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Abstract Fuzzy time series forecasting method has been applied in several domains, such
as stock market price, temperature, sales, crop production and academic enrollments. In
this paper, we introduce a model to deal with forecasting problems of two factors. The
proposed model is designed using fuzzy time series and artificial neural network. In a fuzzy
time series forecasting model, the length of intervals in the universe of discourse always
affects the results of forecasting. Therefore, an artificial neural network- based technique is
employed for determining the intervals of the historical time series data sets by clustering
them into different groups. The historical time series data sets are then fuzzified, and the
high-order fuzzy logical relationships are established among fuzzified values based on fuzzy
time series method. The paper also introduces some rules for interval weighing to defuzzify
the fuzzified time series data sets. From experimental results, it is observed that the proposed
model exhibits higher accuracy than those of existing two-factors fuzzy time series models.

Keywords Fuzzy time series · Two factors · Temperature · Fuzzy logical relation ·
Artificial neural network

1 Introduction

Fuzzy time series forecasting method has been applied in several domains, such as stock
market price, temperature, sales, crop production and academic enrollments. Application of
fuzzy time series theory in forecasting problems was first introduced by Song and Chissom
[28–30]. They presented the fuzzy time series model by means of fuzzy relational equations
involving max–min composition operation, and applied the model to forecast the enrollments
in University of Alabama. In 1996, Chen [4] used simplified arithmetic operations avoiding
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the complicated max–min operations, and their method produced better results. Later, many
studies provided some improvements to the existing methods in terms of effective lengths of
intervals, fuzzy logical relation and defuzzification techniques.

Hwang et al. in [12] used the differences of the available historical data as fuzzy time series
instead of direct usage of raw numeric values. Unlike Song–Chissom and Chen approaches,
Sah and Degtiarev’s proposed model [24] utilizes variations of the available historical data
as fuzzy time series. Huarng tried to improve the forecasting accuracy based on the deter-
mination of effective length of intervals [10] and heuristic approaches [11]. Lee and Chou
[17] forecasted the university enrollments by defining the supports of the fuzzy numbers that
represent the linguistic values of the linguistic variables more appropriately.

Cheng et al. in [6] used entropy minimization to create the intervals. They also used trape-
zoidal membership functions in the fuzzification process. Chang [2] presented cardinality-
based fuzzy time series forecasting model which builds weighted fuzzy rules according to
calculating the cardinality of fuzzy relations. To obtain less number of intervals, Cheng [7]
proposed a model using fuzzy clustering technique to partition the data effectively. Kai et
al. [13] applied the K-means clustering algorithm to partition the universe of discourse into
different groups. Singh and Borah [26] forecasted the university enrollments with the help
of new proposed algorithm by dividing the universe of discourse of the historical time series
data into different length of intervals.

Chen and Hwang [5] forecasted the daily average temperature of Taipei based on two-
factors fuzzy time series. In this model, first factor is daily temperature, whereas the second
factor is daily cloud density. They proposed two algorithms—Algorithm-B and Algorithm-
B∗. Their experimental results show that the accuracy rate of Algorithm-B∗ is better than
Algorithm-B. Lee et al. [20] proposed a new method to forecast the daily average temperature
of Taipei and the Taiwan Futures Exchange (TAIFEX). In this model, high-order fuzzy logical
relationship is constructed to increase the forecasting accuracy. Chang and Chen [3] fore-
casted the daily temperature using fuzzy C-means and fuzzy rules interpolation techniques.
In this model, rules are constructed based on fuzzy C-means clustering algorithm. Then,
this model performs fuzzy inference based on the multiple fuzzy rules interpolation scheme.
Based on two-factors high-order fuzzy time series and automatic clustering techniques, Wang
and Chen [32] proposed a new method to predict the daily average temperature and TAIFEX.
Lee et al. [18,19] presented a new method for temperature prediction and the TAIFEX fore-
casting based on two-factors high-order fuzzy logical relationships by hybridizing genetic
algorithms with fuzzy time series method.

In this paper, we present a new model to deal with the forecasting problems of two
factors. The proposed model is designed using fuzzy time series and artificial neural network
(ANN). In this study, high-order fuzzy logical relationships are also employed to design the
model. Hence, we have entitled this model as “Two-factors high-order neuro-fuzzy hybridized
model.” The main purpose of designing such a hybridized model is explained next.

For fuzzification of time series data sets, the determination of length of intervals is very
important. In case of most of the above discussed models [4,11,12,28,30], the lengths of the
intervals were kept same. No any specific reason is mentioned for using the fixed lengths of
intervals. Huarng [10] shows that effective lengths of intervals always affect the results of
forecasting. Therefore, for the creation of effective length of intervals of the historical time
series data sets, an ANN-based technique is adopted in this model.

Song and Chissom [28] adopted the following method to forecast enrollments of the
University of Alabama:

Y (t) = Y (t − 1) ◦ R (1)
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where Y (t − 1) is the fuzzified enrollment of year (t − 1), Y (t) is the forecasted enrollment
of year “t” represented by fuzzy set, “◦” is the max–min composition operator and “R” is
the union of fuzzy relations. This method takes a lot of time to compute the union of fuzzy
relations [5]. Therefore, to improve the efficiency of the proposed model, some rules for
intervals weighing are proposed to defuzzify the fuzzified time series data sets. The proposed
model exhibits higher accuracy than those of existing models [3,5,18–20,32].

The rest of the paper is organized as follows: In Sect. 2, the basic concepts of fuzzy time
series are briefly explained. Section 3 presents the application of ANN for creating intervals
of historical time series data sets. In Sect. 4, new forecasting model based on hybridization
of ANN with fuzzy time series is proposed. The performance of the model is assessed and
presented in Sect. 5. Conclusions and directions for future work are discussed in Sect. 6.

