Knowl Inf Syst (2014) 38:623-639
DOI 10.1007/s10115-012-0602-x

REGULAR PAPER

DFSP: a Depth-First SPelling algorithm for sequential
pattern mining of biological sequences

Vance Chiang-Chi Liao - Ming-Syan Chen

Received: 13 July 2011 / Revised: 19 August 2012 / Accepted: 19 December 2012 /
Published online: 26 January 2013
© Springer-Verlag London 2013

Abstract Scientific progress in recent years has led to the generation of huge amounts of
biological data, most of which remains unanalyzed. Mining the data may provide insights
into various realms of biology, such as finding co-occurring biosequences, which are
essential for biological data mining and analysis. Data mining techniques like sequential pat-
tern mining may reveal implicitly meaningful patterns among the DNA or protein sequences.
If biologists hope to unlock the potential of sequential pattern mining in their field, it is neces-
sary to move away from traditional sequential pattern mining algorithms, because they have
difficulty handling a small number of items and long sequences in biological data, such as
gene and protein sequences. To address the problem, we propose an approach called Depth-
First SPelling (DFSP) algorithm for mining sequential patterns in biological sequences. The
algorithm’s processing speed is faster than that of PrefixSpan, its leading competitor, and it
is superior to other sequential pattern mining algorithms for biological sequences.

Keywords Sequential patterns - Pattern mining - Data mining - Bioinformatics

1 Introduction

Biological experiments have generated vast amounts of data, most of which remains
unanalyzed. How to process the data and utilize the results in practical applications are
therefore important areas of research. Data mining is a step in process used to discover
knowledge in a database. In general, the objective of data mining is to discover implicit
knowledge and special relationships automatically. Mining the biological data can help biol-
ogists discover implicit biological knowledge. Data mining techniques include association

V. C.-C. Liao () - M.-S. Chen

Department of Electrical Engineering, National Taiwan University,
Taipei, Taiwan

e-mail: chiangchi @arbor.ee.ntu.edu.tw

M.-S. Chen

e-mail: mschen@cc.ee.ntu.edu.tw

@ Springer



624 V. C.-C. Liao, M.-S. Chen

rules, sequential patterns, classification, clustering, and time series [8,12]. Applying these
techniques to process numerous biological data are important issues.

There are some important issues about biological data analysis or biological data
mining, such as finding co-occurring biological sequences, effective classification of bio-
logical sequences, and cluster analysis of biological sequences [6,11,39]. Sequential pattern
mining algorithms facilitate identification of co-occurring biological sequences and the dis-
covery of relationships in DNA or protein sequences [17,18]. In the field of biology, it has
been shown that sequential pattern mining is useful for identifying hot regions in protein—
protein interactions, predicting transcription factor binding sites, selecting representative
characteristics, classifying biosequences, compiling gene regulatory expression profiles, and
recognizing protein folds.

Frequent pattern mining and sequential pattern mining have broad applications, such as
mining web log patterns, biological patterns, purchasing patterns, and so on. Here are some
recent relevant papers, which are published in 2011. Generating web navigation patterns
is integrated with semantic information [33]. The text mining and association rule mining
methods are used to handle the warranty data [31]. For describing the data, the most interesting
itemsets are discovered [23]. For interval-based data, closed temporal patterns are generated
efficiently [9]. The specific graph structure is used to generate top-k maximal frequent item-
sets [32]. The video event is detected by high-level semantic trajectory [36]. The unified
view of the various apriori-based frequency counting methods is proposed for serial episodes
[1]. Mining sequential patterns has generated a great deal of interest in the academic com-
munity because of its perceived usefulness. As a result, a large number of approaches have
been proposed, for example, traditional sequential pattern mining [2,4,5,13,14,27,34,40,41],
incremental sequential pattern mining [10,21,25,26], progressive sequential pattern mining
[19], closed sequential pattern mining [35,38], maximal sequential pattern mining [22],
and sequential pattern mining of data streams [16,24]. In general, traditional sequential
pattern mining algorithms have two famous types, apriori-based approaches [5,34,41] and
projection-based approaches [14,27,30] for technique aspects. The two types of algorithms
have numerous variations and applications.

In traditional frequent pattern mining methods, WAP-tree [29] does not suit for the
biological sequential pattern mining problem, because these sequences will make it too much
branches. The mining process will cost a lot of memory and execution time. The header table
of H-struct [28] cannot handle the repeatable items of sequences in sequential pattern mining
problem. In the traditional sequential pattern mining problem, a large number of items and
shorter sequences are in opposition to biological sequences. Gene and protein sequences have
two distinctive features. First, gene and protein sequences are made up of combinations of
four letters and twenty letters, respectively. Second, they are usually hundreds or thousands
of length. Traditional sequential pattern mining algorithms have difficulty handling a small
number of items and long sequences in biological data. Consequently, they are not effective
in mining biological sequences. The projection-based pattern growth algorithms mentioned
above in traditional sequential pattern mining are used to process long sequences, but the
running time is excessive. They need to construct and scan corresponding projected databases
many times to generate long sequential patterns. Apriori-based algorithms, the other type of
algorithm used in traditional sequential pattern mining, have the same limitation, that is, a
long processing time. Furthermore, both types of algorithms are designed to handle a large
number of items and shorter sequences, such as transaction sequences; therefore, they cannot
process biological sequences efficiently.

In an attempt to move away from traditional sequential pattern mining algorithms and solve
the problems they pose, we propose a novel approach called the Depth-First SPelling (DFSP)

@ Springer



DFSP: a Depth-First SPelling algorithm for sequential pattern mining of biological sequences 625

algorithm for sequential pattern mining of biological sequences. Compared with the above-
mentioned traditional algorithms, DFSP has a shorter running time when mining biological
sequences. There are two reasons for its superior performance. First, the three-dimensional
list of sequences, which has three dimensions, is constructed by only scanning the database
once. Second, sequential patterns are generated by our DFSP-Expansion algorithm, which
involves two steps: (a) depth-first spelling the candidate sequential patterns and (b) verifying
the patterns by using direct access to the first two dimensions of the three-dimensional list,
and a binary search (finding a larger minimum value) for index in the third dimension. Then,
the present sites are written to the counting sequence site, which can be counted for the
pattern support. If the candidate patterns satisfy the support constraint, they are regarded as
sequential patterns. The DFSP-Expansion component utilizes a depth-first recursive process
and keeps running recursively until all the spelling processes stop.

