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Abstract Transaction data are increasingly used in applications, such as marketing research
and biomedical studies. Publishing these data, however, may risk privacy breaches, as they
often contain personal information about individuals. Approaches to anonymizing trans-
action data have been proposed recently, but they may produce excessively distorted and
inadequately protected solutions. This is because these approaches do not consider privacy
requirements that are common in real-world applications in a realistic and flexible manner,
and attempt to safeguard the data only against either identity disclosure or sensitive informa-
tion inference. In this paper, we propose a new approach that overcomes these limitations.
We introduce a rule-based privacy model that allows data publishers to express fine-grained
protection requirements for both identity and sensitive information disclosure. Based on
this model, we also develop two anonymization algorithms. Our first algorithm works in a
top-down fashion, employing an efficient strategy to recursively generalize data with low
information loss. Our second algorithm uses sampling and a combination of top-down and
bottom-up generalization heuristics, which greatly improves scalability while maintaining
low information loss. Extensive experiments show that our algorithms significantly outper-
form the state-of-the-art in terms of retaining data utility, while achieving good protection
and scalability.
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1 Introduction

Transaction datasets that contain information about individuals’ behaviors or activities are
used in a growing number of applications, including personalized web search, marketing
analysis, and biomedical studies. These datasets are comprised of records, called transactions,
and each transaction is a set of items, such as the goods purchased by or the diagnoses given to
an individual. One of the key issues concerning the use of transaction datasets in applications
is that individuals’ private information contained within the data must be protected.

1.1 Motivation

Publishing transaction data safely requires the elimination of two types of potential pri-
vacy leak, namely identity and sensitive information disclosure. Identity disclosure occurs
when an individual is linked to their transaction in the published data. Unfortunately, simply
de-identifying transactions (i.e., removing personal identifiers) is not enough to prevent this
type of disclosure. This is because combinations of items in transactions can still identify
individuals, as in the AOL incident that resulted in disclosing an individual’s identity based
on their search engine query terms [11]. Sensitive information disclosure, on the other hand,
occurs when an individual is linked not to a transaction, but to a set of items that is considered
to be sensitive. For example, from de-identified transactions containing movie ratings given
by an internet user, one may link this user to certain ratings to infer their religious views or
political beliefs [62]. These two types of disclosure are illustrated in the following example.

Example 1 Consider the de-identified data in Fig. 1a, which record items purchased by
several individuals. Some items in these data are sensitive and denoted with bold letters.
Knowing that Mary has purchased a, b and c, an attacker can link Mary to the first transaction
of Fig. 1a, since this is the only one that contains all 3 items (identity disclosure). Furthermore,
if the attacker knows that Bob has purchased e and f , then he can infer that Bob has purchased

(a) (b) (c)

(d)

(e)

Fig. 1 a De-identified data, b 22-anonymous data [74], c hierarchy, d anonymized data based on our rule-
based model, and e PS-rules
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sensitive item h, even though he cannot link Bob to a specific transaction in Fig. 1a using e
and f (sensitive information disclosure).

Approaches to guarding against these threats have been proposed recently. However,
they consider scenarios that involve coarse privacy protection requirements, while, with the
exception of [91], they seek to prevent either identity or sensitive information disclosure.
First, they make some restrictive assumptions about protection requirements. More specif-
ically, they assume that either all combinations of items [35] or itemsets of certain size
[74,75,91] are known to an attacker, thus need to be protected from identity disclosure; or
that all items that an attacker is not expected to know are sensitive, hence they must all be
guarded against sensitive information disclosure [16,27,29]. However, in real-world appli-
cations (e.g. in biomedical and mobility data analysis [32,50,65,73]), only certain itemsets
can lead to identity disclosure and only some items are actually sensitive. For instance, not
all diagnoses given to a patient can be used to link up with an external data source to disclose
their identity [50], and only diagnoses that can socially stigmatize patients, such as HIV, are
treated as sensitive [65]. Thus, anonymizing data based on uniform privacy assumptions can
result in unnecessary and often excessive data distortion. For example, if a, b, and c in Fig. 1a
are the only items that may be linked to an external data source, then only these items need to
be protected from identity disclosure. However, using the methods proposed in [74,75,91],
protection will be extended to all 20 itemsets comprised of any 3 non-sensitive items (e.g.,
abc, abd , abe etc.),1 causing unnecessary information loss.

Second, all existing approaches with the exception of [91] do not guarantee preventing
both identity and sensitive information disclosure [27,29,33,35,51,74,75]. For example,
when applied to Fig. 1a, the method given in [74] produces Fig. 1b by generalizing single
items to (a, b, c) and (d, e, f ). Clearly, identity disclosure is prevented in this case, but if we
require that no sensitive information may be inferred using items a to f for any individual with
a probability greater than 1

2 , then Fig. 1b is not protected from sensitive information disclo-
sure. This is because knowing that Mary has purchased a, an attacker can infer that Mary has
bought j with a probability of 2

3 . We argue that eliminating identity and sensitive information
disclosure together is important. This is because, identity disclosure can have legal conse-
quences [1] for the data publishers and endanger future data collection [37], for example, in
applications related to the sharing of electronic medical records [50], statistical [37], and video
rental data [62], even though the identified transactions contain no sensitive information.

1.2 Contributions

This paper proposes a general approach to anonymizing transaction data. To our knowledge,
this is the first approach that allows fine-grained, flexible privacy requirements to be specified
and enforced for both identity and sensitive information disclosure. The contributions of our
work are summarized as follows.

First, we introduce a rule-based privacy model that is more general and flexible than the
existing privacy principles [35,51,74,75,91]. Instead of imposing some uniform conditions
on which items to be protected and seeking to prevent either identity or sensitive information
disclosure, we allow data publishers to specify fine-grained protection requirements for both
of these disclosures. This is achieved by specifying a set of PS-rules which naturally and
intuitively captures the items to be protected and their inter-relationships. For example, cd →
g is a PS-rule which specifies that identity disclosure through cd , as well as inference of

1 We assume that these methods are applied to non-sensitive items. Otherwise, 56 itemsets would receive
protection.
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sensitive itemset g using cd , are to be prevented. Protection from identity disclosure is
achieved by imposing that any subset of items in the antecedent of a PS-rule is contained in a
minimum of k transactions in the anonymized dataset, while sensitive information disclosure
is thwarted by imposing an upper bound c on the confidence of the rule. For example, cd → g
is protected in Fig. 1d with respect to k = 2 and c = 0.5. This implies that no individuals
can be linked to a transaction through c or d or cd with a probability higher than 1/2, and
to sensitive item g using cd with a probability higher than 0.5. So, our model allows data
publishers to capture precisely which items are to be protected from each type of disclosure.
This, as we will see shortly, helps produce anonymizations with better protection and data
utility.

Second, we develop two novel generalization-based algorithms to anonymize transactions
with respect to specified PS-rules. Both algorithms work by generalizing non-sensitive items,
as sensitive items need to be released intact in most applications [15,91]. The Tree-based
Anonymization algorithm operates in a top-down fashion, recursively replacing generalized
items with more refined ones in a way that helps data utility. For example, when applied to
Fig. 1a using the PS-rules given in Fig. 1e and for k= 2 and c= 0.5, this algorithm produced
an anonymized dataset shown in Fig. 1d. Compared to Fig. 1b, the dataset shown in Fig. 1d
clearly incurred less information loss and offered acceptable protection w.r.t. the given rules.
To see this, observe that the antecedent of any of the PS-rules in Fig. 1e is contained in
at least 2 transactions in the dataset of Fig. 1d, while the confidence of all these rules is
upper-bounded by 0.5. The Sample-based Anonymization algorithm is more scalable and can
anonymize large and high-dimensional datasets with a large number of PS-rules efficiently.
The main idea behind this algorithm is to use a sample to find an anonymized dataset in which
most PS-rules are protected quickly, and then slightly adjust the level of generalization in
this dataset so that all the rules become protected in it. Both algorithms employ efficient
rule pruning strategies, developed based on the properties of PS-rules. These strategies are
essential, because examining all PS-rules would incur a prohibitively high computational cost,
for any realistic datasets. However, Sample-based Anonymization performs rule checking
much faster than Tree-based Anonymization does, as only a small sample of the anonymized
dataset is used in the checking process.

Our extensive experiments show that the proposed approach is able to offer effective pro-
tection and allow much more accurate analysis to be carried out on the anonymized data than
that of [74] and [91]. In addition, they demonstrate that Sample-based Anonymization is sig-
nificantly faster than Tree-based Anonymization is and results in anonymizations with better
data utility due to the way it processes generalized items in the second stage of computation.
A preliminary version of this work reporting a basic algorithm along the lines of Tree-based
Anonymization can be found in [52].

The remainder of the paper is organized as follows. Related work is reviewed in Sect. 2.
Section 3 formally defines our generalization model and utility metric, as well as our rule-
based privacy model and the anonymization problem we consider. In Sect. 4, we present our
rule checking strategy and algorithms. Section 5 discusses how PS-rules can be specified,
and Sect. 6 reports experimental results. Finally, we conclude the paper in Sect. 7.

2 Related work

There are considerable research efforts for designing privacy-preserving methods [3,5,
14,18,22,38,43,56,59,66,70–72,92,93,95]. Several of these methods focus on data shar-
ing [3,5,14,26,44,54,56,59,66,70,71,93,95] and fall into two general categories [6,25].

123



Efficient and flexible anonymization 157

The first category of methods attempts to prevent sensitive patterns, such as frequent item-
sets [66] or sequences [2,30], or association rules [31,67,77], from being mined from the
data, while the second one, referred to as privacy-preserving data publishing (PPDP), aims
to protect the privacy of individuals whose information is contained in the data. Our work is
related to PPDP, and in this section we review the existing PPDP techniques that are devel-
oped for publishing relational or transaction data. These techniques aim to publish the data in
such a way that they remain protected from identity or sensitive information disclosure, but
can still be analyzed at a record-level, which is essential to many applications [50,60,61]. We
also discuss techniques for achieving differential privacy [13,22], which release noisy query
results [13,24] or noisy summary statistics about the data [10,88] instead. Last, we discuss
algorithm-based attacks, in which attackers use knowledge of the anonymization algorithm
to increase their belief about individuals’ sensitive values [21,81,82,87,94].

2.1 Preventing identity disclosure

Relational data publishing Identity disclosure may occur even when data, devoid of infor-
mation that explicitly identifies individuals, are published. This is because released data may
still be linked to external data containing individuals’ identities, through seemingly innocuous
attributes, such as age or gender. To prevent identity disclosure in such cases, k-anonymity
was proposed in [68,70]. A relational table satisfying k-anonymity ensures that the probabil-
ity of linking an individual to their record, based on potentially linkable attributes, is upper
bounded by 1

k .
Constructing a k-anonymous table is possible by transforming attribute values, but achiev-

ing this with minimal information loss is NP-hard [57]. Some algorithms employed sup-
pression, a technique that removes values, to achieve k-anonymity [57] and others adopted
generalization (i.e., they replace original values with more general but semantically consis-
tent ones). Generalization-based methods employ evolutionary techniques [36], agglomera-
tive and divisive clustering [89], and data partitioning [41,42]. LeFevre et al. for example,
designed Mondrian, a generalization-based algorithm inspired by the kd-tree construction
[42], as well as Rothko-S, an algorithm that introduced the use of sampling to anonymize
datasets larger than the main memory based on the Mondrian framework [41].

These algorithms assume that all attributes are potentially linkable, hence all combinations
of their values need to be protected. This can result in excessive, but unnecessary informa-
tion loss [70] when the actual privacy requirements dictated by the intended applications are
different [60,61,78]. An exception to this is the approach of [60,61], which protects combi-
nations of up to a certain number of potentially linkable attributes. The authors of [60,61]
proposed L K C-privacy to specify and enforce such privacy requirements, and they developed
two generalization-based algorithms to satisfy L K C-privacy for centralized and distributed
data sharing scenarios. Although we share the goal of enhancing data utility by taking into
account detailed privacy requirements, our approach addresses a different problem than that
of [60,61], as we consider anonymizing transaction data.

Transaction data have different characteristics than relational data [27,29,35,61,74,75,
91]. Specifically, in transaction data, an individual is associated with a set of items of variable,
and typically large, size, and some of these items may be sensitive. On the other hand, an
individual in a relational dataset is associated with a fixed, and typically small, number of
attribute values, one of which is sensitive. Due to these differences, most principles and
algorithms that have been developed for anonymizing relational data are not applicable to
transaction data, as discussed in [27,29,61,74,75,91]. For instance, Aggarwal [4] has proven
theoretically that applying k-anonymity on high-dimensional data is likely to incur extremely
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(a)

(b)

Fig. 2 Series of generalization decisions performed by a Apriori, and b COAT

high information loss, rendering the data useless. In addition, Xu et al. [91] have shown that
anonymizing transaction data, using the relational data anonymization algorithm proposed in
[26], may harm data utility. Furthermore, most measures that capture the utility of anonymized
relational data, such as those that are based on ranges of values in anonymous groups of
records [89,85], are not applicable to transaction data.

Transaction data publishing Privacy models for anonymizing transactions to forestall
identity disclosure were considered in [35,51,74,75]. Terrovitis et al. [74] introduced km-
anonymity, which prevents linking an individual to a transaction using combinations of any m
items of this transaction, while He et al. [35] proposed a k-anonymity based principle to guard
against attackers who may know any combination of items in an individual’s transaction.
Recently, Loukides et al. [51] suggested a constraint-based k-anonymity model to prevent
identity disclosure through specific itemsets. The differences between these privacy models
and ours were discussed in Introduction.

In terms of methods, Terrovitis et al. [74] designed Apriori, an effective algorithm to
enforce km-anonymity. This algorithm replaces groups of items, represented as leaf nodes in
a generalization hierarchy, to a generalized item that corresponds to one of their ascendants.
For efficiency, Apriori seeks to protect increasingly larger combinations of items iteratively in
a bottom-up fashion, from single items to combinations of m items. In each step, it examines
all possible generalizations and finds one that incurs the least information loss and satisfies
km-anonymity. For example, the generalization steps taken by Apriori when applied to Fig. 1a
using the hierarchy of Fig. 1c are shown in Fig. 2a, where the release of original items is
considered first, then the generalization of {a, b, c} to (a, b, c), and finally the generalization
of all items to (a, b, c, d, e, f ).

Another bottom-up algorithm is COAT [51], which operates in a greedy fashion and per-
forms both generalization and suppression. The selection of items that are generalized by
COAT is governed by the utility constraints specified by data publishers. These constraints
correspond to the most generalized items that can be used to replace a set of items, thus
they limit the generalizations to those that are acceptable for intended applications. When an
item cannot be generalized with respect to specified utility constraints, COAT suppresses it
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to ensure privacy. In Fig. 2b, for example, COAT takes on three utility constraints and exam-
ines 19 possible transformations: 1–5, 13–14, and 18, corresponding to the generalizations
considered for items in each utility constraint, and the remaining ones involving suppressed
items, denoted by ().

Our algorithms are similar to Apriori and COAT in that an item is replaced with the
same generalized item in all transactions. The algorithms proposed by He et al. [35] and
Terrovitis et al. [75], however, allow the same item to be replaced by different generalized
items in different transactions, as they partition transactions into sets and then generalize
items in each set separately. While this may reduce data distortion, these algorithms generate
anonymized datasets of limited utility in practice, as mining algorithms and analysis tools
cannot work effectively on such datasets [25].

2.2 Preventing sensitive information disclosure

Relational data publishing Inferring sensitive information about individuals is possible
even when released data prevent identity disclosure, for example, when a “large” number
of records in a k-anonymous group have the same value in a sensitive attribute [54]. Sev-
eral privacy principles were proposed to prevent this threat [44,54,78,80,83,86]. l-diversity
requires each group of records to have at least l “well-represented” sensitive values [54],
while m-invariance dictates that each group should have m distinct sensitive values and deals
with the anonymization of dynamic datasets [86]. Li et al. [44] examined inferences that can
be made when the distribution of sensitive values in an anonymous group is not similar to
that in the sensitive attribute as a whole, and proposed t-closeness to limit the difference
between these distributions.

While the aforementioned principles treat all values of an attribute as either potentially
linkable or sensitive, Wang et al. [78–80] argued that less information loss will be incurred if
this restriction is lifted. In [78,79], they introduced the concept of privacy template to model
an association between a set of values in one or more potentially linkable attributes and a
single sensitive value. A privacy template is satisfied when the probability of associating an
individual with their sensitive value, based on the potentially linkable values, is limited. Thus,
the privacy principle in [78,79] guarantees protection from sensitive information disclosure,
but not from identity disclosure. Recently, Wang et al. [80] examined inferences of sensitive
information in which any attribute value may be sensitive and proposed F F-anonymity to
limit the probability of these inferences. Our model deals with detailed privacy requirements,
which are common in transaction data publishing applications [50], but it offers protection
from both types of disclosure.

