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Abstract In this paper, we address the problem of domain adaptation for binary classifi-
cation. This problem arises when the distributions generating the source learning data and
target test data are somewhat different. From a theoretical standpoint, a classifier has better
generalization guarantees when the two domain marginal distributions of the input space
are close. Classical approaches try mainly to build new projection spaces or to reweight the
source data with the objective of moving closer the two distributions. We study an original
direction based on a recent framework introduced by Balcan et al. enabling one to learn
linear classifiers in an explicit projection space based on a similarity function, not neces-
sarily symmetric nor positive semi-definite. We propose a well-founded general method for
learning a low-error classifier on target data, which is effective with the help of an iterative
procedure compatible with Balcan et al.’s framework. A reweighting scheme of the similar-
ity function is then introduced in order to move closer the distributions in a new projection
space. The hyperparameters and the reweighting quality are controlled by a reverse vali-
dation procedure. Our approach is based on a linear programming formulation and shows
good adaptation performances with very sparse models. We first consider the challenging
unsupervised case where no target label is accessible, which can be helpful when no manual
annotation is possible. We also propose a generalization to the semi-supervised case allowing
us to consider some few target labels when available. Finally, we evaluate our method on a
synthetic problem and on a real image annotation task.
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1 Introduction

In applications requiring automatic classification of new data, a usual method is to learn a
classifier by using some machine learning technique. In general, most of the approaches for
learning classifiers are built under the assumption that the learning data are representative of
the test data. In other words, all train and test data are supposed to be drawn from the same
(usually unknown) distribution.

While this assumption can be relevant for some tasks, it is not always true in every appli-
cations. For example, in spam filtering problems, the training data associated with one user
can be very different from e-mails received by another target user [32]. A similar issue
can also happen in some image annotation tasks where training data can be restricted to
particular instances (due to the tricky and costly manual labeling of examples) like images
crawled from particular Web sites. Such training data are not representative of future test data
that can come from images extracted from movies or videos. To overcome this drawback,
some transfer learning methods [5,27,32,37,44] have been proposed to adapt a model from
a source domain to a target domain. In this paper, we address a particular transfer learning
task named domain adaptation (DA) where test data are supposed to be drawn according to a
distribution—the target domain—different from the one used for generating learning data—
the source domain—[29,38]. DA is thus an important issue for the efficient application of
machine learning methods leading to the development of many approaches in the literature.

Under the assumption that the two domains are somehow related, theoretical DA results
state that whether the source and the target marginal distributions over the input space are
relatively close, then a classifier only learned from the labeled source data can perform well
on the target domain [9,10,36]. This suggests a natural approach for a successful DA: Mov-
ing closer the source and the target distributions while keeping a low-error classifier on the
source domain.

In this context, Ben-David et al. [9,10] have theoretically analyzed the importance of data
representation for DA tasks by deriving a generalization bound of the target error for binary
classifiers. Mansour et al. [36] have extended this approach to real-valued classifiers with
more general results and other generalization bounds. In a DA scenario, two settings are
generally considered (see Fig. 1): One where labeled data are only available in the source
learning sample. This setting is often called unsupervised domain adaptation as it works in
an unsupervised way over the target domain.

In the second, a few labeled data are also available in the target sample that corresponds to
the semi-supervised domain adaptation setting. In this context, it is generally assumed that
the number of target labeled data is significantly smaller than that of source labeled instances
and not sufficiently large enough to learn a performing model only from the target labeled
examples.

The unsupervised case is clearly more challenging. Some methods, based on different
hypotheses or discrepancy measures, have been explored for reweighting the learning source
data in order to move them closer to target data [28,30,36,42]. In another context, [14]
have designed a SVM-based procedure that iteratively replaces source labeled instances by
self-labeled target points in the learning sample. Another idea consists in finding a common
relevant feature space where the two distributions are close [5,9,10,13,48], but this often
relies on ad hoc heuristics specific to particular tasks. We can also cite some approaches based
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(a) (b)

Fig. 1 The intuition behind the difference between a classical machine learning setting and a classical domain
adaptation setting. PS is the distribution generating the source data, and PT is the distribution generating the
target data. Note that to simplify the presentation, we use an abuse of notation for distributions generating the
samples: unlabeled data of the test and target samples are not exactly drawn from the same distribution used to
generate the labeled learning data, see Sect. 2 for a more formal description. a Usual supervised learning: the
test data and learning data are generating from the same distribution. b Domain adaptation: the learning data
are decomposed into two samples, the source (labeled) one and the target one. In the unsupervised DA, the
target sample is provided without any label, while in the semisupervised DA, it includes some labels (color
figure online)

on co-training [18] or regression [19] that can enter in this unsupervised setting. In general,
all these previous methods have some natural extensions to the semi-supervised case in order
to exploit target labeled information for improving the classifier induction. In this latter
setting, some specific approaches have been proposed for statistical classifiers by using an
extended linear projection space [20,21]. Some other techniques, using a combination of
source and target labeled instances, have also been studied according to various frameworks
[9,12,21,39].

Many of the previously cited methods are often based on either heuristics, a source
reweighting scheme only, the presence target labels or kernel methods requiring the use
of symmetric and positive semi-definite (PSD) similarity functions.

In this article, we propose a new domain adaptation approach based on the novel theory
introduced in [6,7] for binary classification. This framework allows one to learn in an explicit
projection space defined by a good similarity function that may be not symmetric nor PSD. In
other words, it generalizes kernel functions of SVM-based methods and is thus more flexible
in some sense. The authors show that it is possible to learn a low-error linear classifier in that
space, defined by similarities to some relevant landmark examples. We claim that these land-
marks offer a natural set of features to transfer. Our idea consists in automatically modifying
this projection space for moving closer source and target points. For this purpose, we propose
a general method based on the optimization of a regularized convex objective function where
the regularization term plays a crucial role. Indeed, this term focuses on landmark points
close to both source and target examples. Our optimization problem is in fact formulated in a
1-norm regularized linear program leading naturally to very sparse models. We also propose
an iterative process, based on a reweighting of similarities, to improve the tractability of the
method. The key point of our approach relies on the use of general similarities (i.e., neither
symmetric nor PSD) to find a relevant projection space for domain adaptation allowing us to
move closer source and target distributions. This explains, why we propose to stand in the
framework of Balcan et al’s to design our DA method.

Our contribution is twofold. First, we define a method for the challenging unsupervised
case where no target label is available. It provides then a solution to compensate the lack of
target labeled data when manual labeling is impossible. It can also be useful, for example,
to design a “cold start” strategy in an active learning process to label the very first examples
[3]. In this unsupervised setting, a crucial point is to find a reliable method for assessing the
various hyperparameters of our approach. To solve this problem, we propose to make use
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of approaches based on the notion of reverse validation [14,51]. We exploit this notion to
propose a stopping criterion for our iterative procedure. We also present a theoretical analy-
sis of our models in terms of sparsity and generalization guarantees. We derive a new error
bound based on the notion of algorithmic robustness [45]. Our second contribution takes the
form of a generalization of our first approach to the semi-supervised case in order to take
into account some existing target labels. It is inspired by [9] and based on the optimization
of a linear combination of the source and target empirical errors. We also provide some the-
oretical justifications specific to this semi-supervised case. Our two methods are evaluated
on a synthetic problem and on real image annotation corpora.

The paper is organized as follows. Section 2 introduces the domain adaptation framework
of [9]. Section 3 deals with the theory of learning with good similarity functions [6]. Our
unsupervised approach is presented in Sect. 4 and its iterative enhancement in Sect. 5. Our
semi-supervised method using a few target labels is formulated in Sect. 6. The different
approaches are experimentally evaluated in Sect. 7. Finally, we conclude and discuss some
future work in Sect. 8.

2 Domain adaptation

Let X ⊆R
d be the input space of dimension d and Y ={−1,+1} the label set. A domain is

defined as a probability distribution over X×Y . In a DA framework [9,36], we have a source
domain represented by a distribution PS over X × Y and a target domain represented by a
somewhat different distribution PT , DS , and DT being the respective marginal distributions
over X .

In the unsupervised case, a learning algorithm is provided with a Labeled Source sample
L S={(xi , yi )}dl

i=1 drawn i.i.d. from PS and an unlabeled Target Sample T S={xi ′ }dt
i ′=1 drawn

i.i.d. from DT . We also denote by L S|X ={(xi )/(xi , yi )∈ L S}dl
i=1 the sample constituted of

all the instances of L S without their label. Let h : X→Y be an hypothesis function in the
form of a binary classifier. The expected errors of h over the source domain PS and the target
domain PT are the probabilities that h commits an error on PS and PT , respectively,

errS(h)=E(x,y)∼PS L01
(
h, (x, y)

)
, errT (h)=E(x,y)∼PT L01

(
h, (x, y)

)
,

where L01(h, (x, y))=1 if h(x) �= y and zero otherwise, corresponding to the 0–1 loss func-
tion. We denote by ˆerrS(h) and ˆerrT (h) the respective empirical errors. A hypothesis class
H is a set of hypotheses from X to Y . For a DA task, the objective is then to learn a classifier
h ∈ H with a low generalization error errT (h) over the target domain (see Fig. 1b).

