNet6Imb 3,442 416 6 4.96 41.3 122 2.64 48.0 534 0.46 54

iNet7Imb 2,671 416 7 6.44 42.8 158 2.72 50.4 551 0.46 52.1

AVG 4,723.4 416 7.5 5 37.64 223.3 3.55 43.8 797.6 0.36 46.8

Dataset size d C SN10 B N10 (%) max N10 SN50 B N50 (%) max N50 RImb p(cM ) (%)

(b) Gaussian mixture data, L2 distance

DS1 1,244 100 10 6.68 53.5 291 3.87 58.8 802 0.21 20.2

DS2 1,660 100 10 4.47 49.2 234 3.42 55.4 705 0.19 16.7

DS3 1,753 100 10 5.50 42.0 253 3.19 50.9 783 0.16 16.8

DS4 1,820 100 10 3.45 51.0 174 2.63 59.5 560 0.13 15.6

DS5 1,774 100 10 4.39 46.3 177 3.15 55.0 565 0.13 16.6

DS6 1,282 100 10 3.97 45.6 149 2.90 55.1 482 0.21 20.7

DS7 1,662 100 10 4.64 41.5 209 3.64 50.3 738 0.16 16.7

DS8 1,887 100 10 4.19 39.9 210 3.14 49.1 622 0.14 15.3

DS9 1,661 100 10 5.02 47.5 259 3.11 56.0 748 0.10 14.7

DS10 1,594 100 10 4.82 46.9 217 3.24 56.2 655 0.14 17.7

AVG 1,633.7 100 10 4.71 46.34 217.3 3.23 54.63 666.0 0.16 17.1

Each dataset is described both by a set of basic properties (size, number of features, number of classes)
and some hubness-related quantities for two different neighborhood sizes, namely: the skewness of the
k-occurrence distribution (SNk ), the percentage of bad k-occurrences (B Nk ), the degree of the largest hub
point (max Nk ). Also, the relative imbalance of the label distribution is given, as well as the size of the majority
class (expressed as a percentage of the total)

via random sub-sampling of the minority classes in order to increase the imbalance in the
data. The difference is easily seen in Table 1 by considering the relative imbalance factor:

RImb =
√

(
∑

c∈C (p(c) − 1/C)2)/((C − 1)/C), which is merely the normalized standard
deviation of the class probabilities from the absolutely homogenous mean value of 1/c.

We will not focus on class imbalance in this paper, as this is addressed in detail in [58].
We will, however, use one recently proposed framework for imbalanced data analysis [59] to
outline the most important differences between the analyzed metrics. This will be discussed
in Sect. 4.6.

Additionally, three partially faulty quantized Haar feature representations [60] of iNet3
(iNet3Err:100, iNet3Err:150, iNet3Err:1000) were presented in Sect. 4.7 as a pathologi-
cal special case where erroneous hub points rendered the k-nearest neighbor classification
completely ineffective. It will be shown that the secondary shared neighbor similarities are

123



Hubness-aware shared neighbor distances 97

Fig. 3 s-occurrence skewness and reverse neighbor set entropy over a range of neighborhood sizes for
iNetImb5 dataset

able to reduce the negative consequences of hubness in the data and that the proposed simhubs

measure does so more effectively than simcoss .
Table 1 shows the properties of the data when the primary metrics are used. Since the

images have been represented in a form of coupled probability distributions, Manhattan dis-
tance (L1) is used in experiments on image data, as it represents the integral of the absolute
difference between the distributions. The Euclidean distance (L2) was used when analyzing
Gaussian data, as it induces hyper-spherical neighborhoods, which are well suited for mod-
eling Gaussian clusters. In our initial experiments, the difference between the two metrics
(L1,L2) was not so big, but we have nevertheless opted for the more natural choice in both
cases.

The reason why Table 1 shows the statistics for several different neighborhood sizes (k = 5
and k = 50 for the image data and k = 10 and k = 50 for the synthetic data) is that we
will be performing 5 − N N classification of the image data and 10 − N N classification of
the synthetic data, while using the shared neighbor distances based on 50-neighbor sets. The
neighborhood size for the image data is chosen for comparison with previous work, while a
larger k is beneficial in Gaussian mixtures, as it allows for better estimates in the borderline
regions. In Sect. 4.4, we will show that the difference between the examined metrics actually
holds regardless of the particular choice of k.

An increase in neighborhood size somewhat reduces the skewness of the occurrence
distribution, since more points become hubs. Bad hubness increases, as well as the non-
homogeneity of reverse neighbors sets. This is illustrated in Fig. 3 for iNet5Imb dataset. The
increase is not always smooth as in the given figure, but the same general trend exists in all
the datasets that we have analyzed in our experiments.

The degree of major hubs is quite high for s = 50 neighborhood size which will be used
to calculate the secondary SNN distances. In some of the datasets, the major hub appears
in approximately 20 % of all neighbor lists. This shows why it might be important to take
the hubness into account when deducing the secondary distances for high-dimensional data.
Likewise, high reverse neighbor set entropies indicate that good hubs are a rarity when
using large neighborhoods, so their influence on similarity should be emphasized, whenever
possible.

Even though both simcoss and simhubs were designed primarily for high-dimensional
data, it is prudent to perform some comparisons on low-to-medium-dimensional data as well.
We have selected 10 such datasets from the UCI repository (http://archive.ics.uci.edu/ml/).
The summary of low dimensional datasets is given in Table 2. We see that the skewness of the
occurrence distribution is even negative in some datasets, so there is no hubness to speak of.
The comparisons on this data are given in Sect. 4.9.
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Table 2 The summary of low-to-medium-dimensional datasets from the UCI repository

Dataset size d C SN5 B N5 (%) max N5 SN50 B N50 (%) max N50 RImb p(cM )

Diabetes 768 8 2 0.34 33.7 13 0.03 36.0 112 0.30 0.65

wpbc 198 33 2 −0.09 33.7 10 −0.80 35.4 75 0.52 0.76

wdbc 569 30 2 0.09 8.9 13 −0.86 11.6 82 0.25 0.63

Yeast 1,484 8 10 0.40 51.3 16 0.28 56.4 132 0.37 0.31

Wine 178 13 3 0.04 31.9 10 −0.99 38.3 71 0.11 0.40

Page-blocks 5,473 10 5 0.25 5.2 14 −0.12 7.8 108 0.87 0.90

Segment 2,310 19 7 0.32 6.8 14 −0.06 23.4 96 0 0.14

Ecoli 336 7 8 0.43 20.4 15 0.10 29.3 118 0.41 0.43

mfeat-fourier 2,000 76 10 0.87 18.5 24 0.43 27.5 145 0 0.1

Ozone 2,534 72 2 0.76 9.6 25 0.70 10.2 157 0.87 0.93

AVG 1,585 27.6 5.1 0.34 25.0 15.4 −0.13 27.6 109.6 0.37 0.53

The same properties are shown as in Table 1. This data does not exhibit hubness and is briefly discussed in
Sect. 4.9

4.2 Hubness in the shared neighbor metric space

Switching to secondary distances induces a change in the hubness of the data. As the simi-
larities are recalculated, so are the k-nearest neighbor sets and this affects the structure of the
kNN graph. The change can be either beneficial or detrimental to the following classification
process. The impact on the kNN classification can already be estimated by observing the
change in the total number of bad occurrences on the data. This is summarized in Fig. 4, for
both the synthetic and the ImageNet data.

