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Abstract With the advent of mobile technology, a new class of applications, called par-
ticipatory sensing (PS), is emerging, with which the ubiquity of mobile devices is exploited
to collect data at scale. However, privacy and trust are the two significant barriers to the
success of any PS system. First, the participants may not want to associate themselves with
the collected data. Second, the validity of the contributed data is not verified, since the inten-
tion of the participants is not always clear. In this paper, we formally define the problem
of privacy and trust in PS systems and examine its challenges. We propose a trustworthy
privacy-aware framework for PS systems dubbed TAPAS, which enables the participation of
the users without compromising their privacy while improving the trustworthiness of the col-
lected data. Our experimental evaluations verify the applicability of our proposed approaches
and demonstrate their efficiency.

Keywords Participatory sensing · Privacy · Trust · Location privacy

1 Introduction

Many studies suggest significant future growth in the number of mobile phone users, the
phones hardware and software features, and the broadband bandwidth. Therefore, an active
area of research is to fully utilize this new platform for various tasks, among which the
most promising is participatory sensing (PS). The goal is to exploit the mobile users by
leveraging their sensor-equipped mobile devices to collect and share data. While many PS
systems are unsolicited, where users can participate by randomly contributing data (e.g.,
Youtube, Flickr), other PS systems are campaign-based and require a coordinated effort of
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participants to collect a particular set of data. Some real-world examples of PS campaigns
include [8,22,31,30]. For example, the Mobile Millennium project [30] by UC Berkeley
is a state-of-the-art system that uses GPS-enabled mobile phones to collect en route traffic
information and upload it to a server in real time. The server processes the contributed traffic
data, estimates future traffic flows, and sends traffic suggestions and predictions back to the
mobile users. Similar projects were implemented earlier by CalTel [22] and Nericell [31]
which used mobile sensors/smart phones mounted on vehicles to collect information about
traffic, WiFi access points on the route and road condition. In CycleSense [8], bikers record
biking routes during their daily commute in the Los Angeles area, along with information
about air quality, hazards, traffic conditions, accidents, etc. Bikers trust the server and upload
all their data to the server. The server publishes the data on a public website with the mobile
phone number removed.

However, two major impediments may hinder PSs practicality and success in real-world:
privacy and trust. First, the users of a PS system may not want to associate themselves
with the data that are collected and transmitted. Consider a scenario where a PS campaign
is interested in collecting pictures and videos of the anti-government demonstrations from
various locations of a city (termed data collection points or DC-points) through a coordi-
nated effort of the participants. Therefore, each participant u should query the server for the
locations of closeby DC-points. However, u may not be willing to reveal his identity due
to safety reasons. One may argue that a simple anonymization of the participant’s identity
through a trusted server can resolve the problem. However, due to the strong correlation
between people and their movements [16], a malicious server can identify u by associat-
ing his location information to u. We refer to this process of association of the query to
the query location as a location-based attack. Second, the data contributed by participants
cannot always be trusted, because the motivation of the participants for data contribution
is not always clear. Thus, a malicious participant might intentionally collect wrong data.
For example, in the same scenario, undercover agents may also upload pictures and videos
painting a totally different image of what is occurring. Some skeptics of PS go as far as
calling it a garbage-in-garbage-out system due to the issues of trust. Finally, the interplay
of privacy and trust makes the problem even more challenging as once we can success-
fully hide participants identities; evaluating reputation of the participants becomes even
harder.

Recently, few studies have focused on addressing the privacy challenges [20,21,24,37] in
PS. However, their assumption is that the data generated by the participants are always correct.
In [24], a privacy-preserving technique is proposed, which assigns to every participant a set
of closeby DC-points while protecting participants from location-based attacks. Moreover,
some studies propose to address the trust issues [9,15] in PS by incorporating a trusted
software/hardware module in the participants’ mobile devices. While this protects the sensed
data from malicious software manipulation before sending it to the server, it does not protect
the data from participants who either intentionally (i.e., malicious users) or unintentionally
(e.g., due to malfunctioning sensors) collect incorrect data. Note that since participants are
the data generators, finding a way to verify the data are both critical and challenging. The
only way to ensure the correctness of data is that a trusted party collects the data, which
is meaningless in the context of private PS because we do not know who contributed the
data.

In this paper, we propose a Trustworthy privacy-Aware framework for PArticipatory Sens-
ing campaigns, TAPAS. Our key idea here is to increase the chance of validity of the collected
data by having multiple participants (termed replicators) collect data at each data collection
point redundantly. Here, the intuitive assumption, based on the idea of the wisdom of crowds
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[39], is that the majority of participants generate correct data. Thus, the data with the majority
vote are verified as correct. This indicates that instead of each DC-point be assigned to a par-
ticular participant, it is assigned to k participants, where k is a campaign-defined parameter,
which determines the level of trust for the collected data. Consequently, the higher the value
of k, the more chance that the collected data are correct.

The main question we try to address in this paper is how to pick the k replicators. Intuitively,
participants who are closer to a DC-point are better candidates to collect data at the particular
DC-point. Thus, for a given participant u, the goal is to assign to him all those DC-points1,
which have u as their k nearest replicators. Thus, our problem is to find the reverse k nearest
replicator set for all participants, while preserving the participants’ location privacy. We
refer to this problem as private all reverse k nearest replicator (private aRkNR or PaRkNR)
problem. We propose TAPAS, a class of three approaches to solve this problem.In all the
three approaches, in order to preserve the privacy, participants follow the PiRi approach [24]
to blur their location in a cloaked area among m − 1 other participants and send cloaked
regions to the server. Since the server does not have the exact participants’ locations, only
an approximate result can be retrieved. While our goal is to minimize the uncertainty in
our proposed approaches, we show that the approximation only results in more replicators
collecting data, thus increasing the chance of data validity.

The main contributions of this paper include (1) formalizing the interplay of trust and
privacy as the private aRknR problem; (2) proposing three solutions for this problem, namely
LPT, BAL, and HBAL; (3) conducting extensive experiments and comparing results. We
verify the applicability of the proposed approaches by confirming no missing hits in all the
three approaches. We also show that with HBAL approach, every participant is assigned to
on average 25 % extra DC-points (false hits).

The remainder of this paper is organized as follows. Section 2 reviews the related work. In
Sect. 3, we discuss some background studies, formally define our problem, and discuss our
system model. Thereafter, in Sect. 4, we explain our TAPAS framework. Section 5 presents
the experimental results. Finally, in Sect. 6, we conclude and discuss the future directions of
this study.

2 Related work

In this section, we review two groups of related studies. The first group focuses on privacy-
related problems, whereas the focus of the second group is on the issue of trust.