2 Fuzzy sets and fuzzy time series-A brief overview

In 1965, Zadeh [35] introduced the theory of fuzzy sets. According to Zadeh, “A fuzzy set is
a class of objects with continuum of grades of membership. Such a set is characterized by a
membership function which assigns to each object a grade of membership ranging between
zero and one.” He also presented fuzzy arithmetic theory and its application [36–38]. Based
on fuzzy sets theory, Song and Chissom [28–30] introduced the fuzzy time series concept.
Here, we briefly reviewed some concepts of fuzzy time series from [28–30].

Definition 1 (Fuzzy Set) A fuzzy set is a class with varying degrees of membership in the
set. Let U be the universe of discourse, which is discrete and finite, then fuzzy set A can be
defined as follows:

A = {μA(x1)/x1 + μA(x2)/x2 + · · · } = �iμA(xi )/xi (2)

where μA is the membership function of A, μA : U → [0, 1], and μA(xi ) is the degree
of membership of the element xi in the fuzzy set A. Here, the symbol “+” indicates the
operation of union and the symbol “/” indicates the separator rather than the commonly used
summation and division in algebra, respectively.

When U is continuous and infinite, then the fuzzy set A of U can be defined as:

A =
{∫

μA(xi )/xi

}
,∀xi ∈ U (3)

where the integral sign stands for the union of the fuzzy singletons, μA(xi )/xi .
Fuzzy time series concept was proposed in [29], and the main difference between the

traditional time series and the fuzzy time series is that the values of the former are crisp
numerical values while the values of the latter are fuzzy sets. The crisp numerical values
can be represented by real numbers, whereas in fuzzy sets, the values of observations are
represented by linguistic values. The definitions of fuzzy time series are briefly reviewed as
follows:

Definition 2 (Fuzzy time series) Let Y (t)(t = 0, 1, 2, . . .) be a subset of real numbers “R”L
and the universe of discourse on which fuzzy sets μi (t)(i = 1, 2, . . .) are defined, and let
F(t) be a collection of μi (t)(i = 1, 2, . . .). Then, F(t) is called a fuzzy time series on
Y (t)(t = 0, 1, 2, . . .).

From Definition 2, we can see that F(t) is a function of time t and μi (t) are the linguistic
values of F(t), where μi (t)(i = 1, 2, . . .) are represented by fuzzy sets and the values of
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F(t) can be different at different times because the universe of discourse can be different
at different times. Fuzzy time series can be divided into two categories which are the time-
invariant fuzzy time series and the time-variant fuzzy time series.

If F(t) is caused by F(t − 1), that is, F(t − 1) → F(t), then this relationship can be
represented as follows:

F(t) = F(t − 1) ◦ R(t, t − 1) (4)

where R(t, t −1) is the fuzzy relationship between F(t) and F(t −1). Here, “R” is the union
of fuzzy relations and “◦” is max–min composition operator. It is also called the first-order
model of F(t).

Definition 3 (Fuzzy time-variant and time-invariant series) Let F(t) be a fuzzy time series,
and R(t, t −1) be a first–order model of F(t). If R(t, t −1) = R(t −1, t −2) for any time t ,
and F(t) only has finite elements, then F(t) is referred as a time-invariant fuzzy time series.
Otherwise, it is referred as a time-variant fuzzy time series.

3 ANN and its application for creation of intervals

ANN is a computational model that is inspired by the human brain [1,27]. ANN is composed
of large number of interconnected nodes or neurons, which usually operate in parallel, and are
configured in regular architectures. Researchers employ ANN in various forecasting prob-
lems (like electric load forecasting [31], short-term precipitation forecasting [16], long-rage
summer monsoon rainfall forecasting [25], etc.), due to its capability to extract relationships
between the input and output data.

Data clustering is a popular approach for automatically finding classes, concepts, or groups
of patterns [9]. Time series data are pervasive across all human endeavors, and their clus-
tering is one of the most fundamental applications of data mining [14,23]. In literature,
many data clustering algorithms [8,22,33] have been proposed, but their applications are
limited to the extraction of patterns that represent points in multi-dimensional spaces of
fixed dimensionality [34]. In our proposed model, a distance-based clustering algorithm,
that is, the self-organizing feature maps (SOFM) are employed for determining the inter-
vals of the historical time series data sets by clustering them into different groups. SOFM is
developed by Kohonen [15], which is a class of neural networks with neurons arranged in a
low-dimensional (often two-dimensional) structure, and trained by an iterative unsupervised
or self-organizing procedure [21]. SOFM converts the patterns of arbitrary dimensionality
into response of one-dimensional or two-dimensional arrays of neurons, that is, it converts
a wide pattern space into a feature space. The neural network performing such a mapping is
called feature map. The training process of SOFM consists of the following steps [27]:

Step 1 Initialize the weights (Wuv) and learning rate (α).

Step 2 When stopping condition is false, then perform Steps 2–8.

Step 3 For each input vector (X), perform Steps 3–5.

Step 4 For each v = 1 to m, compute the square of the Euclidean distance as:

D(v) =
n∑

u=1

(Xu − Wuv)
2 (5)
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Two-factors high-order neuro-fuzzy hybridized model 673

Fig. 1 Two-factors high-order
neuro-fuzzy hybridized model

Step 5 Obtain winning unit index (J), so that D(J ) =minimum.

Step 6 Calculate weights of winning unit as:

Wuv(new) = Wuv(old) + α[Xu − Wuv(old)] (6)

Step 7 Reduce the learning rate (α) by using the following formula:

α(t + 1) = 0.5α(t) (7)

Step 8 Reduce radius of topological neighborhood network.

Step 9 Test for stopping condition of the network.

Based on the above-mentioned algorithm, the historical time series data sets are partitioned
into different length of intervals. These intervals are presented in Sect. 4.