As mentioned in Sect. 2.1, we are using the dinvs(xi , x j ) method of converting a similarity
into a distance measure, which essentially means that we are subtracting the normalized sim-
ilarity score from 1 to obtain the normalized distance score. Therefore, the primary distances
in Fig. 4 are compared to the dinvs(xi , x j ) distances based on the simcoss and simhubs

similarity scores. To simplify the notation in Figures and Tables, we will be using the simcoss

and simhubs interchangeably throughout the following sections to denote either similarity
or the implied dissimilarity, depending on the context.

The comparison between the bad occurrence percentages in Fig. 4 reveals that both sec-
ondary distances achieve a significant reduction in the overall bad hubness of the data.
The proposed hubness-aware simhub50 similarity score clearly outperforms the standard
simcos50 similarity, as it produces fewer bad occurrences on every single analyzed dataset.
The reduction in both similarity measures is more pronounced in the synthetic data, both for
k = 5 and k = 10 (though only the latter is shown in Fig. 4). As mentioned before, two
different neighborhood sizes will be used for classifying the image data and the Gaussian
mixtures, so the analysis here is also aligned with the following classification experiments
in Sect. 4.3.

Both similarity measures significantly reduce the skewness in k-occurrences on the ana-
lyzed data, which is shown in Fig. 5. The reduction rates are similar, though the simcos50
induces somewhat less hubness in the secondary metric space. This is an important property
of both shared neighbor similarity scores. Reducing the hubness in the data partly resolves
the implications of the curse of dimensionality in k-nearest neighbor inference. This result
reaffirms the previous claims regarding the usefulness of shared neighbor distances [22].
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Fig. 4 Bad occurrence percentages in each of the examined metrics. The standard shared neighbor similarity
measure simcos manages to reduce the overall bad hubness in the data, but the proposed hubness-aware
simhub similarity reduces the frequency of bad occurrences even more, on all of the analyzed datasets

Nevertheless, it should be noted that the remaining occurrence skewness is non-negligible.
On synthetic data, it amounts to 1.62 and 1.75 on average for simcos50 and simhub50, respec-
tively. This remaining hubness implies that even though the shared neighbor similarities are
doubtlessly helpful in redefining the metric space, the subsequent classification should prob-
ably be performed in a hubness-aware way as well. In other words, these similarity scores
reduce but do not entirely eliminate the consequences of the dimensionality curse.

Figures 4 and 5 have shown us how simcos50 and simhub50 change the overall nature
of hubness in the data. However, the average occurrence skewness and the average bad
occurrence percentage cannot tell us everything about the change in the kNN graph structure.
What needs to be seen is if the good/bad hub points are invariant to this particular change of
metric. Figure 6 gives the pointwise Pearson correlations in the total occurrence frequencies
(Nk(x)) and bad occurrence frequencies (B Nk(x)) between the kNN graphs in the primary
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Fig. 5 Overall hubness (k-occurrence skewness) in each of the examined metrics. Both secondary similarity
measures significantly reduce the hubness of the data, which should be beneficial for the ensuing classification

and secondary metric spaces, on synthetic data. Similar trends are present in the ImageNet
data as well.

The two comparisons in Fig. 6 reveal a major difference between the standard simcos50
and the proposed simhub50 similarity measure. Namely, there exists low-to-moderate pos-
itive correlation between hubs and bad hubs in the primary metric space and the metric
space induced by simcos50. Some primary hubs remain secondary hubs and even more
importantly—some primary bad hubs remain secondary bad hubs. On the other hand,
simhub50 changes the kNN graph structure more drastically, as there is nearly no correlation
in bad hubness between the two metric spaces. The correlation in Nk(x) is even slightly
negative both in Gaussian mixtures and in ImageNet data. This may be a part of the rea-
son why simhub50 succeeds in reducing the overall bad occurrence percentage much more
effectively than simcos50—as it is able to reconfigure the kNN graph enough to rectify most
of the semantic similarity breaches.
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Fig. 6 The Pearson correlation in point hubness (Nk (x)) and point bad hubness (B Nk (x)) between the
primary metric space and the secondary metric spaces induced by simcos50 and the proposed simhub50
shared neighbor similarity

An illustrative example is given in Fig. 7, showing how the neighbor occurrence profile
of a particular image changes when the secondary similarities are introduced. The number of
the reverse 5-nearest neighbors of X14 in each category is written above the arrow connecting
it to the image. This example is taken from the iNet3 dataset, the simplest among the exam-
ined ImageNet subsets. It consists of three different categories: sea moss, fire and industrial
plant. Not surprisingly, most misclassifications occur between the fire and sea moss image
categories. Many images of fire were taken in the dark, and most sea moss images taken at
considerable depth also have a dark background. Some sea mosses are yellow or reddish in
color. Also, it is clear from the selected photograph in Fig. 7 how sometimes the shape of the
flames could be confused with leaf-like organic objects.
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Fig. 7 The change in the neighbor occurrence profile of point X14 in iNet3 dataset, as the secondary similarities
are introduced. The iNet3 data contain three image categories: sea moss, fire and industrial plant. In the primary
metric space, image X14 is above average in terms of its occurrence frequency. However, 90 % (18/20) of its
occurrences are bad, it acts as a neighbor to points in other categories. We see how the secondary similarity
scores gradually resolve this issue

The example in Fig. 7 nicely illustrates both properties of the secondary similarity mea-
sures that were discussed in this Section. Due to a reduction in the overall hubness of the
iNet3 data, a hub point X14 is reduced to being slightly above average in number of occur-
rences under simcos50 and below average under the proposed simhub50 similarity score.
Both secondary measures significantly reduce its number of bad occurrences B N5(X14), but
simhub50 performs better than simcos50 by allowing only one remaining X14 bad occurrence
into the kNN graph.

4.3 Classification with the secondary metrics

The analysis outlined in Sect. 4.2 suggests that the hubness-aware definition of shared neigh-
bor similarities might prove more useful for the kNN classification when compared to the stan-
dard approach. In order to test this hypothesis, we have compared simhub50 with simcos50
in the context of k-nearest neighbor classification both on synthetic and image data.

The choice of parameters was the same as before: The shared neighbor similarities were
derived from the 50-neighbor sets and the values of k = 5 and k = 10 were used for
ImageNet data and the Gaussian mixtures, respectively. Other parametrizations are certainly
possible and Sect. 4.4 deals precisely with the impact of different neighborhood sizes on the
classification process.

As some hubness remains even in the shared neighbor metric space, the similarity measures
were compared both in the basic kNN and across a range of hubness-aware k-nearest neighbor
classification methods (hw-kNN [6], h-FNN [28], NHBNN [29], HIKNN [31]).