2.1 Related work in privacy

Privacy-preserving techniques for location privacy have been widely studied in the context
of location-based services. One category of techniques [12,26,43] focuses on evaluating the
query in a transformed space, where both the data and query are encrypted, and their spatial
relationship is preserved to answer the location-based query. Another group of techniques in
protecting user’s privacy is based on the Private Information Retrieval (PIR) protocol, which
allows a client to secretly request a record stored at an untrusted server without revealing the
retrieved record to the server. However, the major drawback of most PIR-based approaches
for location privacy is that they rely on hardware-based techniques, which typically

1 The process of DC-point assignment to a particular participant is equivalent to returning the locations of a set
of DC-points to the participant so that the participant can go to those locations and collect the corresponding
data (e.g., pictures).
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utilize a secure coprocessor at the LBS [19,27]. Another group of well-known techniques in
preserving users’ privacy is the spatial cloaking technique [3,6,11,13,32,23], where the
user’s location is blurred in a cloaked area, while satisfying the user’s privacy requirements.
An example of spatial cloaking is the spatial m-anonymity (SMA) [40], where the location
of the user is cloaked among m − 1 other users. Note that anonymity was first discussed
in relational databases, where sensitive data (e.g., census, medical) should not be linked to
people’s identities [1,2]. Later, m-anonymity was defined in [35,40]. m-Anonymity is also
a well-known technique in privacy-preserving data publishing [10], where a data publisher
releases the data collected from the data owners to a data miner who will then conduct data
mining on the published data, while the privacy of the data owners should be preserved. While
any of the privacy-preserving techniques can be utilized to protect the users’ privacy, in this
paper without loss of generality, we use cloaking techniques due to the following reasons:
(1) accuracy and (2) popularity in different environments (i.e., centralized, distributed, peer
to peer).

Most of the SMA techniques assume a centralized architecture [3,11,32,23], which uti-
lizes a trusted third party known as location anonymizer. The anonymizer is responsible for
first cloaking user’s location in an area, while satisfying the user’s privacy requirements,
and then contacting the location-based server. The server computes the result based on the
cloaked region rather than the user’s exact location. Thus, the result might contain false
hits. The centralized approach has two drawbacks. First, the centralized approach does not
scale because the users should repeatedly report their location to the anonymizer. Second,
by storing all the users’ locations, the anonymizer becomes a single point for attacks. To
address these shortcomings, recent techniques [13] focus on distributed environments, where
the users employ some complex data structures to anonymize their location among them-
selves via fixed infrastructures (e.g., base stations). However, because of high update cost,
these approaches are not designed for the cases where users frequently move or join/leave
the system. Therefore, alternative approaches have been proposed [6] for unstructured
peer-to-peer networks where users cloak their location in a region by communicating with
their neighboring peers without requiring a shared data structure.

Despite all the studies about privacy in the context of LBS, only a few work [7,20,21,24,
25,34,37] have studied privacy in PS.In [37], the concept of participatory privacy regulation
is introduced, which allows the participants to decide the limits of disclosure. Moreover, in
[21,20,34], different approaches are proposed, which focus on preserving privacy in a PS
campaign during the data contribution, rather than the coordination phase. That is, these
approaches deal with how participants upload the collected data to the server without reveal-
ing their identity, whereas our focus is on how to privately assign a set of data collection
points to each participant. The combination of private data assignment and private data con-
tribution forms an end-to-end privacy-aware framework for the PS systems. Another related
study is discussed in [7], in which a privacy-preserving framework for an unsolicited PS
is proposed. However, the focus is on unsolicited PS, where participants collect data in an
opportunistic manner without the need to coordinate with the server. This indicates that under
certain conditions, some data will never be collected, whereas other data might redundantly
be collected. This is different from our focus, in which the server should direct the data col-
lection phase to meet certain goals (e.g., assuring the proper assignment of DC-points). The
closest work to our problem is [24], where a privacy-preserving technique, namely PiRi, is
proposed, which assigns to every participant a set of closeby DC-points without revealing the
participants identity. However, their assumption is that the data generated by the participants
are always correct. In this work, we employ the PiRi approach to protect the privacy of the
participants.
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2.2 Related work in trust

Our second category of related work focuses on the issue of trust. We review three sets of
related work in this category. The first group studies trust in PS. Existing work in this area
propose approaches which incorporate a trusted software/hardware into the mobile device.
The role of the trusted module is to sign the data sensed by the mobile sensor. The goal is
to avoid any malicious software to manipulate the sensed data before sending it to the server
[9,15,17,29,36]. While this achieves trust at some level, it has two drawbacks. One is that it
might not be practical for all participants to use such platform. The more important drawback
is that these approaches detect whether malicious software modifies the sensed data, but they
do not consider the analog attack where users are malicious and collect non-accurate data
(e.g., a user can put a sensor in a refrigerator while reporting the temperature); thus, they are
not orthogonal to our problem.

Another group of studies focuses on query integrity in data outsourcing [28,38,41,42]. In
data outsourcing, a publisher owns a dataset, but it outsources the data to a service provider,
which answers the queries asked by the users. However, the service provider is not trusted,
and therefore might not correctly answer the query issuer. The goal here is to guarantee that
the query answer is both complete (i.e., no missing data) and correct (i.e., no wrong data).
These studies differ from our problem because in PS systems, it is not the query result but
the data which might not be correct. That is, since the participants are not trusted, the server
cannot guarantee that the collected data are valid.

The third group studies reputation systems in P2P networks [18,33]. In this group of work,
members of on-line communities with no prior knowledge of each other use the feedback
from their peers to assess the trustworthiness of the peers in the community. This is related
to our work in a sense that people are more interested in using data from peers with higher
reputation. While privacy is usually not a concern in these systems, an additional characteristic
of PS that makes our problem more challenging is the spatial aspect of the framework.
That is, while our goal is to collect data from trustworthy participants, we are also more
interested in nearby participants for efficient data collection. Thus, anonymity is hard to
achieve, when both location and reputation should be incorporated into the participant’s
query.

3 Preliminaries

3.1 Background

As already discussed, a privacy-preserving approach in PS systems (PiRi) is proposed in [24],
which focuses on private assignment of DC-points to the participants. In the following, we
first define the participant assignment problem. Thereafter, we provide a brief background
on the PiRi approach.

Definition 1 (Participant Assignment) Given a campaign C(P, U ) ∈ R2, with P as the set
of DC-points, and U as the set of participants, the Participant Assignment (PA) problem is
to assign to each participant u ∈ U any DC-point p ∈ P , such that p is closer to u than to
any other participant in U .