We now review the theoretical framework1 of DA based on [9], where the authors give an
upper bound for errT (h).

Theorem 1 [9] Let H be a hypothesis class, ∀h ∈ H,

errT (h) ≤ errS(h)+ 1

2
dH�H(DS, DT )+ ν,

where dH�H(DS, DT ) = 2 sup
h,h′∈H�H

|PrDS(h(x) �= h′(x))− PrDT(h(x) �= h′(x))| is the

H�H-distance between DS and DT with H�H = {h(x) ⊕ h′(x) : h, h′ ∈ H} the sym-
metric difference hypothesis space of H and ν = errS(h∗)+errT (h∗) is the error of the ideal
joint hypothesis with h∗ = argminh∈H(errS(h)+ errT (h)).

1 Note that surveys can be found in [29,38].

123



Domain adaptation with good similarity functions

(a) (b)

Fig. 2 The intuition behind Theorem 1. The source domain points are in (dark) green (pos.+, neg.−), the
target domain points are in (light) orange. a A large distance between the marginal distributions: the samples
are easily separable, the classifier learned from the source domain performs badly on the target one. b A small
distance between the marginal distributions: the classifier learned from the source domain performs well on
both domains (color figure online)

This bound depends on three terms:

(a) The source domain expected error errS(h) which can be minimized by a learning algo-
rithm based on the ERM principle.

(b) The H�H-distance between the two marginal distributions which is related to H by mea-
suring a maximum variation divergence over the set of points on which an hypothesis
can commit errors.

(c) The last term ν is related to the ideal joint hypothesis h∗ over the domains and can be
seen as a quality measure of H for the considered DA task. If h∗ performs poorly, then
it seems to be hard to find a low-error hypothesis on the target domain.

Theorem 1 suggests that if the H�H-distance is low, that is, if the two marginal distributions
are close, then a low-error classifier over the source domain might be a good model over the
target one. The intuition behind this idea is given on Fig. 2.

An interesting point, described by the following Lemma, is that when the VC dimension
of H is finite (measuring the capacity of H), dH�H(DS, DT ) can be estimated from finite
samples.

Lemma 1 [9] Let H be an hypothesis class with finite VC-dimension v. Let S and T be
unlabeled samples of size m i.i.d. from DS and DT , respectively. Let d̂H�H(S, T ) be the
empirical H�H-distance. Then, for any δ > 0 with probability at least 1− δ,

dH�H(DS, DT ) ≤ d̂H�H(S, T )+ 4

√
2v log(2m)+ log 2

δ

m
.

Lemma 1 means that the empirical distance d̂H�H(S, T ) converges thus to the real one
dH�H(DS, DT ) with the size m of the samples. Consider a labeled sample made of S ∪ T
where each instance of S is labeled as positive and each one of T as negative, we can directly
estimate d̂H�H(S, T ) (∈ [0, 2]) by looking for the best classifier able to separate S from T ,

d̂H�H(S, T ) = 2

(
1− min

h∈H�H
ˆerrS∪T (h)

)
, (1)

with ˆerrS∪T (h)= 1

m

⎡

⎢
⎣
∑

x∈S∪T :
h(x)=−1

1x∈S +
∑

x∈S∪T :
h(x)=1

1x∈T

⎤

⎥
⎦ , where 1x∈A=

{
1 if x ∈ A,

0 otherwise.
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Finding the optimal hyperplane is an NP-hard problem in general. However, an estimation
of d̂H�H(S, T ), and thus of dH�H(DS, DT ), allows us to have an insight into the distri-
bution distance and thus of the difficulty of the DA task for the class H. Note that [36]
have extended the H�H-distance to real-valued functions and have provided Rademacher
generalization bounds.

Following Theorem 1, one solution for a DA algorithm is to look for a data projection
space where both the H�H-distance (b) and the source domain expected error of a classifier
(a) are low (see Fig. 2). According to [11], minimizing these two terms is necessary to ensure
a good adaptation in general.

As a consequence, we need to define a projection space to work on in order to move
closer the two distributions. Rather than working in the original input space, we propose to
consider a projection space defined by similarity scores to particular points where a good
predictor exists. This brings us to the framework of Balcan et al. making use of a notion of
good similarity function and introduced in the next section.

3 Learning with good similarity functions

In this section, we present the framework of similarity-based binary linear classifiers intro-
duced by [6,7]. Recall that a similarity function over X is any pairwise function K : X×X →
[−1, 1]. Many algorithms use similarity functions, like support vector machines where the
similarity needs to be a kernel (i.e., symmetric and positive semi-definite (PSD)) to ensure
learning and convergence in an implicit high-dimensional Hilbert space. However, due to
the PSD requirement, considering kernels can be a strong limitation and defining a relevant
kernel is a tricky task in general (see [1] for a survey on kernel learning).

The recent learning framework proposed by [6] considers a rather intuitive definition of
a good similarity function that overcomes some of these limitations.

Definition 1 [6] A similarity function K is an (ε,γ ,τ )-good similarity function for a learn-
ing problem P if there exists a (random) indicator function R(x) defining a (probabilistic)
set of reasonable points such that the following conditions hold:

(i) A 1− ε probability mass of examples (x, y) satisfy

E(x′,y′)∼P
[
yy′K (x, x′)|R(x′) = 1

] ≥ γ,

(ii) Prx′ [R(x′) = 1] ≥ τ .

This definition means that a large proportion of examples must be on average γ more sim-
ilar to the reasonable points of the same class than to the reasonable points of the opposite
class (condition (i)). Moreover, at least a proportion τ of the examples should be reasonable
(condition (ii)). Definition 1 includes all valid kernels as well as some non-PSD similarity
functions and is thus quite general [6,7]. The reasonable points are usually unknown a priori.
Therefore, in the following, we denote by R = {x′j }du

j=1 a set of potential reasonable points
called landmarks. Given K an (ε,γ,τ )-good similarity function, the conditions of [6] are
sufficient to learn a good linear classifier in a φR-space defined by the mapping function φR ,
which projects a point in the explicit space of the similarities to the landmarks such that,

φR :
{

X → R
du

x �→ 〈K (x, x′1), . . . , K (x, x′du
)〉. (2)

The following theorem justifies the existence of a good linear classifier in the φR-space.
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(a) (b)

Fig. 3 A set of positive (red crosses) and negative (blue circles) points. a The data in the original 2D-space.
b The projection of the data in the φR -space and the linear separator in gray (color figure online)

Theorem 2 [6] Let K be an (ε,γ ,τ )-good similarity function for a learning problem P.
Let R = {x′1, . . . , x′du

} be a (potentially unlabeled) sample of landmarks drawn i.i.d. from P

such that du = 2
τ

(
log(2/δ)+ 8 log(2/δ)

γ 2

)
. Consider the mapping φR defined in Eq. (2). Then,

with probability at least 1− δ over the random sample R, the induced distribution φR(P) in
R

du has a separator of error at most ε + δ to L1-margin at least γ /2.

Thus, given an (ε,γ,τ )-good similarity function for a learning problem and—enough—land-
marks, there exists with high probability a low-error linear separator in the explicit φR-space.

We now provide a little toy example in order to illustrate the notion of (ε,γ,τ )-good
similarity function introduced by Definition 1. We consider a problem with only height
labeled examples in [0, 1]× [0, 1] represented on Fig. 3a: xA =

(
(.05, .35),+1

)
, xB =(

(.10, .35),+1
)
, xC =

(
(.05, .10),+1

)
, xD =

(
(.15, .10),+1

)
, xE =

(
(.10, .10),−1

)
,

xF =
(
(.10, .05),−1

)
, xG =

(
(.15, .05),−1

)
and xH =

(
(.10, .00),−1

)
. We can note here

that because of xE , there exists no linear classifier that can achieve a null classification error
in this original instance space.

We now consider a similarity function K (x, x′) = 1−2‖x − x′‖2 with ‖x − x′‖2 the
classical Euclidean distance. We take the opposite of the distance to obtain a similarity
and the renormalization ensures that K (x, x′) ∈ [−1, 1]. We suppose that three out of the
height examples are reasonable points: xA, xB , and xE ; τ can thus be estimated as 3

8 . We
can then evaluate the goodness of K according to these reasonable points from the for-
mula given in Definition 1. The corresponding values are shown in Table 1. If we take
a margin γ = 0.002, we can remark that the goodness of each example is larger than
γ , which makes the similarity (0, 0.002, 3/8)-good. Now, with γ = 0.02, the similarity is
(0.25, 0.02, 3/8)-good since two examples out of the height do not achieve a goodness larger
than 0.02.