Some traditional biological research and biological computing problems [3,7,15,20] are
related to sequential pattern mining problems. In the biological computing domain, motif
finding problems involve finding a set of /-mers that represent strings of length /,while
sequence alignment problems involve computing sequence similarities. Sequential patterns
of biological sequences represent to have been conserved in biological sequences during long
evolution which may be useful functions in biology. The 2PDF method [37] was the first
sequential pattern mining algorithm designed specifically for biological sequences. In contrast
to the complete set of patterns in traditional sequential pattern mining problems, the 2PDF
method generates new and different types of patterns, which have the form “Py % Py % - - - %
Pix---xP,_1 % P,.” “P;” denotes a frequent segment. A segment that is longer than MinLen
(minimum segment length) is called a frequent segment. The symbol “x” represents the
arbitrary lengths of items or gaps. Segments are extracted from all sequences by a generalized
suffix tree. The segment tree (composed of the segments) is used to generate the pattern tree
in the 2PDF method. Only setting MinLen =1 for the 2PDF method represents that the method
mines the complete set of sequential patterns. The complete set of sequential patterns means
that the complete set of all length sequential patterns such as {(A), (T), (C), (G)} may be
the complete set of length 1 sequential patterns in DNA sequences. The segment tree in the
2PDF method is too large when MinLen =1, and the pattern tree in the method is generated by
a combinatorial method; thus, these techniques generate too many patterns (all combinations
of the “*” site). For example, if the DFSP, SPAM [5], or PrefixSpan [27] merely generates
the pattern “a*b*c*d,” the 2PDF method may generate the patterns “abc*d,” “ab*cd,”
“a*bcd,” “ab*c*d,” “a*bc*d,” “a*b*cd,” and “a*b*c*d.” This example obviously shows
that the 2PDF method mines too many patterns for biological sequences.

Our complexity analysis and experimental results show that the DFSP algorithm is one
of the fastest known algorithms for sequential pattern mining of biological sequences. It
is faster than PrefixSpan [27], one of the fastest traditional-type sequential pattern mining
algorithms. We find that PrefixSpan is faster and requires less space than SPAM [5], 2PDF-
Index, and 2PDF-Compression [37] when mining the complete set of sequential patterns.
This experimental result is shown in Fig. 8 in [37]. To evaluate the DFSP algorithm, we
conducted a series of experiments. First, we used DFSP and PrefixSpan to process simulated
DNA and protein sequences and compared the results. Then, we compared the algorithms’
performance in processing various parameters in simulated biological sequences and process-
ing actual biological sequences for validation. The results show that DFSP algorithm
processes biological sequences faster than PrefixSpan and it is more scalable.

Several reasons account for DFSP’s superior processing speed and scalability. We compare
DFSP with projection-based pattern growth algorithms and the 2PDF method. First, unlike
traditional projection-based pattern growth algorithms like PrefixSpan, DFSP algorithm does

@ Springer



626 V. C.-C. Liao, M.-S. Chen

not need to construct corresponding projected databases, so it also does not have to scan
that databases. Thus, it saves recursively projecting and scanning time. For example, for a
biological sequence {X : atacgat,Y : atcacga, Z : taacgca} with minimum support A
equal to 3, PrefixSpan must first scan all sequences to generate frequent items { “a,” ”t,” "c,”
”g”}. Then, it generates projected databases for “a,” “t,” “c,” and “g” individually. The pro-
jected databases are {tacgat,tcacga, acgca},{acgat, cacga, aacgca},{gat,acga, gca},
and {at, a, ca}, respectively. After projecting projected database of “a,” PrefixSpan scans all
the sequences in the projected database of “a” to generate frequent items {“a,” "¢,” ’g,”}
and then generates projected databases for “aa,” “ac,” and “ag” individually. PrefixSpan
projects the databases recursively until it cannot generate any more frequent items, as shown
in Fig. 1.

Algorithm DFSP-Expansion (W, C, P)

Require: The three-dimensional list P and the support threshold A.

Ensure: The complete set of sequential patterns

1. forS=1toN do /* Nis the number of sequences.*/
2. Initialize flag = false;

3. Initialize first = 1;

4. Initialize last = the length of P(W, S) in the list;
5. /* Wis the letter. */

6. Initialize count = 0;

7. if C(S) has a value then

8. /* C is the counting sequence site. */
9. while first £ last

10. m = (first + last) / 2;

11. if C(S) less than P(W, S, m) then
12. near = P(W, S, m);

13. last=m -1,

14. flag = true;

15. else

16. first=m+1;

17. end if

18. end while

19. end if

20. if flag equals true then

21. C(S) = near;

22. count = count + 1;

23. else

24, C(S) =null;

25. end if

26. if count 2 ) then

27. break;

28. end if

29. end for

30. if count 2 ) then

31. for each letter 7 do,

32. call DFSP-Expansion (W, C, P);
33. end for

34. end if

Second, unlike the 2PDF-Index and 2PDF-Compression algorithms, DFSP does not need
to construct a generalized suffix tree. Furthermore, it does not need to link entries, construct
segment trees, or maintain auxiliary sets. For example, in the biological sequence {X :
atacgat,Y : atcacga, Z : taacgca}, whose minimum segment length is 1 and minimum

support A is 2, { “a,” “l‘,” “C,” “g,” “at,” “ac,” “ta,” “ca,” “Cg,” “ga,” “Lng,” “Cgél,” and

@ Springer



DFSP: a Depth-First SPelling algorithm for sequential pattern mining of biological sequences 627

Sequence number | Synthetic sequence

Sequence X atacgal
Sequence Y atcacga
Sequence £ taacgea

Y
PrefixSpan scans all sequences in
the first to generate frequent items

T T

{27, "0 e g

Projected database Projected database Projected database Projected database
of “a” of “t” of “¢” of “g”
facgat acgal gat at
fcacga cacga acga a
acgea aacgea gea ca
v v v \/

PrefixSpan scans all
sequences in the
projected database of
“a” to generate frequent

items {“a™,"c”,"g"}.