A privacy principle, called (α, k)-anonymity, was proposed by Wong et al. [83] to thwart
both identity and sensitive information disclosure. This principle demands that there exist
at least k records with the same values in all potentially linkable attributes and at most α%
of these records have the same sensitive value. Yet, (α, k)-anonymity treats all non-sensitive
information as potentially linkable. This is different from our principle, which allows the
flexibility of specifying detailed privacy protection requirements for identity disclosure.

Several anonymization algorithms that focus on guarding against sensitive information
disclosure have been developed [78,79,84]. Wang et al. [78,79] proposed a suppression-
based algorithm that aims at preserving data utility for classification tasks. Our algorithms
use generalization, which generally preserves data utility better than suppression, and release
data that minimize a general-purpose information loss metric, which is useful when the
utility requirements are not known or specified at the time of data publishing [25]. To enforce
l-diversity, Xiao et al. [84] proposed an algorithm based on anatomy, a technique that releases
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an anonymized table as two sub-tables, one containing potentially linkable attributes and
the other sensitive ones. Methods [28,60,61,83] for preventing both identity and sensitive
information disclosure have also been developed, such as the method that exploits space
mapping techniques to construct k-anonymous and l-diverse relational tables [28].

Most principles and algorithms that have been designed for guarding against sensitive
information disclosure in relational data publishing are not suited to transaction data pub-
lishing. This is due to the different semantics of these two types of data that are discussed in
Sect. 2.1. Ghinita et al. [27,29], for example, have shown that generalization and anatomy-
based algorithms, which are designed to enforce l-diversity on relational data, are likely to
significantly reduce data utility when applied to transaction data, particularly when transac-
tions have a large number of sensitive items.

Transaction data publishing Several works have considered the prevention of sensitive
information disclosure in publishing transaction data. Xu et al. [91] introduced (h, k, p)-
coherence that treats items an attacker is expected to know, referred to as public items,
similarly to km-anonymity (p plays the same role as m in km-anonymity), and addition-
ally limits the probability of inferring any non-public item using a parameter h. Enforcing
(h, k, p)-coherence results in over-protection and over-distortion when only some specific
privacy requirements are to be met [50,51], as in the case of several real-world appli-
cations [50,60,61]. Our model was developed to deal with such applications, and it has
(h, k, p) coherence as its special case, as we will prove in Sect. 3.4.2. To enforce (h, k, p)-
coherence, Xu et al. [91] proposed Greedy, a suppression-based algorithm which assumes
that all items require protection against either identity or sensitive information disclosure.
Another (h, k, p)-coherence algorithm, which is based on suppression and aims at preserving
the counts of frequent itemsets, was proposed in [90]. Our algorithms employ generalization,
and they preserve data utility significantly better than Greedy, even when they are configured
to enforce (h, k, p)-coherence, as shown in our experiments.

Another group of methods treats all non-public items as sensitive and protects them all
from disclosure. Ghinita et al. [27,29] suggested an anatomy-based method that releases
groups of transactions, each of which contains public items in their original form and a
summary of frequencies of non-public items. Concurrently with our work, Cao et al. [16]
introduced ρ-uncertainty, which limits the probability of inferring any non-public item, and
an algorithm which first iteratively suppresses non-public itemsets, and then generalizes
public items using the model given in [74] to enforce this principle. This work is unique in
that it guards against attackers who possess knowledge about sensitive items. On the contrary,
our approach assumes that data publishers are aware of the items that can be used to infer
sensitive information, which is often the case in applications, and blocks inferences that can
be made using these items to enhance data utility. Contrary to ours, the methods given in
[16,27,29] do not guarantee the prevention of identity disclosure, nor can they be easily
modified to provide such guarantees, because their effectiveness and efficiency rely heavily
on the intrinsic properties of their privacy models.

2.3 Preserving privacy through differential privacy

The differential privacy model ensures that the outcome of a calculation is insensitive to
any particular record in the dataset [13,22]. This offers privacy, because the inferences an
attacker can make about an individual will be (approximately) independent of whether any
individual’s record is included in the dataset or not. Differential privacy makes no assumptions
about an attacker’s background knowledge, as opposed to the models discussed in Sects. 2.1
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and 2.2, and it has led to the development of many interesting approaches (see [23] for a
survey). However, differential privacy may be overly restrictive [53], and its enforcement
does not guarantee the prevention of all attacks [20,39]. Cormode, for example, showed that
an attacker can infer the sensitive value of an individual fairly accurately, by applying a
Naive Bayes classifier on differentially private data [20]. Furthermore, differential privacy
cannot be satisfied by deterministic algorithms, and even randomized algorithms will almost
certainly produce anonymized data that are totally unrepresentative of the original data [55].
Thus, either noisy answers to a limited number of queries posed by users [13,24] or noisy
summary statistics have to be released instead [10,19,34,40,58,88]. Also, individuals may
become associated with false information in the output of differential privacy methods [25].
Our approach focuses on a different setting, which involves the publication of data that can
be analyzed at a record level and remain truthful (i.e., individuals are associated with more
general, but not with false information in the published data). Producing such data is useful
in several tasks, including visualization, auditing, and health and biomedical data analysis
[7,50,60,61].

Concurrently with our work, Chen et al. [19] proposed a novel method to release noisy
estimates of the answers to certain count queries involving itemsets in a transaction dataset.
These queries are identified using a top-down, data partitioning strategy, which reduces the
amount of added noise needed to satisfy differential privacy and improves utility. The par-
titioning strategy employs a taxonomy and starts by grouping together all transactions of
the dataset, which initially contain a single item corresponding to the root of the taxonomy.
Then, the group is recursively partitioned into a number of subgroups, similarly to [35], so
that the transactions in each resultant subgroup share a common representation determined
by the taxonomy. To satisfy differential privacy, a subgroup is partitioned if its noisy count
(i.e., the noisy answer to the count query asking for the number of transactions contained
in the subgroup) exceeds a threshold set by the data publisher. The partitioning ends when
the transactions in all subgroups with non-zero, noisy counts contain only leaf-level nodes
in the taxonomy. Subsequently, the algorithm computes the noisy count of each subgroup
and releases it together with the node of the taxonomy that corresponds to the subgroup. Our
approach is developed for a different publishing scenario than that of [19], which involves
publishing truthful transactions that can be analyzed individually, as mentioned above. Con-
sequently, our algorithms release such transactions, instead of the noisy counts of specific
itemsets. Furthermore, the algorithms we propose employ generalization, and not noise addi-
tion, and they partition generalized items, without the need of a taxonomy, for the purpose
of constructing an anonymized dataset.

2.4 Algorithm-based attacks

In algorithm-based attacks, sensitive information is inferred based on knowledge about the
way the anonymization algorithm works [21,81,82,87,94]. The pioneering work of Wong
et al. [81] introduced the minimality attack, in which an attacker is assumed to have some
knowledge about the operation of a deterministic, relational data anonymization algorithm
and its parameters. Moreover, the attacker must possess an eponymous, external dataset that
contains the personal identifiers and all potentially linkable attributes of all the individuals
contained in the published dataset. An algorithm is susceptible to minimality attack when it
follows the minimality principle [81]. That is, when the algorithm produces an anonymized
dataset that satisfies a privacy principle, and no other anonymized dataset, which satisfies
the same principle, can be produced by specializing the values in a group of records of
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the former dataset.2 Wong et al. [81] also proposed an algorithm, called MASK, to prevent
minimality attack. MASK is applicable to relational data and works by generalizing and
distorting potentially linkable and sensitive values, respectively. Cormode et al. [21] provided
a detailed analysis of the minimality attack. They identified properties that make relational
data anonymization algorithms susceptible to the attack and showed how algorithms can be
modified to prevent it.

Xiao et al. [87] considered attackers who know everything about the anonymization algo-
rithm and possess an eponymous, external dataset as in [81]. Such attackers may infer an
individual’s sensitive value with “high” probability, even when l-diversity [54] holds. To see
this, observe that, without knowledge of the algorithm, an attacker must consider all original
datasets that could be anonymized to the published dataset as equally likely.3 In this case,
l-diversity guarantees that an individual’s sensitive value will not be inferred with a proba-
bility that exceeds 1

l . However, this bound does not hold for the type of attackers considered
in [87]. This is because, such attackers can rule out the possible original datasets that the
algorithm would not transform to the anonymized dataset, thereby limiting the number of
possible original datasets in which an individual is associated with a specific sensitive value.
These reverse engineering attacks may compromise the privacy protection offered by several
l-diversity algorithms, which include deterministic and randomized algorithms, as well as
MASK [81], and can be prevented by applying transparent l-diversity [87]. An algorithm
satisfies transparent l-diversity, when all associations between an individual and a sensitive
value hold in no more than a “sufficiently” small fraction of the possible original datasets that
could have been produced by the algorithm. Xiao et al. [87] also proposed three transparent
l-diverse algorithms to anonymize relational data; Tailor, a deterministic, generalization-
based algorithm inspired by kd-tree construction, Ace a randomized, generalization-based
algorithm, and Hybrid, which first partitions data using Tailor and then invokes Ace in each
subpartition.

All works studying algorithm-based attacks assume a relational data publishing setting
[21,81,82,87,94]. However, as discussed by Cao et al. [16], “there is nothing analogous to
the eponymous, external dataset”, which is necessary for both minimality and transparency
attacks to succeed, in transaction data publishing. On the contrary, an attacker can use only
the items about an individual they can observe [16], which often are a small fraction of all
items in the dataset. Consider, for example, the release of an anonymized, transaction dataset
that contains patient diagnoses derived from electronic medical records [49]. Obtaining an
eponymous, external dataset is extremely difficult, even for attackers with access to the
electronic medical record system [50]. Similar observations were also made for e-commerce
data [73]. Thus, the applicability of algorithm-based attacks on transaction data publishing
is questionable. We further discuss these attacks in relation to our algorithms in Sect. 4.4.

3 Background and problem statement

After introducing some notations, we describe the generalization model and utility metric
we use in Sects. 3.2 and 3.3, respectively. Section 3.4 presents the rule-based privacy model
we propose, and Sect. 3.5 formulates our problem.

2 Specialization is the reverse operation of generalization [26].
3 This is the statistically best strategy an attacker can follow [9].
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Fig. 3 An example of set-based
item generalization

3.1 Notations

Let I = {i1, . . . , iM } be a finite set of literals, called items, where M denotes the cardinality
of the set. Any subset I ⊆ I is an itemset over I, and it is represented as a concatenation
of the items it contains. An itemset that has m items (or equivalently of size m) is called an
m-itemset. The size of an itemset I is denoted by |I |.

Let P be the set of items in I that an attacker may use to link individuals to published
transactions, N be the set of items in I that are not in P , and S be a non-empty subset of N
that represents some private information that needs to be protected. We require P ∪N = I,
P ∩ N = ∅, and S ⊆ N . We call P public, N non-public and S sensitive sets of items,
and denote their sizes with |P|, |N | and |S|, respectively. Following [27,29,54,83,91], we
assume that attackers do not possess any background knowledge about items in N .

A transaction T over I is a pair T = 〈tid, I 〉, where I is an itemset and tid a unique
identifier. A transaction dataset D = {T1, . . . , TN } is a set of N transactions over I, which
contains all items of I. The size of D is denoted by |D|. A transaction T = 〈tid, J 〉 supports
an itemset I , if I ⊆ J . Given an itemset I over I in D, we use sup(I, D) to represent
the number of transactions in D that support I . These transactions are called supporting
transactions of I in D and denoted with DI .

3.2 Generalization model

We anonymize transactions through item generalization, an operation that replaces original
items with more general items [74]. We generalize public items only as it is often necessary to
keep sensitive items intact in applications [91], and we employ the set-based generalization
model proposed in [51]. Set-based generalization models have been introduced in [45] and
shown to be effective at retaining data utility due to their ability to represent a large number
of generalizations [45,51,64].

Definition 1 (Set-based generalization) A set-based generalization is a partition P̃ of P in
which each item i in P is mapped to the member ĩ of P̃ that contains i . We call ĩ a generalized
item, and denote the number of items in ĩ by |ĩ |.

So a set-based generalization is essentially a function that maps each item i in P to a
unique subset ĩ of P . To express this mapping, we write Φ(i) = ĩ and call Φ : P → P̃ a
generalization function. When the members of ĩ are known, we may also express ĩ by listing
its item(s) in brackets. We interpret ĩ as representing any non-empty subset of its constituent
items. For example, in Fig. 3, items b and c are both mapped to the same generalized item
ĩ2 = (b, c), which represents either b, or c, or bc. For clarity, we may drop () when ĩ contains
only one item.
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Fig. 4 All set-based
generalizations for Fig. 1a

Applying Φ to the items of an original dataset D results in the transformation of D into
a generalized dataset D̃. It is easy to see that the support of a generalized item in D̃ will
always be greater than or equal to the support of any item mapped to it in D. Consider Fig. 1a
for example. If we assume that b and c are both mapped to the generalized item (b, c), then
(b, c) is supported by 3 transactions in Fig. 1d, whereas b and c are only supported by 2
and 1 transactions in Fig. 1a. This helps prevent identity disclosure because an attacker will
associate an individual with more transactions in D̃ than in D.

The set-based generalization model allows us to explore a significantly larger number of
generalizations than the full-subtree generalization model can [35,74,75]. This is because
each item i ∈ P can be independently mapped to a generalized item, so there are 2|P| − 1
different generalized items possible, each corresponding to one of the itemsets in P . For
example, Fig. 4 shows the space of available set-based generalizations for the public items
of Fig. 1a in a semilattice-like structure. As can be seen, there are 26 − 1 = 63 generalized
items possible. In comparison, the full subtree model will only consider 9 generalized items,
as shown in the hierarchy given in Fig. 1c. A larger generalization space can help construct
anonymized data with higher utility.

3.3 Utility metrics

There are numerous ways to generalize a dataset, and the one that harms data utility the
least is typically preferred. Several criteria capture data utility based on the level of informa-
tion loss incurred by generalization [75,89]. Normalized Certainty Penalty (NCP) [89], for
example, is a variant of the LM measure introduced in [36]. NCP is employed in [74,75] and
expressed as the weighted average of information loss incurred by all generalized items, each
measured in terms of the number of descendants it has in the generalization hierarchy. Other
measures, such as multiple level Mining Loss (M L2) and differential multiple level Mining
Loss (d M L2), express utility based on how well anonymized data support frequent itemset
mining [75]. All these measures require items to be generalized according to hierarchies. We
use the Utility Loss (UL) measure [51], which can be applied in the absence of hierarchies.

Definition 2 (Utility loss) The Utility Loss (UL) for a generalized item ĩ is defined as

UL(ĩ) = 2|ĩ |−1
2|P |−1

×w(ĩ)× sup(ĩ,D̃)
N , where w(ĩ) ∈ [0, 1] is a weight assigned to ĩ according to

its perceived usefulness. Accordingly, the Utility Loss for a generalized dataset D̃ is defined
as UL(D̃) =∑

∀ĩ∈P̃ UL(ĩ).

The UL measure penalizes a generalized item ĩ in terms of its size, support, and a weight.
The size is taken into account because ĩ can represent any of the 2|ĩ | − 1 non-empty subsets
of the items mapped to it. The larger ĩ is, the less certain we are about the value it represents.
The support for ĩ also contributes to the loss of utility, as its generalization will affect more
transactions, resulting in more distortion. The terms 2|P| − 1 and N are used to normalize
size and support, respectively. A weight is used to penalize generalizations exercised on more
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“important” items. This weight is to be specified by the data publisher, but can be computed
based on the semantic similarity of items that are mapped to a generalized item [51,89].

3.4 Rule-based privacy model

This section presents our rule-based privacy model. We first introduce PS-rules and then
explain how they can be used to prevent both identity and sensitive information disclosure.
We also show that our model is more general than the existing ones.

3.4.1 PS-rules and their protection

A PS-rule models an association between public and sensitive items that must be concealed
from the published data in order to prevent identity and sensitive information disclosure.

Definition 3 (PS-rule) A PS-rule is an implication I → J , where I is an itemset in P and
J is an itemset in S.

PS-rules can be used to specify fine-grained privacy requirements for both identity and
sensitive information disclosure, as there are no restrictions on which itemsets of P and S
are to be used as antecedents or consequents of the rules. We will discuss how PS-rules can
be specified in Sect. 5.

We now give conditions under which a PS-rule is considered to be protected and explain
how identity and sensitive information disclosure is prevented through protected PS-rules. We
use

⋃
as a generalized itemset constructor, and Ĩ =⋃

∀i∈I Φ(i) to represent the generalized
itemset constructed from itemset I .

Definition 4 (PS-rule protection) Given a generalized version D̃ of D, produced using the
set-based generalization model, and parameters k ∈ [2, N ] and c ∈ [0, 1], a PS-rule I → J
is protected in D̃ if (1) sup( Ĩ , D̃) ≥ k, and (2) con f ( Ĩ → J, D̃) ≤ c, where con f is a

function, called confidence, defined by sup( Ĩ∪J,D̃)

sup( Ĩ ,D̃)
.

Since D̃ is produced using set-based generalization, it is easy to see that an attacker would
be unable to associate an individual with any transaction in D̃ through Ĩ , if Ĩ was unsupported
in D̃ [91]. We therefore assume that sup( Ĩ , D̃) > 0. To explain why conditions (1) and (2) help
prevent identity and sensitive information disclosure, we observe the following properties.