The definition of the PA problem states that every DC-point should be assigned to only one
participant (i.e., its closest participant). Note that to incorporate trust, multiple participants
need to be assigned. In order to solve the PA problem, a straightforward solution is that each
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(a) (b)

Fig. 1 Illustrating the assignment of DC-points to the participants

participant sends his location to the server. The server then assigns to each participant the set
of DC-points close to him by computing the Voronoi diagram of the participants. Figure 1
depicts such scenario. The formal definition of the Voronoi diagram is as follows.

Definition 2 (Voronoi Diagram) Given an environment E(U ) ∈ R2, with U as the set of
participants, the Voronoi diagram of U is a partitioning of E into a set of cells, where each
cell Vu belongs to a participant u, and any point p ∈ E in the cell Vu is closer to u than to
any other participants in the environment. Here, the closeness between two points is defined
in terms of Euclidean distance.

Once the server computes the Voronoi diagram of the participants, it forwards to each
participant u, all the DC-points lying inside the corresponding cell Vu . However, for privacy
concerns, a participant may not be willing to reveal his identity to the server. Even if the
participant hides his identity from the server, a participant can still be identified by his location
[16]. Thus, the goal of the PiRi approach is to assign to each participant those DC-points which
are closer to that participant than to any other participant, without compromising participants’
privacy. As stated in [24], a baseline solution using the existing privacy-preserving techniques
is that participants communicate among their peers to compute their Voronoi cells. This
enables the participants not to reveal their location to the server. Thereafter, every participant
performs a privacy-aware range query to retrieve all the DC-points inside his Voronoi cell.
The participant asks such query by first communicating with his neighboring peers via multi-
hop routing to find at least m − 1 other peers (see the peer-to-peer SMA technique in [6]).
It then blurs his location in a cloaked area among m − 1 other peers. Thereafter, it sends the
cloaked area, along with the range query to the server. This indicates that every participant
sends a cloaked region instead of his exact location to the server to query for all the closeby
DC-points.

However, certain properties of PS campaigns prevent a direct adaptation of these tech-
niques to PS campaigns. These properties leak enough information to the server with which
the server can easily identify each participant by linking his query to the query location.
One main characteristics of a PS campaign, referred to as all-inclusivity property, is that in
order to collect data through a coordinated effort, all the participants query the PS server
for closeby DC-points. This is in contrast to location-based services (LBS) which serve mil-
lions of users from which any arbitrary number of users might ask query at a given time
and location. This property reveals extra information to the server which introduces a major
privacy leak to the system. To illustrate, consider an extreme case where the server knows the
locations of all the participants. Thus, on one hand the server receives a set of query regions,
and on the other hand, the server has a set of users’ locations. Trivially, each query region
overlaps with one and only one participant (due to the PS properties). Therefore, the server
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Fig. 2 Illustrating an example of
all-inclusivity leak

can associate the query to its participant by solving a simple matching problem between these
two sets of points-regions. In more general cases, the more information the server has about
the participants’ locations, the more accurate the matches.

Figure 2 illustrates such scenario, where users U1...3 participate in the campaign. The
figure shows that U1 cloaks himself with U2. The dotted rectangle C R1 depicts the cloaked
region of U1. Similarly, U2 forms a cloaked region with U1. Consequently, both U1 and
U2 form identical cloaked regions. The figure also depicts that U3 cloaks himself with U1.
Accordingly, the server can easily identify U3 by relating it to the cloaked region C R3, since
U3 appears only once (i.e., C R3) in all the three submitted cloaked regions to the server. This
indicates the more participants submit queries to the server, the more information server has
to infer the participants’ identities.

One of the objectives of the PiRi approach is to prevent the all-inclusivity leak by mini-
mizing the number of queries submitted to the server. PiRi is based on the observation that
the range queries sent to the server have significant overlaps. Therefore, instead of each par-
ticipant asking a separate query, only a group of representative participants ask queries from
the server on behalf of all the participants and share their results with those who have not
posed any query. Note that the only entity that has knowledge of the location of DC-points is
the server. Therefore, somehow the points to be collected must be acquired from the server
after all. The question is how to pick the representatives. To do this, a distributed voting
mechanism is devised where every participant votes for one participant. The representatives
are then selected based on the majority of votes among their local peers (i.e., set of close-by
participants whose query regions are contained in that of the representative participant) to
query the server on behalf of the rest of the participants. Consequently, once the representa-
tive participants receive their query results from the server, they share the results with their
local peers.

3.2 Formal problem definition

Unlike the PiRi [24] approach where each DC-point is assigned to one participant, to ensure
trust, we need multiple participants assigned to each DC-point. Hence, in order to extend PiRi
to incorporate a trust level of k, every DC-point should be assigned to at least k participants.
Thus, we need to introduce the concepts of replica and replicator.

Definition 3 (Replica) Given a set of participants U and a set of DC-points P , we refer to a
replica r j

i of Pi ∈ P as a copy of data collected at point Pi by participant U j . We also refer
to U j as a replicator of Pi .

Intuitively, in order to collect multiple replicas for a DC-point, we are more interested in
the replicators with closer Euclidean distance2 to the corresponding DC-point. Hence, we
define the notions of kN-replicator set and RkN-replicator set.

2 Other distance metrics, such as network distance, can be incorporated as well.
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(a) (b)

Fig. 3 Illustrating examples of kN-replicator and RkN-replicator sets in C(P, U ) with k = 2

Definition 4 (kN-replicator set) Given a campaign C(P, U ) ∈ R2, with P as the set of DC-
points, and U as the set of participants, let Pi ∈ P . We refer to k-nearest (kN) replicator set
Ri ⊂ U of point Pi as a set of k replicators of Pi (i.e., |Ri | = k), of which every replicator
in Ri corresponds to one of the k closest participants of Pi .

Figure 3 illustrates an example of a campaign, where participants are represented with
squares and DC-points are shown with circles. In Fig. 3a, the 2N-replicator set for P1 (i.e.,
k = 2) is depicted, where the elements of R1 are shown with hollow squares (R1 = {U1, U4}).
Definition 5 (RkN-replicator set) Given a participant Ui , we refer to reverse k-nearest (RkN)
replicator set R−1

i ⊂ P of participant Ui as a set of all DC-points to which Ui is one of their
k closest replicators.

Figure 3b depicts the R2N-replicator set (i.e., k = 2) for U1, where the elements of R−1
1

are shown with hollow circles (R−1
1 = {P1, P4}).

Definition 6 (aRknR problem) Given a campaign C(P, U ) ∈ R2 and a trust value k, with
P as the set of DC-points, and U as the set of participants, the problem is to find the RkN-
replicator set of every participant. We refer to this problem as all reverse k-nearest replicator
(aRknR) problem.