All experiments were run as 10-times 10-fold cross-validation, and the corrected
re-sampled t-test was used to check for statistical significance. The features in ImageNet data
were normalized prior to classification. No normalization was performed on the Gaussian
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Table 3 Algorithm performance when using the primary metrics

Dataset kNN hw-kNN h-FNN NHBNN HIKNN

(a) ImageNet data, L1 distance, k = 5

iNet3 72.0 ± 2.7 80.8 ± 2.3◦ 82.4 ± 2.2◦ 81.8 ± 2.3◦ 82.2 ± 2.0◦
iNet4 56.2 ± 2.0 63.3 ± 1.9◦ 65.2 ± 1.7◦ 64.6 ± 1.9◦ 64.7 ± 1.9◦
iNet5 46.6 ± 2.0 56.3 ± 1.7◦ 61.9 ± 1.7◦ 61.8 ± 1.9◦ 60.8 ± 1.9◦
iNet6 60.1 ± 2.2 68.1 ± 1.6◦ 69.3 ± 1.7◦ 69.4 ± 1.7◦ 69.9 ± 1.9◦
iNet7 43.4 ± 1.7 55.1 ± 1.5◦ 59.2 ± 1.5◦ 58.2 ± 1.5◦ 56.9 ± 1.6◦
iNet3Imb 72.8 ± 2.4 87.7 ± 1.7◦ 87.6 ± 1.6◦ 84.9 ± 1.9◦ 88.3 ± 1.6◦
iNet4Imb 63.0 ± 1.8 68.8 ± 1.5◦ 69.9 ± 1.4◦ 69.4 ± 1.5◦ 70.3 ± 1.4◦
iNet5Imb 59.7 ± 1.5 63.9 ± 1.8◦ 64.7 ± 1.8◦ 63.9 ± 1.8◦ 65.5 ± 1.8◦
iNet6Imb 62.4 ± 1.7 69.0 ± 1.7◦ 70.9 ± 1.8◦ 68.4 ± 1.8◦ 70.2 ± 1.8◦
iNet7Imb 55.8 ± 2.2 63.4 ± 2.0◦ 64.1 ± 2.3◦ 63.1 ± 2.1◦ 64.3 ± 2.1◦
AVG 59.20 67.64 69.52 68.55 69.31

(b) Gaussian mixture data, L2 distance, k = 10

DS1 43.8 ± 3.1 64.4 ± 5.3◦ 72.6 ± 2.8◦ 80.7 ± 2.4◦ 65.8 ± 3.0◦
DS2 48.4 ± 2.8 73.6 ± 6.9◦ 79.3 ± 2.2◦ 83.9 ± 2.2◦ 73.1 ± 2.5◦
DS3 67.3 ± 2.3 85.3 ± 2.6◦ 86.8 ± 1.7◦ 90.0 ± 1.4◦ 86.7 ± 1.9◦
DS4 52.2 ± 2.6 72.8 ± 2.3◦ 78.4 ± 2.2◦ 81.9 ± 2.0◦ 72.2 ± 2.3◦
DS5 59.2 ± 2.7 80.2 ± 3.4◦ 84.6 ± 1.8◦ 87.2 ± 1.5◦ 81.1 ± 2.1◦
DS6 58.6 ± 3.3 80.0 ± 3.3◦ 81.7 ± 2.5◦ 86.6 ± 2.2◦ 79.4 ± 2.5◦
DS7 65.0 ± 2.4 84.6 ± 2.4◦ 85.4 ± 1.9◦ 90.1 ± 1.5◦ 84.5 ± 2.0◦
DS8 71.0 ± 2.3 82.7 ± 2.5◦ 85.9 ± 1.9◦ 88.4 ± 1.8◦ 83.9 ± 2.3◦
DS9 57.9 ± 2.7 76.3 ± 3.3◦ 82.3 ± 2.0◦ 87.5 ± 1.7◦ 77.7 ± 2.4◦
DS10 57.5 ± 2.9 78.1 ± 3.3◦ 81.1 ± 2.3◦ 85.5 ± 1.9◦ 77.7 ± 2.2◦
AVG 58.09 77.80 81.81 86.18 78.21

Classification accuracy is given for kNN, hubness-weighted kNN (hw-kNN), hubness-based fuzzy nearest
neighbor (h-FNN), naive hubness-Bayesian kNN (NHBNN) and hubness information k-nearest neighbor
(HIKNN). The symbols •/◦ denote statistically significant worse/better performance (p < 0.05) compared to
kNN. The best result in each line is in bold

mixtures, as it was noticed that it actually harms the classification performance. For example,
the average kNN accuracy drops from 59.2 to 41.78 % when the Euclidean distance is applied
to the normalized feature vectors.

The classification accuracy under the primary metrics (L1,L2) is given in Table 3. These
results were already discussed from the perspective of classification in presence of class
imbalance [58], so we will merely use them here as a baseline for comparisons with the
classifier performance on the secondary metrics. Both the synthetic and the image data
exhibit high hubness, so it is no surprise that the hubness-aware classification methods clearly
outperform the basic kNN. In ImageNet data, all hubness-aware algorithms perform similarly,
but NHBNN achieves the best result in the synthetic experiments.

Classification performance on the image datasets when using the secondary shared neigh-
bor similarities is given in Table 4. The use of simcos50 increases the average kNN accuracy
by about 5 % when compared to the L1 distance case. However, the proposed simhub50
similarity performs even better and further improves the observed accuracy by another 5 %.
This is consistent with the observed difference in induced bad occurrence percentages which
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Table 4 Experiments with simhub50 and simcos50 on ImageNet data

Dataset kNN hw-kNN h-FNN NHBNN HIKNN

(a) Distance: simcos50

iNet3 76.9 ± 1.8 81.2 ± 1.8 83.6 ± 1.6 83.1 ± 1.4 83.6 ± 1.5

iNet4 59.2 ± 1.4 63.4 ± 1.4 65.6 ± 1.4 65.1 ± 1.3 65.5 ± 1.3

iNet5 56.1 ± 1.4 61.8 ± 1.4 63.9 ± 1.3 63.0 ± 1.2 64.3 ± 1.3

iNet6 61.2 ± 1.3 68.1 ± 1.3 70.0 ± 1.3 69.4 ± 1.2 70.2 ± 1.3

iNet7 47.6 ± 1.0 56.6 ± 1.1 60.1 ± 1.1 59.4 ± 1.0 59.9 ± 0.9

iNet3Imb 86.5 ± 1.8 89.2 ± 1.7 89.8 ± 1.7 86.7 ± 1.8 89.8 ± 1.6

iNet4Imb 67.8 ± 1.6 70.3 ± 1.5 70.8 ± 1.7 68.3 ± 1.6 71.2 ± 1.6

iNet5Imb 64.8 ± 1.7 67.4 ± 1.5 68.6 ± 1.6 63.3 ± 1.7 69.0 ± 1.5

iNet6Imb 62.3 ± 1.6 69.8 ± 1.5 71.7 ± 1.8 68.9 ± 1.6 71.9 ± 1.5

iNet7Imb 56.7 ± 1.9 62.7 ± 2.0 64.8 ± 1.8 61.9 ± 1.9 65.0 ± 2.2

AVG 63.91 69.05 70.89 68.91 71.04

(b) Distance: simhub50

iNet3 83.3 ± 1.7◦ 84.7 ± 1.7◦ 84.8 ± 1.6 84.7 ± 1.4 84.8 ± 1.5

iNet4 62.2 ± 1.5◦ 64.0 ± 4.4 66.0 ± 1.4 65.9 ± 1.3 65.7 ± 1.4

iNet5 63.0 ± 1.2◦ 66.4 ± 1.3◦ 67.5 ± 1.3◦ 66.7 ± 1.3◦ 67.6 ± 1.3◦
iNet6 66.6 ± 1.5◦ 69.7 ± 1.3 70.5 ± 1.3 70.4 ± 1.4 70.5 ± 1.3