Property 1 The probability of linking an individual to their transaction in D̃ using the
antecedent of a protected PS-rule in D̃ is at most 1

k .

Property 2 The probability of associating an individual with the consequent of a protected
PS-rule in D̃, given that their transaction supports the generalized antecedent of this rule, is
at most c.

Example 2 Consider the dataset of Fig. 1d and the PS-rule cd → g, which is protected
for k = 2 and c = 0.5, as there are 2 transactions supporting the generalized antecedent⋃
∀i∈{c,d}Φ(i) = (b, c)d , and only one of them supports (b, c)d ∪ g. This implies that an

attacker, who knows that Mary has purchased b and c, cannot infer Mary’s actual transaction
with a probability that exceeds 1

2 , nor can the attacker infer that Mary has purchased g with
a probability higher than 1

2 .
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So far, we have only considered the attacks that use all of the items specified in the
antecedent and consequent of a PS-rule I → J . Following [66], we do not consider the
attacks that use subsets of the items in J , since our intention is to satisfy specified privacy
requirements only. Attacks based on subsets of I and on supersets of J , however, are prevented
when I → J is protected. We will discuss this observation and its implication further in
Sect. 4.1.2. Also, we do not consider negated items, such as Bob has not purchased item a,
because such knowledge is not very useful in attacks, and it is rather difficult to obtain [75].

3.4.2 Generality of the PS-rule model

To illustrate the expressive power of our rule-based model, we show that existing privacy
models for transaction data [35,51,74,75,91] are in fact the special cases of our model. We
will show that for km-anonymity [74,75] and (h, k, p)-coherence [91] in Properties 3 and
4 below (proofs follow from the definitions of these models4). Showing that for the models
proposed in [35] and [51] is trivial.

Property 3 For a given m, construct a set of PS-rules Θ that contains one PS-rule I → J
for each m-itemset in P as I , and any itemset in N as J . A transaction dataset D in which
all rules in Θ are protected, for a given k and any c ∈ [0, 1], will also satisfy km-anonymity
for the same k and m.

Property 4 For a given p, construct a set of PS-rules Θ that contains one PS-rule I → J
for each p-itemset in P as I and for each 1-itemset in N as J . A transaction dataset D in
which all rules in Θ are protected, for a given k ∈ [2, N ] and c ∈ [0, 1], will also satisfy
(h, k, p)-coherence for the same k and p, and for h = c × 100 %.

3.5 Problem statement

The problem we consider in this paper is defined below.

Problem (PS-Rule-based anonymization) Given a transaction dataset D, a set of PS-rules
Θ , and parameters k and c, construct a generalized dataset D̃ from D using the set-based
generalization model such that: (1) each PS-rule in Θ is protected in D̃ and (2) the amount
of utility loss UL(D̃) is minimal.

As we show in Theorem 1, our problem is NP-hard. Also, it may not have a solution, as
explained in Theorem 2, unless a condition provided in Theorem 3 holds. The proofs of these
theorems, as well as those in the rest of the paper, are provided in the “Appendix”.

Theorem 1 The PS-rule-based anonymization problem is NP-hard.

Theorem 2 Given a dataset D = {T1, . . . , TN }, a set of PS-rules Θ = {I1 → J1, . . . , Is →
Js}, and parameters k and c, a generalized dataset D̃ in which each PS-rule in Θ is protected,
cannot be constructed from D using set-based generalization if sup(Iq ∪ Jq , D) > N × c,
for any rule Iq → Jq , q ∈ [1, s], in Θ .

Theorem 3 Given a dataset D = {T1, . . . , TN }, a set of PS-rules Θ = {I1 → J1, . . . , Is →
Js}, and parameters k and c, a generalized dataset D̃ in which each PS-rule in Θ is protected,
can be constructed from D using set-based generalization if sup(

⋃
∀i∈Iq

Φ(i) ∪ Jq , D̃) ≤
N × c, for any rule Iq → Jq , q ∈ [1, s], in Θ .

4 We assume that km -anonymity is applied to public items.
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Thus, a generalized dataset D̃, in which all rules in Θ are protected, can be constructed
if the support of none of the itemsets

⋃
∀i∈Iq

Φ(i) ∪ Jq in D̃ exceeds N × c. Note that
it is possible to examine whether such a generalized dataset can be constructed without
anonymizing D. That is, it is sufficient to check whether sup(Jr , D) ≤ N × c holds, where
Jr is the most frequently supported sensitive item in the original dataset D. This is because
sup(

⋃
∀i∈Iq

Φ(i) ∪ Jq , D̃) ≤ sup(Jr , D). Performing the check using sup(Jr , D) requires
O(N × |S|) time, where |S| is the number of sensitive items in D.

4 Efficient rule-based anonymization

In this section, we consider the problem of generalizing data to protect PS-rules, hence the
dataset. We introduce several novel strategies to process PS-rules efficiently, and present two
efficient and effective heuristic algorithms that utilize these strategies.

4.1 Handling PS-rules

Generalizing transaction data to protect a given set of PS-rules is not straightforward. First,
it is computationally expensive to examine all possible generalizations to find an optimal
one. To reduce this cost, we develop an efficient heuristic (Sect. 4.1.1) that explores only a
subset of potentially useful generalizations. Second, determining whether specified PS-rules
are protected in a generalized dataset is time-consuming. This is because checking a rule
requires support computations that involve dataset scan, and there can be many rules to be
checked. To address these issues, we design an efficient rule checking algorithm (Sect. 4.1.3),
based on the properties of PS-rules. This algorithm can significantly reduce the computations
required for rule checking.

4.1.1 Finding useful generalizations

To protect PS-rules, we generalize items contained in their antecedents. This is because
doing so can increase the support of their antecedents, but will not affect the support of their
consequents. That is, for a PS-rule I → J with Ĩ = ⋃

∀i∈I Φ(i), it holds that sup(I, D) ≤
sup( Ĩ , D̃) and sup(I ∪ J, D) ≤ sup( Ĩ ∪ J, D̃). However, as confidence is non-monotonic
[16], it may be possible that con f (I → J, D) ≤ con f ( Ĩ → J, D̃). This implies that releasing
I instead of Ĩ may offer better privacy protection, even though more specific information is
provided to the attacker. It is worth noting, however, that releasing this information will not
lead to sensitive information disclosure, because our approach guarantees that the confidence
of rules will not exceed c.

We perform generalization in a top-down fashion. That is, we start by assuming that every
public item is mapped to a single, most generalized item, and then seek to split it recursively
into smaller (less general) ones to enhance utility. This is achieved by using a heuristic, called
B-Split, which is inspired by divisive clustering. B-Split seeks to divide a generalized item ĩ
into two disjoint generalized items ĩl and ĩr that incur low information loss.

Algorithm 1 describes how B-Split works. ΦI D used in the description is the identity
generalization function which maps a set of items {i1, . . . , is} to the generalized item ĩ =
(i1, . . . , is). In step 1, we find two items il and ir contained in ĩ that will incur a maximum
amount of utility loss when generalized together by examining the UL scores of all pairs of
items, breaking ties arbitrarily. Then, in steps 2–3, we use il and ir as “seeds” to start two
new itemsets I1 and I2. Following that, B-Split examines each item iq , q /∈ {l, r} in ĩ in
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Algorithm 1 B-Split(ĩ)
input: generalized item ĩ , dataset D, generalized dataset D̃
output: generalized items ĩl and ˜ir
1. find {il , ir } in ĩ s.t. UL(�I D({il , ir })) is maximum
2. I1 ← il
3. I2 ← ir
4. for each (iq ∈ ĩ and q /∈ {l, r})
5. ˜i1 ← �I D(I1 ∪ {iq })
6. ˜i2 ← �I D(I2 ∪ {iq })
7. if (|I1| × w( ˜i1)×

∑

∀i∈I1∪{iq }
sup(i,D) ≤ |I2| × w( ˜i2) ×

∑

∀i∈I2∪{iq }
sup(i,D))

8. I1 ← I1 ∪ {iq }
9. else
10. I2 ← I2 ∪ {iq }
11. return ĩl = �I D(I1), ˜ir = �I D(I2)

turn (step 4), creates two temporary generalized itemsets ĩ1 and ĩ2 from I1 ∪ iq and I2 ∪ iq

(steps 5–6), and uses them to determine whether iq should be assigned to I1 or I2, depending
on the information loss each would have incurred (steps 7–10). Finally, in step 11, two new
generalized items ĩl and ĩr , which are less general than ĩ , are created from I1 and I2, and
returned.

Notice that the computation of information loss in step 7 of Algorithm 1 is similar to
that of UL, but more efficient. This is because, in this computation, the support of ĩ1 and ĩ2

is calculated approximately using items in D and thus can be pre-computed by scanning D
once. The computation of UL, on the other hand, is based on the support of generalized items,
which would need to be re-computed in each iteration of the loop of step 4 in Algorithm 1.
Our experiments show that this simplification is largely effective.

Example 3 Consider the generalized version of the dataset in Fig. 1a that is shown in Fig. 1b
and assume the following weights: w((a, b)) = 1, w((a, c)) = 1 and w((b, c)) = 0.5.
B-Split produces generalized items (a) and (b, c) from (a, b, c) in two steps. First, it computes
the UL scores for (a, b), (b, c) and (a, c), which are 0.016, 0.012 and 0.024, respectively.
Then, it selects a and c as “seeds” to start I1 and I2. After that, it assigns b to I2, since the
amount of information loss for I2∪{b} is calculated as 2×0.5× (2+2) = 4, which is lower
than 2× 1× (2+ 2) = 8 for I1 ∪ {b}.

Notice also that B-Split only searches a subset of possible generalizations allowed by the
set-based generalization model, hence is efficient. To illustrate this, consider the generaliza-
tion of {i1, i2, . . . , i|P|}. Following Algorithm 1, B-Split may successively create generalized
items ĩ = (i1, i2, . . . , i|P|), then ĩl = (i1, i2, . . . , il), ĩr = (il+1, . . . , i|P|), and eventually
ĩ1 = (i1), ĩ2 = (i2), . . . , ˜i|P| = (i|P|), if necessary. These generalizations form a binary tree,
henceforth referred to as generalization tree, as depicted in Fig. 5. Each node corresponds
to a distinct generalized item, which may be used to replace the leaf nodes (items) reachable
from it. For instance, ˜il1 may replace {i1, . . . , il1}. It is easy to see that, for each item i ∈ P
considered for generalization, B-Split will explore a maximum of |P| generalized items. This
is in contrast to exploring the entire space of 2|P| − 1 possible set-based generalizations.

Thus, for a given P , its corresponding generalization tree will contain all the generalized
items that can be constructed by B-Split. Clearly, only those generalized items that form a
partition of P can actually be used to generalize the items. We say that this collection forms
a generalization cut, as explained in Definition 5.
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Fig. 5 A generalization tree

Definition 5 A generalization cut C is a set of generalized items corresponding to the nodes
of a generalization tree, and for each and every i ∈ P , there exists a unique ĩ ∈ C such that
ĩ = Φ(i).

Thus, a generalized dataset D̃ can be constructed according to C by mapping each public
item i ∈ D to a generalized item in C that contains i . For example, C1 is a generalization cut
in Fig. 5 which comprises of ˜il2, ˜ir2 and ˜ir1, since every item in {i1, . . . , i|P|} is mapped to
one of the generalized items uniquely.

Given a generalization tree, multiple cuts are possible, and some may lead to producing
more useful generalized datasets than the others. For example, C1 and C2 are two different
generalization cuts in Fig. 5, which can be used to produce two different generalized datasets
D̃1 and D̃2, but intuitively, C2 is preferred as items in it are generalized less. To compare
generalization cuts, we introduce a notion of cut coverage.

Definition 6 (Cut coverage) A generalization cut C1 covers a cut C2 if for each generalized
item ĩ ∈ C1, we have either ĩ ∈ C2 or there exists a set of generalized items {ĩ1, . . . , ĩs} ∈
C2\C1 s.t. ĩ1 ∪ · · · ∪ ĩs = ĩ .

So a generalization cut C1 covers another cut C2 if every generalized item in C1 is either a
generalized item or an ancestor of some generalized items in C2. For example, C1 covers C2

in Fig. 5 because ˜il2 and ˜ir2 are in C2, and ˜ir1 is an ancestor of ˜il3 and ˜ir3 in C2. Theorem 4
shows an important property concerning the coverage among generalization cuts. A similar
property to that of Theorem 4 has been discussed in [35,74,75].

Theorem 4 (Monotonicity) Given a generalization cut C1 that covers a cut C2, and general-
ized datasets D̃1 and D̃2, produced according to C1 and C2 respectively, U L(D̃1) ≥ U L(D̃2)

holds when w(ĩ) ≥ ∑
∀ ˜iq∈desc(ĩ) w( ˜iq) for each ĩ ∈ C1\C2, where desc(ĩ) denotes the

descendants of ĩ that appear in C2.

We also examine how the coverage among generalization cuts affects the protection of
PS-rules. Consider two generalization cuts C1 and C2, such that C1 covers C2, and two
generalized datasets D̃1 and D̃2 that are produced according to C1 and C2, respectively. Also,
consider a PS-rule I → J , and the generalized itemsets Ĩ1 and Ĩ2, which are constructed
from I and are contained in C1 and C2, respectively. Then, as the support is monotonic
[8], the following relations hold: (1) sup( Ĩ2, D̃2) ≤ sup( Ĩ1, D̃1), and (2) sup( Ĩ2 ∪ J, D̃2) ≤
sup( Ĩ1∪ J, D̃1). On the other hand, the confidence is non-monotonic [16], hence con f ( Ĩ2 →
J, D̃2) ≤ con f ( Ĩ1,→ J, D̃1) may not hold. Thus, the application of B-Split cannot increase
the support of a rule, but may or may not decrease its confidence. If the confidence of a
PS-rule is decreased, we can protect the rule with lower information loss, as we will discuss
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in Sect. 4.2. So, applying B-Split can affect the protection of I → J , as explained in the
following cases:

1. I → J is protected in both D̃1 and D̃2. This occurs when sup( Ĩ2, D̃2) remains at least k
and con f ( Ĩ2 → J, D̃2) is no more than c.

2. I → J is protected in D̃1, but it is not protected in D̃2. This occurs when sup( Ĩ2, D̃2) is
less than k and/or con f ( Ĩ2 → J, D̃2) is greater than c.

3. I → J is not protected in D̃1, because sup( Ĩ1, D̃1) is less than k. In this case, I → J
will not be protected in D̃2, because sup( Ĩ2, D̃2) will also be less than k.

4. I → J is not protected in D̃1, because con f ( Ĩ1 → J, D̃1) is greater than c. In this case,
if sup( Ĩ2, D̃2) is at least k, then I → J will be protected in D̃2 when con f ( Ĩ2 → J, D̃2)

is at most c, or not protected in D̃2, when con f ( Ĩ2 → J, D̃2) is greater than c.

Observe that, in Case 2, the application of B-Split may increase the confidence of a PS-
rule. Thus, a rule that is protected in D̃1 will not be protected in D̃2, if its confidence in D̃2

is greater than c. Consider, for example, the PS-rule cd → g and the datasets of Fig. 1b, d as
D̃1 and D̃2, respectively. Given k = 2 and c = 1

3 , the rule is protected in D̃1 but not protected
in D̃2, because its confidence in D̃2 is greater than 1

3 . On the other hand, in Case 4, applying
B-Split may decrease the confidence of PS-rule. Thus, a rule that is not protected in D̃1 is
protected in D̃2, if its confidence in D̃2 is no more than c. For instance, consider the PS-rule
a → j, and that k = 2 and c = 1

2 . The rule is not protected in D̃1, but it is protected in D̃2,
as it confidence in D̃2 is no more than 1

2 .

4.1.2 Identifying PS-rules that can be pruned

In this section, we establish a set of criteria that can be used to determine whether a PS-
rule can be pruned. A prunable rule is one whose support and confidence do not need to be
computed in order to decide whether it is protected in a generalized dataset or not. As we will
show in our experiments, rule pruning is essential to designing algorithms that are applicable
to realistically large datasets, based on our privacy model.

We start by considering PS-rules that are protected in any dataset D̃ that can be con-
structed from D, using set-based generalization. Such rules satisfy the conditions provided
in Theorem 5.

Theorem 5 Given a dataset D, and parameters k and c, a PS-rule I → J is protected in
any generalized dataset D̃ that can be constructed from D using set-based generalization, if
(1) sup(I, D) ≥ k, and (2) sup(J, D) ≤ c × k.

Consider, for instance, the original dataset of Fig. 1a, and a PS-rule a → ghij. Observe
that the rule satisfies both conditions of Theorem 5, for k = 2 and c = 0.5, and it is protected
in the generalized versions of the dataset of Fig. 1a that are shown in Fig. 1b, d. Clearly, the
rules that satisfy the conditions of Theorem 5 do not need to be contained in Θ , as they will
always be protected. It is easy to see that eliminating these rules is straightforward; thus, we
henceforth assume that Θ does not contain such rules.