The aRknR problem can be restated as a special case of the bichromatic reverse k-nearest
neighbor problem, in which the reverse k-nearest neighbor of all participants should be
retrieved. Therefore, since bRkNN should be solved for every participant, the problem is
analogous to solving kNN for every DC-point, which is a less complex problem. Therefore,
a straightforward solution is that each participant sends his location to the server. The server
then computes the k closest participants of every DC-point (i.e., kN-replicator set), inverts
the result and sends to every participant his bRkNN result (i.e., RkN-replicator set). Note
that the queries are issued from the participants. Therefore, from the view of the participant,
the bRkNN problem should be solved. However, due to the nature of the aRknR problem ,
since all participants query the server, the server can solve the aRknR by solving kNN for
every DC-point. Consider the example of Fig. 3 for k = 2. The solution to aRknR problem
is shown in Table 1, which shows the R2N-replicator set of every participant.

However, in many scenarios, the server is not trusted, and therefore, a participant may
not be willing to reveal his identity to the server. Even if the participant hides his identity
from the server (i.e., only reveals his location), due to the strong correlation between people
and their movements, a participant can still be identified by his location. Thus, we formally
define our privacy attack.
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Table 1 R2N-replicator set of set
U

Participant R2N-replicator set

U1 {P1,P4}
U2 {P3,P7}
U3 {P3,P4,P5}
U4 {P1,P2,P5,P6}
U5 {P2,P6}
U6 {P8,P9}
U7 {P8,P9}
U8 {P7}

Fig. 4 Illustrating an example of
PaRknR problem

Definition 7 (Location-based attack) A location-based attack is to identify a query issuer
by associating the query to the query location (i.e., location from which the query is issued).

To defend against the location-based attack, we cannot reduce aRknR to multiple kNNs in
server. Hence, we need to solve the aRknR problem privately to ensure both trust and privacy.

Definition 8 (Problem definition) The private all reverse k-nearest replicator (PaRknR)
problem is a variation of the aRknR problem (Definition 6), in which the goal is to pro-
tect participants’ identity from location-based attacks.

In order to solve the PaRknR problem, the server should compute the k closest replicators
for every DC-point, for which it needs the participants locations. However, participants
cannot share their locations with the untrustworthy server. Thus, instead of sending their
exact location, participants follow the PiRi approach (Sect. 3.1) to blur their location in a
cloaked area among m − 1 other participants, from which a subset of them (i.e., by utilizing
the voting mechanism) are selected as representatives to send cloaked regions to the server.
Note that we cannot directly apply the PiRi approach to solve the PaRknR problem, since in
the PiRi approach, we only assign one participant to each DC-point. The direct adaptation
of PiRi requires the order-k Voronoi cell computation, which is computationally expensive.
Thus, we only utilize PiRi for preserving privacy. In the following, we formally define the
notion of m-anonymity [23].

Definition 9 (m-ASR) Given a set of participants U , we refer to the set S ∈ U as an
m-anonymized set where |S| = m, and for any participant Ui ∈ S, Ui ’s location is blurred in
a cloaked area that encloses the set S. We refer to this area as m-anonymized spatial region
(m-ASR or ASR).

Figure 4 illustrates a set of ASRs, each containing a set of participants. For example,
participants U1, U2, U3 form an ASR A1 with m = 3, whereas U7 and U8 form an ASR A3

with m = 2.
With these definitions, we reformulate our problem as follows.
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Definition 10 (Problem definition) Given a set of participants U , and a set of data collec-
tion points P , let A be the set of ASRs sent to the server, where every participant Ui is
cloaked in at least one ASR of the set A. The problem is to find the RkN-replicator set of all
participants.

Figure 4 depicts an example of PaRknR problem, in which participants of Fig. 3 form
groups of different sizes (i.e., m). Thereafter, each group sends the corresponding ASR to
the server. The goal is to find the RkN-replicator set of every participant.

3.3 System model

In this section, we first describe our privacy threat model and then discuss our system archi-
tecture which consists of two entities, participants and the PS server.

Our assumption is that the server trusts the majority of the participants (i.e., the data
generated by majority of the participants is correct). Moreover, participants trust other peers
to share their location information. However, they do not trust the PS server. Moreover, the
server (or any adversary), if needed, can obtain the locations of all participants [14]. The
reason is that participants often issue their queries from the same locations (office, home),
which can be identified through physical observation, triangulation, etc. In general, since it
is difficult to model the exact knowledge available to the server, this is a necessary assump-
tion to guarantee that the privacy-preserving technique is secure under the most pessimistic
scenario. That is, even though the participants’ locations might be known to the server, it
should not pose a threat (i.e., location-based attack) to the system if the system can success-
fully disassociate the queries from their locations. Moreover, we perform the assignment
process for a given snapshot of participants’ locations. That is, we assume that the partic-
ipants do not move during the assignment process. This assignment process is a one-time
operation that can be performed offline. This is intuitive, since participants usually plan
their paths from their residential location (e.g., home, office) before starting their movement.
Moreover, participants are the current active users of the system willing to participate in the
process. The server (or any adversary) has the location information of all the DC-points,
and the value of the campaign-defined k. The adversary is also aware of the anonymiza-
tion technique which is used by the participants. However, each participant determines his
own privacy level (i.e., m), which is only available to himself. That is, revealing his privacy
level may result in privacy leak [14]. In order to guarantee the pseudonymity of participants’
location information, each query is assigned with a unique pseudonymous identity, which
is totally unrelated to the participants’ personal identity. Finally, we make no guarantees
if the sensed data contain any sensitive information (e.g., a photo containing someone’s
home).

Our PS server which contains the list of DC-points is equipped with a privacy-aware
query processor, which processes the queries issued by the participants. Each participant
can determine his privacy level, by specifying m, which determines the m-anonymity. Each
participant is equipped with two wireless network interface cards. One is dedicated to the
communication with the PS server through a base station or wireless modem. The other
one is dedicated to the P2P communication among the peers through a wireless LAN, e.g.,
Bluetooth or IEEE 802.11. Also, each participant is equipped with a positioning device, e.g.,
GPS, which can determine its current location.
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4 TAPAS

In order to solve the PaRknR problem, all of our approaches follow a filter and refinement
technique, where the filtering step is performed at the server side, and the refinement step
is performed at the participant-side. In the filtering step, since the server receives a set of
ASRs, the idea is to prune a subset of DC-points that cannot be in the RkN-replicator set of
the participants of a given ASR. Thereafter, the filtered results are sent to the participants,
where the goal is to exploit some local information to refine the retrieved result. The chal-
lenge here is twofold. First, the server receives a set of ASRs instead of the exact locations of
participants. Thus, it can only compute the RkN-replicator set for the ASRs rather than the par-
ticipants. Second, in order to refine the results, a global knowledge of participants’ locations is
required. However, a participant only has limited knowledge about his local peers. This results
in approximate answer. In the following, we propose three solutions to this problem. Our
first approach is based on a limited pruning technique to reduce the uncertainty. Our second
approach improves the first approach by enforcing a realistic assumption that results in a
better pruning. Finally, our third approach applies some heuristics to achieve more accurate
approximation.