4 Proposed ANN and fuzzy time series hybridized model

In this section, we introduce a new forecasting model based on hybridization of ANN with
fuzzy time series. The architecture of the proposed model consists of six phases as shown
in Fig. 1. For verification of model, the historical data sets of the daily average temperature
and the daily cloud density from June 1996 to September 1996 in Taipei, Taiwan [5] are
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Table 1 Historical data of the
daily average temperature from
June 1996 to September 1996 in
Taipei (Unit: ◦C)

Day Month

June July August September

1 26.1 29.9 27.1 27.5

2 27.6 28.4 28.9 26.8

3 29.0 29.2 28.9 26.4

4 30.5 29.4 29.3 27.5

5 30.0 29.9 28.8 26.6

6 29.5 29.6 28.7 28.2

7 29.7 30.1 29.0 29.2

8 29.4 29.3 28.2 29.0

9 28.8 28.1 27.0 30.3

10 29.4 28.9 28.3 29.9

11 29.3 28.4 28.9 29.9

12 28.5 29.6 28.1 30.5

13 28.7 27.8 29.9 30.2

14 27.5 29.1 27.6 30.3

15 29.5 27.7 26.8 29.5

16 28.8 28.1 27.6 28.3

17 29.0 28.7 27.9 28.6

18 30.3 29.9 29.0 28.1

19 30.2 30.8 29.2 28.4

20 30.9 31.6 29.8 28.3

21 30.8 31.4 29.6 26.4

22 28.7 31.3 29.3 25.7

23 27.8 31.3 28.0 25.0

24 27.4 31.3 28.3 27.0

25 27.7 28.9 28.6 25.8

26 27.1 28.0 28.7 26.4

27 28.4 28.6 29.0 25.6

28 27.8 28.0 27.7 24.2

29 29.0 29.3 26.2 23.3

30 30.2 27.9 26.0 23.5
31 – 26.9 27.7 –

used, which are shown in Tables 1 and 2, respectively. In these data sets, the daily average
temperature is called the main factor, and the daily average cloud density is called the second
factor.

In the following, we apply the proposed model to predict the daily temperature of Taipei
from June 1996 to September 1996. To explain the functionality of each phase of the model,
the daily average temperature and the daily cloud density data sets from June 1, 1996 to June
30, 1996, are considered as an example. Each phase of the model is explained as follows:

Phase 1 Divide the universe of discourse into different length of intervals.

Define the universe of discourse “A” of the main factor and the universe of discourse “B”
of the second factor of the historical time series data sets. Let A = [Mmin, Mmax ], where
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Table 2 Historical data of the
daily average cloud density from
June 1996 to September 1996 in
Taipei (Unit: %)

Day Month

June July August September

1 36 15 100 29

2 23 31 78 53

3 23 26 68 66

4 10 34 44 50

5 13 24 56 53

6 30 28 89 63

7 45 50 71 36

8 35 34 28 76

9 26 15 70 55

10 21 8 44 31

11 43 36 48 31

12 40 13 76 25

13 30 26 50 14

14 29 44 84 45

15 30 25 69 38

16 46 24 78 24

17 55 26 39 19

18 19 25 20 39

19 15 21 24 14

20 56 35 25 3

21 60 29 19 38

22 96 48 46 70

23 63 53 41 71

24 28 44 34 70

25 14 100 29 40

26 25 100 31 30

27 29 91 41 34

28 55 84 14 59

29 29 38 28 83

30 19 46 33 38

31 – 95 26 –

Mmin and Mmax are the minimum and maximum values of the main factor, respectively. Let
B = [Nmin, Nmax ], where Nmin and Nmax are the minimum and maximum values of the
second factor, respectively.

Based on Tables 1 and 2, we have the universe of discourse of the daily average temperature
A = [26.1, 30.9], and the universe of discourse of the cloud density B = [10, 96]. By
applying the SOFM algorithm, divide the universe of discourse “A” into different lengths of
intervals as a1, a2, . . . , and an . Similarly, divide the universe of discourse “B” into different
lengths of intervals as b1, b2, . . . , and bn . For each interval, the centroid is calculated by
taking the mean of the upper bound and lower bound of the interval. Each interval bears a
weight equal to the frequency of the interval. The resulting intervals, centroids and weights
for the considered data sets are shown in Tables 3 and 4.
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Table 3 Intervals, elements of
intervals, centroids and weights
for the daily temperature for June
1996

Intervals Elements of intervals Centroids Weights

a1 = [26.1, 26.1) (26.1) 26.1 1

a2 = [27.1, 27.1) (27.1) 27.1 1

a3 = [27.4, 27.4) (27.4) 27.4 1

a4 = [27.5, 27.6) (27.5, 27.6) 27.55 2

a5 = [27.7, 27.7) (27.7) 27.7 1

a6 = [27.8, 27.8) (27.8, 27.8) 27.8 2

a7 = [28.4, 28.5) (28.4, 28.5) 28.45 2

a8 = [28.7, 28.8) (28.7, 28.7, 28.8, 28.8) 28.75 4

a9 = [29.0, 29.0) (29, 29, 29) 29 3

a10 = [29.3, 29.4) (29.3, 29.4, 29.4) 29.37 3

a11 = [29.5, 29.7) (29.5, 29.5, 29.7) 29.57 3

a12 = [30.0, 30.3) (30, 30.2, 30.2, 30.3) 30.18 4

a13 = [30.5, 30.9) (30.5, 30.8, 30.9) 30.73 3

Table 4 Intervals, elements of
intervals, centroids and weights
for the daily cloud density for
June 1996

Intervals Elements of intervals Centroids Weights

b1 = [10, 10) (10) 10 1

b2 = [13, 14) (13, 14) 13.5 2

b3 = [15, 15) (15) 15 1

b4 = [19, 19) (19, 19) 19 2

b5 = [21, 21) (21) 21 1

b6 = [23, 23) (23, 23) 23 2

b7 = [25, 26) (25, 26) 25.5 2

b8 = [28, 29) (28, 29, 29, 29) 28.75 4

b9 = [30, 30) (30, 30, 30) 30 3

b10 = [35, 35) (35) 35 1

b11 = [36, 40) (36, 40) 38 2

b12 = [43, 45) (44, 45) 44 2

b13 = [46, 46) (46) 46 1

b14 = [55, 56) (55, 55, 56, 60) 56.5 4

b15 = [63, 63) (63) 63 1

b16 = [96, 96) (96) 96 1

Phase 2 Define linguistic terms for each of the interval.