We then establish a theorem that helps identify those PS-rules that become unprotected
as one of the generalized items in a cut gets split by B-Split.

Theorem 6 Assume that two generalized datasets D̃1 and D̃2 are constructed from D accord-
ing to cuts C1 and C2 respectively, and that C2 is derived from C1 by splitting a generalized
item ĩ in C1 into ĩl and ĩr . If a PS-rule I → J is protected in D̃1 but not in D̃2, then I contains
at least one item i s.t. Φ(i) = ĩl or Φ(i) = ĩr .
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Example 4 Consider the dataset of Fig. 1d, and a PS-rule cd → g that is protected in it w.r.t.
k = 2 and c = 0.5. It is easy to verify that this rule is not protected in the dataset of Fig. 1a,
in which (b, c) is split into (b) and (c) as a result of applying B-Split to (b, c). Observe that
item c is contained in the antecedent of this rule.

While a large number of public items are typically included in a dataset, attackers are
not expected to know many of them [74,91], so few items will actually be contained in the
antecedent of a PS-rule. This suggests that, as generalized items are split by B-Split into
smaller and smaller ones, it becomes more and more likely that the items contained in the
antecedents of the PS-rules will not overlap with each other, which implies that these rules
are prunable according to Theorem 6. This pruning is particularly effective at the later stages
of our generalization process, when a large number of generalized items is created by B-Split
and many PS-rules are to be checked against these items.

The PS-rules whose antecedents are subsets of the antecedent of a protected rule may also
be prunable, as Theorem 7 states.

Theorem 7 Given a generalized dataset D̃ and two PS-rules I → J and I ′ → J s.t. (1)
I → J is protected in D̃, (2) I ′ ⊆ I , and (3)

⋃
∀i∈I Φ(i) is a single generalized item in D̃,

then I ′ → J is protected in D̃.

For example, bc → h is protected in the dataset of Fig. 1(d), for k = 2 and c = 0.5.
Based on Theorem 7, b→ h is also protected in the same dataset, as b ⊆ bc and the items
contained in the antecedent of the rule are mapped to a single generalized item (b, c).

In addition, when a PS-rule I → J is protected, then another rule with the same antecedent
I may be prunable, if its consequent satisfies a condition that is provided in Theorem 8.

Theorem 8 Given a generalized dataset D̃ and two PS-rules I → J and I → J ′ such that
(1) I → J is protected in D̃, and (2) sup(J, D̃ Ĩ ) ≥ sup(J ′, D̃ Ĩ ), where D̃ Ĩ is the set of

supporting transactions of Ĩ =⋃
∀i∈I Φ(i) in D̃, then I → J ′ is also protected in D̃.

A special case to observe is that if J ′ is a superset of J , then sup(J ′, D̃) ≤ sup(J, D̃).
Thus I → J ′ can be pruned, if I → J is protected, based on Theorem 8. To illustrate this,
we revisit Example 4. According to Theorem 8, cd → gh, constructed by adding h to the
consequent of the protected rule cd → g, for k = 2 and c = 0.5, in the dataset of Fig. 1d, is
also protected in this dataset for the same k and c, because the support of gh is smaller than
that of h.

4.1.3 Efficient checking for PS-rule protection

Based on Theorems 6–8, we develop the Check function which can be used to determine
whether a set of PS-rules5 are protected in a generalized dataset efficiently. Algorithm 2
explains how Check works.

We first construct and check a PS-rule, based on Theorems 7 and 8. Specifically, in steps
1–5, we assign the set of all items mapped to ĩ to I , and the most supported sensitive item in
D̃ĩ to J . Next, we check whether I → J is protected in D̃ (step 4). If I → J is protected, it
can be used to prune other rules.

Steps 7–18 describe how rules are checked. First, we find all PS-rules in Θ , whose
antecedent contains at least one item in ĩ and is potentially unprotected in D̃ according

5 Recall from Sect. 4.1.2 that Θ does not contain rules that are always protected.
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Algorithm 2 Check(ĩ, D̃,�, k, c)
input: Generalized item ĩ , generalized version D̃ of D, a set of PS-rules �, k, c
output: 1 if ∀r ∈ �,r is protected in D̃,

0 if ∀r ∈ �, r’s support is at least k and ∃r ∈ �, r’s confidence exceeds c
-1 if ∃r ∈ �, r’s support is less than k

1. I ←⋃
∀i∈ĩ i � I contains each i mapped to ĩ

2. J ← argmax
∀i∈S

sup(i, D̃ĩ )

3. pr ← false
4. if (I → J is protected in D̃)
5. pr ← true
6. exceeds_c← false
7. �′ ← {I ′ → J ′|I ′ → J ′ ∈ � and ∃i ∈ I ′, �(i) = ĩ}
8. foreach (I ′ → J ′ in �′)
9. if (pr =true and I ′ ⊆ I and sup(J ′, D̃ĩ ) ≤ sup(J, D̃ĩ ))
10. continue � proceeds to the next iteration
11. if (sup(I ′, D̃) < k)
12. return -1 � return terminates execution
13. if (con f (I ′ → J ′, D̃) > c)
14. exceeds_c← true
15. if (exceeds_c =true)
16. return 0
17. else
18. return 1

to Theorem 6, and assign them to Θ ′ (step 7). How we do this efficiently will be explained
shortly. Then, we iterate over the rules in Θ ′ to examine whether they are protected in D̃ (step
8). In steps 9–10, we check whether pr=true, I ′ is a subset of I , and J ′ is supported by no
more transactions in D̃ĩ than J is. If it is, we proceed to the next iteration, because I ′ → J ′
can be pruned (Theorems 7 and 8). In step 11, we compute sup(I ′, D̃), because I ′ → J has
not been pruned. If sup(I ′, D̃) < k, we know that at least one rule is not protected in D̃,
so we return −1 (steps 11–12). Otherwise, we check and record if con f (I ′ → J ′, D̃) > c
(steps 13–14). When Check has finished with rule checking, it returns 0 if at least one rule
violates the confidence requirement, or 1 otherwise (steps 15–18).

Efficient construction of Θ ′ Check can be executed more efficiently if Θ ′ in Algorithm
2 can be constructed quickly. For this purpose, we introduce Rule-tree, a data structure for
organizing PS-rules, and Find-rules, a method for constructing Θ ′, based on the Rule-tree.

A Rule-tree for a set of PS-rules is comprised of an item header table, a tree structure,
and a set of consequent-lists, as shown in Fig. 6. The item header table and tree structure
contain the items of the antecedents of PS-rules sorted in a descending order of support,
which is chosen because it results in a smaller tree [80] that allows faster rule retrieval. These
are similar to the components of an FP-tree [80], but are built to retrieve PS-rules and not
frequent itemsets. Consequent-lists contain the items of the consequents of the rules. The
Rule-tree is constructed in two steps. First, the items in the antecedents of PS-rules in Θ are
scanned and sorted. Then, all items of the rules in Θ are scanned to build the tree.

Each entry in the item header table corresponds to a distinct item i contained in the
antecedents of rules in Θ , and points to a tree node labeled i via a node-link. We will refer to
a node labeled i as “node i”, when it is clear from the context. The labels of nodes correspond
to items in the antecedent of rules, except for the root which is “null”. Each node has a node-
link that points to the next item with the same label, if such an item exists, so that all nodes
with the same label are linked in sequence via node-links. Also, the node labeled with the
last item of the antecedent of a rule has a consequent-link, which points to a consequent-list.
A path from the root to the last item of the consequent-list represents a PS-rule, and the
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Fig. 6 Example of a Rule-tree

antecedents of rules that share a prefix of items are compressed (i.e., represented using the
same nodes). Example 5 illustrates the Rule-tree.

Example 5 Consider the dataset of Fig. 1a and a set of PS-rules {a → j, acd → g, adb→
j, d → hi}. The Rule-tree built from these rules is shown in Fig. 6. Items d , a, c and b in
the item header table are connected to the nodes labeled with these items via node-links, and
the link between two nodes a indicates that the antecedents of two rules contain a. The path
from d to g corresponds to adc → g, and node d precedes node a in this path, since the
support of d is greater than that of a in Fig. 1a. Also observe that each consequent of the
rules appears as a consequent-list in the tree structure.

Traversing the branches of a Rule-tree allows all rules whose antecedents contain an item i
to be found efficiently for two reasons. First, all nodes i in the tree are connected through node-
links, which implies that examining rules that do not contain i in their antecedents is avoided.
Second, since the antecedents of rules that share a common prefix of items correspond to
nodes that lie on the same path in the tree, we do not need to examine these nodes more than
once.

Algorithm 3 Find-rules(R, ĩl , ĩr )
input: Rule-tree R for �, generalized items ĩl , ˜ir
output: Set of PS-rules �′ s.t. �(i) = ĩl or �(i) = ˜ir , for any i in the antecedent of these rules
1. �′ ← ∅

2. foreach (i such that �(i) = ĩl or �(i) = ˜ir )
3. find the node ν labeled i in R following the node-link from i in the item header table of R
4. 	low ← ∅

5. 	up ← ∅

6. while (true)
7. foreach (path pr from ν to a node ν′ ∈R that has a consequent-link)
8. λa (pr )← the set of labels of the nodes in pr
9. λc(pr )← the set of items of the consequent-list to ν′
10. 	low ← 	low ∪ {λa (pr ), λc(pr )}
11. 	up ← the set of nodes in the path from the immediate ascendant of ν to the root of R
12. for each (pair {λa (pr ), λc(pr )} in 	low)
13. I ← the set of items of the lists λa (pr ) and 	up
14. J ← the set of items of λc(pr )

15. �′ ← �′ ∪ {I → J }
16. if (ν has a node-link)
17. ν ← the node pointed by the node-link of ν

18. else
19. break
20. return �′

To construct Θ ′ by traversing a Rule-tree, we provide Find-rules, described in Algorithm 3.
We first find i that maps to either ĩl or ĩr in the item header table of a Rule-tree R, and follow
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its node-link to the first node ν labeled i in the tree (step 3). Then, in steps 7–10, we traverse
each path pr from ν to a node ν′ ∈ R that has a consequent-link and insert it into 	low as a
pair of lists λa(pr ) and λc(pr ), containing the labels of the tree nodes in pr and all items in the
consequent-list of ν′, respectively. Next, we follow the path from the immediate ascendant
of ν to the root and insert the labels of all these nodes into 	up (step 11). Following that,
we iterate over each pair of lists {λa(pr ), λc(pr )} in 	low to create a rule whose antecedent
contains all items of λa(pr ) and 	up and consequent all items of λc(pr ), and add this rule to
Θ ′ (steps 12–15). If R contains another node with the same label as ν, this node is assigned
to ν and the process is repeated.

Example 6 Consider applying Find-rules using the Rule-tree given in Fig. 6, ĩl = (b, c)
and ĩr = (a). We first find rules whose antecedent contains a. This is achieved by finding
a in the item header table of the Rule-tree, and examining the path (p1) from the leftmost
node a to node c. From this path, we create λa(p1) to contain a and c and λc(p1) to contain
{g}, and add the pair to 	low. We then do the same for the path p2 from the leftmost node
labeled a to node b and add the pair λa(p2) = {a, b} and λc(p2) = {j} to 	low. Then, the
ascendant nodes of a are followed up to the root and added to 	up . Now we iterate over 	low

to construct PS-rules: acd → g and abd → j, and add them to Θ ′. All other rules for Θ ′ are
obtained similarly.

4.2 Anonymization algorithms

In this section, we present two anonymization algorithms. The first one, called Tree-based
Anonymization, works in a top-down fashion. It progressively builds a generalization tree,
checking the rules each time the tree is expanded. We also propose a more scalable algorithm,
called Sample-based Anonymization. Using sampling and a combination of top-down and
bottom-up generalization strategies, this algorithm avoids the large number of expensive
dataset scans performed by Tree-based Anonymization, while enhancing data utility.

4.2.1 Tree-based anonymization

Tree-based Anonymization starts by mapping all public items of the dataset to be generalized
to a single (most) generalized item, and then attempts to split this item as far as possible
to enhance utility. When a generalized item ĩ is split into ĩl and ĩr , we check whether the
specified PS-rules that are protected with respect to ĩ are still protected with respect to ĩl and
ĩr . There can be three possible outcomes. If all rules are protected, we simply continue to split
ĩl and ĩr , constructing our generalization tree recursively. If there is at least one rule whose
support is less than k, then we do not replace ĩ by ĩl and ĩr in the generalized data, nor split
these generalized items any further. If the support of every rule is at least k, but there are some
rules whose confidence exceeds c, then we explore if further splitting ĩl or ĩr may help reduce
confidence. Although it is safe to stop before splitting ĩl or ĩr , as the algorithm of [52] does,
Tree-based Anonymization further splits these generalized items. This allows constructing
anonymized datasets that protect rules with significantly better utility, particularly when c is
large.

The pseudocode of Tree-based Anonymization is given in Algorithm 4. In steps 1–2,
we check whether a single item is mapped to ĩ . If so, we return the generalized dataset D̃,
assuming, for simplicity, that more than 1 items are mapped to the most generalized item
ĩ with which the algorithm is initially called. In steps 3–4, we split ĩ into ĩl and ĩr , using
B-Split, and construct a temporary dataset D′ using Update, which maps items in D to ĩl or
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Algorithm 4 Tree-based(ĩ, D̃, D,Θ, k, c)
input: Generalized item ĩ , set of PS-rules �, k, c

original dataset D, generalized dataset D̃
output: Anonymized dataset D̃
1. if (|ĩ | = 1)
2. return D̃
3. {ĩl , ˜ir } ← B-Split(ĩ)
4. D′ ← Update(D̃, D) � temporary dataset
5. if (Check(ĩl ,D′, �, k, c) = −1 or Check( ˜ir ,D′, �, k, c) = −1)
6. u ←−1
7. else
8. u ← Check(ĩl ,D′, �, k, c)× Check( ˜ir ,D′, �, k, c)
9. if (u = 1) � rules are protected
10. D̃← D′
11. D̃′ ← Tree-based(ĩl , D̃,D, �, k, c)
12. D̃′′ ← Tree-based( ˜ir , D̃,D, �, k, c)
13. return Replace(ĩl , ˜ir , D̃, D̃′, D̃′′,D)

14. else if (u = −1) � the support of a rule is less than k
15. return D̃
16. else � the confidence of a rule exceeds c
17. create an empty queue Q
18. Q.insert (ĩl )
19. Q.insert ( ˜ir )

20. while (Q is not empty)

21. {ĩ ′l , ˜i ′r } ← B-Split(Q.delete())
22. D′′ ←Update(D′, D) � temporary dataset

23. if (Check(ĩ ′l ,D′′, �, k, c) = 1 and Check( ˜i ′r ,D′′, �, k, c) = 1)
24. D̃← D′′
25. delete all elements of Q
26. return D̃
27. else if (Check(ĩ ′l ,D′′, �, k, c) = −1 or Check( ˜i ′r ,D′′,�, k, c) = −1)
28. delete all elements of Q
29. return D̃
30. else
31. if (|ĩ ′l | > 1)

32. Q.insert (ĩ ′l )
33. if (| ˜i ′r | > 1)

34. Q.insert ( ˜i ′r )

35. return D̃

ĩr . Then, we apply Check on ĩl and ĩr to determine whether the PS-rules in Θ are protected
in D′ (steps 5–8). If they are, we assign D′ to the generalized dataset D̃ and recursively apply
the algorithm first to ĩl and then to ĩr (steps 9–12). Next, we use Replace, which constructs
an anonymized dataset in which the items in D that were mapped to ĩl ∈ D̃ and ĩr ∈ D̃ are
replaced by their corresponding generalized items in D̃′ and D̃′′, respectively, and return the
result (step 13). Otherwise, if there is at least one rule whose support is less than k in D′,
we return D̃ (steps 14–15). This is because, as explained in Sect. 4.1.1, further splitting the
generalized items in D̃′ and D̃′′ cannot increase the support of rules.

Steps 16–34 deal with the case when all rules have acceptable support but some have a
larger confidence than c in D′. In this case, we explore if further splitting ĩl or ĩr can reduce
the confidence of these rules. Recall from Sect. 4.1.1 that this may help the protection of
PS-rules. This is because, a PS-rule whose antecedent contains ĩl or ĩr , and it is not protected
due to its confidence, can become protected after further splitting these generalized items.
We use an initially empty queue Q to store the generalized items ĩl and ĩr (steps 17–19), and
then process them in turn (steps 20–34). Specifically, the first element on Q (returned by the
delete operation) is split into two new generalized items ĩ ′l and ĩ ′r by B-Split (step 21) and
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Fig. 7 Example of Tree-based anonymization

(a) (b)

Fig. 8 Temporary datasets a D′, and b D′′

a temporary dataset D′′ is constructed based on them (step 22). If the rules are protected in
D′′, then we assign D′′ to D̃ and exit the current recursion after emptying Q (steps 23–26).
Otherwise, if there is a rule with support less than k in D′′, we exit the current recursion,
returning D̃ after emptying Q (steps 27–29). Finally, if all rules have acceptable support but
there is one with a confidence larger than c in D′′, we insert ˜ill and ˜ilr into Q so that they can
be considered for further split (steps 20–34), and return D̃ when every item on Q has been
processed (step 35).