4.1 Limited pruning technique (LPT)

In this approach, participants first communicate locally among themselves and blur their
locations among m−1 other participants [24]. Thereafter, by employing the voting mechanism
in [24], a set of representative participants are selected to send their ASRs to the server3. The
server receives a set of ASRs, of which every ASR is associated with a different anonymity
level m. This value m is dependent on the privacy requirement of the participants inside
the corresponding ASR. Due to the unavailability of the participants’ locations, the server
computes the kN-replicator set of every DC-point with the given ASRs during the filtering
step. Clearly, the server needs to explore at least k closest ASRs as a lower bound to assure
that the k closest participants reside in the result set. The reason is that even though an ASR
contains m participants, the server does not know the value m for each ASR. Considering
the worst case when for all ASRs, we have m = 1, kN-replicator set of a DC-point is located
in at least k closest ASRs. Once the set of candidate ASRs, which include the exact query
answer for each DC-point, are retrieved (termed kN-ASR), the server inverts the result to
find the RkN-ASR set for every ASR. These are all the DC-points which potentially have the
participants in the given ASR as part of their kN-replicator set. Since we used a lower bound
to find the kN-replicator set of every DC-point, the RkN-ASR set of every ASR contains the
exact answer and possibly a set of false hits. This means that there is no DC-point in the
RkN-replicator set of a participant which is not in the RkN-ASR set of its corresponding ASR.
Section 4.1.1 explains the filtering step in more detail.

Once the result of the filtering step is sent to every representative participant, in order to
prune the false hits, the representative refines the result by verifying the kN-replicator set of
every DC-point in the result set. In order to verify the correctness of the result, the representa-
tive should have the location of all participants. However, the representative participant only
has the location of his local peers and therefore prunes a subset of the false hits. Finally, the
representative sends the corresponding partially refined result to each of his local peers. This
indicates that every participant is assigned to a set of DC-points so that for each DC-point,

3 Note that for k = 1, participants also compute their Voronoi cells during their local communication, and send
their range queries along with their ASRs to the server. Thus, the assignment is performed once the server
simply returns the range query result of every representative participant.
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Fig. 5 Public kNN query over private data algorithm

at least k replicas will be collected, thus satisfying the k level of trust for the campaign. We
explain the refinement step with more detail in Sect. 4.1.2.

4.1.1 Filtering step

The filtering step starts by computing the kN-ASR set of every DC-point, which can be
interpreted as a public kNN query over private data. The reason is that from the server point
of view, the query point (i.e., DC-point) is public, whereas the data points (i.e., participants)
are private and are represented with a set of ASRs. To solve this problem for k = 1, we can
use the proposed approach in [4]. We extend this approach for our filtering case where k > 1.

The pseudo-code of this algorithm (i.e., Pk N N P Algorithm) is shown in Fig. 5. We
explain the details of this algorithm with the example of Fig. 4 with k = 2. The Pk N N P
algorithm for a given DC-point p works in an incremental fashion by first finding the closest
neighbor, and incrementally expanding the search until the k closest neighbors are found
(lines 6–10). In order to compute the nearest participant to p, as an upper bound, we assume
that the location of the participant is in the farthest corner of the given ASR from p. In
other words, the distance between a DC-point p and an ASR A j is the distance from p to

the farthest corner of A j denoted by maxdist
A j
p (line 2). Figure 6 depicts A2 as the closest

ASR, and the distance between p and A2 is represented by a dashed line. Note that finding
the closest ASR to p with the distance of maxdist Amin

p does not guarantee that the closest

participant is found. The reason is that maxdist Amin
p is only an upper bound, and not every

participant is located in the farthest corner. To address this, once the closest ASR is found,
a range query with a radius maxdist Amin

p should be computed to retrieve all the possible

results. In the example of Fig. 6, a range query with radius maxdist A2
p is performed, which

returns A1. This indicates that the nearest participant is located in either A1 or A2. The next
step is to repeat the iteration for k = 2. In this step, we find the second closest ASR (i.e.,
A1) and perform a range query with the radius maxdist A1

p . This will add A3 to the result set.
At this point, the algorithm terminates and returns A1, A2, and A3 as the result set. Table 2
depicts the 2N-ASR set for every DC-point.

After the computation of kN-ASR set for every DC-point, the server inverts the result to
find the RkN-ASR set for every ASR. Finally, each RkN-ASR set of an ASR is sent to its
corresponding owner. Table 3 shows the result of this step.

123



TAPAS: Trustworthy privacy-aware participatory sensing 117

Fig. 6 Illustrating the first
iteration in PkNNP algorithm

Table 2 2N-ASR set for set P in
LPT

DC-point kN-ASR

P1 {A1,A2,A3}
P2 {A1,A2,A3}
P3 {A1,A2,A3}
P4 {A1,A2,A3}
P5 {A1,A2}
P6 {A1,A2}
P7 {A1,A2,A3}
P8 {A1,A2,A3}
P9 {A1,A2,A3}

Table 3 R2N-ASR set for set P
in LPT

ASR Rk N − AS R

A1 {P1,…,P9}
A2 {P1,…,P9}
A3 {P1,P2,P3,P4,P7,P8,P9}

4.1.2 Refinement step

Once the RkN-ASR set of a given ASR is sent to its corresponding representative participant,
the representative performs the refinement step before sending the result to each of the local
peers (i.e., participants inside the ASR). The goal of the refinement is to prune the extra DC-
points from the RkN-replicator set of each of the peers. To do so, the representative validates
the kN-replicator set of every DC-point in the result. However, since the representative only
has the location of his local peers, the kN-replicator set of the DC-points can only be verified
with respect to the participants inside the given ASR. Table 4 depicts the kN-replicator set
of every DC-point with respect to each of the ASRs. For example, the kN-replicator set of
P1 with respect to A1 (denoted by kN-replicatorA1

P1
) includes U1 and U2. The reason is that

among the participants inside A1 (i.e., U1,U2, and U3), U1 and U2 are closer to P1. Therefore,
the refinement step eliminates P1 from the RkN-replicator set of U3.