iNet7 56.6 ± 1.1◦ 60.9 ± 4.3 62.9 ± 1.1◦ 62.5 ± 1.0◦ 63.0 ± 1.1◦
iNet3Imb 88.9 ± 1.6◦ 89.8 ± 1.6 90.1 ± 1.7 88.1 ± 1.8 89.9 ± 1.5

iNet4Imb 69.7 ± 1.7◦ 71.2 ± 1.7 71.5 ± 1.6 69.7 ± 1.6 71.6 ± 1.7

iNet5Imb 67.3 ± 1.7◦ 69.7 ± 1.6◦ 70.4 ± 1.5 66.4 ± 1.7◦ 70.5 ± 1.6

iNet6Imb 68.0 ± 1.7◦ 71.9 ± 1.7 72.8 ± 1.8 70.6 ± 1.7 73.0 ± 1.8

iNet7Imb 62.5 ± 2.0◦ 65.1 ± 1.9◦ 65.8 ± 1.8 63.9 ± 2.1 65.8 ± 1.9

AVG 68.81 71.34 72.23 70.89 72.24

Classification accuracy is given for kNN, hw-kNN, h-FNN, NHBNN and HIKNN. All displayed experiments
were performed for k = 5. The comparisons are done pairwise between the simhub50 and simcos50 for each
classifier, so that the higher value is in bold and •/◦ denotes statistically significant worse/better performance
of simhub50 compared to simcos50 (p < 0.05)

was shown in Fig. 4. Both secondary measures improve not only the basic kNN method, but
all the examined hubness-aware approaches as well. The hubness-aware simhub50 is clearly
to be preferred, since it leads to equal or higher accuracies for all the algorithms on all the
datasets.

In both secondary metric spaces, the hubness-aware methods still perform favorably when
compared to kNN. On the other hand, when the kNN is coupled with simhub50, it performs
better than some of the hubness-aware approaches in the primary metric space. Neverthe-
less, the best results are obtained by combining the hubness-aware metric learning with the
hubness-aware classification (Fig. 8).

The results on the synthetic data (Table 5) are even more convincing. The standard
simcos50 raises the average kNN classification accuracy from 59.2 to 76.25 %. Using the
simhub50 similarity gives 86.3 % instead, which is a substantial further increase. As in the
ImageNet data, the hubness-aware methods outperform the basic kNN in both secondary
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Fig. 8 The average accuracy for
each algorithm and similarity
measure, when taken over all the
analyzed datasets (both ImageNet
and the Gaussian mixtures). The
increase in performance when
using the shared neighbor
similarities is most pronounced in
k N N , which was to be expected,
as the hubness-aware methods are
less affected by the
dimensionality curse and the
hubness phenomenon. The
proposed simhub50 similarity
measure leads to better accuracy
in each examined algorithm

Table 5 Experiments with simhub50 and simcos50 on Gaussian mixture data

Dataset kNN hw-kNN h-FNN NHBNN HIKNN

(a) Distance: simcos50

DS1 64.7 ± 3.1 76.0 ± 3.4 73.7 ± 2.7 76.2 ± 2.4 73.9 ± 2.6

DS2 69.6 ± 2.6 82.7 ± 2.6 79.7 ± 2.2 80.5 ± 2.5 79.4 ± 2.2

DS3 81.4 ± 2.1 88.5 ± 1.8 89.1 ± 1.7 88.4 ± 1.8 88.7 ± 1.6

DS4 72.5 ± 2.3 76.8 ± 2.4 77.9 ± 2.3 79.1 ± 2.1 78.3 ± 2.1

DS5 77.3 ± 2.2 85.0 ± 1.9 83.4 ± 2.0 83.6 ± 2.1 83.2 ± 2.0

DS6 76.5 ± 2.6 83.7 ± 2.3 82.2 ± 2.3 83.2 ± 2.4 82.6 ± 2.4

DS7 81.4 ± 2.2 88.1 ± 2.1 86.2 ± 1.9 87.1 ± 2.0 86.4 ± 1.9

DS8 82.6 ± 1.9 87.7 ± 1.7 86.9 ± 1.7 86.7 ± 1.7 86.7 ± 1.7

DS9 81.1 ± 2.3 85.7 ± 1.9 85.9 ± 2.0 86.5 ± 2.0 86.2 ± 2.1

DS10 78.1 ± 2.2 84.3 ± 2.0 86.2 ± 1.9 84.2 ± 1.8 83.6 ± 1.8

AVG 76.25 83.85 83.12 83.55 82.90

(b) Distance: simhub50

DS1 82.8 ± 2.4◦ 83.7 ± 2.5◦ 83.6 ± 2.4◦ 85.1 ± 2.2◦ 83.6 ± 2.4◦
DS2 84.5 ± 1.7◦ 86.5 ± 1.6◦ 86.8 ± 1.8◦ 87.9 ± 1.6◦ 85.8 ± 1.7◦
DS3 90.0 ± 1.6◦ 90.4 ± 1.6 91.3 ± 1.5 92.9 ± 1.3◦ 90.3 ± 1.5

DS4 82.5 ± 2.3◦ 84.9 ± 1.7◦ 84.5 ± 1.8◦ 85.2 ± 1.7◦ 83.8 ± 1.9◦
DS5 85.8 ± 1.9◦ 87.3 ± 1.9 87.9 ± 1.7◦ 88.8 ± 1.6◦ 86.8 ± 1.9◦
DS6 88.4 ± 1.8◦ 88.5 ± 1.9◦ 89.1 ± 1.8◦ 91.4 ± 1.6◦ 88.8 ± 1.8◦
DS7 88.1 ± 1.8◦ 89.8 ± 1.6 90.2 ± 1.6◦ 92.1 ± 1.3◦ 88.9 ± 1.8

DS8 88.3 ± 1.7◦ 88.7 ± 1.6 89.5 ± 1.6◦ 90.5 ± 1.5◦ 88.6 ± 1.7◦
DS9 85.8 ± 1.9◦ 88.4 ± 1.7◦ 88.6 ± 1.7◦ 90.3 ± 1.5◦ 87.7 ± 1.7

DS10 86.8 ± 1.6◦ 89.1 ± 1.4◦ 89.6 ± 1.5◦ 90.9 ± 1.4◦ 88.3 ± 1.6◦
AVG 86.30 87.73 88.11 89.51 87.26

Classification accuracy is given for kNN, hw-kNN, h-FNN, NHBNN and HIKNN. All displayed experiments
were performed for k = 10. The comparisons are done pairwise between the simhub50 and simcos50 for each
classifier, so that the higher value is in bold and •/◦ denotes statistically significant worse/better performance
of simhub50 compared to simcos50 (p < 0.05)
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Fig. 9 kNN accuracy over a range of k-neighbor set sizes. The hubness-aware simhub50 similarity leads to
better results in all cases

metric spaces and simhub50 outperforms simcos50 on every algorithm and for every dataset.
The major difference is that here we see that using the simcos50 similarity actually reduced
the accuracy of NHBNN, which was the single best approach in the primary metric space.
A decrease was observed on each examined synthetic dataset. Furthermore, the best obtained
average result when using the simcos50 measure equals to 83.85 % (by hw-kNN, Table 5),
which is still less than the best result obtained in the primary L2 metric space (86.18 %, shown
in Table 3). This shows that the use of simcos50 is not always beneficial to hubness-aware
kNN classification.