Example 7 Consider applying Algorithm 4 to the data of Fig. 1a w.r.t. the PS-rules of Fig. 1e,
k = 2 and c = 0.5. We start with ĩ = (a, b, c, d, e, f ) and obtain ĩl = (a, b, c) and
ĩr = (d, e, f ) by applying B-Split to ĩ (split (1) in Fig. 7), after setting the weights using
the hierarchy of Fig. 1c, as in [51]. Based on ĩl and ĩr , the temporary dataset of Fig. 8a is
constructed, and Check is called to examine whether the rules are protected in it. According
to Find-Rules, the rules shown in the first row in Fig. 7 need to be checked in this case and
Check returns 0. This means that we need to explore (a, b, c) and (d, e, f ) further, so we
add them to Q. Assuming that (a, b, c) is the first element of Q, (a, b, c) is split by B-Split
into (a) and (b, c) (split (2) in Fig. 7), and the dataset of Fig. 8b is created based on this
split. Check is then called to examine the rules in the second row in Fig. 7. This time, Check
returns 1. Thus, (a), (b, c) and (d, e, f ) form a generalization cut that produces the dataset
of Fig. 8b. The rules are protected in the latter dataset, so it is returned.

The worst-case time complexity of Algorithm 4 is O(2|P| × |S|× N ) and the space com-
plexity is O(2|P| × |S|+ N ×|I|), when all possible PS-rules are specified (see Theorem 10
in “Appendix”). However, attackers are unlikely to possess knowledge about a large number
of items in P [16,74,75,91] so the number of specified rules is expected to be significantly
smaller. Note that the time complexity of Apriori is also exponential in the domain size and
parameter m [74], but Algorithm 4 was faster in our experiments.
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Fig. 9 Example of generalization tree

4.2.2 Sample-based Anonymization

The main idea of Sample-based Anonymization is to use sampling to quickly construct a
generalized dataset D̃ in which most PS-rules will be protected and then to slightly modify
some of the generalized items in it to protect the remaining rules. Details of Sample-based
Anonymization are given in Algorithm 5.

The algorithm starts with a generalized dataset D̃ that contains a single (most) generalized
item and works in three phases. In the sample-based partitioning phase, it progressively
builds a generalization tree just like Tree-based Anonymization does, but Check is efficiently
performed on a random sample of D̃. However, the generalized dataset derived from this
sample-based process may be overly generalized or insufficiently protected. Thus, Sample-
based Anonymization proceeds to revising the generalization cut that produced D̃. In the first,
top-down cut revision phase, generalized items are further split to enhance utility, while, in
the next, bottom-up cut revision phase, we iteratively merge generalized items to ensure
protection. Figure 9 shows these phases and the generalization cuts derived: C1 is derived
by sample-based partitioning, C2 is produced by further splitting some generalized items of
C1 in top-down cut revision, and C3 is obtained by merging those of C2 in bottom-up cut
revision.

Sample-based partitioning The two key functions performed in this phase (steps 1–3)
are Create-sample and Sample-Based-Partition. Create-sample takes a random sample Ds

with replacement from D by selecting ln( 2
δ
)/(2 × ε2) transactions from D, where δ and

ε are parameters selected by data publishers. As explained in Theorem 9, a sample of this
size ensures that, for a PS-rule I → J , the difference between the fraction of transactions
supporting I in D and Ds will be bounded by an ε > 0 with a probability at most δ.

Theorem 9 Let D be an original dataset, Ds be a random sample constructed from D with
replacement and with transactions projected over P , and I → J be a PS-rule. It holds that

the probability Pr
(
| sup(I,Ds )
|Ds | −

sup(I,D)
|D| | ≥ ε

)
is at most δ, for δ ∈ [0, 1] and ε > 0, when

|Ds | = ln( 2
δ
)/(2× ε2).

It is easy to see that this bound is independent of the size of D and that to estimate
support more accurately by using a smaller δ and/or ε would result in a larger sample [33].
In addition, the same bound holds for the difference between the fraction of transactions
supporting Ĩ = ⋃

∀i∈I Φ(i) in D̃s and D̃, if the same mapping function Φ is used. Clearly,
when this difference is small, we could expect most of the specified PS-rules to be protected
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Algorithm 5 Sample-based(ĩ, D̃, D,�, k, c)
input: Generalized item ĩ , set of PS-rules �, k, c, original dataset D, generalized dataset D̃
output: Anonymized dataset D̃

/* Sample-based partitioning phase */
1. Ds ← Create-sample(δ, ε,D)
2. R← Rule-tree for � the set of PS-rules �

3. G ←Sample-Based-Partition(ĩ , D̃,Ds , �, k, c,R)
/* Top-down cut revision phase */

4. create an empty queue Q
5. foreach(leaf-level node u ∈ G from left to right)
6. ˜ig ← generalized item that corresponds to u
7. Q.insert ( ˜ig)

8. if(Check-all-leaves(Q, D̃, �, k, c,R)=true)
9. while(Q is not empty)
10. ˜iq ← Q.delete()
11. {ĩl , ˜ir } ← Split( ˜iq )
12. D′ ←Update(D̃,D) � temporary dataset
13. if (Find-rules(R, ĩl , ˜ir ) �= ∅)
14. if(Check-leaves(ĩl , ˜ir ,D′, �, k, c)=true)
15. if (|ĩl | > 1)
16. Q.insert (ĩl )
17. if (| ˜ir | > 1)
18. Q.insert ( ˜ir )

19. else
20. if (|ĩl | > 1)
21. Q.insert (ĩl )
22. if (| ˜ir | > 1)
23. Q.insert ( ˜ir )

/* Bottom-up cut revision phase */
24. foreach(leaf-level node u ∈ G from left to right)
25. ˜iq ← generalized item that corresponds to u
26. if (Check( ˜iq ,D′,�, k, c)=1)
27. Q.delete()
28. D̃← D′
29. else
30. Merge-siblings( ˜iq ,D′,G)
31. return D̃

in the generalized dataset constructed in this phase, and few generalized items in it to be
modified during the cut revision phases.

Sample-based-partition is similar to Algorithm 4, except for the following. First, it uses the
sample Ds in place of D, thus Check is performed on a much smaller dataset, hence much more
efficiently. Second, it performs rule checking using only the support of PS-rules in D̃. Thus,
it constructs generalization cuts that often contain a larger number of generalized items than
those created by Algorithm 4. This is because Sample-based Anonymization always splits
a generalized item, when the rules have acceptable support but excessive confidence, but
Algorithm 4 may not do so (see steps 16–34). Third, instead of just finding a generalization
cut, it constructs and returns a generalization tree G. This is necessary for the bottom-up cut
revision phase.

Top-down cut revision In the top-down cut revision phase (steps 4–23), we attempt to
find a generalization cut that lies as low as possible in the generalization tree, in order to
enhance data utility. We first populate an initially empty queue Q with the generalized items
that correspond to leaf nodes in G (steps 4–7), and then check whether the support of rules
in D̃ is at least k, using Check-all-leaves. This function is similar to Check except that it is
based on computing only the support of rules in D̃ and that it takes all generalized items
in Q as input. If the rules have acceptable support, then we split each generalized item on
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Q, and construct a temporary dataset D′ accordingly (steps 8–12). Which rules to check is
determined by Find-rules (step 13). If there are rules to be checked and they have a support
of at least k in D′, then we add ĩl and ĩr to Q for further split consideration (steps 14–18). If
Find-rules finds no rules, then it means that all the rules are protected, so we add ĩl and ĩr to Q
for further split (steps 19–23). Thus, in this phase, the algorithm does not take into account the
confidence of PS-rules, but continues splitting generalized items based only on the support
of rules. This strategy helps utility (see Theorem 4), while it may lead to protecting rules that
are not protected in a more heavily generalized dataset due to their confidence (see Case 4
in Sect. 4.1.1).

Bottom-up cut revision The bottom-up cut revision phase (steps 24–30) begins by exam-
ining all leaf-level nodes of the generalization tree G from left to right (step 24). For each
such generalized item ˜iq , we use Check to determine whether the rules are protected in the
temporary dataset D′ (steps 25–26). If all the rules are protected, then ˜iq is deleted from Q
and D′ is assigned to the generalized dataset D̃ (steps 26–28). Otherwise, the node represent-
ing ˜iq is merged with its sibling node in G, using the Merge-siblings function (steps 29–30).
Note that the support remains acceptable, while merging may decrease the confidence of
PS-rules, which can result in their protection, as discussed in Sect. 4.1.1. Merge-siblings is
fairly straightforward. It begins by constructing an itemset I that contains all items of ˜iq and
sibling(iq) (the sibling of iq in G), and then creates a generalized item ĩ based on I . After
that, it updates G, by deleting the node that corresponds to ˜iq and those in the subtree rooted
at sibling(iq), and updates D′ by substituting ˜iq and sibling(iq) with ĩ in all transactions of
D′.

The worst-case time complexity of Algorithm 5 is O(2|P| × |S| × N ) and the space
complexity is O(2|P|×|S|+N×|I|) (see Theorem 11 in the “Appendix”), when all possible
PS-rules are specified and the tallest possible G is created in the top-down cut revision phase.
This occurs when Sample-Based-Partition fails to split the single generalized item contained
in the most generalized version of D, and all the nodes of G are finally merged to the root of G
in the bottom-up cut revision phase. Thus, while Sample-based Anonymization has the same
time complexity as Tree-based Anonymization in the worst case, the former is significantly
more scalable in practice, as shown in our experiments.

4.3 Comparison to Tree-based anonymization

Sample-based Anonymization is significantly more scalable than Tree-based Anonymization,
because Check is performed efficiently on a random sample of D̃ during the sample-based
partitioning phase, and it can also retain data utility better. To see this, recall that Tree-based
Anonymization splits a generalized item ĩ as far as required to protect rules, when all rules
have an acceptable support, but some have an unacceptable confidence (see steps 17–35 of
Algorithm 4). This strategy is adopted for efficiency, but may not help data utility when the
antecedent of a rule contains some items that are mapped to ĩ and others that are not, because
only ĩ is considered for further splitting. Thus, the confidence of the rule may never become
acceptable, due to the items not mapped to ĩ , in which case Algorithm 4 does not split ĩ .

Sample-based Anonymization, on the other hand, performs top-down cut revision, which
allows more splits to be considered, because only the support of rules is checked. For example,
assuming that the items that are not mapped to ĩ are mapped to ĩ ′, this algorithm splits both ĩ
and ĩ ′, as long as the support of rules is acceptable, and then merges the resultant generalized
items, if required, to ensure that the confidence is acceptable as well. This gives more chance
to protect the rules with less information loss, as it is illustrated in Example 8.
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Example 8 Consider a rule i1i2 → j such that the items i1 and i2 can be mapped to ˜il7 and its
ascendants and ˜il8 and its ascendants, respectively, as shown in Fig. 9, and its support remains
acceptable after each of the splits (1)–(9) in Fig. 9. Assuming that the rule remains protected
after Tree-based Anonymization has split ĩ into ˜il1 and ˜ir1 (split (1) in Fig. 9), the algorithm
will try to split ˜il1. If the confidence of the rule exceeds c after the split, the algorithm will try
to perform splits (3), (4), and (5) without considering splitting ˜ir1. However, since confidence
is not monotonic, it is possible that the rule remains unprotected even after all these splits
have been attempted. In this case, the algorithm will decide not to split ˜il1 and proceed
to split ˜ir1. Similarly, if the confidence of the rule remains unacceptable after considering
splits (6) to (9), the algorithm will produce a dataset in which all items are mapped to ˜il1
and ˜ir1. Now consider applying Sample-based Anonymization. Assuming that this algorithm
performs split (1) during the sample-based partition phase, it then performs top-down cut
revision in which only the support of the rule is checked using the anonymized dataset. That
is, it performs splits (2), (6), (3), (4), (7), (5), (8), and (9) and finds the generalization cut C2

in Fig. 9. Note that the rule can be protected in the anonymized dataset constructed according
to this cut, because confidence is not monotonic, and that this dataset incurs significantly less
information loss than the one produced by Tree-based Anonymization.

4.4 Protection from algorithm-based attacks

As discussed in Sect. 2.4, the minimality [81,82] and transparency [87] attacks are possible
only when an attacker possesses an eponymous, external dataset. In transaction data pub-
lishing, the latter dataset must contain the personal identifiers and all public items of all
individuals represented in the published dataset. Such a dataset is extremely difficult for an
attacker to obtain [16,50], which implies that the aforementioned attacks are not likely to
compromise the privacy offered by our algorithms.

We now consider the unlikely case in which an attacker possesses an eponymous, external
dataset. Identity disclosure can be prevented in this case, by specifying one PS-rule for each
possible information in P . The consequent of the rule can be any of the itemsets induced by
items in N . In this setting, minimality attack is not applicable, as neither of our anonymiza-
tion algorithms follow the minimality principle (see Sect. 2.4). This is because, Tree-based
Anonymization does not consider splitting all generalized items, as explained in Sect. 4.3,
while Sample-based Anonymization does not consider splitting generalized items after the
bottom-up cut revision phase. Thus, generalized datasets, in which the specified PS-rules are
protected, can be produced by further splitting generalized items that are contained in the
output of our algorithms.

Furthermore, in our approach, a small fraction of the possible itemsets in N are typically
specified as sensitive. This is different from the assumption made in [87], according to
which all values in a specified attribute are sensitive. The specified sensitive itemsets in our
approach are not contained in the eponymous, external dataset and are not known to the
attacker.6 Thus, an attacker cannot perform a transparency attack by applying Tree-based
Anonymization or Sample-based Anonymization to a possible original dataset, after having
obtained the anonymized dataset D̃ and inferred the parameters k and c from it, as in [87].

6 These itemsets represent individuals’ sensitive information, which is unknown to an attacker. A similar
assumption was made in [87], for individuals’ sensitive values.
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5 Deriving PS-rules

Our rule-based privacy model offers data publishers the flexibility of specifying privacy
requirements to avoid over-protecting and over-distorting data. In the following, we discuss
how such requirements can be translated to PS-rules in scenarios involving data publishers
with different amounts of domain knowledge.

We first consider data publishers who know which itemsets are potentially linkable or
sensitive. Such knowledge is application-specific and often derived from policies and regula-
tions. An example of a real-world application involving this type of knowledge is electronic
medical record data sharing [50]. In this application, the set of diagnosis codes assigned to a
patient, during a single hospital visit, is treated as potentially linkable, as explained in [50].
Meanwhile, diagnosis codes that can socially stigmatize patients, such as HIV, are regarded
as sensitive (e.g., according to the policy of [65]). Using our privacy model, a data publisher
can specify a PS-rule, whose antecedent is a potentially linkable set of diagnosis codes and
consequent a sensitive diagnosis code. Another example comes from the field of e-commerce
and involves the Octopus card,7 which is used for payment at various sites (e.g., at conve-
nience stores and service stations) in Hong Kong. Before publishing credit holders’ data, the
Octopus card company identifies certain items purchased by card holders as sensitive, based
on policies or credit card holders’ preferences, and partitions all other items into subsets, each
containing the items sold to card holders by a different retailer [73]. This is because, a retailer,
who may act as an attacker, will possess information only for items sold by them. Our privacy
model can be used to specify a PS-rule that contains a set of items a card holder purchased
from a retailer as its antecedent, and the card holder’s sensitive itemset as its consequent.
The ability to specify such detailed privacy requirements can lead to anonymized data that
are significantly less distorted than those produced by approaches that impose coarse privacy
requirements [74,75,91], as shown in our experiments.

However, not all data publishers possess knowledge about which specific itemsets are
potentially linkable or sensitive. Yet, they often know that a class of items falls into either
of these categories. For instance, a data publisher may expect that “dvds” are likely to be
used in identity disclosure attacks and that “pills” are sensitive, despite being uncertain about
specific dvd titles that an attacker can use to link an individual to their transaction, or about
types of pills that are sensitive. Liu et al. [46,47] studied how users with limited domain
knowledge can identify interesting classification [46] and association [47] rules. Following
their work, we present a method to help data publishers with less specific knowledge generate
PS-rules. We model data publishers’ knowledge using hierarchies, which are common for
many types of transaction data, including market-basket [69], lexical [12], and medical data
[17], and they can also be derived automatically based on machine learning techniques [76].
Xiao et al. [85] proposed the use of a hierarchy to help individuals select the class of sensitive
values they are not willing to be associated with. In contrast, the requirements we consider are
specified by data publishers and are expressed as associations between public and sensitive
itemsets.