 J
Projected database Projected database Projected database
of “aa™ of “ac™ of “ag”
cgat Lat al
cga acga a
cgea gea ca

v v .

Fig. 1 An example of the partial PrefixSpan process

“acga”} are frequent segments generated from the constructed generalized suffix tree by
2PDF-Index and 2PDF-Compression algorithms. The actions of linking entries for 2PDF-
Index are in the SP-index. For example, the leaf entries for the SP-index of the base segment
“a”are ((s1, 1), ptr), (s1, 3), ptn, (s1, 6), nil), (s2, 1), ptr), (s2,4), ptr), ({(s2,7), nil),
((s3, 2), ptr), ({s3, 3), ptr), and ({(s3, 7), nil). Each “ptr” links to the leaf entry for next
base segment in the SP-index, as shown in Fig. 2. Then, the 2PDF method organizes { “a,”
acg,’ “cga,’

99 66,99 GC 99 G 99 ¢

“t)”“c) “g) “at,

99 < 99 ¢ 99 < 99 ¢
s

ac) “ta) “ca) “cg) “ga cga,” “acga’} into the segment tree

@ Springer



628 V. C.-C. Liao, M.-S. Chen

Bl:a | (<s1,1>ptr), (<s1,3> er) (st B ptr), (<s2,15 ~pine As24= plr)
2 T (<827~ ml) (<s3,2> nll}{ \3 3= ), (=837 ml) 2
B2:t - 3
B3:c >
v o -
B4:g > (<s1.5>,ptr), (Ss26F,ptF), (<83,57ptr) .=
Root Directory SP-trees

Fig. 2 An example of the SP-index for 2PDF-index

Fig. 3 An example of the segment tree in the 2PDF method

by the prefix order relation shown in Fig. 3 and uses all the segments to recursively generate
the frequent patterns shown in Fig. 4. The auxiliary sets of the 2PDF method maintain the
items of the set in this branch, which would not occur in the lower level of this branch, but
the auxiliary sets need a great deal of maintenance and verification time.

The remainder of this paper is organized as follows. Sect. 2 defines the problem of the
sequential pattern mining for biological sequences. The DFSP algorithm and complexity
analysis are presented in Sect. 3; the experimental results are discussed in Sect. 4. Section 5
contains some concluding remarks.

2 Problem definition
LetI = {i1,i2,...,ia} be the set of all letters. In addition, let A = 4 be a simulated DNA

sequence and A = 20 be a simulated protein sequence. A sequence is an ordered list of letters.
A sequence s is denoted by {s1, 52, 53, ..., 5}, where s; is a letter. In general, biological

@ Springer



DFSP: a Depth-First SPelling algorithm for sequential pattern mining of biological sequences 629

ST
{ Root >
S
/__R""FFI ™
(a4 )
T
P e \/—-—4\ = ;-——q,\_‘“ ;a--_q,\ :-ﬁ-——/:-—-—_\
Ay ) (arwy ) (Acws) ( rowey N cowm ) (came V( caovia )fu. AW Lr,rum)c G- lrIIHJ
]\ J 3 A
e S~ N S \“““‘17:—-__ N \ﬂ_ — g
T e __,_‘__.c"‘“x._hk 9] \ "A

/—"L-\ :
Kmm l/.‘::;\)(::.;\\l((ml:‘; ;(qu(nn 8 \( {..ru.ru)

o

(" awvi )( s \.l/!:l_f '; ml r; frum

1wy )-/mu 1))
AN,

Fig. 4 An example of a partial pattern tree in the 2PDF method

sequences are long, and a letter can appear several times in a sequence. The support count of
a sequence « is the number of tuples containing « in the biological DB. If the support count
is larger than the minimum support count, then the sequence « is called a sequential pattern.
Basically, the problem is not limited with any kinds of biological sequences. The following
is an example of a biological sequence: {X : atacgat, Y : atcacga, Z : taacgca}.

3 The DFSP algorithm and its complexity

In this section, we introduce the Depth-First SPelling (DFSP) algorithm for sequential pattern
mining of biological sequences. First, we describe in more detail what the DFSP algorithm
is in Sect. 3.1 and then provide an example of the algorithm in Sect. 3.2. Finally, we analyze
its complexity.

3.1 The DFSP algorithm

The DFSP algorithm is executed in two steps. First, a three-dimensional list is constructed
by scanning the given biological database once, and then the DFSP-Expansion operation
generates sequential patterns. Spelling candidate sequential patterns and verifying the pat-
terns are contained in DFSP-Expansion. Direct access and the binary search with the three-
dimensional list are included in the verification process. The site of the next occurrence of
each letter depends on the letter’s prefix in each pattern generating process. Consequently,
we design the three-dimensional list and the counting sequence site for DFSP-Expansion.
For the counting sequence site, the site of the next occurrence cannot be stored in advance
because it is not known and the total number of possible sites for the next occurrence is too
large.

Definition 1 (The three-dimensional list). The three-dimensional list has three dimensions:
the numbers of letter A;, the numbers of sequence E;, and the numbers of the site Wy,

@ Springer



630 V. C.-C. Liao, M.-S. Chen

(a) S 1|36

/! S b= 2 7
/'f
{ / | $: be 2
il
7 ~ Sy = 1
C iy S = 4
6 | NSifess
\\
N\ S;it= 4| 6
\ L]

Fig. 5 a An example of a three-dimensional list. b An example of a partial DFSP-Expansion

which represents the letter A; of the first dimension occurring in the sequences of the second
dimension E;.

The sequence number E; is the number of each sequence. The site number Wy is the
number of each position. Figure 5a shows an example of a three-dimensional list.

Definition 2 (Counting sequence site in the three-dimensional list). The counting sequence
site. C; represents Wy in each E; in the spelling sequential pattern process. Let a =
(t112. . .t,—1) be a sequential pattern in a biological database D, and let 8 = (t12. . .ty—1ty)
be a sequence with the prefix «. Wy represents the counting sequence site C; of 8. (W) may
not have a value in each E). The value of Wy, which is determined by using the letter (t,)
in each E; on the three-dimensional list, must be larger than the counting sequence site C;
of a.