4.4 The influence of neighborhood size

All the previously discussed experiments depended on two neighborhood size parameters
(k,s). The choice of s affects the overall quality of the induced secondary kNN graph, and the
choice of k affects the algorithm performance in the secondary metric space. This is why it
is very important to test the shared neighbor similarities over a range of different parameter
values, in order to determine whether the previously discussed results are relevant and not
merely an artifact of a particular (k,s) choice. Figures 9 and 10 show that the kNN and h-FNN
classification performance on DS1 and DS2 is not greatly affected by a change in k. The
same holds on other datasets as well.

Figure 10 shows a peculiar trend, especially when compared to Fig. 9. The secondary
simcos50 similarity reduces the overall bad hubness in the data, which improves the classi-
fication accuracy of kNN. On the other hand, there is a very small improvement in h-FNN
and the other hubness-aware methods for k = 10 and it seems that even this is lost as the
k is further increased. As all algorithms are operating in the same metric space, we would
expect the decrease in bad hubness to affect them in similar ways and yet this is not the case
when using simcos50. This result suggests that there has to be another, more subtle difference
between simcos50 and simhub50.

It turns out that the kNN graphs induced by simhub50 have a significantly lower reverse
neighbor set entropy, as shown in Fig. 11. The reverse neighbor set entropy is defined as
H(Rk(x)) = ∑

c∈C
Nk,c(x)

Nk (x)
· log Nk (x)

Nk,c(x)
. Anti-hubs with no previous occurrences are assigned
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Fig. 10 h-FNN accuracy over a range of k-neighbor set sizes

Fig. 11 The normalized reverse
neighbor set entropies over a
range of neighborhood sizes (k)
for L2, simcos50 and simhub50,
averaged over all the synthetic
datasets (DS1–DS10). The
hubness-aware simhub50
increases the purity of reverse
neighbor sets, while simcos50
decreases it

a 0 reverse neighbor set entropy by default. The observed difference between the entropies
induced by simcos50 and simhub50 increases with k. In other words, simhub50 increases the
average purity of neighbor occurrence profiles, which increases the quality and the reliability
of occurrence models inferred by the hubness-aware classification methods. This is precisely
the reason why the simhub50 measure turns out to be more useful than simcos50 when used
in conjunction with the hubness-aware classifiers. Even though it reduces the overall bad
occurrence frequency, simcos50 reduces the purity of the secondary neighbor occurrence
profiles, especially when considering larger neighborhoods. These two factors cancel each
other out, so in the end no significant change in the hubness-aware classification performance
remains.

The other neighborhood parameter, s, which is used to determine the size of the neighbor
set from which the shared neighbor counts will be taken, is directly involved in the quality of
the resulting secondary metric spaces. The use of relatively large s values was advocated for
simcoss [22], as it was argued that it leads to a better similarity score. The proper s-size was
said to be of the same order as the cluster size. In our synthetic Gaussian mixtures, that would
amount to anywhere between 50 and 200, depending on the dataset. Indeed, in DS1 and DS2,
the optimum for simcoss in terms of bad occurrence frequencies is reached around s = 150,
as shown in Fig. 12. The hubness-aware simhubss seems to behave differently, as it reaches its
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Fig. 12 Bad occurrence frequencies for k = 10 in the secondary metric space as the s parameter is varied in
simcoss and simhubs similarity measures

Fig. 13 Normalized reverse neighbor set entropy for k = 10 in the secondary metric space as the s parameter
is varied in simcoss and simhubs similarity measures

optimum for s values between 50 and 100 in these two datasets. After reaching the optimum,
the performance of simhubs slowly deteriorates if s is further increased. Nevertheless, its bad
hubness optimum seems to be well below the simcoss optimum. Also, for every s ∈ [10, 200],
B N simhubs

10 < B N simcoss
10 in all the examined cases. It is actually beneficial to reach the

optimum for lower s values, if possible, since it entails less computations and a shorter
execution time.

The trends involving the reverse neighbor set entropy are somewhat different. Unlike
bad hubness, H(R10(x)) monotonously decreases both for simcoss and simhubs . This is
shown in Fig. 13, for DS1 and DS2. The difference between the two measures seems to be
constant, regardless of the choice of s-value. This reaffirms the previously stated observation
that simhubs seems to generate metric spaces where the hubness-aware occurrence models
yield greater improvements. Very small s-neighborhoods are not well suited for this task, as
the improvement in H(R10(x)) over L2 is achieved by simhubs only for s ≥ 50. On the

123



Hubness-aware shared neighbor distances 109

Fig. 14 The induced bad occurrence frequencies in two ImageNet datasets, given over a range of neighborhood
sizes for simcos50, simhub50, simhubIN

50 and simhubPUR
50

other hand, simcoss requires at least s = 150 to produce equally pure neighbor occurrence
profiles as the primary metric.

We can conclude that the proposed simhubs similarity measure outperforms simcoss not
only for s = 50 as confirmed above, but also over the entire range of different s values.
Additionally, simhubs seems to reach its optimum sooner and it seems to be somewhere in
the range s ∈ [50, 100] on the synthetic datasets that we have examined.

4.5 Individual contributions of the two hubness-aware weighting terms

The hubness-aware simhubs similarity measure is based on the occurrence weighting which
incorporates both the unsupervised hubness-aware component (simhubIN

s ) and the super-
vised occurrence profile homogeneity term (simhubPUR

s ). Here, we will analyze how each
of these individual weights affects the properties of the final simhubs similarity score.

Since bad hubness has been a focal point of the previous discussion, it is important to
see how each of these weighting terms helps in reducing the overall bad hubness in the
data. Figure 14 shows the reduction rates on two representative ImageNet datasets, iNet5Imb
and iNet6Imb. Naturally, as simhubIN

s is an unsupervised weighting term and simhubPUR
s a

supervised one, simhubPUR
s induces less bad hubness in the secondary metric space. Nev-

ertheless, as Fig. 14 suggests, the unsupervised term also slightly decreases the overall bad
hubness. More importantly, it contributes to the overall bad hubness reduction in the final
simhubs measure, as we see that the simhubs similarity induces less bad hubness than
simhubPUR

s on these image datasets.
Figure 14 shows that both hubness-aware terms are relevant in reducing the overall bad

hubness of the data, but it also wrongly suggests that simhubIN
s a minor role in the final

similarity measure. Even though the bad hubness is a good indicator of the difficulty of the
data, it needs not be very strongly correlated with the actual kNN classification performance
for k > 1. Indeed, as shown in Fig. 15, simhubIN

50 is the single best similarity measure on
the iNet5Imb dataset when k > 3, in terms of both the accuracy and the macro-averaged
F1 score. The difference in F M

1 is more pronounced than in the overall accuracy, which
implies that simhubIN

50 better improves the minority class recall under the class imbalance
in the iNet5Imb data. This makes sense, as simhubIN

50 gives preference to those neighbors
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Fig. 15 The accuracy and the macro-averaged F1 score on INet5Imb for kNN when using some of the different
secondary similarities: simcos50, simhub50, simhubIN

50 and simhubPUR
50

Fig. 16 The class-specific recall given for simcos50, simhubIN
50 and simhubPUR

50 on the iNet5Imb dataset

for k = 5. The unsupervised hubness-aware term simhubIN
50 outperforms the supervised simhubPUR

50 on all

the minority classes in the data. The recall of simhubPUR
50 is higher only for the majority class

which are judged to be more local to the points of interest. The observation is confirmed in
Fig. 16, where the recall for each class in the iNet5Imb dataset is shown. Similar trends can
also be seen in the other examined imbalanced ImageNet datasets. On the other hand, both
weighting terms perform more or less equally on the examined Gaussian mixtures, which is
not surprising, as this data is not so highly imbalanced.