Our method is based on the use of two hierarchies HP and HS , whose leaf-level nodes
correspond to the items in P and S, respectively.8 The internal nodes of HP and HS represent
classes of public and sensitive items, respectively, while the root of HP and HS corresponds
to the most general class of items, which is labeled as any public item and any sensitive item,

7 http://www.octopus.com.hk.
8 We employ two hierarchies, for simplicity. Using a single hierarchy containing all items of I is possible,
and it requires trivial changes in the process of generating PS-rules.
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respectively. Given HP and HS , data publishers can express their knowledge that a class
of items is expected to be potentially linkable by selecting a node uP in HP and, similarly,
that a class of items must be treated as sensitive by selecting a node uS in HS . Assume, for
the moment, that an ordered pair 〈uP , uS〉 is selected. This pair is used to construct a set of
PS-rules, which, when protected, prevent an attacker from inferring an individual’s identity
using any itemset induced by the items in the subtree of HP rooted at uP , as well as their
sensitive information using any itemset induced by the items in the subtree of HS rooted
at uS . Data publishers, who are unable to specify classes of items that should be treated as
potentially linkable or sensitive,or believe that any association between these two categories
of items needs protection, can simply select the root nodes of HP and HS . This will lead to
constructing a set of PS-rules that model a requirement for maximum privacy protection.

To automatically construct a set of PS-rules from an ordered pair 〈uP , uS〉, we present
the PS-rule EXtractor (PEX) algorithm, which is illustrated in Algorithm 6.

Algorithm 6 PEX(D, k, c, HP , HS , 〈uP , uS〉)
input: Original dataset D, parameters k, c, hierarchies HP ,HS , ordered pair 〈uP , uS 〉
output: Rule-tree R, set of PS-rules �

1. L← ∅

2. foreach(transaction T = 〈tid, TP ∪ TN 〉 ∈ D)
3. IP ← itemset induced by all items in TP ∩ subt (HP , uP )

4. foreach(itemset I that can be induced by items in IP )
5. J ← argmax

∀iq∈TN ∩subt (HS ,uS )

sup(I ∪ iq ,D)

6. if(sup(I,D) < k or sup(I∪J,D)
sup(I,D)

> c)
7. L← L ∪ {I → J }
8. construct Rule-tree R based on L
9. �← PS-rules obtained by traversing R in a depth-first search manner
10. return{R,�}

PEX iterates over each transaction T = 〈tid, TP∪TN 〉 in D, where TP and TN contain the
public and the non-public items of T , respectively (steps 1–2).9 In each iteration, it constructs
the itemset IP , which is induced by all public items contained in both T and subt (HP , uP ),
where subt (HP , uP ) denotes the subtree of HP rooted at uP (step 3). Then, in steps 4–5,
the algorithm creates a PS-rule I → J from T , for each I that can be induced by items in
IP , where J is the most supported item contained in both TS and subt (HS , uS) (i.e., the
subtree of HS rooted at uS ). If sup(I, D) < k or sup(I∪J,D)

sup(I,D)
> c, then we add I → J into

L, because this rule is not protected in D (steps 6–7). Note that the construction of the rule
I → J guarantees that all rules whose consequent is a superset of J will be protected when
I → J is protected, according to Theorem 8. Next, in steps 8 and 9, PEX creates a Rule-tree
R based on L, and uses a depth-first traversal of R to construct the set of PS-rules Θ . Last,
the algorithm returns R and Θ (step 10).

Example 9 Consider applying PEX on the dataset of Fig. 1a, using k = 2 and c = 2
3 , and the

ordered pair 〈[D− F], i〉. The latter pair is constructed by selecting the node labeled [D−F]
from the hierarchy HP , shown in Fig. 10a, and the node labeled i from the hierarchy HS ,
shown in Fig. 10b. PEX starts by considering the first transaction of the dataset and creating
IP = {d}, because d is the only item contained in the transaction and the subtree of HP
rooted at [D− F] (steps 1–3). Then, the algorithm sets J to i, as i is the only item contained

9 We do not consider empty TP and TS ⊆ TN , where TS is the set of sensitive items in T , as they are unlikely
to lead to meaningful privacy attacks. Our approach can be trivially modified to deal with such transactions.
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Fig. 10 Hierarchies for a the
public items, and b the sensitive
items

(a) (b)

in both TN and i, and it checks whether d → i has support less than k or confidence greater
than c in the dataset of Fig. 1a (steps 5–6). As neither of these conditions hold, d → i is not
added into L, and PEX proceeds into considering the second transaction of the dataset of
Fig. 1a. The algorithm creates IP = {e, f, e f } and constructs e→ i, which is not added into
L, as its support and confidence in the dataset of Fig. 1a are acceptable. Next, f → i and
e f → i are considered, but none of these rules are added into L, for the same reason. After
all transactions of the dataset shown in Fig. 1a are considered, L = {de→ i} and a rule-tree
based on L are constructed. Last, PEX returns L together with the rule-tree R.

The worst-case time complexity of PEX is O(2|P| ×N ×|S|), when IP contains all items
in P and all possible PS-rules are specified. This is because D contains N transactions, and
computing sup(I ∪ iq), for each item iq ∈ TN ∩subt (HS , uS) takes O(N×|S|) time. In our
experiments, the overhead of PEX was comparable to the time required for anonymization.

Data publishers may expect more than one class of items to be potentially linkable or
sensitive. In this case, multiple ordered pairs of nodes from HP and HS are constructed by
pairing together each node from HP with every node from HS . This strategy requires minimal
input from data publishers; however, a set of ordered pairs of nodes {〈u1

P , u1
S〉, . . . , 〈us

P , us
S〉}

may contain redundant pairs. These are pairs 〈uq
P , uS〉, for which there exists a pair 〈ur

P , uS〉
such that ur

P is an ascendant of uq
P in HP , as well as pairs 〈uP , uq

S〉, for which there exists
a pair 〈uP , ur

S〉 such that ur
S is an ascendant of uq

S in HS . The use of a redundant pair as
input to PEX would cause unnecessary computational overhead, because all the resultant
PS-rules are obtainable by at least another pair. Therefore, we first remove all redundant
pairs from {〈u1

P , u1
S〉, . . . , 〈us

P , us
S〉}, and then apply PEX to each ordered pair 〈u j

P , u j
S〉 in

the set to obtain a set of PS-rules Θ j , where j ∈ [1, s]. Last, we construct a set of PS-rules
Θ = Θ1 ∪ . . . ∪Θs that is given as input to our anonymization algorithms.

Note that our approach can be used to create PS-rules with a varying number of items in
their antecedent and/or with specific items in their consequents. In contrast, the approach of
Xu et al. [90,91] considers all public itemsets containing up to p items as requiring protection
for identity disclosure, and all non-public items as sensitive. For instance, assuming that a
data publisher’s requirements are as in Example 9, the method of Xu et al. would need to
consider all 20 possible 3-itemsets induced by {a, b, c, d, e, f } and to prevent the association
between each of these itemsets and any item in {g, h, i, j}. Thus, data would be distorted
unnecessarily. When data publishers want to protect any association between potentially
linkable and sensitive items, the application of PEX, using an ordered pair containing the
root nodes of HP and HS , achieves the same protection as applying (h, k, p)-coherence
[90,91] with the same k, h = c × 100 %, and p = |P|. However, it is worth noting that our
algorithms preserve data utility better than the algorithm of Xu et al. [91] in this setting, as
shown in our experiments.
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Table 1 Characteristics of used
datasets

Dataset N |I| Max. size of T Avg. size of T

BMS1 59,602 497 267 2.5

BMS2 77,512 3,340 161 5.0

POS 515,597 1,657 164 6.5

6 Experimental evaluation

We have conducted extensive experiments to evaluate our algorithms. Our results show that
they significantly outperform the state-of-the-art in terms of data utility, while achieving good
protection and efficiency.

6.1 Experiment data and setup

We used BMS-WebView-1 (BMS1), BMS-WebView-2 (BMS2), and BMS-POS (POS), three
real-world datasets that have been used in evaluating previous work [29,27,35,74,75]. BMS1
and BMS2 contain click-stream data, while POS contains sales transaction data. Table 1 shows
the properties of these datasets.

We compared our Tree-based and Sample-based algorithms to Greedy [91], which guar-
antees protection from both identity and sensitive information disclosure, and Apriori [74],
which, unlike other generalization-based algorithms [35,51,75], produces data that can be
mined effectively, because it maps instances of the same item to the same generalized item in
all transactions, and it does not require data publishers to limit the amount of generalization
that may be exercised. We did not include the algorithms for enforcing ρ-uncertainty [16]
and differential privacy [19] in our evaluation, because they are not directly comparable to
our methods (see Sects. 2.2, 2.3). The weights used in our methods were configured based
on a notion of semantic distance [89] computed according to the hierarchies described in
[74]. To demonstrate the effectiveness of the PS-rule handling and anonymization strategies
we propose, we compared our algorithms against Baseline, a basic algorithm that splits gen-
eralized items based on UL instead of the approximation adopted by B-Split, and checks all
rules in Θ according to Definition 4.

The default values for parameters used in evaluation were k = 5 and c = 0.7, and
the set of sensitive items S was comprised of 5 % of the most frequent items in I. Unless
stated otherwise, Apriori was applied to public items with m = 2, Greedy with p = 2 and
h = 70 %, and Sample-based using δ = 0.05 and ε = 0.025 (or equivalently a sample
of 2,952 records). We report the worst results derived by executing Sample-based 5 times,
to minimize the impact of randomness in sampling, although this difference was negligible.
Furthermore, we used different sets of PS-rules, and selected the antecedents and consequents
of rules uniformly at random. The PS-rules in all the sets we used were not always protected
(i.e., none of them satisfied the conditions of Theorem 5). The default PS-rule set we used
was S1, which was comprised of 5K PS-rules whose antecedent is a 2-itemset in P and
consequent an item in S.

6.2 Preventing sensitive information disclosure

To measure protection for sensitive information disclosure, we counted the percentage of

generalized items for which there is at least one sensitive item iq such that sup(ĩ∪iq ,D̃)

sup(ĩ,D̃)
> c,
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Fig. 11 Unsafe gen. items
versus sens. items (BMS1)

Fig. 12 Unsafe gen. items
versus sens. items (BMS2)

Fig. 13 Unsafe gen. items
versus k (BMS1)

where ĩ is a generalized item in D̃. We call these generalized items unsafe and use them
because their number does not depend on the number of specified PS-rules. We do not report
results for our algorithms and Greedy, since they are designed to eliminate unsafe generalized
items.

Figures 11 and 12 report the results with respect to protection for BMS1 and BMS2,
respectively, where the percentage of sensitive items in I varies from 5 to 50, k= 5, and c =
0.2. Notice that Apriori failed to prevent sensitive information disclosure, as the percentage
of unsafe generalized items was at least 38 and 36.1 %, for BMS1 and BMS2, respectively.
However, no generalized item was unsafe when Apriori ran on POS, because of the large
amount of generalization incurred. The lack of protection was observed when different values
of m were used, but the results were omitted for space reasons.

Next, we considered the 10 % of items in I as sensitive and investigated the impact of
using various k and c values on privacy. Figure 13 shows the result for various k values and
c = 0.2. As can be seen, Apriori constructed anonymizations that contained at least 50 % of
unsafe generalized items, even when it ran with k = 50. The result for varying c and k = 5
is reported in Fig. 14. Apriori constructed anonymized datasets with up to 78 % of unsafe
generalized items, and the percentage of unsafe generalized items remained non-zero for c
up to 0.8. This confirms that anonymized data produced by Apriori are still at risk of sensitive
information disclosure.
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Fig. 14 Unsafe gen. items
versus c (BMS1)

Fig. 15 Cost versus k (BMS1)

6.3 Data utility

In this section, we show the superiority of our algorithms over Apriori and Greedy for
retaining data utility. We measured data utility using the UL and Cost [48] measures. Cost
captures the information loss caused by generalization and suppression and is expressed as
the sum of the value of LM [36] for D̃ and the fraction of the items that are suppressed
to produce D̃. In addition, we measured the accuracy of answering query workloads on
anonymized data using the Average Relative Error (ARE) measure [42], which is widely
used [27,29,42] and invariant of the way all tested algorithms work. To simulate different
data analysis requirements, we used two query workloads: W1 and W2. The details of the
queries we considered in W1 and W2 and the computation of ARE are given in the “Appendix”.
The queries contained in W2 are, intuitively, more difficult to answer accurately, because they
involve more items [51]. They also pose additional difficulty for our algorithms in comparison
with Apriori, because our algorithms constrain the combinations of generalized and sensitive
items that may be released.

6.3.1 Enforcing (h, k, p)-coherence

We compared the information loss incurred by Greedy and our algorithms, when they are
configured to enforce (h, k, p)-coherence. We also tested Apriori, using the same k and
m = p, to compare the effect of using (h, k, p)-coherence versus km-anonymity on data
utility.

Impact of k The Cost scores for the three datasets, for h = 50 %, p = 2, and k from
2 to 50 are shown in Figs. 15, 16, and 17. As can be seen, our methods can provide the
same protection as Greedy does, while incurring significantly less information loss. Greedy
suppressed at least 19.6 % of items in BMS1 and up to 72 % of items in the more sparse
BMS2 dataset. Thus, its scores were at least 8.4 and up to 81 times higher than those of our
algorithms. Tree-based was slightly worse than Baseline, because, for efficiency reasons, it
splits generalized items based on the approximation of UL used in B-Split and not on UL
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Fig. 16 Cost versus k (BMS2)

Fig. 17 Cost versus k (POS)

Fig. 18 ARE for W1 versus k
(BMS1)

Fig. 19 ARE for W1 versus k
(BMS2)

itself, as Baseline does. Sample-based outperformed both Tree-based and Baseline, for the
reasons given in Sect. 4.2.2. We also found that Apriori outperforms Greedy, confirming
the results of [48]. However, Apriori incurred more information loss than our algorithms
did, despite not preventing sensitive information disclosure. This shows that the set-based
generalization model employed by our algorithms is better for data utility.

We report the ARE scores for BMS1 and BMS2 and for workload W1 in Figs. 18 and 19,
respectively. Greedy was not included in the experiments reported in this section, since it
incurred a large amount of suppression, which prevented answering many queries. The scores
for Apriori were at least 2.3 and 3.7 times larger than those of Tree-based and Sample-
based for BMS1 and much larger for BMS2, while the relative performance among our
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Fig. 20 Cost versus p (BMS2)

Fig. 21 ARE for W1 versus p
(BMS2)

Fig. 22 ARE for W2 versus p
(BMS2)

algorithms was the same as in the above experiments. This confirms that using the set-based
generalization model together with UL, computed exactly or approximately, helps query
answering accuracy.

Impact of p We examined how varying p affects Cost and show the result for BMS2,
k = 5, and h = 50 %, in Fig. 20. Observe that all algorithms traded-off information loss
for stronger protection, as p increased, and that Greedy performed the worst. Our methods
retained more information than Apriori, although they additionally prevent sensitive infor-
mation disclosure. This can be seen in Figs. 21 and 22, which illustrate the ARE scores for
W1 and W2 in BMS2. This result suggests that protecting incrementally larger itemsets, as
Apriori does, leads to more generalization compared to applying generalization to protect
each rule, as our algorithms do. The results on the other datasets were similar and omitted
for the sake of space.

6.3.2 Enforcing our rule-based model

Impact of k We first considered BMS1 with k varied from 2 to 50. The results for workload
W1, given in Fig. 23, show that Tree-based outperformed Apriori, achieving up to 3 times
better ARE scores. However, since Tree-based captures information loss based on an approxi-
mation introduced in B-Split, rather than the more accurate UL measure, in order to achieve
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Fig. 23 ARE for W1 versus k
(BMS1)

Fig. 24 ARE for W2 versus k
(BMS1)

Fig. 25 U L versus k (BMS1)

efficiency, it performed worse than Baseline for k > 5. Interestingly, Sample-based outper-
formed all other algorithms, achieving up to 10 and 4 times better ARE scores than Apriori
and Tree-based did, respectively. This confirms our theoretical analysis in Sect. 4.2.2. Our
algorithms outperform Apriori in this experiment, because they provide no more protection
than that required to protect the specified rules, while they adopt a more flexible generaliza-
tion model. The results w.r.t. unnormalized UL scores for the same experiments are provided
in Fig. 25 and verify the observations made using ARE as a data utility indicator. The results
from the same experiments using W2, reported in Fig. 24, are similar to those of Fig. 23.
In this set of experiments, we do not report additional results based on UL, as they are all
consistent with ARE scores, nor do we include the results for Baseline, since Sample-based
outperformed it in data utility and efficiency, while achieving the same level of protection.

Figure 26 shows the ARE scores for POS using W1. Tree-based and Sample-based achieved
ARE scores that were 1.9 and 2.6 times better on average than those for Apriori, which again
confirms the superiority of our algorithms.