Finally, in the explicit projection space defined by the similarities to the three reasonable
points φR(·) =<K (·, xA), K (·, xB), K (·, xE )>, there exists a linear classifier sign

(
g(·))

that has a null error, where g is of the form g(·) = αA K (·, xA)+ αB K (·, xB)+ αC K (·, xE )

(see Fig. 3b, a possible admissible solution is obtained with αA = αB = 1 and αE = −1).
The criterion given by Definition 1 requires to minimize the number of margin violations,

which is a NP-hard problem generally difficult to approximate. To overcome this problem,
the authors have then proposed to consider an adaptation of Definition 1 with the hinge loss
formalized as follows.
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Table 1 Example of the
goodness of a similarity function

The table provides for each
example the similarity scores to
every reasonable points and its
associated goodness

K (·, xA) K (·, xB ) K (·, xE ) Goodness
(
(x, y)

) =
E[yy′K (x, x′)|R(x′) = 1]

xA 1 0.90 0.68 0.410

xB 0.90 1 0.70 0.400

xC 0.50 0.49 0.90 0.030

xD 0.46 0.49 0.90 0.017

xE 0.49 0.50 1 0.003

xF 0.39 0.40 0.90 0.037

xG 0.37 0.39 0.86 0.033

xH 0.29 0.30 0.8 0.070

Definition 2 [6] A similarity function K is an (ε,γ ,τ )-good similarity function in hinge
loss for a learning problem P if there exists a (random) indicator function R(x) defining a
(probabilistic) set of reasonable points such that the following conditions hold:

(i) E(x,y)∼P

[
[1 − yg(x)/γ ]+

]
≤ ε, where g(x) = E(x′,y′)∼P [y′K (x, x′)|R(x′)] and

[1− z]+ = max(0, 1− z) is the hinge loss,
(ii) Prx′ [R(x′)] ≥ τ .

Using the same φR-space than Theorem 2, the authors have proved a similar theorem for this
definition with the hinge loss.

Theorem 3 [6] Let K be an (ε,γ ,τ )-good similarity function in hinge loss for a learn-
ing problem P. For any ε1 > 0 and 0 < δ <

γε1
4 , let R = {x′1, . . . , x′du

} be a sample of

du = 2
τ

(
log(2/δ)+ 16 log(2/δ)

(γ ε1)2

)
landmarks drawn i.i.d. from P. Consider the mapping φR

defined in Eq. 2. Then, with probability at least 1− δ over the random sample R, the induced
distribution φR(P) in R

du has a separator achieving hinge loss of error at most of ε + ε1 at
margin γ .

Finally, given L S a set of dl labeled points and du landmark examples, one can efficiently
find a separator α ∈ R

du by solving a linear program where the objective is to minimize the
number of margin violations with the hinge loss. We give here an equivalent formulation of
the L1-constrained problem presented by [6], called SFopt , which is based on the hinge loss.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min
α

1

dl

dl∑

i=1

L
(
g, (xi , yi )

)+ λ‖α‖1,

with L
(
g, (xi , yi )

) =
[
1−yi g(xi )

]

+ and g(xi ) =
du∑

j=1

α j K (xi , x′j ),
(SFopt )

where g(.) is the learned model. The L1-regularization over α produces an automatic selec-
tion of the reasonable points from the landmarks because of the sparsity property of the
L1-norm. This leads to a natural two steps algorithm for learning the classifier: (1) Select a
random set of potential landmarks and then (2) learn a binary classifier h(x)= sign[g(x)],
in the space induced by the selected landmarks, that is, those with α j �= 0. In practise, the
landmarks are chosen from the learning sample.
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once a φR-space (of dimension d ′) has been defined after this learning step, then the class
HφR of linear classifiers learnable in this space has a finite VC-dimension (d ′ + 1). Thus,
according to Lemma 1, we can assess the distribution divergence in the φR-space by the
empirical estimate d̂H

φR�H
φR (DS, DT ).

In the following, a linear classifier learned in this framework by solving (SFopt ) is called
a SF-classifier. For sake of simplicity, we will denote HφR by H.

Finally, by considering the minimization of the DA bound of Theorem 1, we remark that
(SFopt ) can be seen both as an empirical minimization of the error on the source domain
PS = P and as a method for building a relevant φR-space. Our idea for DA is then to
constrain the φR-space to minimize the H�H-distance.

4 Unsupervised domain adaptation with similarity functions

We now present our unsupervised DA method, which consists in learning a classifier from
(ε,γ,τ )-good similarity functions. Recall that following Theorem 1, the expected target
domain error is bounded by three terms: (a) the source domain error, (b) the divergence
between the marginal distributions, and (c) the smallest joint error over the domains. Our
idea is to minimize the expected target error by decreasing this bound.

According to [6,7], solving Problem SFopt , only on the source domain, involves to learn
a relevant linear classifier in the explicit φR-space [Eq. (2)] of similarities to a landmark
set. Then, it implies a natural decreasing of (a). For minimizing (b), we want to induce
a new projection space allowing one to move closer the two domain marginal distribu-
tions by selecting landmarks that are both similar to the source and target examples. To
achieve this goal, we propose to learn a classifier thanks to an additional regularization term
on the weights α. Due to the lack of information on the target domain, the last term (c)
is hard to decrease. However, we propose to use a reverse validation approach to try to
control it.

4.1 Optimization problem

By solving Problem (SFopt ) for learning SF-classifiers, we not only minimize the expected
source error but we also define a relevant projection space for the source domain. Indeed,
irrelevant landmarks, that is, those associated with a null weight in the solution α, will not be
considered. According to the notion of H�H-distance [Eq. (1)], we propose a new additional
regularizer that forces the model to provide similar outputs for pairs of source and target
points. This will tend to decrease the H�H-distance between the marginal distributions. To
define our regularizer, we have investigated the framework of algorithmic robustness pro-
posed by [45] (see Definition 3 in Sect. 4.2). Their underlying idea is based on the fact that
“if a testing sample is similar to a training sample then the testing error is close to the training
error”. To ensure generalization guarantees, this framework requires that for a test point close
to a training point of the same label, the deviation between the losses of each point has to be
low. Note that this result assumes the test and training data to be generated from the same
distribution, that is thus not valid in a DA scenario.

Despite this drawback, we propose to follow this principle by defining an heuristic to
move closer source and target samples.

By considering the hinge loss of the Problem (SFopt ), for any learned model g and any
pair (xs, xt ) of source and target examples of class y, we have
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∣
∣
∣L
(
g, (xs, y)

)− L
(
g, (xt , y)

)∣∣
∣

=
∣
∣
∣
∣
[
1− y

du∑

j=1

α j K (xs, x′j )
]

+ −
[
1− y

du∑

j=1

α j K (xt , x′j )
]

+

∣
∣
∣
∣.

The hinge loss is 1-lipschitz (|[X ]+ − [Y ]+| ≤ |X − Y |) then,

∣
∣
∣L
(
g, (xs, y)

)− L
(
g, (xt , y)

)∣∣
∣ ≤

∣∣
∣
∣

du∑

j=1

α j
(
K (xs, x′j )− K (xs, x′j )

)
∣∣
∣
∣

≤
du∑

j=1

∣
∣
∣α j
(
K (xs, x′j )− K (xt , x′j )

)∣∣
∣

≤
∥
∥
∥(tφR(xs)− tφR(xt )) diag(α)

∥
∥
∥

1
, (3)

where tφR(·) is the transposed vector of φR(·) and diag(α) is the diagonal matrix with α as
main diagonal.

Minimizing the term of line (3) amounts to reducing the deviation between source and
target instances xs and xt of the same class. This would lead to select landmarks that move
closer xs and xt and consequently reducing the domain divergence.

At this point, we assume that the pairs (xs, xt ) are known and let CST ⊂ L S|X × T S be
the pair set. We propose to add the new regularization term of line (3) for each pair of CST ,
weighted by a regularization parameter β to tune.

Let R be a set of du candidate landmarks and L S a source sample of dl source labeled
examples. Our global optimization Problem (D ASFopt ) corresponds to Problem (SFopt )
with the addition of our regularizer and can be easily formulated as a linear program.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
α

F(α) = 1

dl

dl∑

i=1

L
(
g, (xi , yi )

)+ λ‖α‖1

+β
∑

(xs ,xt )∈CST

∥∥∥
(tφR(xs)− tφR(xt )

)
diag(α)

∥∥∥
1
,

with L
(
g, (xi , yi )

) =
[
1− yi g(xi )

]

+ and g(xi ) =
du∑

j=1

α j K (xi , x′j ).

(D ASFopt )

This linear problem is a convex program. It can be solved by using dl slack variables for
expressing the hinge loss that leads to a program with O(dl + du) variables with O(dl × du)

constraints.

4.2 Theoretical aspects

In this section, we provide a theoretical sparsity analysis of our optimization Prob-
lem (D ASFopt ) and derive a generalization error bound.