The universe of discourse “A” of the main factor is divided into n intervals (i.e., a1, a2, . . . ,

and an). Assume that there are n linguistic variables (i.e., U1, U2, . . . , Un) represented by
fuzzy sets, where 1 ≤ i ≤ n, shown as follows:

U1 = 1/a1 + 0.5/a2 + 0/a3 + 0/a4 + 0/a5

+ · · · + 0/an−2 + 0/an−1 + 0/an,

U2 = 0.5/a1 + 1/a2 + 0.5/a3 + 0/a4 + 0/a5

+ · · · + 0/an−2 + 0/an−1 + 0/an,
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U3 = 0/a1 + 0.5/a2 + 1/a3 + 0.5/a4 + 0/a5

+ · · · + 0/an−2 + 0/an−1 + 0/an,

...

Un = 0/a1 + 0/a2 + 0/a3 + 0/a4 + 0/a5

+ · · · + 0/an−2 + 0.5/an−1 + 1/an .

Similarly, the universe of discourse “B” of the second factor is divided into m intervals
(i.e., b1, b2, . . . , and bm). Assume that there are m linguistic variables (i.e., V1, V2, . . . , Vm)
represented by fuzzy sets, where 1 ≤ i ≤ m, shown as follows:

V1 = 1/b1 + 0.5/b2 + 0/b3 + 0/b4 + 0/b5

+ · · · + 0/bm−2 + 0/bm−1 + 0/bm,

V2 = 0.5/b1 + 1/b2 + 0.5/b3 + 0/b4 + 0/b5

+ · · · + 0/bm−2 + 0/bm−1 + 0/bm,

V3 = 0/b1 + 0.5/b2 + 1/b3 + 0.5/b4 + 0/b5

+ · · · + 0/bm−2 + 0/bm−1 + 0/bm,

...

Vm = 0/b1 + 0/b2 + 0/b3 + 0/b4 + 0/b5

+ · · · + 0/bm−2 + 0.5/bm−1 + 1/bm .

The maximum membership values of both Ui and Vi occur at intervals ai and bi ,
respectively.

Phase 3 Fuzzify the historical time series data sets of the main factor and the second factor.

If the time series data of the main factor belong to the interval ai , where 1 ≤ i ≤ n, then
fuzzify the time series data of the main factor into fuzzy set Ui . Similarly, if the time series
data of the second factor belong to the interval bi , where 1 ≤ i ≤ m, then fuzzify the time
series data of the second factor into fuzzy set Vi .

The fuzzified values of the main factor and second factor for June 1996 time series data
sets are shown in Table 5. The fourth and fifth columns of Table 5 represent the centroids
and weights of the corresponding intervals for the main factor, respectively. In Table 5, only
fuzzified values of the second factor are shown (last column), because for forecasting the
main factor, only fuzzified values of the second factor are required.

Phase 4 Establish the fuzzy logical relationships between the fuzzified main factor and the
fuzzified second factor.

We can establish the nth-order fuzzy logical relationship based on the fuzzified main factor
and the fuzzified second factor. If there exists a fuzzy logical relationship between Ui and Vi ,
where Ui and Vi denote the fuzzified main factor and second factor of day “i ,” respectively,
then the two-factors nth-order fuzzy logical relationship can be represented as follows:

((Uni , Vni ), . . . , (Un2, Vn2), (Un1, Vn1)) → Ui (8)

Here, (Uni , Vni ), . . . , (Un2, Vn2), (Un1, Vn1) represent fuzzified values of day n − i, . . .,
day n − 2, day n − 1 and day i , respectively, where 2 ≤ i ≤ n. The left-hand side and right-
hand side of fuzzy logical relationship (8) are called the previous state and the current state,
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Table 5 Fuzzified daily temperature (with their corresponding centroids and weights) and cloud density for
June 1996

Day Temperature Fuzzified temperature Centroid Weight Cloud density Fuzzified cloud density

1 26.1 U1 26.1 1 36 V11

2 27.6 U4 27.55 2 23 V6

3 29.0 U9 29.0 3 23 V6

4 30.5 U13 30.73 3 10 V1

5 30.0 U12 30.18 4 13 V2

6 29.5 U11 29.57 3 30 V9

7 29.7 U11 29.57 3 45 V12

8 29.4 U10 29.37 3 35 V10

9 28.8 U8 28.75 4 26 V7

10 29.4 U10 29.37 3 21 V5

11 29.3 U10 29.37 3 43 V12

12 28.5 U7 28.45 2 40 V11

13 28.7 U8 28.75 4 30 V9

14 27.5 U4 27.55 2 29 V8

15 29.5 U11 29.57 3 30 V9

16 28.8 U8 28.75 4 46 V13

17 29.0 U9 29.0 3 55 V14

18 30.3 U12 30.18 4 19 V4

19 30.2 U12 30.18 4 15 V3

20 30.9 U13 30.73 3 56 V14

21 30.8 U13 30.73 3 60 V14

22 28.7 U8 28.75 4 96 V16

23 27.8 U6 27.8 2 63 V15

24 27.4 U3 27.4 1 28 V8

25 27.7 U5 27.7 1 14 V2

26 27.1 U2 27.1 1 25 V7

27 28.4 U7 28.45 2 29 V8

28 27.8 U6 27.8 2 55 V14

29 29.0 U9 29.0 3 29 V8

30 30.2 U12 30.18 4 19 V4

respectively. Here, Uni , . . . , Un2 and Un1 represent the fuzzified values of the main factor
of days n − i, . . . , n −2, and n −1, respectively. Similarly, Vni , . . . , Vn2, and Vn1 represent
the fuzzified values of the second factor of days n − i, . . . , n − 2, and n − 1, respectively.