@ Springer



DFSP: a Depth-First SPelling algorithm for sequential pattern mining of biological sequences 631

For the pattern, the counting sequence site records the positions of the latest item in each
sequence. The value of each position for the counting sequence site represents that it must
be instead by the smallest one of lager positions in the next time. If it can find larger one,
it represents contributing one support count to the candidate pattern; otherwise, it does not
need to search the sequence below this pattern hereafter.

Definition 3 (Support count for the DFSP algorithm). The support count of § is the number
of the attributes that have value in counting sequence site C;. A pattern f is regarded as a
sequential pattern only if the support count y is larger than the minimum support count.

The DFSP algorithm is assured to generate the complete set of sequential patterns. DFSP’s
pattern generating method is clearly different to that of PrefixSpan, but both algorithms
generate the complete set of sequential patterns in the same order. Similar to the proof of
PrefixSpan, the problem partitioning technique is used to show that the DFSP generates the
complete set of sequential patterns.

3.2 Example: the DFSP algorithm

The following example illustrates the execution of the DFSP algorithm. In this example, DFSP
mines a set of letters {a, ¢, ¢, g} in the sequence database D, {X : atacgat, Y : atcacga, Z :
taacgca} with a minimum support A = 3. The steps are as follows:

1. Scan D once to build a three-dimensional list, as shown in Fig. Sa.

DFSP scans the sequence S and put the scanned letter A; into the three-dimensional list with
the value Wy.

2. Find sequential patterns using DFSP-Expansion, as shown in Fig. Sb:

(i) DFSP depth-firstly process spells letter / in order to enumerate candidate sequential
patterns «.
(ii) DFSP verifies that the support of candidate pattern o is larger than the minimum
support by using the three-dimensional list and the counting sequence site C;.
(iii) If the support of a candidate pattern « is larger than the minimum support, the pattern
is a real sequential pattern and the process keeps running recursively.

Letus look at the above steps in more detail. In the example shown in Fig. 5a, “T” occurs in
positions 2 and 7 of the sequence X, which represents Sj. In Fig. 5b, the depth-firstly process
spells the candidate pattern “CA.” The values in dimension “A” of the three-dimensional list
are searched in order to find a minimum value that is larger than the value in the CI site. This
search technique is the binary search. Its pseudo codes are from line 9 to line 18 in Algorithm
DFSP-Expansion. We find that 6 is larger than 4 in Sy, 4 is larger than 3 in S,, and 7 is larger
than 4 in S3. The new CI (6, 4, 7) is larger than the previous CI (4, 3, 4). The support is
greater than the minimum support 3, so the candidate pattern “CA” is a sequential pattern
(support = 3). The process continues to depth-firstly spell and verify candidate sequential
patterns. Then, another candidate pattern “AT” is looked at. The values in dimension “T” of the
three-dimensional list are searched. No value is larger than 2 in S3, so the new Clis (2, 2, -) and
the supportis 2. Thus, the candidate pattern “AT” is not a sequential pattern. Since this spelling
candidate pattern fails, the process will not continue to spell subsequent candidate patterns
after this candidate pattern. The counting sequence site and the binary search technologies
are effective especially in longer candidate patterns and more sequences. DFSP outperforms
PrefixSpan in terms of mining sequential patterns of the complete set in biological sequences

@ Springer



632 V. C.-C. Liao, M.-S. Chen

because of its conciseness, suitability (for few letters and long sequence lengths), and fewer
redundant actions (in opposition to other sequential pattern mining algorithms for biological
sequences).

3.3 Complexity analysis

PrefixSpan, one of the fastest traditional algorithms, mines the complete set of sequential
patterns faster than SPAM, 2PDF-Index, and 2PDF-Compression. We therefore analyze and
compare the time complexity of the proposed DFSP algorithm with that of PrefixSpan as
opposed to any of the others. The sequential patterns identified by the DFSP are the same
as PrefixSpan. In the following discussion, “L” denotes the length of a sequence, “A” is the
number of letters, “N” is the number of sequences, and “P” is the projecting time of an
item. We make two assumptions: (i) The minimum support count is 1 and (ii) the items are in
uniform distribution. The assumptions do not have loss of fairness to compare the complexity
of DFSP with that of PrefixSpan.

The process for deriving the complexity of our algorithm is explained below. The time
complexity of scanning a database to build the three-dimensional list is O (L N); the number
of building nodes for DFSP-Expansion is less than O (2L —2L~4) = 0(2F); and the number
of next level nodes created in the spelling process is less than O (A). The average value for
the numbers of site number in the three-dimensional list is (L/A). Each verification of a
candidate sequential pattern with the three-dimensional list takes O (N (log, %)) time. The
total time complexity of DESP is O(LN) + 0(2L) x 0(4) x O(N(log, %)) = O(LN +
2L AN (log, %)). For biological sequences where L is large and A is small, the total time
complexity of DFSP is O (2L N(log, L)).

PrefixSpan requires O(LN) time to scan a database and count the number of frequent
items. The number of building projected databases for PrefixSpan is less than O (2L —
2L=4y = 0(2%). The algorithm scans each sequence to count frequent items and project
them to the next level of process; thus, the time cost is O(NLA + PNLA). O(LN) +
02 x O(NLA+PNLA) = O(LN+2YANL+2L PANL) is the total time complexity
of PrefixSpan. O (2L N L 42 PN L) is the total time complexity of PrefixSpan for biological
sequences in which L is large and A is small.

The above complexities, O (LN + 2L AN (log, %)) and O(LN +2LANL +2LPANL),
show that DFSP algorithm can mine a database faster than PrefixSpan when L is large and
A is small. In biological sequences, L is large and A is small; thus, the time complexity
is O(ZLN(10g2 L)) and OQRENL + 28 PNL) for DFSP and PrefixSpan, respectively.
O(log, L) and O(L + PL) is the major difference between these two algorithms, so DFSP
can mine biological sequences much faster than PrefixSpan.

4 Performance evaluation

We conducted a number of experiments to evaluate the performance of DFSP. In Sect. 4.1, we
compare DFSP’s performance with that of PrefixSpan in mining simulated DNA and protein
sequences. In Sect. 4.2, we test various parameters and real biological data for the two
algorithms; in Sect. 4.3, we explain why DFSP outperforms PrefixSpan. All the experiments
were performed on a 3.20 GHz Pentium(R) 4 PC with 1 GB of RAM. The operating system
was Microsoft Windows XP Professional (2002); the programs were written in Microsoft
Visual C++ 6.0.