Whether it turns out that the stated conclusions hold in general or not, it is already clear
that simhubIN

s and simhubPUR
s affect the final simhubs similarity measure in different ways.

Therefore, it makes sense to consider a parametrized extension of the simhubs weighting by
introducing regulating exponents to the individual hubness-aware terms.

simhubα,β
s (xi , x j ) =

∑
x∈Ds (xi )∪Ds (x j )

In(x)α · (max Hs − H(Rs(x)))β

s · max Hs
β · max In

α
(8)
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Fig. 17 Distribution of point types on synthetic data under several employed metrics. The hubness-aware
secondary similarity measures significantly increase the proportion of safe points which leads to an increase
in kNN classification performance

However, it remains rather unclear how one should go about determining the optimal (α, β)

combination for a given dataset without over-fitting on the training split. The parameter values
could also be derived from the misclassification cost matrix in unbalanced classification
scenarios. A thorough analysis of this idea is beyond the scope of this paper, but it is something
that will definitely be carefully investigated in the future work.

4.6 Handling of the difficult points

Some points are more difficult to properly classify than others and each individual dataset
is composed of a variety of different point types with respect to the difficulty they pose
for certain classification algorithms. A point characterization scheme based on the nearest
neighbor interpretation of classification difficulty has recently been proposed for determining
types of minority class points in imbalanced data [59]. As the method is limited to imbalanced
data, it can be used to characterize points in any class and on any dataset. It is the most natural
approach to adopt in our analysis, as the point difficulty is expressed in terms of the number
of label mismatches among its 5-NN set. Points with at most one mismatch are termed
safe, points with 2-3 mismatches are referred to as being borderline examples, points with 4
mismatches are considered rare among their class and points with all neighbors from different
classes are said to be outliers.

As the SNN similarity measures induce a change in the kNN structure of the data, we can
expect that a change in metric might lead to a change in the overall point type distribution.
Reducing the overall difficulty of points can be directly correlated with the improvement in
the kNN classification performance. This is precisely what happens when the SNN measures
are used, as shown in Fig. 17 for the synthetic datasets. Both the standard simcos50 and
the proposed simhub50, simhubIN

50 and simhubPUR
50 significantly increase the number of

safe points when compared to the primary L2 metric. The hubness-aware shared neighbor
similarities improve the point difficulty distribution more than simcos50, which explains the
classification accuracy increase discussed in Sect. 4.3.

The two hubness-aware weighting terms lead to an approximately equal classification
accuracy on the examined Gaussian mixtures, so it is somewhat surprising that they induce
different distributions of point difficulty. The purity term, simhubPUR

50 , is better at increas-
ing the number of safe points than the occurrence self-information term, simhubIN

50 . This is
compensated by the fact that the difference in the number of borderline points is in favor of
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Fig. 18 The percentage of safe points on each of the examined Gaussian mixtures. The proposed simhub50
measure induces a larger proportion of safe points in each dataset, when compared to the standard simcos50

simhubIN
50 by a slightly larger margin. As borderline points are correctly classified approxi-

mately 50 % of the time, the two distributions exhibit similar overall difficulties for the kNN
classification methods.

The difference between the examined similarities/metrics is present in each examined
dataset. The proportion of safe points is shown in Fig. 18 for each of the Gaussian mixtures.
ImageNet data exhibit the same properties. The increase in the proportion of safe points is
yet another desirable property of the proposed hubness-aware SNN measures.

4.7 Reducing the error propagation

Data processing and preparation sometimes introduces additional errors in the feature val-
ues, and these errors can more easily propagate and negatively affect the learning process
under the assumption of hubness. We will briefly discuss three such datasets (iNet3Err:100,
iNet3Err:150, iNet3Err:1000) described in [55]. The three datasets contain the 100-, 150- and
1,000-dimensional quantized representations, respectively. While the system was extracting
the Haar feature representations for the dataset, some I/O errors occurred which left a few
images as zero vectors, without having been assigned a proper representation. Surely, this
particular error type can easily be prevented by proper error-checking within the system, but
we will nevertheless use it as an illustrative example for a more general case of data being
compromised by faulty examples. In a practical application, obvious errors such as these
would either be removed or their representations recalculated. In general, the errors in the
data are not always so easy to detect and correct. This is why the subsequent data analysis
ought to be somewhat robust to errors and noise.

Even though errors in the data are certainly undesirable, a few zero vectors among 2,731,
which is the size of iNet3 data, should not affect the overall classifier performance too much, as
long as the classifier has good generalization capabilities. The kNN classifier, however, suffers
from a high specificity bias, and this is further emphasized by the curse of dimensionality
under the assumption of hubness. Namely, the employed metric (L1) induced an unusually
high hubness of zero vectors. It can easily be shown that the expected L1 dissimilarity between
any two quantized image representations increases with increasing dimensionality. On the
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Fig. 19 The increasing bad hubness of the top 5 erroneous bad hubs in the quantized iNet3 Haar feature
representations. All the bad hubs were in fact zero vectors generated by a faulty feature extraction system, and
all of them were of the minority class. These zero vectors became dominant bad hubs as the dimensionality
of the data representation was increased. Such a pathological case clearly illustrates how even a few noisy
examples are enough to compromise all k-nearest neighbor inference in high-hubness data

Fig. 20 The kNN accuracy on high-hubness erroneous image data under L1, simcos50, simhub50, simcos200,
simhub200. The secondary similarity measures reduce the impact of faulty and inaccurate examples

other hand, the distance to the zero-vector remains constant for each image. Eventually, when
d = 1,000, the few zero vectors in the data infiltrated and dominated all the k-neighbor sets
and caused the 5-NN to perform worse than zero rule, as they were, incidentally, of the
minority class. The increasing bad hubness of the top 5 bad hubs is shown in Fig. 19.

Such pathological cases are rare, but clearly indicate the dangers in disregarding the
skewness of the underlying occurrence distribution. As this example is quite extreme, it is a
good test case to examine the robustness of the secondary similarity measures to such a high
violation of semantics in the k-nearest neighbor graph. The comparisons were performed as
10-times 10-fold cross-validation, and the results for kNN are summarized in Fig. 20. The
neighborhood size k = 5 was used.