We first need the following hypothesis about the pair set CST . Concretely, since our addi-
tional regularizer is based on CST and contributes to find a relevant projection space, CST

has to contain relevant information. We thus suppose a restriction on the coordinates in the
φR-space of the points of CST ,

∀x′j ∈ R, max
(xs ,xt )∈CST

∣∣K (xs, x′j )− K (xt , x′j )
∣∣ > 0. (4)
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This means that for each coordinate x′j in the φR-space, there is at least one pair of points
that brings some diversity with different coordinate values. This is actually not a too strong
restriction, since if the two domains are far from each other, then the assumption (4) occurs
with high probability.

4.2.1 Sparsity analysis

As said before, in Balcan et al.’s Problem (SFopt ), the 1-norm regularizer ‖α‖1 on the learned
vector α implies a natural sparsity of the induced SF-classifier. Our Problem (D ASFopt )
keeps this feature but analyzing its sparsity requires to also consider the additional regulari-
zation term over α. We provide here an analysis of the sparsity according to all the different
hyperparameters.

Lemma 2 For any hyperparameters λ > 0 and β > 0, and for any set of pairs CST , let
BR = min

x′j∈R

{
max

(xs ,xt )∈CST
|K (xs, x′j ) − K (xt , x′j )|

}
. If α∗ denotes the optimal solution of our

Problem (D ASFopt ), then we have ‖α∗‖1 ≤ 1

β BR + λ
.

Proof Recall F(.) refers to Problem (D ASFopt ). For any solution α,
∑

(xs ,xt )∈CST

‖(tφR(xs)− tφR(xt )) diag(α)‖1

=
∑

(xs ,xt )∈CST

du∑

j=1

∣∣∣α j

(
K (xs, x′j )− K (xt , x′j )

)∣∣∣

=
du∑

j=1

⎡

⎣|α j |
⎛

⎝
∑

(xs ,xt )∈CST

|K (xs, x′j )− K (xt , x′j )|
⎞

⎠

⎤

⎦

≥
du∑

j=1

[
|α j | max

(xs ,xt )∈CST
|K (xs, x′j )− K (xt , x′j )|

]
.

From Hypothesis (4) and the definition of BR , we have

BR = min
x′j∈R

{
max

(xs ,xt )∈CST
|K (xs, x′j )− K (xt , x′j )|

}
> 0.

Thus,
∑

(xs ,xt )∈CST
‖(tφR(xs)− tφR(xt )) diag(α)‖1 ≥ ‖α‖1 BR .

Then, ‖α∗‖1(λ+ β BR)+ 1
dl

∑
i=1 dl

[
1− yi

∑
j=1 duα∗j K (xi , x′j )

]

+ ≤ F(α∗).
Since α∗ is optimal, we have F(α∗) ≤ F(0) = 1, where 0 is the null vector.

Finally, we directly obtain ‖α∗‖1 ≤ 1

β BR + λ
. ��

According to this lemma, the sparsity of the model depends on the hyperparameters
λ, β and on the quantity BR . This last term is in fact related to the distance between the
points in the pair set CST . In the projection space, it is the minimum of the maximum devi-
ation between the coordinates of the pair’s points belonging to CST . Thus, when the two
marginal distributions are far from each other, that is, the DA task is potentially hard, BR

tends to be high that can imply an increase of the sparsity. Indeed, with sparser models,
the projection space defined is smaller (i.e., with less features), which tends to make closer
source and target instances more easily with less constraints to take into account.
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4.2.2 Generalization ability

Algorithmic robustness We recall now the definition of robustness and its associated the-
orem about the generalization ability of robust algorithms (proposed by [45]). Considering
this framework for our method reveals two advantages. On the one hand, it allows us to take
into account the regularizers in the generalization bound. On the other hand, the algorithmic
robustness tolerates to handle non-standard learning setups like DA.

We begin with the definition of a robust algorithm, which stands in a standard setup where
the learning sample and the test sample are drawn from the same distribution P .

Definition 3 [45] Given a Learning Sample L S of dl examples drawn i.i.d from a distribution
P , an algorithm A is (M, ε(LS)) robust on P, for M ∈ N and ε(.) : (X × Y )dl �→ R, if
X×Y can be partitioned into M disjoint sets, denoted as {Ci }Mi=1, such that for every example
s belonging to L S,

s, u ∈ Ci ⇒
∣
∣L(AL S, s)− L(AL S, u)

∣
∣ ≤ ε(L S), (5)

with AL S , the model learned from L S with A and L(·, ·) the loss function of A.

Given a learning sample L S, the robustness of an algorithm, measured by the values of M
and ε(L S), depends thus on the learning sample. Note that this definition has to be verified
for every learning example. The authors have nevertheless relaxed it with the property of
pseudo-robustness, where the condition is only required for a subset of the learning sample
[45].

From Definition 3, the authors have proved the following generalization bound over the
expected error on the distribution P .

Theorem 4 [45] If a learning sample L S = {(xi , yi )}dl
i=1 is drawn i.i.d. from a distribution

P and if an algorithm A is (M, ε(L S)) robust, then for any δ > 0, with probability at least
1− δ,

errP (AL S) ≤ ˆerrP (AL S)+ ε(L S)+ LU P

√
2M ln 2+2 ln 1

δ

dl
,

where errP (AL S) and ˆerrP (AL S) are, respectively, the generalization and the empirical
errors over P of the model AL S learned from L S, L(·, ·) being upper bounded by LU P .

This bound is not proved in a DA scenario but the authors have argued that such a bound
could be defined by adding a term depending on a domain divergence measure.

Generalization bound Following the previous idea, we propose to derive a bound for the
target domain using the H�H-distance, which is appropriate to the context our approach.
First, we prove that our optimization problem (D ASFopt ) is robust on the source domain
and then deduce a generalization bound for the target domain.

Theorem 5 Suppose that (X, ρ) is a compact metric space and K is a good similarity
function continuous in its first argument. If the source Learning Sample L S is drawn i.i.d.
from the source domain PS, then given the hyperparameters β > 0, λ > 0, the landmark

set R and a fixed pair set CST with BR > 0, our Problem (D ASFopt ) is
(

2Mη,
Nη

βBR+λ

)

robust on the source domain PS, where η > 0, Mη being the η-covering number2 of X and
Nη = max

xa ,xb∼DS
ρ(xa ,xb)≤η

‖tφR(xa)− tφR(xb)‖∞.

2 Meaning that X can be partitioned into Mη subsets, Mη finite, cf [45] for more details.
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Proof Let (X, ρ) a compact metric space. Let η > 0, since X is compact, by the definition of
the covering number, we can partition X in Mη subsets (Mη finite), such that for x1, x2 belong-
ing to the same subset, we have ρ(x1, x2) ≤ η. With Y divided in 2 subsets

{{−1}, {+1}} and
following the proof principle of [45], we can partition X × Y in 2Mη subsets such that the
points belonging to the same subset are of the same class. Given a good similarity function
K continuous in its first argument, a source learning set L S = {(xi , yi )}dl

i=1 drawn i.i.d. from

PS , a landmark set R = {x′j }du
j=1, the hyperparameters λ > 0, β > 0 and a fixed pair set

CST , let α∗ be the optimal solution of Problem (D ASFopt ). For any s1 = (x1, y1) ∈ L S, any
s2 = (x2, y2) such that s1 and s2 belong to the same subset, thus y1 = y2 and ρ(x1, x2) ≤ η.
Then,

∣
∣L (g, (x1, y))− L (g, (x2, y))

∣
∣

=
∣
∣
∣
∣
[
1− y1

du∑

j=1

α∗j K (x1, x′j )
]

+ −
[
1− y1

du∑

j=1

α∗j K (x2, x′j )
]

+

∣
∣
∣
∣.

By the 1-lipschitz property of the hinge loss, the successive application of Holder inequality3

and Lemma 2, we obtain,
∣∣L (g, (x1, y))− L (g, (x2, y))

∣∣ ≤ ‖α∗‖1‖tφR(x1)− tφR(x2)‖∞
≤ ‖α∗‖1 max

xa ,xb∼DS
ρ(xa ,xb)≤η

{
‖tφR(xa)− tφR(xb)‖∞

}

≤ Nη

β BR + λ
,

with Nη = max
xa ,xb∼DS
ρ(xa ,xb)≤η

{
‖tφR(xa)− tφR(xb)‖∞

}
, which is finite by the continuity of K in its

first argument and the definition of covering number. Then, the algorithm associated with

Problem (D ASFopt ) is
(

2Mη,
Nη

β BR+λ

)
robust on PS . ��

In our case, the hinge loss
[
1− y

∑du
j=1α j K (., x′j )

]

+ is upper bounded by a constant LU P

and to lighten the notations we suppose LU P = 1 (which is not true in general but can be eas-
ily obtained by a normalization step). Then, we directly derive the following generalization
bound over the expected source error from Theorem 4.

Theorem 6 With the same notations of Theorem 5, for every h in the hypothesis class H of
SF-classifiers and for any δ > 0, with probability at least 1− δ,

errS(h) ≤ ˆerrS(h)+ Nη

β BR + λ
+
√

4Mη ln 2+ 2 ln 1
δ

dl
.