Based on fuzzy logical relationship (8) and Table 5, the first-order and the second-order
fuzzy logical relationships of two factors are formed, which are shown in Tables 6 and 7,
respectively. In Tables 6 and 7, the symbol “?” represents an unknown value.

Phase 5 Form the fuzzy logical relationship groups.

If the nth-order fuzzy logical relationships have the same previous state, then, the nth-
order fuzzy logical relationships can be divided into a nth-order fuzzy logical relationship
group. Consider the following nth-order fuzzy logical relationships given as follows:
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Table 6 Two-factors first-order
fuzzy logical relationships
between the fuzzified
temperature and cloud density
data of June 1996

Two-factors first-order fuzzy logical relationships

(U1, V11) → U4

(U4, V6) → U9

(U9, V6) → U13

(U13, V1) → U12

(U12, V2) → U11

(U11, V9) → U11

(U11, V12) → U10

(U10, V10) → U8

(U8, V7) → U10

(U10, V5) → U10

(U10, V12) → U7

(U7, V11) → U8

(U8, V9) → U4

(U4, V8) → U11

(U11, V9) → U8

(U8, V13) → U9

(U9, V14) → U12

(U12, V4) → U12

(U12, V3) → U13

(U13, V14) → U13

(U13, V14) → U8

(U8, V16) → U6

(U6, V15) → U3

(U3, V8) → U5

(U5, V2) → U2

(U2, V7) → U7

(U7, V8) → U6

(U6, V14) → U9

(U9, V8) → U12

(U12, V4) →?

((Uni , Vni ), . . . , (Un2, Vn2), (Un1, Vn1)) → Uk

((Uni , Vni ), . . . , (Un2, Vn2), (Un1, Vn1)) → Us
...

((Uni , Vni ), . . . , (Un2, Vn2), (Un1, Vn1)) → Un

Then, the nth-order fuzzy logical relationship group can be formed as follows:

((Uni , Vni ), . . . , (Un2, Vn2), (Un1, Vn1)) → Uk, Us, . . . , Un (9)

The first-order fuzzy logical relationship groups are formed based on Table 6, which are
shown in Table 8; and the second-order fuzzy logical relationship groups are formed based
on Table 7, which are shown in Table 9. If the same fuzzy logical relationship appears more
than once, it is included only once in the group
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Table 7 Two-factors
second-order fuzzy logical
relationships between the
fuzzified temperature and cloud
density data of June 1996

Two-factors second-order fuzzy logical relationships

((U1, V11), (U4, V6)) → U9

((U4, V6), (U9, V6)) → U13

((U9, V6), (U13, V1)) → U12

((U13, V1), (U12, V2)) → U11

((U12, V2), (U11, V9)) → U11

((U11, V9), (U11, V12)) → U10

((U11, V12), (U10, V10)) → U8

((U10, V10), (U8, V7)) → U10

((U8, V7), (U10, V5)) → U10

((U10, V5), (U10, V12)) → U7

((U10, V12), (U7, V11)) → U8

((U7, V11), (U8, V9)) → U4

((U8, V9), (U4, V8)) → U11

((U4, V8), (U11, V9)) → U8

((U11, V9), (U8, V13)) → U9

((U8, V13), (U9, V14)) → U12

((U9, V14), (U12, V4)) → U12

((U12, V4), (U12, V3)) → U13

((U12, V3), (U13, V14)) → U13

((U13, V14), (U13, V14)) → U8

((U13, V14), (U8, V16)) → U6

((U8, V16), (U6, V15)) → U3

((U6, V15), (U3, V8)) → U5

((U3, V8), (U5, V2)) → U2

((U5, V2), (U2, V7)) → U7

((U2, V7), (U7, V8)) → U6

((U7, V8), (U6, V14)) → U9

((U6, V14), (U9, V8)) → U12

((U9, V8), (U12, V4)) →?

Phase 6 Compute the forecasted values.

To compute the forecasted values, the rules for interval weighing are proposed. These
rules are presented as follows:

Rule 1. For forecasting day, D(t), the previous state’s fuzzified values of the main factor
and the second factor are considered from days, D(t −n), . . . , D(t −2) to D(t −1);
where “t” is the current day which we want to forecast and “n” is the order of fuzzy
logical relationships. The Rule 1 is applicable only if there is only one fuzzified
value in the current state. The steps under Rule 1 are given as follows:

Step 1. For forecasting day, D(t), obtain the previous state’s fuzzified values of the main
factor and the second factor from days D(t −n) to D(t −1) as (Uni , Vni ), . . . , (Un2,

Vn2) and (Un1, Vn1).
Step 2. Find the fuzzy logical relationship group whose previous state is ((Uni , Vni ), . . . ,

(Un2, Vn2), (Un1, Vn1)), and the current state is Uk , that is, the fuzzy logical rela-
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Table 8 Two-factors first-order
fuzzy logical relationship groups
of the fuzzified temperature and
cloud density data of June 1996

Two-factors first-order fuzzy logical relationship groups

Group 1: (U1, V11) → U4

Group 2: (U4, V6) → U9

Group 3: (U9, V6) → U13

Group 4: (U13, V1) → U12

Group 5: (U12, V2) → U11

Group 6: (U11, V9) → U11, U8

Group 7: (U11, V12) → U10

Group 8: (U10, V10) → U8

Group 9: (U8, V7) → U10

Group 10: (U10, V5) → U10

Group 11: (U10, V12) → U7

Group 12: (U7, V11) → U8

Group 13: (U8, V9) → U4

Group 14: (U4, V8) → U11

Group 15: (U8, V13) → U9

Group 16: (U9, V14) → U12

Group 17: (U12, V4) → U12

Group 18: (U12, V3) → U13

Group 19: (U13, V14) → U13, U8

Group 20: (U8, V16) → U6

Group 21: (U6, V15) → U3

Group 22: (U3, V8) → U5

Group 23: (U5, V2) → U2

Group 24: (U2, V7) → U7

Group 25: (U7, V8) → U6

Group 26: (U6, V14) → U9

Group 27: (U6, V14) → U9

Group 28: (U9, V8) → U12

Group 29: (U12, V4) →?

tionship group is in the form of ((Uni , Vni ), . . . , (Un2, Vn2), (Un1, Vn1)) → Uk ,
then, the forecasted value is calculated based on the following step.