For the 1,000-dimensional faulty representation, the secondary simcos200 and simhub200

similarities improved the overall kNN accuracy from 20 to 94 %, which is undeniably

123



114 N. Tomašev, D. Mladenić

impressive. Both the simcoss and simhubs reached their optimum for s = 200, but for
s ∈ [50, 200] the hubness-aware similarity measure outperformed its counterpart, as it con-
verges to the correct kNN graph configuration faster than simcoss , which was previously
discussed in Sect. 4.4. This is shown in Fig. 20 for s = 50.

What this example shows is that the hubness-aware shared neighbor distances are able to
significantly reduce the impact of errors on high-hubness data classification. Such robustness
is of high importance, as real-world data are often inaccurate and noisy. This particular
example might have been extreme, but such extreme cases are likely to occur whenever
errors end up being hubs in the data, which depends on the choice of feature representation
and the primary metric.

4.8 Class separation

Ensuring a good separation between classes is what a good metric should ideally be able to
achieve. This is not always possible, as the cluster assumption is sometimes severely violated.
Even so, we would expect the examples from the same class to be, on average, closer to
each other than the pairs of examples taken from different classes. Increasing the contrast
between the average intra-class and inter-class distance is one way to make the classification
task somewhat easier. The improvement is not, however, guaranteed, especially when the
kNN methods are used. Unless the kNN structure changes in such a way that the ensuing
distribution of point difficulty becomes favorable, the contrast is of secondary importance.

The proposed simhubPUR
s measure was designed in such a way that the neighbors with

higher occurrence profile purity are valued more, as they usually contribute more to the intra-
class similarities. However, note that this is only guaranteed in binary classification. If there
are only two classes in the data, H(Rs(x1)) < H(Rs(x2)) directly follows from the fact that
x1 has a higher relative contribution to the contrast than x2.

There is also a downside to using the occurrence entropies for determining neighbor
occurrence weights. The entropies measure the relative purity which reflects the relative
positive contribution of the neighbor point. However, if we are interested specifically in
increasing the contrast, we are interested in rewarding the absolute positive contributions,
not the relative ones. In other words, even if two points x1 and x2 have the same reverse
neighbor set purity, x1 has a higher contribution to the overall similarity if Ns(x1) > Ns(x2).
Within the simhubs measure, this problem is even more pronounced because Ns(x1) >

Ns(x2) ⇒ In(x1) < In(x2).
This is very interesting, as we have seen in Sect. 4.5 that reducing the weight of hubs

by simhubIN
s is highly beneficial. It increases the reverse neighbor set purity, reduces bad

hubness and improves the kNN classification as much as simhubPUR
s . However, it seems that

it actually reduces the contrast between the intra-class and inter-class similarities, especially
when used in conjunction with simhubPUR

s .
In multi-class data, things get even more complicated. Each neighbor point xi con-

tributes to
(Ns (xi )

2

) = GS(xi )+ BS(xi ) shared neighbor similarity scores, where GS(xi ) and
BS(xi ) represent the number of intra-class and inter-class similarities, respectively. Denote
by C S(xi ) = GS(xi ) − BS(xi ) the contribution of each xi to the total difference between
the two similarity sums.

GS(xi ) =
∑

c∈C

(
Ns,c(xi )

2

)

BS(xi ) =
∑

c1,c2∈C,c1 �=c2

Ns,c1(xi ) · Ns,c2(xi ) (9)
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The occurrence purity O P(xi ) = max Hs − H(Rs(xi )) is tightly correlated with C S(xi ).
Nevertheless, in non-binary classification, some occurrence profiles exist such that O P(xi ) <

O P(x j ), but C S(xi ) > C S(x j ) or vice versa. Consider the following 4-class example:

C = 4, max Hs = log 4 = 2

Ns(xi ) = Ns(x j ) = 100

Ns,1(xi ) = 5, Ns,2(xi ) = 15, Ns,3(xi ) = 25, Ns,4(xi ) = 55

Ns,1(x j ) = 6, Ns,2(x j ) = 10, Ns,3(x j ) = 34, Ns,4(x j ) = 50

C S(xi ) = GS(xi ) − BS(xi ) = 1900 − 3050 = −1150

C S(x j ) = GS(x j ) − BS(x j ) = 1846 − 3104 = −1258

O P(xi ) = 2 − H(Rs(xi )) ≈ 2 − 1.6010 = 0.3990

O P(x j ) = 2 − H(Rs(x j )) ≈ 2 − 1.5989 = 0.4011

O P(xi ) < O P(x j ) ∧ C S(xi ) > C S(x j ) (10)

This example shows that the reverse neighbor set purity is not monotonous with respect to
the difference between the intra-class and inter-class similarity contributions of a neighbor
point.

Note, however, that maximizing the sum total of C SD = ∑
x∈D C S(x) is not equivalent to

maximizing the contrast between the inter- and intra-class distances, as that quantity requires

normalization. Let CD = AVGyi �=y j (dist (xi ,x j ))−AVGyi =y j (dist (xi ,x j ))

maxxi ,x j ∈D dist (xi ,x j )−minxi ,x j ∈D dist (xi ,x j )
quantify the contrast. The

denominator is necessary, as it would otherwise be possible to increase the contrast arbitrarily
simply by scaling up all the distances. In practice, this means that the contrast also depends
on the maximum/minimum pairwise distances on the data—and these quantities also change
while we are changing the instance weights when trying to increase C SD . Nevertheless,
increasing C SD seems like a sensible approach to improving class separation, slightly more
natural than increasing the overall purity O PD = ∑

x∈D O P(x). To see if this is really the
case, we defined two additional hubness-aware similarity measures.

simhub01
s =

∑
x∈Ds (xi )∪Ds (x j )

1I{x̄ :C S(x̄)>0}(x)

s
(11)

simhubREL
s =

∑
x∈Ds (xi )∪Ds (x j )

(C S(x) − minx̄∈D(C S(x̄)))

s · (maxx̄∈D C S(x̄) − minx̄∈D C S(x̄))
(12)

If we limit the weight of each shared neighbor point to the interval w(x) ∈ [0, 1], it is not
difficult to see that the C SD is trivially maximized if and only if w(x) = 1 when C S(x) > 0
and w(x) = 0 when C S(x) ≤ 0. This weighting in embodied in simhub01

s , defined in Eq. 11
above. Even though the total difference between the contributions to inter- and intra-class
distances is maximized, it is clear that this measure has some very undesirable properties.
First of all, it is not impossible to construct a dataset with a severe cluster assumption violation
where ∀x ∈ D : C S(x) ≤ 0. All the simhub01

s similarities would then equal zero, and this
is certainly not what we want. In less extreme, real-world data, this measure could similarly
annul some of the pairwise similarities when all the shared neighbors have C S(x) ≤ 0. What
this example clearly shows is that even though we would like to increase C SD and improve the
contrast, not only does the global optimum for C SD not guarantee the best class separation,
it also involves having a similarity measure which has many practical weaknesses.