Proof From Theorem 5, Problem (D ASFopt ) is
(

2Mη,
Nη

β BR+λ

)
robust on the source domain

PS , the result is then obtained from Theorem 4. ��
From this result, we can now derive a generalization bound for our unsupervised domain

adaptation approach based on good similarity functions.

3 Holder inequality: ‖uv‖1 ≤ ‖u‖p‖v‖q , with 1 ≤ p, q ≤ ∞ and 1/p + 1/q = 1.
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Theorem 7 If L S={(xi , yi )}dl
i=1 is drawn i.i.d. from the source domain PS, for every h in

the hypothesis class H of SF-classifiers, for any δ>0, with probability at least 1−δ,

errT (h) ≤ ˆerrS(h)+ Nη

β BR + λ
+
√

4Mη ln 2+ 2 ln 1
δ

dl
+ 1

2
dH�H(DS, DT )+ ν,

where ν is the joint error over the domains, dH�H(DS, DT ) is the H�H-distance between
the marginal distributions.

Proof It comes directly from the application of Theorems 1 and 6. ��
In this bound, dH�H measures the domain divergence and ν the adaptation capability of the
hypothesis class. The constant Nη

β BR+λ
clearly depends on the regularizers and on the value

Nη that can be as small as wished, by choosing a small η and by the continuity of the simi-
larity function K (., .) in its first argument, implying then an increase of Mη. The term with
Mη converges in O(1/

√
dl) and ˆerrS is the empirical error over the source sample. We can

remark that with small values for β and λ, or BR (indicating far domains), the process will
need more examples to be reliable. In our method, the terms dH�H and ˆerrS are actually
decreased by solving our Problem (D ASFopt ). In the next part, we present how to select the
regularization parameters to keep these two terms low and we also introduce an heuristic
aiming at decreasing an estimate of ν.

4.3 Reverse classifier and validation

A crucial point is the choice of the different hyperparameters λ, β, CST of our method.
In a transfer learning context, [51] have proposed a Transfer Cross-Validation method for
selecting the best parameters. This principle uses a reverse validation approach based on a
so-called reverse classifier evaluated on the source domain. We propose to follow a similar
reverse validation procedure.

Given k-folds on the source labeled sample and a learning algorithm, k − 1 labeled folds
are used as labeled examples for learning a classifier h′. Then, using the same algorithm, a
reverse classifier h′r is learned from a sample constituted by the union of the target sample
{(x, h′(x))}x∈T S self-labeled by h′ and a given target labeled set. Finally, the reverse classifier
h′r is evaluated on the last kth fold of the source labeled sample. Note that in its original
definition, this method relies on a projection space defined by a kernel and uses some few
target labels.

Since, we may consider non-PSD, non-symmetric similarity functions, and no label on the
target domain, we then make a little adaptation: We perform the reverse validation directly
in the projection space φR and we learn the reverse classifier only with the self-labeled target
sample (see Fig. 4). The justification of this choice comes from the fact that if the domains
are sufficiently close and related, then such a reverse classifier must be also efficient for
the source task [14]. In other words, in the projection space, it is possible to pass from one
problem to another. Recall that we do not have any information on the target labels. We then
define our reverse classifier hr as the best SF-classifier learned with SFopt —in the current
φR-space—from the target sample {(x, h(x))}x∈T S , self-labeled by the classifier h learned
with our Problem (D ASFopt ).

In summary, given k-folds on the source labeled sample (L S = ∪k
i=1L Si ), a classifier

h is learned from k − 1 labeled folds and the unlabeled target sample by solving Prob-
lem (D ASFopt ) and we evaluate the associated reverse classifier hr on the last kth fold. Its
empirical source error corresponds to the mean of the error over the k-folds,
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Fig. 4 The reverse validation process in the φR -space. Step 1: Learn the classifier h with the
Problem (D ASFopt ). Step 2: Auto-label the target sample with h. Step 3: Learn the reverse classifier hr

on the auto-labeled target sample with the Problem (SFopt ). Step 4: Evaluate hr on the source sample (with
a k-folds process) (color figure online)

ˆerrS(hr ) = 1

k

k∑

i=1

ˆerrL Si (h
r ).

In Sect. 2, Theorem 1 suggests that one solution for DA is to minimize the three terms
of the DA bound,4 which are also present in our generalization bound in Theorem 7. Our
Problem (D ASFopt ) aims at minimizing the first two terms but does not consider at the
moment the last term ν corresponding to the ideal joint classifier error and defined by ν =
errS(h∗)+ errT (h∗) with h∗= argminh∈H(errS(h)+ errT (h)). This hypothesis, unknown in
general, measures the adaptation ability of the classifier. We propose then to use an estimation
of ν for selecting the relevant hyperparameters. However, due to the absence of target labels,
we are not able to compute or estimate this ideal hypothesis. Since h∗ is clearly related to
the capability to pass from one domain to another, we estimate it by the reverse classifier
hr . For this purpose, at each cross-validation step, we divide the self-labeled target sample
{(x, h(x))}x∈T S into two parts: one is used to learn hr and then hr is evaluated on the second
to give an estimate of the target error, the evaluation of hr on the current source fold giving
an estimation of the source error. Then, ˆerrS(hr ) (resp. ˆerrT (hr )) corresponds to the mean
over the k-folds of the estimation of the source error (resp. the target error) of hr . We then
consider the empirical estimation of ν defined by,

ν̂ = ˆerrS(hr )+ ˆerrT (hr ), (6)

where ˆerrT (hr ) is evaluated over the self-labeled target sample. Motivated by the minimiza-
tion of the DA bound, we finally select the parameters leading to the minimal ν̂.

5 An iterative reweighting: a way to lighten the search of the projection space

The constitution of the set CST is difficult a priori since we have no information on the target
labels. Moreover, the set of relevant pairs allowing a good adaptation is generally dependent
on the task at hand and testing all the possible pair sets is clearly intractable.5 In order to

4 The DA bound: ∀h ∈ H, errT (h) ≤ errS(h)+ 1
2 dH�H(DS , DT )+ ν.

5 This intractability has been confirmed empirically: in such a case, none of the experiments have led to a
result in a reasonable amount of time.

123



E. Morvant et al.

tackle this problem, we present an iterative approach based both on a selection of a limited
number of pairs and on a reweighting scheme of the similarities keeping the distributions
close. We finally present a stopping criterion using the empirical estimation of the ideal joint
error.

5.1 Selecting the pairs of CST

We propose to construct pairs from two subsets of the two samples provided to the algorithm
US ⊆ L S|X and UT ⊆ T S of equal size. We select them, at a given iteration l, according to
the reverse model gr

l−1 associated with the reverse classifier hr
l−1 computed in the previous

iteration. They correspond to the examples on which this model is highly or weakly confident
on the labels. Let δH

S , δH
T , δL

S , δL
T be a set of positive parameters, US and UT are defined as

follows such that |US |=|UT |≤N ,

{
US =

{
x ∈ L S|X: |gr

l (x)| > δH
S OR |gr

l (x)| < δL
S

}
,

UT =
{
x ∈ T S : |gr

l (x)| > δH
T OR |gr

l (x)| < δL
T

}
.

In practice, we use these two sets for building the matching CST ⊂ US×UT from US

and UT . We look for a bipartite matching minimizing the Euclidean distance in the new
projection φR

l -space associated with an iteration l in the iterative process (described in the
next Sect. 5.2). This can be done by solving the following problem. Note that in the particular
case of bipartite matching, it can be achieved in polynomial time by linear programming for
example.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
χst

1≤s≤|US |
1≤t≤|UT |

∑

(xs ,xt )∈US×UT

χst‖φR
l (xs)− φR

l (xt )‖22

s.t.: ∀(xs, xt ) ∈ US ×UT , χst ∈ [0, 1],
∀xs ∈ US,

∑

xt∈UT

χst = 1,

∀xt ∈ UT ,
∑

xs∈US

χst ≤ 1.

(7)

Then, CST corresponds to the pairs of US ×UT such that χst = 1.
In our experiments, we limit the size of the subsets US and UT to small6 N to build

efficiently this bipartite matching, since it has to be done many times according to the differ-
ent iterations and cross-validation. This is not a too restrictive heuristic since the notion of
pseudo-robustness of [45] does not require to consider all the points. In this case, the values
δH

S , δH
T , δL

S , δL
T correspond to the ones allowing us to select the first N elements of each type.

5.2 A new projection space by iterative reweighting

The landmarks selected7 by solving Problem (D ASFopt ) define a projection space where
the two distributions tend to be close. We propose to reuse their weights α j to force the new
projection space to move closer the distributions. Indeed, we reweight the similarity func-
tion according to α. Suppose at a given iteration l, with a similarity function Kl , we obtain

6 In our experiments, we take arbitrarily N ≤ 30.
7 i.e. those with a non-null weight α j .
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(a) (b) (c)

Fig. 5 An iteration of DASF. The source points are in (dark) green (pos.+, neg.−), the unlabeled target ones
are (light) orange circles. a The points in a φR

l -space, |R| = 2. b The associated bipartite matching CST : a

line corresponds to a pair (xs , xt ). c The points in the new φR
l+1-space after the reweighting procedure (color

figure online)

new weights αl . Then, we propose to define Kl+1 by reweighting8 Kl conditionally to each
landmark of R such that

∀x′j ∈ R, Kl+1(x, x′j ) = αl
j Kl(x, x′j ).