Step 3. Find the interval where the maximum membership value of Uk occurs. Let this
interval be ak . This interval ak has the corresponding centroid Ck . This centroid Ck

is the forecasted value for day, D(t).
Rule 2. This rule is applicable if there are more than one fuzzified values in the current state.

The steps under Rule 2 are given as follows:
Step 1. For forecasting day, D(t), obtain the previous state’s fuzzified values of the main fac-

tor and the second factor from days D(t−n) to D(t−1) as (Uni , Vni ), . . . , (Un2, Vn2)

and (Un1, Vn1).
Step 2. Find the fuzzy logical relationship group whose previous state is ((Uni , Vni ), . . . ,

(Un2, Vn2), (Un1, Vn1)), and the current state is Uk, Us, . . . , Un , that is, the fuzzy
logical relationship group is in the form of ((Uni , Vni ), . . . , (Un2, Vn2), (Un1, Vn1))

→ Uk, Us, . . . , Un , then, the forecasted value is calculated based on the following
step.
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Table 9 Two-factors
second-order fuzzy logical
relationship groups of the
fuzzified temperature and cloud
density data of June 1996

Two-factors second-order fuzzy logical relationship groups

Group 1: ((U1, V11), (U4, V6)) → U9

Group 2: ((U4, V6), (U9, V6)) → U13

Group 3: ((U9, V6), (U13, V1)) → U12

Group 4: ((U13, V1), (U12, V2)) → U11

Group 5: ((U12, V2), (U11, V9)) → U11

Group 6: ((U11, V9), (U11, V12)) → U10

Group 7: ((U11, V12), (U10, V10)) → U8

Group 8: ((U10, V10), (U8, V7)) → U10

Group 9: ((U8, V7), (U10, V5)) → U10

Group 10: ((U10, V5), (U10, V12)) → U7

Group 11: ((U10, V12), (U7, V11)) → U8

Group 12: ((U7, V11), (U8, V9)) → U4

Group 13: ((U8, V9), (U4, V8)) → U11

Group 14: ((U4, V8), (U11, V9)) → U8

Group 15: ((U11, V9), (U8, V13)) → U9

Group 16: ((U8, V13), (U9, V14)) → U12

Group 17: ((U9, V14), (U12, V4)) → U12

Group 18: ((U12, V4), (U12, V3)) → U13

Group 19: ((U12, V3), (U13, V14)) → U13

Group 20: ((U13, V14), (U13, V14)) → U8

Group 21: ((U13, V14), (U8, V16)) → U6

Group 22: ((U8, V16), (U6, V15)) → U3

Group 23: ((U6, V15), (U3, V8)) → U5

Group 24: ((U3, V8), (U5, V2)) → U2

Group 25: ((U5, V2), (U2, V7)) → U7

Group 26: ((U2, V7), (U7, V8)) → U6

Group 27: ((U7, V8), (U6, V14)) → U9

Group 28: ((U6, V14), (U9, V8)) → U12

Group 29: ((U9, V8), (U12, V4)) →?

Step 3. Find the intervals where the maximum membership values of Uk, Us, . . . , Un occur,
and let these intervals be ak, as, . . . , an , respectively. These intervals have the cor-
responding centroids Ck, Cs, . . . , Cn and weights Wk, Ws, . . . , Wn , respectively.

Step 4. The forecasted value for day, D(t) is calculated as follows:

Forecast (t) =
∑n

i=1 Ck Wk + Cs Ws + · · · + Cn Wn∑n
i=1 Wk + Ws + · · · + Wn

(10)

Rule 3. This rule is applicable only if there is an unknown value in the current state. The
steps under Rule 3 are given as follows:

Step 1. For forecasting day, D(t), obtain the previous state’s fuzzified values of the main
factor and the second factor from days D(t −n) to D(t −1) as (Uni , Vni ), . . . , (Un2,

Vn2) and (Un1, Vn1).
Step 2. Find the fuzzy logical relationship group whose previous state is ((Uni , Vni ), . . . ,

(Un2, Vn2), (Un1, Vn1)), and the current state is “?” (the symbol “?” represents
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an unknown value), that is, the fuzzy logical relationship group is in the form of
((Uni , Vni ), . . . , (Un2, Vn2), (Un1, Vn1)) →?, then, the forecasted value is calcu-
lated based on the following step.