We also measured data utility when anonymized data are produced based on different
privacy requirements, which are specified using our hierarchy-based method (see Sect. 5).
We considered 5 privacy requirements: P R1,…,P R5, which are specified to protect different
associations between classes of items. Each of these requirements was modeled by selecting
nodes in the hierarchies HP and HS , as shown in Table 2, and resulted in a set of PS-rules.
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Fig. 26 ARE for W1 versus k
(POS)

Table 2 Summary of privacy
requirements (BMS2)

Privacy requirement Selected nodes of HP Selected nodes of HS

P R1 Root Root
P R2 3 (50 % of) level-3 16 (48 % of) level-1

P R3 5 (15 % of) level-2 5 (15 % of) level-1

P R4 3 (50 % of) level-3 7 (22 % of) level-1

P R5 3 (50 % of) level-3 2 (6 % of) level-1

Fig. 27 ARE for W1 and P R1
versus k (BMS2)

This set of PS-rules was produced by applying PEX to BMS2, and it was subsequently
provided as input to our algorithms. The default hierarchy for BMS2 was used as HP , and
a hierarchy produced based on the method described in [74] as HS . HP and HS have 6 and
4 levels, respectively, and their leaves lie in level 0. For each privacy requirement, a number
of nodes from a level of HP and HS , respectively, were selected uniformly at random. The
number and percentage of the selected nodes, as well as the level of these nodes in the
hierarchy they were selected from, are shown in Table 2. For consistency, a set of nodes,
selected from a certain level of a hierarchy to model a privacy requirement, were contained
in all larger sets of nodes, which lie in the same level of the hierarchy, and were selected to
model a different requirement. For example, the 2 level-1 nodes selected from HS to model
P R5 were also selected in the case of P R2.

The results for P R1 are shown in Fig. 27. These results were obtained for BMS2, W1 and
various k values in [2, 50]. In this setting, Apriori is configured with m = |P|. Note that
Apriori produced data that are practically useless, since the ARE scores for this algorithm
were in the order of hundreds or more, as opposed to those of Tree-based and Sample-based
that were no more than 9.1 and 0.4, respectively, even though these algorithms offer more
protection for sensitive information disclosure.

Figure 28 reports the results for Sample-based when it is configured with the PS-rules
corresponding to P R1, P R2, and P R3. All other parameters were set as in the previous
experiment. The ARE scores in the case of P R2 and P R3 were on average 1.5 and 6 times
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Fig. 28 ARE for W1 and P R1 to
P R3 versus k (Sample-based,
BMS2)

Fig. 29 ARE for W1 and P R1 to
P R3 versus k (Tree-based,
BMS2)

Fig. 30 ARE for W1 and P R2,
P R4, and P R5 versus k
(Sample-based, BMS2)

smaller than those corresponding to P R1. This is because P R3 is less strict than P R2,
which, in turn, is less strict than P R3. That is, P R3 requires protecting fewer public item-
sets from identity disclosure, and fewer associations between public and sensitive itemsets
from sensitive information disclosure than P R2 and P R1. These results demonstrate that
the specification of different privacy requirements, using our hierarchy-based method, can
affect the amount of information loss incurred by anonymization. The results from the same
experiment, using Tree-based, are shown in Fig. 29, and they are similar to those of Fig. 28.
The ARE scores for Apriori were significantly larger than those of both our algorithms and
are not reported. This is expected, as Apriori had to generalize all m-itemsets, where m is
the size of the largest itemset used as antecedent in each set of PS-rules our algorithms were
configured with.

Furthermore, we tested how ARE is affected by the use of requirements in which a varying
number of nodes in HS are selected. Figure 30 shows the results for Sample-based when
it is configured with PS-rules that correspond to P R2, P R4, and P R5, and with all other
parameters as in the previous experiment. The ARE scores corresponding to P R4 and P R5
were on average 1.9 and 7 times smaller than those for P R2. This is because P R5 con-
tains fewer itemsets that need protection from sensitive information disclosure than P R4,
which, in turn, contains fewer such itemsets than P R2. These results demonstrate that our
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Fig. 31 ARE for W2 versus c
(BMS1)

Table 3 Summary of privacy requirements (BMS1)

Privacy requirement Selected nodes of HP Selected nodes of HS

P R6 Root Root
P R7 2 (50 % of) level-3 3 (60 % of) level-1

P R8 4 (20 % of) level-2 5 (20 % of) level-0

P R9 2 (50 % of) level-3 2 (40 % of) level-1

P R10 2 (50 % of) level-3 1 (20 % of) level-1

hierarchy-based method allows the production of PS-rules, which can avoid over-distortion
and over-protection of data. Similar trends were observed for Tree-based, while Apriori
was outperformed by both our algorithms, for the reasons explained above. The results for
Tree-based and Apriori are not reported, for brevity.

Impact of c We studied how varying c in [0.1, 1] affects ARE and provide the results
for BMS1 and W2 in Fig. 31. As can be seen, our algorithms incurred more information loss
than Apriori for c < 0.3, because they had to trade-off some utility for stronger privacy,
but outperformed Apriori by an increasingly large margin for c ≥ 0.3. Observe the result
for c = 1, a setting in which our algorithms become similar to Apriori in that they prevent
identity disclosure only. In this case, Tree-based and Sample-based allowed 6.2 and 25 times
more accurate query answering than Apriori. Similar results were observed for BMS2 and
W2, but are not reported here for brevity.

We also measured how ARE is affected by the use of different privacy requirements, which
are expressed based on our hierarchy-based method. We considered 5 privacy requirements:
P R6,…,P R10, whose specification is similar to those reported in the previous set of exper-
iments, and it is explained in Table 3. The default hierarchy for BMS1 was used as HP ,
and HS was derived by the method described in [74]. Each of these privacy requirements
resulted in a set of PS-rules that was produced by applying PEX and provided as input to our
algorithms.

The results for P R6, which corresponds to the strictest privacy requirement that can be
specified by our privacy model, are shown in Fig. 32. In these experiments, Apriori ran with
m = |P| and all other parameters were set as in the experiment of Fig. 31. As can be seen
from Fig. 32, both our algorithms outperformed Apriori by many orders of magnitude, across
all tested c values. This shows that our algorithms can provide the same protection from
identity disclosure than Apriori and additionally prevent sensitive information disclosure
while incurring less information loss.

Figures 33 and 34 report the results for P R6 to P R8, for Sample-based and Tree-based,
respectively. The ARE scores achieved by either of these algorithms for P R7 and P R8 were
many times smaller than those corresponding to P R6. This is because P R8 is less strict
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Fig. 32 ARE for W2 and P R6
versus c (BMS1)

Fig. 33 ARE for W2 and P R6 to
P R8 versus c (Sample-based,
BMS1)

Fig. 34 ARE for W2 and P R6 to
P R8 versus c (Tree-based,
BMS1)

Fig. 35 ARE for W2 and P R7,
P R9, and P R10 versus c
(Sample-based, BMS1)

than P R7, which, in turn, is less strict than P R6. For instance, configuring Sample-based
with P R8 instead of P R6, resulted in ARE scores that were 55 times smaller, on average.
Figure 35 illustrates the ARE scores for Sample-based, when it is configured with the PS-rules
corresponding to P R7, P R9, and P R10. All other parameters were set as in the experiment
reported in Fig. 33. Note that in the case of P R9 and P R10, the ARE scores for Sample-based
were up to 2.2 and 4.4 times smaller compared to the case of P R7. These results demonstrate
that the specification of privacy requirements, using our approach, affects the information
loss incurred by anonymization. The ARE scores for Apriori were significantly larger than
those of both our algorithms, for the reasons discussed above, and are not reported here.

Impact of number of PS-rules The results for the workload W2 on BMS1 and BMS2
with a set of specified PS-rules, whose antecedents and consequents are 2-itemsets and
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Fig. 36 ARE for W2 versus
#rules (BMS1)

Fig. 37 ARE for W2 versus
#rules (BMS2)

number varies from 1 to 100 K, are shown in Figs. 36 and 37, respectively. Our algorithms
significantly outperformed Apriori, although the difference in their ARE scores decreased as
the number of rules increased. This is expected as the stronger protection required, the more
data utility is compromised. Note also that the ARE scores of our algorithms remained steady
when the number of specified rules is 50 K or more, because the consequents of the rules
have collectively covered all sensitive items appeared in transactions. Thus, no additional
generalization was needed to protect more than 50 K PS-rules and the ARE scores did not
increase after this point.

Impact of different PS-rules We used sets that contain 5 K rules and refer to a set by
the size of antecedents and consequents it contains. For example, 2–2 refers to a set of rules
whose antecedents and consequents are 2-itemsets. Apriori was configured by setting m to
the size of antecedent of rules in the set.

The result for BMS1 and W2 is illustrated in Fig. 38. Note that Apriori incurred much
more information loss for rules with larger antecedents than our algorithms did, since it is
forced to generalize all m-public itemsets, not only those specified by the rules. The median
ratio between the ARE scores for Apriori and Tree-based is 4.5 and 9.5 for W1 and W2,
respectively. Sample-based consistently outperformed Tree-based achieving a result up to 3
and 9 times better for W1 and W2, which again indicates its effectiveness in retaining data
utility.

Note that the ARE scores for our algorithms increased with the size of consequents of rules,
as more information loss was incurred to achieve stronger protection. The ARE scores for
Apriori, on the other hand, remained steady, as it does not consider sensitive items. However,
our algorithms significantly outperformed Apriori, even when the 4–4 rule set, which requires
a large amount of generalization to be protected, was used. These observations are also
confirmed by the results for BMS2, shown in Figs. 39 and 40 for W1 and W2, respectively.
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Fig. 38 ARE for W2 versus
rules in S1 (BMS1)

Fig. 39 ARE for W1 versus rules
in S1 (BMS2)

Fig. 40 ARE for W2 versus
rules in S1 (BMS2)

6.4 Efficiency of computation

We evaluate the runtime and memory requirements of our algorithms, as well as the perfor-
mance of our rule checking strategy.
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Fig. 41 Efficiency versus |D|
(subsets of BMS2)

Fig. 42 Efficiency versus |D|
(subsets of POS)

Fig. 43 Efficiency versus |I|
(subsets of BMS2)

6.4.1 Runtime evaluation

Impact of dataset size Figures 41 and 42 report the results for datasets constructed by
selecting increasingly larger subsets of BMS2 and POS. The transactions in each subset
were selected uniformly at random but contained in all larger sets. Greedy was the most
efficient of the algorithms, requiring 55 and 23.6 % less time on average than Sample-based
for BMS2 and POS, respectively. Sample-based was the second fastest and scaled better than
Greedy, because Greedy required increasingly more time to identify all itemsets that need
protection. Both our algorithms are more scalable than Apriori, which is up to 10.3 times and
17 times less efficient than Tree-based and Sample-based on POS. This shows that exploring
the space of generalizations in a top-down fashion, as our algorithms do, is more efficient than
the bottom-up strategy used in Apriori. Sample-based was faster than Tree-based, because it
performed rule checking based on a sample. The performance gain increased with the dataset
size. For reference, we report that Baseline was several orders of magnitude slower, requiring
10 h to anonymize BMS2, because it performs a large number of support computation to split
items based on UL and to check all PS-rules.

Impact of domain size The results for datasets comprised of an increasingly larger per-
centage of items of BMS2 and POS are reported in Figs. 43 and 44, respectively. Greedy was
the most efficient algorithm, followed by Sample-based, which needed 19 and 12 % more time
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Fig. 44 Efficiency versus |I|
(subsets of POS)

Fig. 45 Efficiency versus k
(BMS2)

to anonymize BMS2 and POS. Both of these algorithms scaled similarly with the increase of
the domain size and much better than other algorithms, because Greedy suppressed a large
fraction of items, quickly achieving the privacy requirement, and Sample-based performed
most rule checks efficiently based on a sample. Note also that Tree-based and Sample-based
are up to 12 and 24 times faster than Apriori, and are more scalable. For instance, they require
less than 40 and 21 s to anonymize the larger POS dataset, while Apriori needs 6.3 min. This
indicates that splitting generalized items in a top-down fashion can cope better with large
domain sizes than the bottom-up generalization used by Apriori. Also, Sample-based scaled
much better and was up to 2 times faster than Tree-based in this experiment. This is because
the time spent in the top-down and bottom-up cut revision phases of Sample-based became
an increasingly small fraction of total execution time as domain size increased.

Impact of parameter k As can be seen in Fig. 45, all algorithms required less time
to execute as k increased. This is attributed to the top-down item splitting strategy of our
algorithms, which requires fewer iterations to create generalized items with large support,
to the recoding model of Apriori, and to the fact that Greedy did not suppress significantly
more items for k ≥ 5 compared to k = 2. Greedy was the most efficient of the algorithms,
being 39 and 63 % faster than Sample-based and Tree-based, which in turn were at least 6
times faster than Apriori, although they check the confidence of rules to prevent sensitive
itemset disclosure.

Impact of parameter c Figure 46 shows the result of applying our algorithms with various
c values. The result for Apriori is not reported here, since its efficiency is not affected by c.
Tree-based is fairly insensitive to c, for c ≤ 0.9, because it attempted to find generalizations
with higher data utility when rules had a support of at least k, but a larger confidence than
c. For c = 1, however, it ran faster by 97 %, as it only had to compute the support of rules.
On the contrary, the runtime of Sample-based decreased with c, which is expected, as only a
small number of iterations were needed to revise the generalized dataset constructed during
the sample-based partitioning phase. Tree-based and Sample-based were slower than Greedy,
which needed more time to discover itemsets that require protection for smaller c values.
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Fig. 46 Efficiency versus c
(BMS2)

Fig. 47 Efficiency versus # rules
(BMS2)

Fig. 48 Efficiency versus
different rules (BMS1)

However, this computation did not substantially affect the runtime of Greedy, which is not
reported here.

Impact of number of PS-rules The result for BMS2 using the rules, whose antecedents
and consequents are 2-itemsets and number varies from 1 to 50 K, is shown in Fig. 47. The
strong protection from sensitive information disclosure provided by our algorithms when a
large number of rules are to be protected resulted in an increase in their runtime. However,
their computation cost remained sublinear in all tested cases. Furthermore, due to the use of
sampling, Sample-based was up to 2.5 times faster than Tree-based was.

Impact of different PS-rules The results for sets of PS-rules whose antecedents and
consequents have different sizes are shown for BMS1 and BMS2 in Figs. 48 and 49. While
all algorithms needed more time when rules had larger antecedents, the efficiency of Apriori
was affected the most, since it unnecessarily protected all possible m-items. This was more
evident when rules with antecedents that contain up to 10 items were used. As can be seen in
Fig. 50, the runtime of Apriori increased 19 times when it was executed on the 10–2 rule set

123



Efficient and flexible anonymization 199

Fig. 49 Efficiency versus
different rules (BMS2)

Fig. 50 Efficiency versus rules
with increasingly large
antecedents (BMS2)

Fig. 51 Efficiency versus rules
with increasingly large
antecedents (BMS2)

instead of 2–2, while the runtime of our algorithms was only 3 times higher. Furthermore,
despite the fact that our algorithms needed more time to protect rules with larger consequents,
they were still faster than Apriori in all tested cases. Tree-based was at least 44 times faster than
Apriori for both BMS1 and BMS2. In addition, Sample-based outperformed Tree-based by
at least 60 %, and was more scalable with respect to the size of antecedents and consequents,
due to the use of sampling. The comparative runtime of our algorithms in this experiment is
shown more clearly in Fig. 51.
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Fig. 52 Memory versus |D|
(POS)

Fig. 53 Memory versus |I |
(POS)

6.4.2 Memory requirements

We compare the memory requirements of the tested algorithms with respect to their peak
memory consumption, since they employ different anonymization strategies and data struc-
tures.

Impact of dataset size Figure 52 shows the results for the increasingly larger subsets
of POS used in Sect. 6.4.1. All tested algorithms scaled sublinearly to the dataset size and
Greedy required the least memory; up to 73 and 69 % less than our algorithms and Apriori.
This is because, Greedy processes minimal moles, i.e., itemsets that do not satisfy (h, k, p)-
coherence but all of their proper subsets do, eliminating the item contained in most of them.
These itemsets are typically fewer than all moles and stored in a compressed form, which
reduces storage requirements. Tree-based and Sample-based needed up to 30 and 45 % more
memory than Apriori, since they need to store generalized items and check rules, which
involves creating a temporary dataset for computing their support after item splitting. Tree-
based consumed up to 19 % less memory than Sample-based, which needs to store the entire
generalization tree to enable bottom-up cut revision.

Impact of domain size Figure 53 shows the results for datasets comprised of an increas-
ingly larger percentage of items of POS used in Sect. 6.4.1. All algorithms scaled sublinearly
to the domain size, with Greedy being the most memory efficient, for the reasons discussed
above. Tree-based and Sample-based required 2.4 and 3.1 times more memory than Apriori
when |I | = 25 %, as a large fraction of the total memory is spent for generalized item storage
and rule checking, but only 30 and 63 % more to anonymize the POS dataset.

Impact of number of PS-rules The result for POS using the rules, whose antecedents
and consequents are 2-itemsets and number varies from 5 to 200 K, is shown in Fig. 54. Both
algorithms consumed slightly more memory when the number of PS-rules was larger, which
implies that the amount of memory required is manageable even when the number of rules
is large. Figure 55, for example, shows the results for the three datasets when Greedy and
our algorithms enforced (70 %, 5, 2)-coherence and Apriori 25-anonymity. Our algorithms
needed a similar amount of memory to that of Apriori to anonymize BMS1 and BMS2 and
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Fig. 54 Memory versus # rules
(POS)

Fig. 55 Memory versus datasets

Fig. 56 Nodes of Rule-tree
versus rules (POS)

a larger one, which did not exceed 300 MB, for POS. This is because the memory needed
to store rules is a small fraction of the total memory required, most of which is spent to
store generalized items and the temporary dataset used in rule checking. For instance, storing
200 K rules needed less than 3 MB of memory, while the temporary dataset needed more than
100 MB. Also, as can be seen in Fig. 56, which shows the number of nodes of the Rule-tree,
used by our algorithms, the number of nodes needed by the Rule-tree increased sublinearly
with the number of PS-rules and is much smaller than the number of nodes that would be
needed if lists, each containing the items of a rule [52], were used instead.