After the validation step, the algorithm inverts the result, and sends the corresponding
RkN-replicator set to every participant in the ASR. Table 5 shows the final result sent to every
participant. Every participant receives the exact result, shown in bold, along with a set of
false positives. This means that all DC-points meet the kN-replica’s requirement (i.e., LPT
successfully finds k closest participants for every DC-point to collect k replicas). However,
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Table 4 2N-replicatorA for set
P in LPT DC-point 2N-rA1 2N-rA2 2N-rA3

P1 {U1,U2} {U4,U6} {U7,U8}
P2 {U1,U3} {U4,U5} {U7,U8}
P3 {U2,U3} {U4,U6} {U7,U8}
P4 {U1,U3} {U4,U6} {U7,U8}
P5 {U1,U3} {U4,U5} N/A
P6 {U1,U3} {U4,U5} N/A
P7 {U1,U2} {U4,U6} {U7,U8}
P8 {U1,U2} {U4,U6} {U7,U8}
P9 {U1,U2} {U5,U6} {U7,U8}

Table 5 R2N-replicator set for
set U in LPT

Participant R2N-replicator WC (%)

U1 {P1,P2,P4,P5,P6,P7,P8,P9} 75
U2 {P1,P3,P7,P8,P9} 60
U3 {P2,P3,P4,P5,P6} 40
U4 {P1,P2,P3,P4,P5,P6,P7,P8} 50
U5 {P2,P5,P6,P9} 50
U6 {P1,P3,P4,P7,P8,P9} 67
U7 {P1,P2,P3,P4,P7,P8,P9} 71
U8 {P1,P2,P3,P4,P7,P8,P9} 86

due to privacy concerns, every participant is assigned to more DC-points than expected.
Below, we define the notion of wasteful collection (WC).

Definition 11 (Wasteful collection) Given a participant Ui , we refer to the percentage of
extra DC-point assignments to Ui as the wasteful collection of Ui denoted by WCi .

WCi = | false positivesi |
|true positivesi | + | false positivesi |

× 100 (1)

The term of wasteful collection is defined per individual participant. We compute the aver-
age of the wasteful collections for all participants, denoted by WC, as the overall wasteful
collection of the system. It is evident that larger values of WC result in more replicas per
DC-point. In Table 5, the wasteful collection for every participant is calculated. For example,
the wasteful collection for U1 is calculated as follows: WC1 = (6/(6 + 2)) ∗ 100 = 75 %.
Therefore, the average WC is 62 %, which means that on average every participant is assigned
to 62 % extra DC-points. Our goal is to improve the technique by minimizing this extra
assignment.

4.1.3 LPT completeness

The following theorem proves the completeness of LPT.

Theorem 1 The LPT approach is complete (i.e., no missing data).

Proof 1 In order to prove the completeness, we should prove that the PkNNP algorithm
retrieves all the ASRs which contain the k closest participants to a given DC-point p.
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We prove this by contradiction. Assume the kth closest participant is outside the radius
maxdist Asorted [k]

p . This means that all ASRs in the given radius contain at most k − 1 partici-
pants. However, there are at least k ASRs in the given radius. Moreover, every ASR contains
at least one participant. Therefore, at least k participants exist in the radius maxdist Asorted [k]

p

from p, which contradicts our prior assumption. ��
4.2 Bounded anonymity level (BAL)

Our LPT approach does not make any assumption about the anonymity level m of any ASR.
This means m can have any value dependent on the privacy requirement of the participants
in the given ASR. Therefore, in order to guarantee that the k closest participants for every
DC-point are retrieved, the server needs to explore at least k closest ASRs considering the
worst case where m = 1. However, due to privacy concerns, cloaking usually occurs among
more than one person. In this case, if the value of m becomes available to the server, the
server can find the k closest participants by exploring less number of ASRs. Consequently,
the number of extra assignments to every participant (i.e., wasteful collection) would drop.
However, knowing the anonymity level of a given ASR results in privacy leak [14]. Instead,
the server can enforce a constraint, where the anonymity level of any ASR should stay beyond
a certain threshold. In other words, the server defines a system value, denoted by mmin, where
the anonymity level of any ASR should be larger than mmin. However, this only works if
the ASRs do not overlap, in which every ASR contains at least mmin distinct users. In the
case of an overlap, a participant might be in more than one ASR. Thus, every ASR should
have at least mmin participants who voted for the given ASR, namely voting participants, to
ensure enough number of distinct participants (i.e., mmin) in every ASR. The reason is that
every participant votes for only one ASR [24]. For example, if a participant is inside two
overlapping ASRs, he has only voted for one of the two and therefore will be counted toward
only that ASR. Thus, this constraint can be enforced when every representative agrees upon
it (i.e., its ASR contains at least mmin voting participants).

Our second approach, referred to as bounded anonymity level (BAL), is based on this
assumption. Enforcing the minimum anonymity level constraint has few advantages. First,
the server is still unaware of the anonymity level of any ASR. Second, for mmin > 1, less
number of ASRs might get explored, and therefore, less false hits in the result. Third, LPT
is a special case of BAL, where mmin = 1. In the following, we explain the details of BAL
approach.

4.2.1 Filtering step

Similar to the LPT approach, the filtering step in BAL approach starts with computing the
kN-ASR set of every DC-point. This means that an incremental approach is used by first
finding the closest neighbor, and expanding the search until k closest ones are found. The
difference is that here mmin is enforced to every ASR. Consequently, once an ASR is explored,
the server knows that at the worst case mmin participants reside in the given ASR. Thus, the
algorithm might stop at an earlier iteration. In our example of Fig. 4, considering mmin = 2,
the algorithm finds A2 as the closest ASR to P1. The server knows that A2 has anonymity
level of at least 2. However, the algorithm does not stop at this point, since a participant in a
distance of maxdist A2

P1
in another ASR might be closer to P1. Thus, the algorithm performs

a range query with a radius of maxdist A2
P1

and adds any intersecting ASR to the result set
(i.e., A1). At this point, the algorithm stops, since the two closest participants cannot reside
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Table 6 2N-ASR set for set P in
BAL

DC-point kN-ASR

P1 {A1,A2}
P2 {A1,A2}
P3 {A1}
P4 {A1,A2}
P5 {A1,A2}
P6 {A1,A2}
P7 {A1,A2,A3}
P8 {A1,A2,A3}
P9 {A1,A2,A3}

Table 7 R2N-replicator set for
set U in BAL

Participant R2N-replicator WC (%)

U1 {P1,P2,P4,P5,P6,P7,P8,P9} 75
U2 {P1,P3,P7,P8,P9} 60
U3 {P2,P3,P4,P5,P6} 40
U4 {P1,P2,P4,P5,P6,P7,P8} 43
U5 {P2,P5,P6,P9} 50
U6 {P1,P4,P7,P8,P9} 60
U7 {P7,P8,P9} 33
U8 {P7,P8,P9} 67

outside the radius maxdist A2
P1

from P1. Finally, the algorithm returns A1 and A2 as the result.
Table 6 depicts the 2N-ASR sets of all DC-points using the BAL approach. As the table
shows, less number of ASRs are explored comparing to LPT approach.