The simhubREL
s similarity score is a far less radical approach than simhub01

s . The neighbor
occurrence weights are proportional to the normalized neighbor contributions C S(x) to the
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Fig. 21 The average class separation induced by different metrics on the Gaussian mixtures (DS1-DS10).
Even though the simcos50 measure has been shown to be inferior in kNN classification, it achieves better
class separation than the previously considered simhub50, simhubIN

50 and simhubPUR
50 similarities. On the

other hand, the newly proposed simhubREL
50 measure gives the best separation between the classes

C SD total. Even though this measure is in a sense similar to simhubPUR
s , there are no more

problems with monotonicity of w(x) with respect to C S(x). This ought to help improve the
class separation. Also, w(x) ≥ 0 for points with C S(x) < 0, so there is no risk of having
many zero similarities, as was the case with simhub01

s .
Figure 21 shows the class separation induced by each of the mentioned similarity mea-

sures, on the Gaussian mixture datasets. The standard simcos50 measure achieves better
class separation than the previously considered hubness-aware SNN measures: simhub50,
simhubIN

50 and simhubPUR
50 . This is somewhat surprising, given that it was shown to be clearly

inferior in terms of kNN classification accuracy, bad hubness, as well as the inverse neighbor
set purity. However, this is 10-class data and, as was explained above, there is no guarantee
that any of the three hubness-aware measures would improve the separation, as defined by
CD . On the other hand, the newly proposed simhubREL

50 measure does manage to increase
the separation, unlike the initial choice simhub01

50, which fails for reasons already discussed.
The difference between the simcos50 and simhubREL

50 is present in all datasets. The com-
parisons were also performed in terms of the widely used Silhouette coefficient [61], which
is shown in Fig. 22. The Silhouette coefficient is used for evaluating cluster configurations.
If we observe each class as a cluster, a higher Silhouette score means that the classes in the
data conform better to the cluster assumption. If the index value is low, it means that the
classes are not really compact and either overlap or are composed of several small clusters,
scattered around a larger volume of space. The Silhouette values for the considered overlap-
ping Gaussian mixtures are still rather low, but the original ones (in the L2 metric) were even
negative in some datasets, meaning that the points from some different class are on average
closer than the points from the same class. So, both simcos50 and simhubREL

50 improve the
cluster structure of the data, but the simhubREL

50 does it better.
Regardless of the fact that it improves class separation, simhubREL

s turns out to be not
nearly as good as simhubs when it comes to reducing bad hubness and improving the
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Fig. 22 The comparison in terms of the Silhouette index on the Gaussian mixtures (DS1-DS10) between
simcos50 and simhubREL

50 . The newly proposed hubness-aware SNN measure makes the class-clusters more
compact in all considered datasets

classification performance. This is why we would not recommend it for kNN classification
purposes. Regardless, as it raises the Silhouette coefficient, simhubREL

s could be used in
some clustering applications. Admittedly, it is a supervised measure (it requires the data
points to have labels), but these labels could either be deduced by an initial clustering run
or already present in the data. Namely, a considerable amount of research was done in the
field of semi-supervised clustering [62], where some labeled/known examples are used to
help improve the clustering process. This was done either by introducing constraints [63] or
precisely by some forms of metric learning [62,64].

To conclude, we can say that not increasing the class separation as much as simcoss

is the only apparent downside of using simhubs , but one which can be tolerated, as we
have seen that the proposed hubness-aware shared neighbor similarity measure helps where
it matters the most—in improving the classifier performance and reducing bad hubness,
which is a very important aspect of the curse of dimensionality. Nevertheless, simhubs still
significantly improves the class separation when compared to the primary metric, and if
the class separation and the cluster structure of the data is of highest importance in a given
application, simhubREL

s is still preferable to the standard simcoss .

4.9 Low-dimensional data

Low-dimensional data does not exhibit hubness and is usually easier to handle as it does
not suffer from the curse of dimensionality. We have analyzed 10 such low-dimensional
datasets. The detailed data description was given in Table 2. Some datasets even exhibited
negative skewness of the neighbor occurrence distribution, which might even be interpreted
as anti-hubness, an opposite of what we have been analyzing up until now.

We have compared the simcos50 and simhub50 with the primary Euclidean distance on
this data, by observing the kNN accuracy in 10-times 10-fold cross-validation for k = 5. All
features were standardized by subtracting the mean and dividing by standard deviation prior
to classification. The results are shown in Fig. 23.

Apparently, both shared neighbor similarities seem to be somewhat inadequate in this
case. They offer no significant improvements over the primary metric, sometimes being
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Fig. 23 The accuracy of the k-nearest neighbor classifier on low-dimensional data under different distance
measures. As there is no hubness in this data, there are no visible improvements

slightly better, sometimes slightly worse. The average accuracy over the ten considered low-
dimensional datasets is 85.17 for L2, 84.55 for simcos50 and 85.1 for simhub50.

This comparison shows that the shared neighbor similarities ought to be used primarily
when the data are high dimensional and exhibits noticeable hubness. In low-dimensional
data, other approaches might be preferable.

5 Conclusions and future work

In this paper, we proposed a new secondary shared neighbor similarity measure simhubs ,
in order to improve the k-nearest neighbor classification in high-dimensional data. Unlike
the previously used simcoss score, simhubs takes hubness into account, which is important
as hubness is a known aspect of the curse of dimensionality which can have severe negative
effects on all nearest neighbor methods. Nevertheless, it has only recently come into focus,
and this is the first attempt at incorporating hubness information into some form of metric
learning.

An experimental evaluation was performed both on synthetic high-dimensional over-
lapping Gaussian mixtures and quantized SIFT representations of multi-class image
data. The experiments have verified our hypothesis by showing that the proposed
simhubs similarity measure clearly and significantly outperforms simcoss in terms of the
associated classification performance. This improvement can be attributed to a reduce in the
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bad hubness of the data and the increased purity of the neighbor occurrence profiles. The
kNN graphs induced by the simhubs measure are less correlated to the primary metric kNN
structure, which shows that the hubness-aware measure changes the kNN structure much
more radically than simcoss .

As simhubs was defined in a hybrid way, by exploiting both the supervised and the
unsupervised hubness information, we have thoroughly analyzed the influence of both con-
stituents (simhubPUR

s and simhubIN
s , respectively) on the final similarity score. It was shown

that both factors decrease the bad hubness of the data and that they do it best when combined,
as in simhubs . On the other hand, simhubIN

s seems to be somewhat better in dealing with
imbalanced datasets.

All secondary metrics change the overall distribution of point types in the data. The
hubness-aware measures excel in increasing the proportion of safe points, which are the ones
that are least likely to be misclassified in k-nearest neighbor classification. This is closely
linked to the improved classifier performance.

The only notable downside to the simhubs measure is that it does not increase the
class separation as much as the standard simcoss . This has been thoroughly discussed in
Sect. 4.8, where we have tried to overcome this difficulty by proposing an additional two
hubness-aware SNN measures: simhub01

s and simhubREL
s . The experiments have shown

that simhubREL
s does indeed improve the class separation better than both simcoss and

simhubs . The proposed simhubs is still to be preferred for classification purposes, but
simhubREL

s might be used in some other applications, as for instance the semi-supervised
clustering.

In our future work, we would like to compare the outlined approaches to other forms
of metric learning, both theoretically under the assumption of hubness, as well is various
practical applications. As for the possible extensions, it would be interesting to include
position-based weighting, as was done before in some shared nearest neighbor clustering
algorithms. In this paper, we focused mostly on the supervised case, but we intend also to
explore in detail the use of hubness-aware SNN similarity measures in unsupervised data
mining tasks.
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