@ Springer



DFSP: a Depth-First SPelling algorithm for sequential pattern mining of biological sequences 633

(a) (b)
1600 — 160
< 1400 =—fr— PrefixSpan 3 140 —#&— PrefixSpan
§ 1200 —— DFSP § 120 —*— DFSP
2 1000 R SPAM 2 100
£ 800 E 80
o 600 Qo 60
E 400 £ 40
= =
= 200 = 20
2 7 g
0.45 0.55 0.65 0.75 0.85 0.2 0.25 0.3 0.35 0.4
Minimum support Minimum support
(c) (d)
~ 1400 —~ 1600
2 fixSpz A —2A— PrefixSpan
< 1200 —A—PrefixSpan | <3 1400 P
=] =]
—%— DFSP —%— DFSP
o
w2 w
800
£ £ 800
> 000 o 600
£ 400 E 400
£ 200 S 200
=] =]
[~ 0 —— & 0 ——
0.2 0.25 0.3 0.35 0.4 0.4 0.45 0.5 0.55 0.6
Minimum support Minimum support

Fig. 6 a Execution Time (L = 25,A = 4, and N = 1,000). b Execution Time (L = 25, A = 4, and
N = 1,000). ¢ Execution Time (L = 30, A = 4, and N = 1,000). d Execution Time (L = 35, A = 4, and
1,000)

4.1 Simulated DNA and protein sequences

The synthetic DNA and protein sequence data used in the experiments followed [34]. In the
following discussion, L represents the length of a sequence, A is the number of letters, N is
the number of sequences, and S is the minimum support.

When A =4 (for simulated DNA sequences), L is increased from 25 to 35, as shown in
Fig. 6a—d. According to Fig. 6a, both DFSP and PrefixSpan mine the data much faster than
SPAM. However, Fig. 6b—d show that DFSP outperforms PrefixSpan on the datasets. In each
figure, the horizontal axis represents the minimum support, and the vertical axis represents
the runtime (in seconds). The number of letters, which are simulated DNA sequences in this
experiment, is 4; the number of sequences is 1,000; and the lengths of the sequences are 25,
30, and 35. The runtime rate is equal to PrefixSpan’s runtime divided by that of DFSP. The
runtime rates in Fig. 6d are 15.41, 16.03, 16.07, 20.33, and 20.38. The rate increases as the
minimum support gets larger. In other words, the runtime of one is lower than the other.

When A =20 (for simulated protein sequences), L is increased from 25 to 35, as shown
in Fig. 7a—d. Figure 7a shows that DFSP and PrefixSpan perform much faster than SPAM.
However, as shown in Figs. 7b—d, DFSP outperforms PrefixSpan. The number of letters,
which are simulated protein sequences in this experiment, is 20; the number of sequences
is 1,000; and the lengths of the sequences are 25, 30, and 35. Compared to the results in
Figs. 6b—d, when A gets larger and L remains the same, the runtime is shorter. Both DFSP
and PrefixSpan generate far fewer sequential patterns where A increases, but L and S remain
the same. In situations where the minimum support countis 1, A gets larger, and L remains the
same, the runtimes of DFSP and PrefixSpan are longer than in situations where the minimum
support is large enough. This is because the algorithms have to generate more sequential
patterns. The runtime rates in Fig. 7d are 4.95, 5.06, 5.10, 5.27, and 5.52. The rate increases

@ Springer



634 V. C.-C. Liao, M.-S. Chen

(a) (b)
— 700 ~ 16 -
D 600+ —a— PrefixSpan| 4 14 —aA— PrefixSpan
g —— DFSP g —%— DFSP
§ 500 | —=— SPAM 8 10
v
2 400f i
;’ 300 ~
L 6
E 200 £,
= 100 E X—M\x
= 5 2
) ~ 0
0.35 0.355 0.36 0.365 0.37 0.11 0.115 0.12 0.125 0.13
Minimum support Minimum support
(©) (d)

)

)
%)
W

—2A— PrefixSpan
—>— DFSP

—2#— PrefixSpan
—>*— DFSP

o8]
(=}
T

Runtime (in seconds)
o

Runtime (in seconds)

5 X\x\\ 5F X\x\x\x\x
0.16 0.17 0.18 0.19 0.2 023 024 025 026 0.27

Minimum support Minimum support

Fig. 7 a Execution Time (L = 25, A = 20, and N = 1,000). b Execution Time (L = 25, A = 20, and
N = 1,000). ¢ Execution Time (L = 30, A = 20, and N = 1,000). d Execution Time (L = 35, A = 20, and
N = 1,000)

(a) (b)
- 600 - . 450 -
3 s00 | —A— PrefixSpan 2 400 —A— PrefixSpan
E —¥—DFSP £ 350 —*—DFSP
g 400 —W—SPAM 3 300
250
= L g
< 30 =200
g 200} g 150
b= ‘2100
g 100 g 50
~ 0 * ~ 0
500 1000 1500 2000 2500 4000 5000 6000 7000 8000 9000
Number of sequences Number of sequences

Fig. 8 a Execution Time (L =30, A =4, and S = 0.9). b Execution Time (L = 30, A =4, and S = 0.9)

as the minimum support gets larger. With A=4 and A =20, the runtime rate is lower when
the minimum support is lower, or A is larger. The larger the value of A, the lower will be the
runtime rate.