Step 3. Find the intervals where the maximum membership values of Uni , . . . , Un2, Un1

occur, and let these intervals be an−i , . . . , an−2, an−1, respectively. These intervals
have the corresponding centroids Cn−i , . . . , Cn−2, Cn−1 and weights Wn−i , . . . ,

Wn−2, Wn−1, respectively.
Step 4. The forecasted value for day, D(t) is calculated as follows:

Forecast (t) =
∑n

i=1 Cn−i Wn−i + · · · + Cn−2Wn−2 + Cn−1Wn−1∑n
i=1 Wn−i + · · · + Wn−2 + Wn−1

(11)

Based on the proposed method, we have presented here two examples to compute
forecasted values of daily average temperature as follows:

Ex 1. Based on two-factors first-order fuzzy logical time series, an example is presented here
to forecast the temperature on day, D(t). Suppose, we want to forecast the temperature
on June 7, 1996, in Taipei. To compute this value, the fuzzified temperature and cloud
density values of the previous state are required. For forecasting day, D(June 7),
the fuzzified temperature and cloud density values for day, D(June 6) are obtained
from Table 5, which are U11 and V9, respectively. Then, obtain the fuzzy logical
relationship group whose previous state is (U11, V9) from Table 8. In this case, the
fuzzy logical relationship group is (U11, V9) → U11, U8 (i.e., Group 6). Therefore,
Rule 2 is applicable here, because the current state has two fuzzified values. Now,
find the intervals where the maximum membership values of U11 and U8 occur from
Table 3, which are a11 and a8, respectively. The corresponding centroid and weight for
the interval a11 are 29.57 and 3, respectively. The corresponding centroid and weight
for the interval a8 are 28.75 and 4, respectively. Now, based on Eq. 10, the forecasted
temperature for day, D(June 7) can be computed as:

(29.57 × 3 + 28.75 × 4)

3 + 4
= 29.10

Ex 2. Based on two-factors second-order fuzzy logical time series, an example is presented
here to forecast the temperature on day, D(t). Suppose, we want to forecast the
temperature on June 4, 1996, in Taipei. To compute this value, the fuzzified tem-
perature and cloud density values of the previous state are required. For forecast-
ing day, D(June 4), the fuzzified temperature and cloud density values for days,
D(June 2) and D(June 3) are obtained from Table 5, which are (U4, V6) and (U9, V6),
respectively. Then, obtain the fuzzy logical relationship group whose previous state
is ((U4, V6), (U9, V6)) from Table 9. In this case, the fuzzy logical relationship group
is ((U4, V6), (U9, V6)) → U13 (i.e., Group 2). Therefore, Rule 1 is applicable here,
because in the current state, only one fuzzified value is available. Now, find the interval
where the maximum membership value for fuzzy set U13 occurs from Table 3, which
is a13. The interval a13 has the centroid 30.73, which is the forecasted temperature
for day, D(June 4).

The daily average temperature of June 1996 is forecasted based on the two-factors second-
order fuzzy logical time series, which is shown in Table 10.
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Table 10 Forecasted daily
average temperature of June 1996
based on the two-factors
second-order fuzzy logical time
series (Unit: ◦C)

Day Actual
temperature

Actual cloud
density

Forecasted
temperature

1 26.1 36 –

2 27.6 23 –

3 29.0 23 29.00

4 30.5 10 30.73

5 30.0 13 30.18

6 29.5 30 29.57

7 29.7 45 29.10

8 29.4 35 29.37

9 28.8 26 28.75

10 29.4 21 29.37

11 29.3 43 29.37

12 28.5 40 28.45

13 28.7 30 28.75

14 27.5 29 27.55

15 29.5 30 29.57

16 28.8 46 29.10

17 29.0 55 29.00

18 30.3 19 30.18

19 30.2 15 30.18

20 30.9 56 30.73

21 30.8 60 30.73

22 28.7 96 28.75

23 27.8 63 27.80

24 27.4 28 27.40

25 27.7 14 27.70

26 27.1 25 27.10

27 28.4 29 28.45

28 27.8 55 27.80

29 29.0 29 29.00

30 30.2 19 30.18

5 Experimental results

The proposed model computes the forecasted values with the help of hybridization of ANN
(SOFM neural network) with the fuzzy time series. For training process, the daily temperature
and the daily cloud density data sets from June 1, 1996 to June 30, 1996, are employed. In the
testing process, the data sets of the daily temperature and the daily cloud density from July
1996 to September 1996 are used. During the learning process of neural network, different
experiments were made to set additional parameters like learning rate, epochs, initial weight,
learning radius, etc. to obtain optimal results, and we have chosen the ones that exhibit the
best behavior in terms of accuracy. The determined optimal values of all these parameters
are listed in Table 11.
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Table 11 Additional parameters and their values during the learning process of SOFM neural network

Serial Number List of additional parameter Value

1 Learning Rate 0.5

2 Epochs 100

3 Initial Weight 0.3

4 Learning Radius 3

5 Optimum number of intervals for main factor (June) 13

Optimum number of intervals for second factor (June) 15

6 Optimum number of intervals for main factor (July) 12

Optimum number of intervals for second factor (July) 15

7 Optimum number of intervals for main factor (August) 16

Optimum number of intervals for second factor (August) 15

8 Optimum number of intervals for main factor (September) 15

Optimum number of intervals for second factor (September) 15

The main downside of fuzzy time series forecasting model is that increase in the number
of intervals increases accuracy rate of forecasting, and decreases the fuzziness of time series
data sets. Therefore, in this study, the parameter called “optimum number of intervals” for
the main-factor and second-factor time series data sets are decided using a heuristic approach.
We have tried different values for this parameter, and calculate the average forecasting error
rate (AFER) for different orders for the months – June, July, August and September. The
equation for AFER is presented next.

AF E R = |Fi − Ai |/Ai

N
× 100% (12)

Here, Ai and Fi denote the actual and forecasted temperature for day i , and N denotes
the total number of days to be forecasted.

All these experimental results are plotted in graphs for different orders and intervals as
shown in Fig. 2, and we have chosen the “optimum number of intervals” (shown in Table 11)
for the main factor and second factor that exhibit the best behavior in terms of AFER. The
experimental results of our proposed model are presented in Table 12 in terms of AFER. The
forecasting results of the proposed model are then compared with existing models proposed
by Chen and Hwang [5], Lee et al. [20], Lee et al. [18], Lee et al. [19], Chang and Chen [3],
and Wang and Chen [32]. The comparative analyses in Tables 12, 13, 14, 15, 16, 17 and 18
signify that our proposed model exhibits higher accuracy than those of considered competing
models [5,3,18–20,32].