6.4.3 Performance of PS-rule checking strategy

We evaluate the performance of our rule checking strategy by comparing the total number
of rules that our algorithms check to that of Baseline. For brevity, we report the results for
BMS1 only, omitting the results for BMS2 and POS, which were similar.

Impact of parameter k Figure 57 shows the number of checks performed for BMS1
when k varies in [2, 10]. All algorithms checked fewer rules as k increased, since they could
construct an anonymized dataset after just a few iterations. However, our algorithms checked
at least 3 and up to 5.5 times less rules than Baseline, which confirms that a large number of PS
rules were pruned. Note also that Sample-based checked slightly more rules than Tree-based,
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Fig. 57 # checks versus k
(BMS1)

Fig. 58 # checks versus c
(BMS1)

Fig. 59 # checks versus # rules
(BMS1)

because it constructed less generalized items than Tree-based did. Moreover, Sample-based
had to check some rules twice.

Impact of parameter c The result for measuring the number of rules checked against
different c values in [0.1, 1] is given in Fig. 58. Baseline performed fewer checks for smaller
c values, because it stops the first time the confidence of a rule exceeds c, which occurred at
the very first iterations. The number of checks maximized when c = 1, since all checks then
correspond to evaluating the support of rules. In contrast, the number of checks performed
by Tree-based was not affected by varying c, because c was not used as a criterion to stop
the exploration and expansion of the generalization tree. Sample-based performed slightly
more checks than Tree-based did for the reasons explained above.

Impact of number of PS-rules Figure 59 shows that all algorithms perform more checks
as the number of rules increases. This is because the random selection of the rules makes it
unlikely for a rule to be protected as a result of protecting another. Both our algorithms scaled
better than Baseline, which demonstrates the effectiveness of our rule checking strategy.
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Fig. 60 # checks versus rules in
S1 (BMS1)

Fig. 61 # checks versus rules in
S1 (BMS1)

The number of checks performed by Sample-based was on average 3.5 times smaller than
that of Baseline, but 41 % larger than that of Tree-based.

Impact of different PS-rules The number of checks performed for sets of rules, whose
antecedents and consequents have a varying size, is in Figs. 60 and 61. By comparing these
figures, it can be seen that our algorithms significantly outperformed Baseline. Sample-based
checked at least 6 and up to 17 times less rules than Baseline, and Tree-based performed
slightly better. We also observed that all algorithms performed an increasing number of
checks when rules have large antecedents or consequents. This is because rules in these sets
tend to have large confidence, so it took more iterations for all algorithms to protect them.

7 Conclusions and future work

Existing transaction data anonymization techniques often produce excessively distorted and
inadequately protected data, because they do not capture fine-grained privacy requirements
that are common in real-world data sharing scenarios and do not prevent identity and sensi-
tive information disclosure together. In this work, we overcome these limitations by making
two important contributions. First, we introduced a novel privacy model that allows data
publishers to express a wide range of fine-grained privacy requirements for both identity and
sensitive information disclosure and is more general than existing ones. Second, we designed
two efficient and effective anonymization algorithms to enforce our privacy model. Our exten-
sive experiments confirmed that our algorithms significantly outperform the state-of-the-art
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method in terms of data utility, while they are scalable and can prevent both identity and
sensitive information disclosure.

We consider our approach as an important step toward capturing and enforcing privacy
requirements to effectively anonymize transaction data for real-world applications. We also
believe that it provides a foundation for some future studies. First, while identity and sensi-
tive information disclosure are the main concerns in data publishing, it is worth examining
membership disclosure, in which inferring whether an individual’s record is contained in the
published data is to be prevented [63]. Second, we aim to extend our approach to anonymize
disk-resident data with small memory consumption and I/O overhead.
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Appendix

Proof of Theorem 1 We observe that our problem can be reduced from the NP-hard problem
of optimal privacy-constrained anonymization (OPC) [51]. The latter problem seeks to trans-
form D into D̃ that has a minimum UL(D̃), using the set-based item generalization model,
w.r.t. two sets of constraints U (on utility) and P (on privacy), and parameters k and s. We
can map an instance of OPC to an instance of our problem in polynomial time by constructing
Θ in such a way that, for each p ∈ P , we specify a PS-rule whose antecedent contains all
the items in p and no other items, s = 0 % to disallow suppression, and c = 1. Then, D̃ is a
solution to our problem if and only if it is a solution to the OPC problem. ��

Proof of Theorem 2 Assume that a D̃ in which the PS-rules in Θ are protected can be con-
structed from D, for given k and c, when sup(I ∪ J, D) > N × c, for a rule I → J in Θ .

Then, from Definition 4, we have sup(
⋃
∀i∈I Φ(i)∪J,D̃)

sup(
⋃
∀i∈I Φ(i),D̃)

≤ c. Since sup(
⋃
∀i∈I Φ(i)∪ J, D̃) ≥

sup(I ∪ J, D) from the way Φ works, we have sup(
⋃
∀i∈I Φ(i)∪J,D̃)

sup(
⋃
∀i∈I Φ,D̃)

≥ sup(I∪J,D)
N . Thus,

sup(
⋃
∀i∈I Φ(i)∪J,D̃)

sup(
⋃
∀i∈I Φ,D̃)

> c, which contradicts our assumption and proves the theorem true. ��

Proof of Theorem 3 Consider a dataset D̃ constructed using a generalization function Φ that
maps each and every i ∈ P to the same ĩ ∈ P̃ . Since we have sup(ĩ, D̃) = N ≥ k for all rules
in Θ , these rules satisfy Condition (1) of Definition 4 for D̃. Also, as sup(

⋃
∀i∈Iq

Φ(i) ∪
Jq , D̃) ≤ N × c and sup(ĩ, D̃) = N hold, we have

sup(
⋃
∀i∈Iq Φ(i)∪Jq ,D̃)

sup(
⋃
∀i∈Iq Φ(i),D̃)

≤ c. So the rules

in Θ also satisfy Condition (2) of Definition 4, and are all protected in D̃. Thus, D̃ is a
generalized dataset that is constructed from D as required. ��

Proof of Theorem 4 Assume that U L(D̃1) < U L(D̃2). For each generalized item ĩ in both
C1 and C2, we have U L(ĩ, D̃1) = U L(ĩ, D̃2). Thus, there must be sets of generalized items
C ′1 = C1\C2 and C ′2 = C2\C1 such that

∑
˜ix∈C ′1

U L(ĩx , D̃1) <
∑
˜iy∈C ′2

U L(ĩ y, D̃2) or
∑
∀ ˜ix∈C ′1

((2| ˜ix | − 1)×w(ĩx )× sup(ĩx , D̃1)) <
∑
∀ ˜iy∈C ′2

((2| ˜iy | − 1)×w(ĩ y)× sup(ĩ y, D̃2)),

in order for our assumption to hold. However, this cannot be true because for each ĩx ∈ C ′1
we have |ĩx | = ∑

∀ ˜iq∈desc( ˜ix )
| ˜iq | (by definition), sup(ĩx , D̃1) ≥ ∑

∀ ˜iq∈desc( ˜ix )
sup( ˜iq , D̃2)
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(by B-Split), and w(ĩx ) ≥∑
∀ ˜iq∈desc( ˜ix )

w( ˜iq) (the condition given in Theorem 4). Thus, we

cannot have U L(D̃1) < U L(D̃2). ��
Proof of Theorem 5 Consider an arbitrary generalized dataset D̃ that is constructed from
D using a set-based generalization function Φ. In the following, we prove that I → J
is protected in D̃ by showing that it satisfies both conditions of Definition 4. From
sup(I, D) ≤ sup(

⋃
∀i∈I Φ(i), D̃) and the condition (1) of the Theorem 5, we get that

sup(
⋃
∀i∈I Φ(i), D̃) ≥ k. Thus, I → J satisfies the condition (1) of Definition 4.

Also, from sup(J, D) ≥ sup(
⋃
∀i∈I Φ(i) ∪ J, D̃) and the condition (2) of Theorem 5,

we have that sup(
⋃
∀i∈I Φ(i) ∪ J, D̃) ≤ c × k. By combining the latter relation with

sup(
⋃
∀i∈I Φ(i), D̃) ≥ k, we get sup(

⋃
∀i∈I Φ(i)∪J,D̃)

sup(
⋃
∀i∈I Φ(i),D̃)

≤ c. Thus, I → J also satisfies

the condition (2) of Definition 4. ��
Proof of Theorem 6 Assume that I → J is protected in D̃1, not protected in D̃2 and there
is no item i ∈ I that maps to ĩl or ĩr . By the construction of C2, i is not mapped to ĩ either.
Thus, we have sup(

⋃
∀i∈I Φ(i), D̃1) = sup(

⋃
∀i∈I Φ(i), D̃2), since other than ĩl and ĩr , the

support of each generalized item in D̃2 and D̃1 is the same. This implies sup(
⋃
∀i∈I Φ(i)∪J,D̃1)

sup(
⋃
∀i∈I Φ(i),D̃1)

=
sup(

⋃
∀i∈I Φ(i)∪J,D̃2)

sup(
⋃
∀i∈I Φ(i),D̃2)

. Thus, I → J is protected in D̃2, which contradicts our assumption and

proves the theorem true. ��
Proof of Theorem 7 Assume that I ′ → J is not protected in D̃. Due to condition (1), we

have sup(
⋃
∀i∈I Φ(i), D̃) ≥ k and sup(

⋃
∀i∈I Φ(i)∪J,D̃)

sup(
⋃
∀i∈I Φ(i),D̃)

≤ c, and, from conditions (2) and (3),

we have sup(
⋃
∀i ′∈I ′ Φ(i ′), D̃) = sup(

⋃
∀i∈I Φ(i), D̃) since all items in I ′ are contained in

I and all items in I are mapped to
⋃
∀i∈I Φ(i). Thus, I ′ → J is protected by Definition 4,

which contradicts our assumption. ��
Proof of Theorem 8 Assume that I → J ′ is not protected in D̃. sup(

⋃
∀i∈I Φ(i), D̃) ≥ k

holds from condition (1), hence sup(
⋃
∀i∈I Φ(i)∪J ′,D̃)

sup(
⋃
∀i∈I Φ(i),D̃)

> c must hold, for our assumption to be

true. From sup(J ′, D̃ Ĩ ) = sup(
⋃
∀i∈I Φ(i)∪J ′, D̃), sup(J, D̃ Ĩ ) = sup(

⋃
∀i∈I Φ(i)∪J, D̃),

and condition (2), we get sup(
⋃
∀i∈I Φ(i)∪J ′,D̃)

sup(
⋃
∀i∈I Φ(i),D̃)

≤ sup(
⋃
∀i∈I Φ(i)∪J,D̃)

sup(
⋃
∀i∈I Φ(i),D̃)

< c, which contradicts

our assumption. ��
Proof of Theorem 9 Let X1, . . . , Xn be independent Poisson trials and the probability
Pr(Xi ) = pi . Let also X = ∑

∀i∈[1,n] Xi and μ = E[X ]. For any γ > 0, the additive

Chernoff bound Pr(|X − μ| ≥ γ ) ≤ (2 × e−2nγ 2
) holds. By setting |Ds | = n, γ = ε,

X = sup(I,Ds )
|Ds | , and μ = sup(I,D)

|D| , we get Pr(| sup(I,Ds )
|Ds | −

sup(I,D)
|D| | ≥ ε) ≤ (2× e−2|Ds |ε2

).

After setting δ ≥ 2 × e−2|Ds |ε2
and some calculations, we get |Ds | ≥ ln( 2

δ
)

2×ε2 , which proves
the theorem true. ��
Theorem 10 The time complexity of Algorithm 4 is O(2|P| × |S| × N ) and the space com-
plexity is O(2|P| × |S| + N × |I|).
Proof We first examine the time complexity of B-Split, Update, Replace, and Check. B-Split
requires O

(|P|2 + |P|) ≈ O(|P|2) time, where |P| is the size of the largest possible general-
ized item, since it examines all pairs of items mapped to this generalized item and then assigns
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all public items to the created seeds. Update scans D̃ once to replace ĩ with ĩl and ĩr , hence it
is computed in O(|P|×N ) time, where N is the number of transactions in D̃. Replace has the
same time complexity with Update and Check needs O(|Θ| × (N + |P|)) time; O(N ) time
to form I → J and determine if it is protected, O(|P| × (log(|P|)+ |Θ|)) time to construct
Θ ′ using Find-rules in the worst-case in which all rules have at least one item mapped to ĩ in
their antecedent, and O(|Θ ′|×N ) time to compute the support and confidence of these rules.
Since Algorithm 4 performs up to � 2×|P|−1

2 � ≈ |P| recursive calls, one for each edge in the
generalization tree, it needs O

(|P| × (|P|2 + |P| × N + |Θ| × (N + |P|))) time, which
can be approximated as O(2|P| × |S| × N ) in the worst case when |Θ| = (2|P| − 1)× |S|
and assuming that N > |P|. Note that |Θ| = (2|P| − 1)× |S| when it contains all possible
rules and there is no rule whose antecedent is the same with another rule and its consequent
is a superset of that of the second rule (otherwise the former rule is redundant due to its lower
confidence).

We then examine the space complexity of Update, Replace, and Check. Update and
Replace need to store O(N × |I|) items each. The Rule-tree used in Check is created once
and stores O(2|P| × |S|) items, as inserting a rule adds one item as a tree node and |S| items
in the consequent-list. Q needs to store O(|P|2) items when the generalization tree is the
tallest one, hence Algorithm 4 requires O(2|P| × |S| + N × |I|) space. ��

Theorem 11 The time complexity of Algorithm 5 is O(2|P| × |S| × N ) and the space com-
plexity is O(2|P| × |S| + N × |I|).

Proof The time complexity of the sample-based partitioning phase of Algorithm 5 is O(h×
(|P|2 + |P| × N + |Θ| × (|P| + |Ds |))), where h is the height of the generalization tree
G returned by Sample-Based-Partition. This is because the latter function calls Split and
Update, whose cost was examined in Theorem 10, as well as Check, whose cost is O(|Θ| ×
(|P| + |Ds |)). The top-down cut revision phase needs O(h′ × (|P|2 + |P| × N + |P| ×
(log(|P)+Θ)+Θ× (|P|+ N ))), where h′ is the number of executions of the while loop of
step 9 in Algorithm 5. Finally, steps 24–29 need O(h′′ × (|Θ|× (|P|+ N )+|P|+ N )) time,
assuming that all nodes of G are merged to their ancestors that lie h′′ levels above them, since
Check and Merge-siblings take O(|Θ| × (|P| + N )) and O(|P| + N ) time, respectively. It
also holds h′ + h ≤ |P| and h′′ ≤ |P|, as G has up to |P| levels. Thus, Algorithm 5 takes
O(|P|× (|P|2+|P|× N +|Θ|× (|P|+ N ))) time, or approximately O(2|P| × |S|× N ), in
the worst case when |Θ| = O(2|P| ×|S|) and assuming that N > |P|. The space complexity
of Update and Check was examined in Theorem 10 and the cost of storing G is O(|P|2)
items. Thus, Algorithm 5 requires O(2|P| × |S| + N × |I|) space. ��

COUNT() Queries and ARE Computation

Consider an SQL-like COUNT() query
Q : SELECT COUNT(T̃n(or Tn)) FROM D̃ (or D)
WHERE Ĩ J supports T̃n in D̃ (or I J supports Tn in D)
where Ĩ and I are itemsets comprised of public items in D̃ and D, respectively, and J is
an itemset comprised of sensitive items. Since data recipients have only access to D̃, they
need to estimate an answer for Q. This can be performed by computing the probability
P(T̃n, Q) that T̃n , the anonymized version of a transaction Tn in D, satisfies Q. Assume that
a generalized item ˜im in T̃n is interpreted as any possible subset of the items mapped to it
with equal probability, and that there are no correlations among generalized items [27,29,42].
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P(T̃n, Q) is given by �∀ ˜im∈T̃n

2| ˜im |−c(I )

2| ˜im | − 1
where c : I → [0, |im |] is a function that, given I ,

returns the number of items in I that are mapped to ˜im in D̃. An approximate answer e(Q)

to Q is then derived by summing the corresponding probabilities across all transactions T̃n

in D̃ that support J .
We considered two workloads W1 and W2, each comprised of 1,000 queries, whose items

were selected uniformly at random. Queries in W1 involve a 2-itemset in P , whereas those
in W2 require retrieving a 3-itemset comprised of 2 public and 1 sensitive items.
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