4.2 Various parameters and real data

We used various parameters and real biological sequences to compare the performance of
DFSP with that of PrefixSpan. When N is increased, both algorithms mine much faster
than SPAM as shown in Fig. 8a. However, DFSP outperforms PrefixSpan when N is larger
(Fig. 8b). The length of the sequences is 30; the number of simulated DNA sequences is 4; the
minimum support is 0.9; and the numbers of sequences are 4,000, 5,000, 6,000, 7,000, 8,000,
and 9,000. Moreover, although PrefixSpan is scalable [14,27], DFSP is more scalable. In
Fig. 8b, DFSP’s runtimes look like a straight line due to the proportional scale. The runtimes
are 1.421s (4,000 sequences), 1.6405s (5,000 sequences), 1.953 s (6,000 sequences), 2.593 s

@ Springer



DFSP: a Depth-First SPelling algorithm for sequential pattern mining of biological sequences 635

(a) (b)

= 3000 —~ 1600

2 2500 | —2— PrefixSpan S 1400} —A— PrefixSpan

S S 1200f

3 —¥— DFSP S —%— DFSP

§ 2000 8 1000l

£ 1500 | —W—SPAM E 800}

o 9 600

1000 |

g £ 400}

g S00r S 200}

a7 0 »* " — o~ 0 - « O
35 37 39 41 43 45 46 47 48 49 50

Length of sequences Length of sequences

Fig.9 aExecution Time (A =4, N = 500, and S = 0.9). b Execution Time (A =4, N = 500, and S = 0.9)

(7,000 sequences), 2.671 s (8,000 sequences), and 3.125s (9,000 sequences). The variations
are not as obvious in Fig. 8b as they are from the runtime rates (67.44, 81.48, 94.57, 106.08,
118.67, and 131.71). The runtime rate increases as the number of sequences increases.

When L is increased, DFSP and PrefixSpan perform much faster than SPAM, as shown
in Fig. 9a. However, DFSP algorithm mines much faster than PrefixSpan when L is larger
(Fig. 9b). The number of simulated DNA sequences is 4; the number of sequences is 500;
the minimum support is 0.9; and the lengths of the sequences are 45, 46, 47, 48, 49, and
50. The runtime of DFSP shows a steady rise in runtime as L increases when compared to
PrefixSpan. In the experiment, the maximum sequence length is 50, because we have already
shown that DFSP is significantly faster than PrefixSpan and the latter’s runtime increases
exponentially. Additionally, if the maximum sequence length is larger than 50, the runtime
of DFSP will be looked like a straight line in the figure due to the proportional scale. Thus,
we will hardly see the differences of runtimes for DFSP among different length of sequences
in the figure.

To evaluate the algorithms, we used real DNA sequences obtained from the National
Center for Biotechnology Information (NCBI). When A =4 (real DNA sequences), L is
increased from 25 to 35. As shown in Fig. 10a, DFSP and PrefixSpan mine sequences much
faster than SPAM. However, DFESP outperforms PrefixSpan as shown in Fig. 10b—d. Here,
the number of real DNA sequences is 4; the number of sequences is 1,000; and the lengths
of the sequences are 25, 30, and 35. DFSP mines real DNA sequences even faster than it
mines synthetic ones. The runtime rates in Fig. 10d are 16.05, 17.62, 19.30, 20.68, and 22.57.
Invariably, the rate increases as the minimum support increases. The runtime rates for the
real DNA sequences are almost the same as those for the synthetic ones in the previous
experiment.

N is increased from 200 to 900k to assess the scalability of DFSP. The numbers of
sequences are 200, 300, 400, 500, 600, 700, 800, and 900k, and DFSP’s runtimes are 98.16,
142.44, 187.86, 231.66, 277.47, 328.47, 375.19, and 421.34 s respectively. The results show
that DFSP is more scalable when the datasets are larger. The growth rate of the execution
time is steady and small. Here, the length of the sequences is 30; the number of letters
in the simulated DNA sequences is 4; and the minimum support is 0.9. The experimental
results show that DFSP outperforms PrefixSpan on real biological sequences and in various
parameters including scalability for simulated sequences.

4.3 Performance analysis

DFSP’s time cost is substantially lower than that of PrefixSpan because of its conciseness.
There are three reasons for its superior performance. First, unlike PrefixSpan, our algorithm

@ Springer



636 V. C.-C. Liao, M.-S. Chen

(a) (b)

—~ 1000 — 140

§ ggg = PrefixSpan .§ 120 —A— PrefixSpan

§ 700 —¥—DFsP § 100 —%— DFSP

“ 600 mfl SPAM 2 g0

£ 500 &

o 400 S 6

E 300 g 40

= 200 =

S 100 s 2

o2 0 * * * =4 0 M
0.45 0.55 0.65 0.75 0.85 0.2 0.25 0.3 0.35 0.4

Minimum support Minimum support

(c) (d)

800 1400

'§ 700 —2— PrefixSpan -é 1200 —#A— PrefixSpan

S 600 —%— DFSP S 1000 —¥— DFSP

2 500 2 800

£ 400 8 600

GE) 300 QE)

£ 200 £ 400

S 100 S 200

N e & oL »
0.2 0.25 0.3 0.35 04 0.4 0.45 0.5 0.55 0.6

Minimum support Minimum support

Fig. 10 a Execution Time (L = 25, A = 4, and N = 1,000). b Execution Time (L = 25, A = 4, and
N = 1,000). ¢ Execution Time (L = 30, A = 4, and N = 1,000). d Execution Time (L = 35, A = 4, and
N = 1,000)

does not need to construct and scan corresponding projected databases. Consequently, it
does not require recursively projecting and scanning corresponding databases, thereby saving
on execution time. The DFSP algorithm spells the candidate patterns directly and verifies
them by using the three-dimensional list. The combination of the three-dimensional list with
simultaneous spelling and verification enables the algorithm to mine significantly faster than
other sequential pattern mining algorithms.

The second reason is that DFSP mines much faster than PrefixSpan when the number of
sequences is large. Additionally, the runtime rate (runtime of PrefixSpan/runtime of DFSP)
is high when the minimum support is large. Because our spelling method of DFSP algorithm
takes almost as few frequencies as projected database of PrefixSpan does when the sup-
port of sequences is high, but PrefixSpan almost scans the same long length of lower-level
projected database as support is small in each projected process. In other words, when the min-
imum support or the number of sequences is large, there are fewer sequential patterns. This
situation reduces the number of building projected DB for PrefixSpan and represents having
the lower layers of projected databases, which have longer sequences than high layers of
projected databases.