Once the kN-ASR set of every DC-point is computed, the server inverts the result and
sends the corresponding RkN-ASR sets to the owners for the refinement process.

4.2.2 Refinement step

The refinement process is exactly similar to the LPT approach. After receiving the RkN-ASR
set, the representative participant validates the kN-replicator set of every DC-point in the result
with respect to all participants in the given ASR. Thereafter, the representative inverts the
result and sends the corresponding RkN-replicator set to every participant in the given ASR.
Table 7 depicts the final result sent to every participant along with the WC percentage. As
also expected, we see a slight decrease in the extra DC-point assignment to the participants.
The average WC is reduced to 53 %.

4.2.3 BAL completeness

In the following, we prove the completeness of BAL.

Theorem 2 The BAL approach is complete.

Proof 2 The proof is similar to that of Theorem 1, and therefore is omitted. ��
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4.3 Heuristics-based bounded anonymity level (HBAL)

In both LPT and BAL, the refinement step is performed based on the local knowledge that
each representative participant has about his local peers. Therefore, the validation of kN-
replicator set for every DC-point is only based on the local participants in the given ASR. This
results in a limited pruning capability. In order to improve this, the representative participants
require some knowledge about other non-local participants. However, the server does not
have the location information of other participants. Instead, it can share some information
about their ASRs. Therefore, we can employ a set of heuristics to expand the pruning with
the extra information sent to the representative participants. We refer to this approach as
Heuristics-based Bounded Anonymity Level (HBAL). We explain more details in the following
sections.

4.3.1 Filtering step

The filtering step of HBAL is similar to that of the BAL approach in that the server computes
the kN-ASR set of all DC-points. Next, the server inverts the result and sends the RkN-
ASR set of every ASR to its corresponding representative participant. However, for every
DC-point p in the RkN-ASR set of a given ASR, the server also sends the kN-ASR set of
p to the corresponding ASR. This extra knowledge helps the refinement step with more
pruning. Following our example of Fig. 4, once Table 6 is generated, the server not only
sends P1, . . . , P9 to A1, it also sends their kN-ASR sets. This means that the server sends the
kN-ASR set of P1 (i.e., A1 and A2) to both A1 and A2.

4.3.2 Refinement step

Once the representative participant receives the RkN-ASR set, it refines the result in two
phases. The first phase is similar to the refinement step of both LPT and BAL, where the
kN-replicator sets of the DC-points are validated against all local participants in the given
ASR. In the second phase, the results of the previous phase are examined against a set of
ASRs of non-locals, which are contained in the kN-ASR set of the corresponding DC-point.
For example, by validating the 2N-replicator set of P4 with respect to A1, we retrieved U1

and U3 in the first phase. In the next phase, since A2 ∈ 2N-ASRP4 (see Table 6), we employ
some heuristics to validate the first-phase result against A2. The question is how to employ
the non-local ASRs to do the refinement. The following lemmas answer this question.

Lemma 1 Given a DC-point p, and an ASR Ai , let kN-replicatorAi
p be the kN-replicator

set of p with respect to elements in Ai . Also, let u ∈kN-replicatorAi
p . We say u belongs

to kN-replicatorp if the distance between p and u is smaller than the distance between p
and the closest point on any of the non-local ASRs in kN-ASR set of p (i.e., dist(p,u) <

mindist
A j
p ∀A j �=i ∈kN-ASRp).

Based on Lemma 1, we can guarantee that a participant is in kN-replicator set of a DC-
point, if their distance is smaller than the minimum distance to any other ASR. Following
our example of validating 2N-replicator set of P4, we retrieved U1 and U3 in the first phase.
In the next phase, we have to validate them against A2. According to the above lemma, we
can guarantee that U1 and U3 are the 2N-replicators of P4, since no participant in A2 is in a
closer distance to P4.
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Table 8 R2N-replicator for set
U in HBAL

Participant R2N-replicator WC (%)

U1 {P1,P2,P4,P5,P6,P7} 67

U2 {P1,P3,P7} 33

U3 {P3,P4,P5,P6} 25

U4 {P1,P2,P5,P6} 0

U5 {P2,P5,P6,P9} 50

U6 {P1,P8,P9} 33

U7 {P7,P8,P9} 33

U8 {P7,P8,P9} 67

Lemma 2 Given a DC-point p, and an ASR Ai , let kN-replicatorAi
p be the kN-replicator

set of p with respect to elements in Ai . Also let u be the j th nearest replicator in kN-
replicatorAi

p . We say u /∈kN-replicatorp if the distance between p and u is larger than the
distance between p and the farthest point on n number of the ASRs in kN-ASR set of p, where
(n × mmin) + ( j − 1) ≥ k.

This indicates that we can prune a participant from the kN-replicator set of a DC-point,
if their distance is larger than the maximum distance to a set of ASRs, in which the total
number of possible results exceeds k. In our following example of Fig. 4, by validating the
2N-replicator set of P8 with respect to A1, we retrieved U1 and U2 in the first phase. In
the second phase, we should validate them against A2 and A3 (see Table 6). As the figure
depicts, the distance between P8 and U2 is larger than maxdistA3

P8
. Since A3 contains at least

two participants, the k requirement is satisfied. This indicates that U2 cannot be any of the
two closest participants to P8. Thus, we can prune U2 from the result set. Similarly, U1 is
also pruned from the result set. Consequently, P8 is no longer in the R2N-replicator set of
any of the participants in A1. In other words, none of the participants in A1 are assigned to
collect replicas at P8, since according to Lemma 2, they cannot be the two closest participants
to P8.

Table 8 depicts the final result for each participant in the HBAL approach. The table shows
a drop in the number of false hits, and thus the percentage of WC. The average percentage
of WC is reduced to 38 %.

4.3.3 HBAL completeness

The following theorem proves the completeness of HBAL.

Theorem 3 The HBAL approach is complete.

Proof 3 The proof is trivial and therefore is omitted.

5 Performance evaluation

We conducted several simulation-based experiments to evaluate the performance of our pro-
posed approaches: LPT, BAL, and HBAL. Below, first we discuss our experimental method-
ology. Next, we present our experimental results.