It can be seen as a kind of contraction of the space to keep the empirical H�H-distance
between the marginal distributions low. Indeed, in this new φR

l+1-space defined by Kl+1, the
points of each pair of CST are naturally close since, by construction, our regularizer used at
iteration l corresponds exactly to minimize their L1-distance in the φR

l+1-space. Indeed, we
have

∀(xs, xt ) ∈ CST , ‖tφR
l+1(xs)− tφR

l+1(xt )‖1 = ‖t (φR
l (xs)− tφR

l (xt )) diag(αl)‖1.
An illustration of this procedure is provided on Fig. 5. We then iterate the process at iteration
l + 1 in the new φR

l+1-space.

The possible reweightings are related to the different hyperparameters δ
H/L
S/T (linked to

CST ) and λ, β of Problem (D ASFopt ) that are selected according to reverse validation. Recall
that, since we are not interested in using valid kernels, we do not have to keep any notion of
symmetry or positive semi-definiteness for Kl+1.

However, our normalization remains valid only if the new similarity function is still good
on the source domain. We can empirically estimate this goodness by evaluating ε, γ and
τ of Definition 1 on L S. In practice, the empirical τ̂ corresponds to the number of land-
marks selected by the algorithm. Therefore, we evaluate the best empirical (ε̂,γ̂ ,τ̂ )-guarantee
by

γ̂ =
{

γmax if argmaxγmax>0

{
∀(xi , yi ) ∈ L S,

yi
du

∑du
j=1 K (xi , x′j ) ≥ γmax

}
exists,

0 otherwise.

ε̂ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if γ̂ > 0,
∣∣∣∣
{
(xi , yi ) ∈ L S : yi

du

du∑

j=1

K (xi , x′j ) < 0
}∣∣∣∣

|L S| otherwise.

8 Eventually normalized to ensure Kl+1 ∈ [−1, 1].
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In fact, we pay attention to keep only those that offer the best (ε̂,γ̂ , τ̂ )-guarantee ensuring a
sufficiently good similarity. Concretely, the higher γ̂ and the lower ε̂, the better the guarantee.
Note that a bad similarity would lead to a dramatic increase of the expected source error and
thus would not be selected by the reverse validation process.

5.3 Stopping criterion

We consider here the estimated joint error ν̂ (6) related to the adaptation capability in the
current space. Controlling the decreasing of this term during the iterative process can provide
a nice way to stop the algorithm. Following Sect . 4.3, at a given iteration l, this term is defined
by ν̂l = ˆerrS(hr

l )+ ˆerrT (hr
l ), where hr

l is the reverse classifier associated with hl learned at
iteration l. An increasing of ν̂l between two iterations means that the new projection space
is no longer relevant and the current one must be preferred.

Then, our process stops at iteration l when the next ν̂l+1 has reached a convergence point
or has increased significantly. This criterion allows us to ensure the algorithm stops since
the joint error is positive and bounded by 0. The global iterative algorithm (named DASF) is
described in Algorithm 1.

Algorithm 1 DASF: Domain adaptation with similarity function
input similarity function K , landmark set R, source sample L S, and target sample T S
output classifier h D ASF

h0(·)← sign
[

1
|R|
∑|R|

j=1 K (·, x′j )
]

K1 ← K
l ← 1
while The stopping criterion is not verified do

Select US ⊆ L S|X , UT ⊆ T S with hr
l−1CST ← Solve Problem (7)

αl ← Solve Problem (D ASFopt ) with Kl and CST

Kl+1 ← Update Kl according to αl

Update R
l ++

end while

return h D ASF (·) = sign

[
∑

x ′j∈R αl
j Kl (·, x′j )

]

5.4 Complexity

In practice, hyperparameters are selected according to a grid search, which has to be done at
each iteration. It is thus very heavy and it is a clear disadvantage of our method. The global
complexity at each iteration corresponds to solving three different linear programs: Prob-
lem (D ASFopt ), the building of the pair set CST (Problem (7)) and computing the reverse
classifier (with Problem (SFopt )) for each parameter set. Solving a linear program is in gen-
eral costly ∼ O(n3.5L) [25] (or ∼ O(n3L) with approximated solutions [49]) for a system
with n variables that can be encoded in L bits. However, the optimization problems we con-
sider are a bit sparse in the sense that all the constraints do not involve all the variables at the
same time that makes the problem faster to solve. Moreover, it is important to notice that the
iteration process combined with the reverse validation allows us to lighten the search of the
parameters.
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6 Considering a few target labels: semi-supervised DASF

So far, we have not considered any target label data. However, for some real applications, it
is reasonable to assume that a few target labels are available, notably in multimedia indexing
tasks. This complimentary information can be very useful for constraining the search of the
classifier as we will see in the experimental section.

We propose to extend our approach to take into account the target labels by follow-
ing the principle proposed in [9]. It considers a linear combination of source and target
labeled learning data. In this case, the learning Labeled Sample L S = (L SPS , L SPT ) is

composed of a sample L SPS = {(xi S , yi S )}d
S
l

i S=1
of d S

l labeled source examples i.i.d. from

PS and a sample L SPT = {(xi T , yi T )}dT
l

i T=1
of dT

l labeled target instances i.i.d. from PT .

Let θ ∈ [0, 1] such that dT
l = θdl and d S

l = (1 − θ)dl ensuring L S has dl = dT
l + d S

l
labeled instances. Recall that we aim at minimizing the target expected error errT with
dT

l small regarding to d S
l , that is, with few target labels. In this context, as mentioned

in [9], minimizing directly the target empirical error ˆerrT from L SPT does not seem
to be the best solution since this sample is not sufficiently representative of the target
distribution.

Thus, following [9], we minimize a convex combination of the source and target empirical
errors,

ˆerrκ (h) = κ ˆerrT (h)+ (1− κ) ˆerrS(h), (8)

for some κ ∈ [0, 1], errκ (h)= κ errT (h) + (1 − κ) errS(h) being the associated weighted
expected error.

This leads us to an adaption of our previous optimization Problem (D ASFopt ),
with some target labels. Given L S = (L SPS , L SPT ) a sample of dl instances, CST ⊂
L SPS |X × T S a pair set and κ ∈ [0, 1], we propose the following minimization Prob-
lem (SSD ASFopt ). The global iterative algorithm (named SSDASF) is described in
Algorithm 2.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
α

(1− κ)
1

d S
l

d S
l∑

i S=1

L
(
g, (xi S , yi S )

)+ κ
1

dT
l

dT
l∑

i T=1

L
(
g, (xi T , yi T )

)+ λ‖α‖1

+ (1− κ) β
∑

(xs ,xt )∈CST

∥∥∥
(tφR(xs)− tφR(xt )

)
diag(α)

∥∥∥
1
,

with L
(
g, (xi , yi )

) =
[
1−yi g(xi )

]

+ and g(xi ) =
du∑

j=1

α j K (xi , x′j ).

(SSD ASFopt )

Whereas our previous Problem (D ASFopt ) focuses only on the minimization of the
source empirical error, this optimization problem minimizes the convex combination of
the source and target empirical errors (Eq. (8)). We can in fact make some connections
showing that (SSD ASFopt ) can be seen as a generalization of some previous problems.
Firstly, when κ = 0, no target labeled data are used and we move back to our stan-
dard DASF algorithm with Problem (D ASFopt ). Secondly, when κ = 1, we stand in
a usual supervised framework where the learning and test samples are drawn according
to the target domain PT . Then, Theorem 4 of [45] about robustness can be proved on
PT .
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Algorithm 2 SSDASF: Semi-supervised domain adaptation with similarity function
input Similarity function K , landmark set R, labeled sample L S=(L SPS , L SPT ), target sample T S
output classifier hSSD ASF

h0(·)← sign
[

1
|R|
∑|R|

j=1 K (·, x′j )
]

K1 ← K
l ← 1
while The stopping criterion is not verified do

Select US ⊆ L SPS |X , UT ⊆ T S with hr
l−1CST ← Solve (7)

αl ← Solve (SSD ASFopt ) with Kl and CST

Kl+1 ← Update Kl according to αl

Update R
l ++

end while

return hSSD ASF (·) = sign

[
∑

x ′j∈R αl
j Kl (·, x′j )

]

We can also derive for our new Problem (SSD ASFopt ) a generalization bound. First, we
adapt the preceding result on sparsity analysis.