Third, the DFSP algorithm mines the complete set of biological sequential patterns faster
than the 2PDF-Index and 2PDF-Compression algorithms. Mining the complete set of sequen-
tial patterns is the original prototype in sequential pattern mining. Sequential pattern mining
for the complete set is more flexible (a generalized model) because it has a lot of variations
to mining specific sequential patterns and it is intuitional to achieve the basic variations.
On the other hand, a new constraint, MinLen, is incorporated into 2PDF-Index and 2PDF-
Compression, but the authors do not explain why they use MinLen to generate new types of
patterns. Before mining a dataset, the 2PDF-Index and 2PDF-Compression algorithms first
make generalized suffix trees and then add the MinLen constraint. In contrast, DFSP does not
need to (1) construct generalized suffix trees; (2) apply constraints like MinLen (single item

@ Springer



DFSP: a Depth-First SPelling algorithm for sequential pattern mining of biological sequences 637

versus base/frequent segment); (3) link entries; or (4) construct segment trees. Moreover, it
does not need to consider the segment length or maintain sets like v.dead, which means that
items of the set in this branch would not occur in the lower level of this branch but much
maintaining and verifying time is needed for the sets. The DFSP algorithm does away with
these features of previous algorithms by way of spelling patterns instead of generating pattern
trees using segment trees. It first creates the three-dimensional list instead of operating on the
complex structures of multiple modified B-trees (or SP tree in certain literature). It accesses
the three-dimensional list directly for the dataset and performs a binary search on the index.
These modifications yield a difference in complexity that reduces running time substantially.
Constructing auxiliary structures (the three-dimensional list and SP-index) and searching
have a significant influence on the running time, as the complexity of DFSP and that of the
2PDF method demonstrate: O (LN +log, %) and ORLN+LNT logr % + AT logr %),
respectively, where “A” denotes the number of letters and “7” is the minimum degree of the
B-tree.

5 Conclusion

The proposed DFSP algorithm can mine biological (DNA and protein) sequences with a
small number of letters and long sequence lengths faster than PrefixSpan. This is because it
uses a direct spelling method to enumerate candidate patterns, the three-dimensional list to
verify the patterns, and a counting sequence site to prune the searching space. To process small
items and long sequences such as biological sequences is suited for the DFSP because of these
above technologies. The implicit knowledge in biological sequences is valuable, for example,
it may facilitate the identification of hot regions in protein—protein interactions, among other
things. In our future research, we will design faster algorithms and other algorithms that aid
in mining biological data.

References

1. Achar A, Laxman S, Sastry PS (2011) A unified view of the apriori-based algorithms for frequent episode
discovery. Knowl Inf Syst 31: 223-250

2. Agrawal R and Srikant R (1995) Mining sequential patterns. Proceedings of the 11th international
conference on data, engineering, pp 3-14

3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J] Mol
Biol 215(3):403-410

4. Aseervatham S, Osmani A, Viennet E (2006) bitSPADE: A lattice-based sequential pattern mining
algorithm using bitmap representation. In: Proceedings of 6th international conference on data mining,
pp 792-797

5. Ayres J, Gehrke J, Yiu T, Flannick J (2002), Sequential pattern mining using a bitmap representation. In:
Proceedings of 8th ACM SIGKDD international conference on knowledge discovery and data mining,
pp 429-435, July 2002

6. Bajcsy P, Han J, Liu L, Young J (2004) Survey of biodata analysis from a data mining perspective. Wang
JTL, Zaki MJ, Toivonen HTT, and Shasha D (eds) Data Mining in Bioinformatics, Chapter 2. Springer,
pp 9-39

7. BLAST, http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/

8. Chen M-S, Han J, Yu PS (1996) Data mining: an overview from database perspective. IEEE Trans Knowl
Data Eng 5(1):866-883

9. Chen Y-C, Peng W-C, Lee S-Y (2011) CEMiner—An efficient algorithms for mining closed patterns from
interval-based data. In: Proceedings of the 11th IEEE international conference on data mining (ICDM).
Vancouver, Canada, pp 121-130, Dec 11-14

@ Springer


http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/

638 V. C.-C. Liao, M.-S. Chen

10. Cheng H, Yan X, Han J (2004) Incspan: incremental mining of sequential patterns in large database.
In: Proceedings of 10th ACM SIGKDD international conference on knowledge discovery and data mining,
pp 527-532

11. Han J (2002) How can data mining help bio-data analysis? In: Proceedings of the workshop on data
mining in bioinformatics (BIOKDD’02 with SIGKDD’02 conference. Edmonton, Canada), pp 1-4

12. HanJ, Kamber M (2000) Data mining: concepts and techniques. Morgan Kaufmann, San Francisco

13. Han J, Pei J, Mortazavi-Asl B, Chen Q, Dayal U, Hsu MC (2000) Freespan: frequent pattern-projected
sequential pattern mining. In: Proceedings of the 6th ACM SIGKDD international conference on
knowledge discovery and data mining, pp 355-359

14. Han J, Pei J, Yan X (2005) Sequential pattern mining by pattern-growth: principles and extensions.
In: Chu WW, 1IN TY (eds) Recent advances in data mining and granular computing. Springer, Berlin,
pp 183-220

15. Hirosawa M, Totoki Y, Hoshida M, Ishikawa M (1995) Comprehensive study on iterative algorithms of
multiple sequence alignment. Bioinformatics 11:13-18

16. Ho C-C, Li H-F, Kuo F-F, Lee S-Y (2006) Incremental mining of sequential patterns over a stream
sliding window. In: Proceedings of IEEE international workshop on mining evolving and streaming data
(IWMESD-2006), pp 677-681, Dec 2006

17. HsuC-M, Chen C-Y, Liu B-J (2006) MAGIIC-PRO: detecting functional signatures by efficient discovery
of long patterns in protein sequences. Nucleic Acids Res, W356-W361

18. Hsu C-M, Chen CY, Liu BJ, Huang CC, Laio MH, Lin CC, Wu TL (2007) Identification of hot regions in
protein-protein interactions by sequential pattern mining. BMC Bioinform 8(Suppl. 5):S8. doi:10.1186/
1471-2105-8-S5-S8

19. Huang J-W, Tseng C-Y, Ou J-C, Chen M-S (2008) A General Model for Sequential Pattern Mining with
a Progressive Database. IEEE Trans Knowl Data Eng, 20: 1153-1167, 11 Feb 2008