123



TAPAS: Trustworthy privacy-aware participatory sensing 123

0%

20%

40%

60%

80%

100%

100 200 300 400

No. of Participants

W
C

LPT

BAL

HBAL

0

20

40

60

80

100 200 300 400

No. of Participants

N
o

. o
f 

M
es

sa
g

es

LPT

BAL

HBAL

(a) (b)

Fig. 7 Scalability

5.1 Experimental methodology

We performed three sets of experiments. With the first set of experiments, we evaluated
the scalability of our proposed approaches. For the rest of the experiments, we evaluated
the impact of the campaign’s trust level and the participant’s privacy requirement on our
approaches. With these experiments, we used two performance measures: (1) WC, and (2)
communication cost, in which the communication cost is measured in terms of the number
of messages incurred by our algorithms for each representative participant4.

We conducted our experiments with the objective of collecting a set of photos from
500 locations in part of the Los Angeles county. These DC-points were randomly selected.
Moreover, our participants dataset includes random generation of 400 users’ location. Since
usually a limited number of users participate in a PS campaign, we set the default num-
ber of participants to 200 and vary it between 100 to 400. Moreover, we vary the trust
level of the campaign between 2 to 5, with 3 as the default value (i.e., k = 3). We set
the transmission range to 250 m [5]. At the transport layer, we set the MTU (Maximum
Transmission Unit) to be 500 bytes. The degree of anonymity (m) for each participant varies
between 5 to 20, with 5 as the default value. Moreover, for both BAL and HBAL, we set
mmin to 2. We set mmin to a small value for two reasons: (1) privacy and (2) to ensure
that all ASRs satisfy the mmin requirement, which was also verified by our experiments.
Finally, for each of our experiments, we ran 500 cases and reported the average of the
results.

5.2 Scalability

In the first set of experiments, we evaluated the scalability of our approach by varying the
number of participants from 100 to 400. As Fig. 7a depicts, we see a slight increase in the WC
percentage for all the three approaches as the number of participants grows. The reason is that
larger number of participants results in denser ASRs, and therefore, more overlap between
ASRs. In other words, since more ASRs are returned as the kN-ASR set of every DC-point,
the number of false hits increases. In general, we see LPT with the highest percentage of WC
in all cases. Moreover, BAL only has a slight improvement over LPT. The reason is that we
chose a low value for mmin (i.e., mmin = 2). Choosing higher values would result in more

4 In this paper we have not defined a trust metric to measure the amount of trust we achieve by redundant
data collection. Note that defining such a trust metric is non-trivial in a privacy-aware PS and is the focus of
our future work.
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Fig. 8 Effect of trust level

pruning during the filtering step, thus improving the WC percentage of BAL. Finally, we see
HBAL with the least percentage of WC (up to 2.5 times better than LPT).

Figure 7b shows the impact of varying the number of participants on the number of
messages. As the figure shows, the number of messages increases in all cases. In a denser
network, more communication is required among the peers to perform their queries. It is
worth mentioning that the dominant communication overhead (on average 70 %) in all the
three approaches is due to the P2P communication for preserving the privacy, which we used
the PiRi approach5. Moreover, we see that with HBAL, due to the extra information sent
to the representatives for pruning during the refinement, the communication cost is higher
than both LPT and BAL. However, the extra cost is only 30 % higher than LPT in the worst
case. Another interesting observation is that BAL has less communication cost as compared
to LPT in all cases. The reason is that with the BAL approach the extra pruning is performed
at the server side, resulting in less information to be sent to the representatives.

5.3 Effect of trust level

In the next set of experiments, we evaluated the performance of our approaches with respect
to the campaign’s trust level varied from 2 to 5. Figure 8a illustrates an increase in the
WC percentage as k grows in most cases. The reason is that as k increases, less number of
participants are pruned during the local validation phase of the refinement step. However, the
increase is less significant for HBAL due to the extra pruning in the refinement step. Moreover,
with an increase in k, the kN-ASR set of every DC-point becomes larger; thus increasing the
communication cost in all cases (Fig. 8b). Similar to the previous experiments, HBAL acts
the best in terms of improving the WC percentage (up to 2.8 times better than LPT), while
the extra communication cost stays between 15 and 30 % of that of LPT.

5.4 Effect of privacy requirement

In our final set of experiments, we measured the performance of our approaches with respect
to increasing the privacy requirement (m) from 5 to 20. As Fig. 9a shows, with an increase in
m, the percentage of WC reduces in all cases. The reason is that for larger values of m, each
ASR contains more number of participants. Consequently, kN-replicator set of a DC-point
exists in a less number of ASRs, which results in more pruning during the validation phase of

5 To the best of our knowledge, PiRi is the only existing approach for a privacy-aware assignment of DC-points
to the participants. However, any other privacy-preserving technique for PS systems is also applicable.
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Fig. 9 Effect of privacy requirement

the refinement step. Moreover, Fig. 9b shows the effect of varying m on the communication
cost. The figure illustrates that the number of messages increases with an increase in m. This
is because as m grows, more communication is required among the peers of a given ASR.
Similarly, we see HBAL outperforming LPT and BAL in terms of the WC percentage, while
the communication overhead is only slightly higher than those of the two.

5.5 Discussion

Our main observation from our experiments is that with an average of 30 % extra communi-
cation cost, HBAL can improve the approximation by up to 2.8 times over LPT and BAL.
However, we argue that this communication cost is not a burden to the participants since this
is only a one-time cost associated to assigning DC-points to the participants during the plan-
ning phase. Moreover, our experiments showed that with HBAL the approximation improves
by increasing the privacy requirement (e.g., WC decreases to 22 % with m = 20). However,
as the number of participants grows, we see an increase in the percentage of WC (e.g., WC
increases to 40 % with 400 participants). Our experiments also showed that the dominant
growth of WC is caused by increasing the number of participants. This shows that our pro-
posed approach performs better in campaigns which have small number of participants with
higher privacy requirements.

6 Conclusion and future work

In this paper, for the first time, we formalized the notion of the interplay between trust and
privacy in PS as a private all reverse k nearest replicator (PaRknR) problem. Subsequently,
we proposed TAPAS, a trustworthy privacy-aware framework that included three various
solutions to the PaRknR problem, namely LPT, BAL, and HBAL. In our experiments, we
demonstrated the overall efficiency of our approaches in preserving the privacy and trust in PS
campaigns. Our main observation from our experiments is that with an average of 30 % extra
communication cost, HBAL can improve the approximation by up to 2.8 times over LPT and
BAL. As future work, we aim to extend the proposed approaches to more cost-effective and
energy-efficient solutions. We also plan to propose efficient and privacy-aware approaches
to handle the user mobility during the assignment.
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