Lemma 3 For any hyperparameters λ > 0 and β > 0, κ ∈ [0, 1] and for any pair set CST ,
let BR = min

x′j∈R

{
max

(xs ,xt )∈CST
|K (xs, x′j ) − K (xt , x′j )|

}
. If α∗ denotes the optimal solution of

our Problem (SSD ASFopt ), then we have ‖α∗‖1 ≤ 1

(1− κ)β BR + λ
.

Proof We use the same proof process as in Lemma 2. ��
This result suggests that when some additional target labels are used, that is, (1 − κ) < 1,
the induced model is less sparse than the approach with no target label. From this result, we
can now provide our generalization bound combining source and target labels.

Theorem 8 Let θ ∈ [0, 1], κ ∈ [0, 1], and L S be a labeled learning sample of size dl

constituted of θdl instances i.i.d. from target distribution PT and (1 − θ)dl examples i.i.d.
from source distribution PS. Let η′, η > 0, with M = max(Mη, Mη′) a covering number
for X, β > 0, λ > 0 and BR > 0. For all h ∈ H minimizing the empirical error by
Problem (SSD ASFopt ), if h∗ = argminh′∈H{errT (h′)/ ˆerrκ (h) ≤ ˆerrκ (h′)}, then with
probability at least 1− δ,

errT (h) ≤ errT (h∗)+
√

κ2

θ
+ (1−κ)2

1−θ

√
ln 4

δ

2dl
+ κ(N T

η′ − N S
η )+ N S

η

(1−κ)β BR + λ

+
√

4M ln 2+ 2 ln 4
δ

dl

(
κ√
θ
+ 1−κ√

1−θ

)
+ 2(1−κ)

(
1

2
dH�H(DS, DT )+ν

)
,

(9)

where BR = min
x′j∈R

{
max

(xs ,xt )∈CST
|K (xs, x′j )− K (xt , x′j )|

}
, and

N S
η = max

xa ,xb∼DS
ρ(xa ,xb)≤η

‖tφR(xa)− tφR(xb)‖∞, N T
η′ = max

xa ,xb∼DT
ρ(xa ,xb)≤η′

‖tφR(xa)− tφR(xb)‖∞.

Proof Deferred to “Appendix”. ��
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Note that, when κ = 0, i.e. when we ignore target data, the bound is similar to that of
Theorem 7. On the other hand, when κ = 1, i.e. we do not use source information, the bound
becomes a classical standard learning bound with robustness in a supervised setting with
only target data.

In order to illustrate some properties of that bound, we provide an analysis of its behavior,
following the same principle as in [9]. In its present form, the bound is a bit difficult to
analyze and in order to simplify our study, we make some little assumptions. First, we
assume κ ∈ [0, a], where a is a positive number tending to 1 such that a < 1. This allows us
to bound the following term

κ(N T
η′ − N S

η )+ N S
η

(1− κ)β BR + λ
<

κ(N T
η′ − N S

η )+ N S
η

(1− a)β BR + λ
.

Then, we define

A = 1

2
dH�H(DS, DT )+ ν,

B = (1− a)β BR + λ,

C =
√

4M ln 2+ 2 ln 4
δ

dl

(
1√
θ
− 1√

1− θ

)
+ (N T

η′ − N S
η )

B
− 2A,

and D as the remaining constant terms. The bound (9) can then be rewritten as,

f (κ) =
√

κ2

θ
+ (1− κ)2

1− θ

√
ln 4

δ

2dl
+ Cκ + D.

With dT
l = θdl and d S

l = (1− θ)dl , the general form of the highest root r of the derivative is

r = θ

⎛

⎜⎜
⎝1+ 1− θ

√
2 ln 4

δ

dl C2 − θ(1− θ)

⎞

⎟⎟
⎠ =

dT
l

d S
l + dT

l

⎛

⎜⎜
⎝1+ d S

l√
2 ln 4

δ
(d S

l +dT
l )

C2 − d S
l dT

l

⎞

⎟⎟
⎠ .

To simplify the analysis, we assume N T
η′ = N S

η −B

√
4M ln 2+2 ln 4

δ

dl

(
1√
θ
− 1√

1−θ

)
> 0 which

can be obtained by choosing appropriate η, η′ with dl sufficiently large and/or by considering

an upper bound of the function f (κ) verifying this equality, we must then have dT
l <

ln 4
δ

(1−θ)2A2

for r to be valid. Thus the optimal value is defined as follows,

κ =

⎧
⎪⎪⎨

⎪⎪⎩

a if dT
l ≥

ln 4
δ

(1− θ)2A2 ,

min{a, r} if dT
l <

ln 4
δ

(1− θ)2A2 .

An interesting remark is that when A = 0, the bound suggests κ = θ , i.e. when the two
domains are indistinguishable κ has to follow the repartition defined by the training sample.
If we have no target label (i.e. dT

l = 0) the bound suggests κ = 0. If we have only target labels
(d S

l = 0) or if dT
l is large, κ must be chosen as 1, which is consistent with our framework.

When the domains are very different, i.e. A is maximum, the bound says that κ tends to be
1, i.e. it is better to rely only on target labeled points. With other values of N T

η′/N S
η , this
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tendency is also confirmed with our value BR . Indeed, when it is high, i.e. domains are far
in the current representation, it seems better to put more weights on labeled target points.
We can also see from B that when our hyperparameters are small, i.e. when we give a small
importance to the decreasing of the distance or when we allow complex models, we should
rather focus on target points with κ high, while a smaller value of κ can be better in the
opposite case. As a conclusion, this analysis is close to the one provided in [9] but has the
advantage to take into account our regularizers for explaining the behavior of the approach.

7 Experiments

In this section, we evaluate our approach DASF and its semi-supervised extension SSDASF
on a synthetic toy problem and on a real image annotation task. We first present in Sect. 7.1
the similarity function used. More precisely, we propose an heuristic procedure to modify a
priori the projection space for obtaining a relevant similarity, which is non-symmetric and
non-PSD, for domain adaptation. Then in Sect. 7.2, we introduce the general setup for all
our experiments. The results for the synthetic datasets are given in Sect. 7.3 and those for the
image classification problems are presented in Sect. 7.4.

7.1 Similarity function

We propose here to introduce an intuitive preprocess to design a similarity function poten-
tially non-PSD, non-symmetric. According to the theoretical result of DA of [9] (Theorem 1),
the learned classifier should perform well on the target domain and also on the source one.
Thus, we aim at facilitating the adaptation to the target domain in order to link the source
and target domains by considering information from both of them. Concretely, we build our
new similarity function KST by renormalizing a given similarity function K relatively to
the unlabeled sample ST = L S|X ∪T S. Our choice is clearly heuristic and our aim is just
to evaluate the interest of renormalizing a similarity for DA problems. Recall that, from
Definition 1, a similarity must be good relatively to a set of reasonable points R. We actually
propose to renormalize the similarities to these points: We perform a specific normalization
for each instance x′j ∈ R. The idea is to apply a scaling to mean zero and standard deviation
one for the similarities of the instances of ST to each x′j . Given a similarity function K ,
which verifies the Definition 1, our normalized similarity function KST is defined by

∀x′j ∈ R, KST (., x′j )=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K (., x′j )− μx′j
σx′j

if −1 ≤
K (., x′j )− μ̂x′j

σ̂x′j
≤ 1,

−1 if
K (., x′j )− μ̂x′j

σ̂x′j
≤ −1,

1 if 1 ≤
K (., x′j )− μ̂x′j

σ̂x′j
,

(SSD ASFopt )

where μ̂x′j is the empirical mean of similarities to x′j over ST ,

∀x′j ∈ R, μ̂x′j =
1

|ST |
∑

x∈ST

K (x, x′j ),
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and σ̂x′j is the empirical unbiased estimate of the standard deviation associated with μ̂x′j ,

∀x′j ∈ R, σ̂x′j =
√

1

|ST | − 1

∑

x∈ST

(
K (x, x′j )− μ̂x′j

)2
.

By construction, the similarity KST is then non-symmetric and non-PSD.
For all experiments, we take as similarity function K a Gaussian kernel,

K (x, x′) = exp

(

−‖x − x′‖22
D2

)

. (SSD ASFopt )

However, depending on the samples, the non-symmetric, non-PSD similarity KST does not
always offer better (ε,γ,τ )-good guarantees than the Gaussian kernel. In the following, we
only indicate the similarity which leads to the best results. Those obtained with KST are
pointed out with a∗, as we will see they correspond generally to harder tasks.

7.2 General experimental setup

We compare our algorithm DASF with a classical SVM learned only from the source domain,
the semi-supervised Transductive SVM [43] (TSVM) and the DA method DASVM [14]. We
take a classical Gaussian kernel (SSD ASFopt ) for these three methods to facilitate the com-
parison. We use the SVM-light library [31] with parameters tuned by cross-validation on the
source data for SVM and TSVM. DASVM is implemented with the LibSVM library [16].
The parameters of DASVM and DASF are tuned according to a grid search by reverse
validation. We also measure the behavior of a SF-classifier trained only from the source
domain. For DASF and SF, the landmarks are taken from the labeled source sample. Fol-
lowing Equation (1), we assess an estimation of the H�H-distance d̂H�H between the two
marginal distributions by learning a SF-classifier to separate source from target samples:
A small value—near 0—indicates close distributions while a larger value—near 2—indi-
cates a hard DA task. We also observe the influence of the hyperparameters λ (with fixed
β) and β (with fixed λ) on our method DASF. The tested values for these parameters are
0, .01, 0.1, .25, .5, .75, and 1.