20. Jones N, Pevzner P (2004) An introduction to bioinformatics algorithms. MIT Press, Cambridge

21. Lin M-Y, Lee S-Y (2004) Incremental update on sequential patterns in large databases by implicit merging
and efficient counting. Inf Syst 29(5):385-404

22. Luo C, Chung SM (2005) Efficient mining of maximal sequential patterns using multiple samples.
In: Proceedings of the 5th SIAM international conference on data mining (SDM’05), pp 415-426

23. Mampaey M, Tatti N, Vreeken J (2011) Tell me what I need to know: succinctly summarizing data with
itemsets. In: Proceedings of 17th ACM SIGKDD international conference on knowledge discovery and
data mining, pp 573-581

24. Marascu A, Masseglia F (2006) Mining sequential patterns from data streams: a centroid approach.
J Intell Inf Syst (JIIS) 27(3):291-307

25. Nguyen S, Sun X, Orlowska M (2005) Improvements of IncSpan: incremental mining of sequential
patterns in large database. In: Proceedings of the 9th Pacific-Asia conference on knowledge discovery
and data mining, pp 442451

26. Parthasarathy S, Zaki MJ, Ogihara M, Dwarkadas S (1999) Incremental and interactive sequence min-
ing. In: Proceedings of the 8th international conference on information and, knowledge management,
pp 251-258

27. PeiJ, Han J, Asl B, Wang J, Pinto H, Chen Q, Dayal U, Hsu M (2004) Mining sequential patterns by
pattern-growth: the PrefixSpan approach. IEEE Trans Knowl Data Eng, pp 1424—1440, Oct 2004

28. Peil,HanJ, Lu H, Nishio S, Tang S, Yang D (2001) H-mine: hyper-structure mining of frequent patterns
in large databases. In: Proceedings of the 2001 IEEE international conference on data mining (ICDM’01),
San Jose, California, pp 441-448, Nov 29-Dec 2

29. Pei J, Han J, Mortazavi-Asl B, Zhu H (2000) Mining access patterns efficiently from Web logs. In:
Proceedings of the 2000 Pacific-Asia conference on knowledge discovery and data mining (PAKDD’00).
Kyoto, Japan, April, pp 396-407

30. PeiJ, Han J, Wang W (2007) Constraint-based sequential pattern mining: the pattern-growth methods.
J Intell Inf Syst 28(2):133-160

31. Rajpathak D, Chougule R, Bandyopadhyay P (2011) A domain-specific decision support system for
knowledge discovery using association and text mining. Knowl Inf Syst, pp 405-432

32. Salam A, Sikandar Hayat Khayal M (2011) Mining top-k frequent patterns without minimum support
threshold. Knowl Inf Syst, pp 57-86

33. Senkul P, Salin S (2011) Improving pattern quality in web usage mining by using semantic information.
Knowl Inf Syst, pp 527-541

34. Srikant R and Agrawal R (1996) Mining sequential patterns: generalizations and performance
improvements. In: Proceedings of 5th international conference extending database technology (EDBT),
vol 1057, Springer, pp 3-17

@ Springer


http://dx.doi.org/10.1186/1471-2105-8-S5-S8
http://dx.doi.org/10.1186/1471-2105-8-S5-S8

DFSP: a Depth-First SPelling algorithm for sequential pattern mining of biological sequences 639

35.

36.

37.

38.

39.

40.

41.

Wang J, Han J (2004) Bide: efficient mining of frequent closed sequences. In: Proceedings of the 20th
international conference on data, engineering, pp 79-91

Wang X, Li G, Jiang G, Shi Z (2011) Semantic trajectory-based event detection and event pattern mining.
Knowl Inf Syst, pp 1-25

Wang K, Xu Y, Yu J (2004) Scalable sequential pattern mining for biological sequences. In: Proceedings
of conference information and, knowledge management, pp 178—187

Yan X, Han J, Afshar R (2003) Clospan: Mining closed sequential patterns in large datasets. In:
Proceedings of the 3rd SIAM international conference on data mining (SDM’03), pp 166-177, May
2003

Yang J, Wang W, Yu PS, Han J (2002) Mining long sequential patterns in a noisy environment,
In: Proceedings 2002 ACM-SIGMOD I international conference. Management of data (SIGMOD ’02),
pp 406—417, June 2002

Zaki MJ (1998) Efficient enumeration of frequent sequences. In: Proceedings of the 7th international
conference on information and knowledge management, pp 68—75, Nov 1998

Zaki MJ (2001) SPADE: an efficient algorithm for mining frequent sequences. Machine learning
42(1/2):31-60

Author Biographies

Vance Chiang-Chi Liao is currently a Ph.D. candidate in the
Department of Electrical Engineering, National Taiwan University,
Taipei, Taiwan. His research interests include data mining, sequen-
tial pattern mining, frequent pattern mining, bioinformatics, social net-
works, and cloud computing.

Ming-Syan Chen received the B.S. degree in electrical engineering
from National Taiwan University, Taipei, Taiwan, and the M.S. and
Ph.D. degrees in Computer, Information, and Control Engineering from
The University of Michigan, Ann Arbor, MI, USA, in 1985 and 1988,
respectively. He is now a Distinguished Research Fellow and the Direc-
tor of Research Center of Information Technology Innovation (CITI)
in the Academia Sinica, Taiwan, and is also a Distinguished Pro-
fessor jointly appointed by EE Department, CSIE Department, and
Graduate Institute of Communication Eng. (GICE) at National Taiwan
University. He was a research staff member at IBM Thomas J. Watson
Research Center, Yorktown Heights, NY, USA, the Director of GICE,
and also the President/CEO of Institute for Information Industry (III).
His research interests include databases, data mining, cloud comput-
ing, and multimedia networking, and he has published more than 300
papers in his research areas.

@ Springer



	DFSP: a Depth-First SPelling algorithm for sequential pattern mining of biological sequences
	Abstract
	1 Introduction
	2 Problem definition
	3 The DFSP algorithm and its complexity
	3.1 The DFSP algorithm
	3.2 Example: the DFSP algorithm
	3.3 Complexity analysis

	4 Performance evaluation
	4.1 Simulated DNA and protein sequences
	4.2 Various parameters and real data
	4.3 Performance analysis

	5 Conclusion
	References