6 Conclusions and directions for future work

In this paper, a new model is proposed for handling two-factors forecasting problems based
on the hybridization of ANN with fuzzy time series. For generation of intervals of time series
data sets, SOFM neural network is used. Then, some proposed rules of interval weighing are
used to compute the forecasted values. From empirical analyses of experimental results, it is
evident that our model is superior compared to the considered competing models in terms of
accuracy.
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Fig. 2 AFER curves for June,
July, August and September (top
to bottom) with different orders
and intervals
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Table 12 The average forecasting error rates to forecast the temperature from June 1996 to September 1996
in Taipei for different orders based on proposed model

Month Order

First (%) Second (%) Third (%) Fourth (%) Fifth (%) Sixth (%) Seventh (%) Eighth (%)

June 0.27 0.27 0.28 0.27 0.25 0.25 0.18 0.18

July 0.23 0.23 0.23 0.23 0.23 0.23 0.22 0.22

August 0.12 0.12 0.12 0.13 0.13 0.17 0.13 0.13

September 0.27 0.27 0.28 0.28 0.29 0.30 0.30 0.29

Table 13 The average forecasting error rates to forecast the temperature from June 1996 to September 1996
in Taipei with different window bases based on Chen and Hwang [5] model

Month Window bases

w = 2 (%) w = 3 (%) w = 4 (%) w = 5 (%) w = 6 (%) w = 7 (%) w = 8 (%)

June 2.88 3.16 3.24 3.33 3.39 3.53 3.67

July 3.04 3.76 4.08 4.17 4.35 4.38 4.56

August 2.75 2.77 3.30 3.40 3.18 3.15 3.19

September 3.29 3.10 3.19 3.22 3.39 3.38 3.29

Table 14 The average forecasting error rates to forecast the temperature from June 1996 to September 1996
in Taipei for different orders based on Lee et al. [20] model

Month Order

First (%) Second (%) Third (%) Fourth (%) Fifth (%) Sixth (%) Seventh (%) Eighth (%)

June 1.44 0.80 0.76 0.79 0.76 0.79 0.79 0.81

July 1.59 0.96 0.96 0.98 0.97 1.00 0.98 0.99

August 1.26 1.07 1.06 1.08 1.08 1.09 1.07 1.07

September 1.89 1.01 0.9 0.94 0.96 0.95 0.95 0.92

Table 15 The average forecasting error rates to forecast the temperature from June 1996 to September 1996
in Taipei for different orders based on Lee et al. [18] model

Month Order

First (%) Second (%) Third (%) Fourth (%) Fifth (%) Sixth (%) Seventh (%) Eighth (%)

June 1.24 0.74 0.64 0.72 0.65 0.66 0.64 0.65

July 1.23 0.78 0.73 0.83 0.70 0.71 0.68 0.69

August 1.09 0.92 0.88 1.07 0.75 0.76 0.75 0.73

September 1.28 0.91 0.86 1.03 0.87 0.97 0.84 0.82
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Table 16 The average forecasting error rates to forecast the temperature from June 1996 to September 1996
in Taipei for different orders based on Lee et al. [19] model

Annealing
constant α

Month Order

First
(%)

Second
(%)

Third
(%)

Fourth
(%)

Fifth
(%)

Sixth
(%)

Seventh
(%)

Eighth
(%)

0.25 June 0.79 0.44 0.42 0.42 0.42 0.44 0.40 0.40

July 0.66 0.45 0.42 0.41 0.41 0.40 0.41 0.40

August 0.64 0.43 0.47 0.40 0.41 0.38 0.40 0.45

September 0.69 0.58 0.59 0.57 0.56 0.57 0.58 0.47

0.5 June 0.84 0.50 0.45 0.42 0.38 0.43 0.39 0.46

July 0.66 0.50 0.47 0.44 0.40 0.38 0.44 0.42

August 0.69 0.40 0.38 0.37 0.37 0.39 0.42 0.45

September 0.66 0.62 0.59 0.59 0.56 0.54 0.56 0.53

0.9 June 0.79 0.46 0.42 0.44 0.42 0.41 0.46 0.39

July 0.62 0.46 0.45 0.44 0.44 0.41 0.40 0.40

August 0.66 0.40 0.40 0.40 0.36 0.41 0.39 0.44

September 0.62 0.59 0.61 0.57 0.54 0.59 0.57 0.50

Table 17 The average forecasting error rates to forecast the temperature from June 1996 to September 1996
in Taipei with different window bases (fifteen generated fuzzy rules) based on Chang and Chen [3] model

Month Window bases

w = 2 (%) w = 3 (%) w = 4 (%) w = 5 (%) w = 6 (%) w = 7 (%) w = 8 (%)

June 1.70 1.50 1.38 1.37 1.28 1.13 0.97

July 1.62 1.77 1.74 1.68 1.77 1.72 3.04

August 1.60 1.48 1.24 1.30 1.28 2.41 2.97

September 1.44 1.51 1.35 1.20 2.02 2.49 2.42

Table 18 The average forecasting error rates to forecast the temperature from June 1996 to September 1996
in Taipei for different orders based on Wang and Chen [32] model

Month Order

First (%) Second (%) Third (%) Fourth (%) Fifth (%) Sixth (%) Seventh (%) Eighth (%)

June 0.53 0.28 0.29 0.30 0.29 0.29 0.28 0.29

July 0.71 0.34 0.35 0.34 0.34 0.35 0.33 0.32

August 0.32 0.23 0.22 0.22 0.22 0.23 0.23 0.22

September 0.74 0.51 0.49 0.51 0.51 0.53 0.5 0.51

Still, there are scopes to apply the model in some other domains in a flexible way as
follows:

1. To check the accuracy and performance of the model by forecasting the temperature for
different regions,
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2. To test the performance of the model for different types of financial, stocks and marketing
data sets, and

3. To enhance this model so that it can deal with multi-dimensional time series data set.
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