Finally, we observe the behavior of the algorithm SSDASF when we combine labeled
target points and labeled source points in the learning sample. In other words, we measure
the ability of our method to learn a low-error classifier when a part of the learning sam-
ple is drawn according to the target domain. For that purpose, each DA task is repeated 9
times by using the semi-supervised extension SSDASF with the addition of 9 random sets of
2, 4, 8, 10, 12, 14, 16, 18, and 20 labeled target examples in the learning sample. For these
cases, we compare results with a SF-classifier learned only from the considered target labeled
sample. Additionally, we regard the impact of the parameter κ of Problem (SSD ASFopt ).
In this case, we fix λ, β and the number of labeled target data at 10. The tested κ are
0, .01, 0.1, .25, .5, .75, .80, .85, .90, .95, .99, and 1. Note that, in this context, we add
target (both labeled and unlabeled) landmarks in R, while for DASF, R contains only the
learning source examples.9 Moreover, in this study, we have not reported the observation of
λ and β of Problem (SSD ASFopt ), since the behavior of SSDASF for these parameters is
the same than for DASF.

Simultaneously, we compute the average time costs of each algorithm with fixed parame-
ters. Actually, the baseline is the one of learning a SF-classifier. Then, we report the duration

9 This point is discussed in the conclusion.
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Fig. 6 Toy problem: on the left: a source sample. on the right: a target sample with a 50◦ rotation

of the other methods as the ratio of this baseline.10 We also consider the execution time of
the first iteration of our approaches (reported as i t1 ).

Recall that considering all the possible pairs is completely intractable and that our iterative
method provides a way to tackle this problem. Within these experiments, we will show that
our iterative procedure leads to a very reasonable and competitive additional cost.

7.3 Synthetic toy problem

Setup As the source domain we consider a classical binary problem with two inter-twinning
moons, each class corresponding to one moon (Fig. 6). We then considerate 8 different target
domains by rotating anticlockwise the source domain according to 8 angles. The higher the
angle, the more difficult the problem becomes. For each domain, we generate 300 instances
(150 of each class). Moreover, to assess the generalization ability of our approach, we eval-
uate each algorithm on an independent test set of 1500 points drawn from the target domain
(not provided to the algorithm). Each DA problem is repeated 10 times and the results will
come next.

Choice of the “best” similarity function Before presenting the results and in order to eval-
uate if KST is a better similarity on the target domain, we propose to empirically study the
(ε,γ )-guarantees on the target sample according to Definition 1. For that purpose, given
R={x′j }du

j=1, we estimate ε as a function of γ from a labeled target sample {xi ′ , yi ′}dt
i ′=1 (with

true labels but only for this evaluation). Indeed, for a given γ, ε is the proportion of exam-
ples xi ′ verifying

∑
x′j∈R yi yi ′K (xi ′ , x′j )/du < γ . For each similarity function, we compute

ε according to 20 values of γ between 0 and 1. We then obtain a curve representing ε as a
function of γ . By considering each DA problem (each rotation angle), we obtain two curves
and the best similarity function is the one with a lower area under the curve, meaning a lower
error in average. Figure 7 shows the goodness guarantees of the similarity functions over
each problem. We observe for hardest problems (≥ 50◦) an improvement of the goodness
with the normalized similarity KST . For easier tasks, this improvement is not significant,
justifying the fact that the similarity K can be better. Our normalized similarity thus seems
relevant only for hard DA problems.
Note that the ε rate is relatively high because we consider only landmarks from the source
sample to study our adaptation capability.

Results The average accuracy of each method is reported in Table 2. We also indicate the
average number of support vectors (SV) used by SVM, TSVM, and DASVM, the number of

10 For example, a cost of 0.5 means that the algorithms need a running time half as long and a cost of 2 means
a duration of twice as long.

123



Domain adaptation with good similarity functions

Ta
bl

e
2

To
y

pr
ob

le
m

:a
ve

ra
ge

ac
cu

ra
cy

ov
er

th
e

8
to

y
pr

ob
le

m
s

R
ot

at
io

n
an

gl
e

20
◦

30
◦

40
◦

50
◦

60
◦∗

70
◦∗

80
◦∗

90
◦∗

SV
M

89
.6

8
±

0.
78

75
.9

9
±

0.
92

68
.8

4
±

0.
85

60
.0

0
±

1.
08

47
.1

8
±

2.
82

26
.1

2
±

3.
12

19
.2

2
±

0.
28

17
.2
±

0.
37

SV
18
±

0.
99

SF
92

.4
±

3.
13

81
.8

1
±

4.
62

72
.5

5
±

7.
60

57
.8

5
±

4.
81

43
.9

3
±

4.
46

39
.2
±

9.
64

35
.9

3
±

10
.9

3
36

.7
3
±

10
.1

7

L
an

d.
24
±

1.
72

22
±

3.
57

20
±

2.
06

20
±

2.
82

20
±

1.
51

T
SV

M
10

0
±

0.
00

78
.9

8
±

2.
31

74
.6

6
±

2.
17

70
.9

1
±

0.
88

64
.7

2
±

9.
10

21
.2

8
±

1.
26

18
.9

2
±

1.
10

17
.4

9
±

1.
12

SV
28
±

1.
92

37
±

3.
77

37
±

2.
66

37
±

1.
50

38
±

2.
67

35
±

2.
93

37
±

2.
10

36
±

1.
69

D
A

SV
M

10
0
±

0
78

.4
1
±

4.
56

71
.6

3
±

4.
16

66
.5

9
±

4.
01

61
.5

7
±

4.
15

25
.3

4
±

3.
28

21
.0

7
±

2.
33

18
.0

6
±

2.
66

SV
20
±

3.
13

20
±

4.
42

26
±

6.
80

28
±

2.
81

29
±

3.
62

34
±

7.
58

38
±

6.
20

23
±

4.
95

D
A

SF
99

.8
0
±

0.
40

99
.5

5
±

1.
19

91
.0

3
±

3.
30

81
.2

7
±

4.
36

65
.2

3
±

6.
36

61
.9

5
±

4.
88

60
.9

1
±

2.
24

59
.7

5
±

2.
11

L
an

d.
10
±

2.
32

10
±

1.
59

9
±

2.
21

8
±

3.
27

4
±

0.
99

4
±

2.
16

4
±

1.
84

3
±

1.
06

d̂ H
�
H

in
φ

R 0
0.

58
±

0.
04

1.
16
±

0.
04

1.
31
±

0.
04

1.
34
±

0.
04

1.
34
±

0.
03

1.
32
±

0.
03

1.
33
±

0.
03

1.
31
±

0.
05

d̂ H
�
H

in
φ

R fi
na

l
0.

33
±

0.
12

0.
66
±

0.
11

0.
82
±

0.
13

0.
85
±

0.
11

0.
39
±

0.
15

0.
40
±

0.
05

0.
49
±

0.
12

0.
45
±

0.
09

123



E. Morvant et al.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7 Toy problem: Goodness of the similarities over the target samples: ε (Epsilon), as a function of γ

(Gamma). a For a 20◦ task. b For a 30◦ task. c For a 40◦ task. d For a 50◦ task. e For a 60◦ task. f For a 70◦
task. g For a 80◦ task. h For a 90◦ task.

landmarks (Land.) selected by SF and DASF and an estimation of d̂H�H(DS, DT ) between
the marginal distributions in the initial φR

0 -space and the final φR
f inal -space. We can make

the following remarks.

– In average, DASF outperforms the other methods. It is significantly better for every
problem with an angle greater than 20◦. While the accuracy of TSVM and DASVM falls
down from 60◦, DASF still remains competitive even when the difficulty increases. As
we have shown on Fig. 7, we have the confirmation that the normalized similarity (∗) is
preferred in these cases.

– The number of landmarks (Land.) is significantly lower than the number of support
vectors SV, which confirms that DASF produces very sparse models with good perfor-
mances. The gain ratio is between 3 to 12. The DASF-classifiers are also sparser than the
SF-ones which use a L1-regularization too. Finally, they tend to be sparser for difficult
problems as suggested by Lemma 2.

– The empirical H�H-distance between the domains is lower at the last iteration—between
1 and 9—showing our iterative process is effectively able to quickly move closer the dis-
tributions. As evoked before, DASF tends to build a small projection space for hard tasks,
probably to have sufficiently close domains, but it may imply a loss of expressiveness.

Figure 8 shows two DASF runs on two DA problems. For both cases, the empirical H�H-
distance decreases significantly in comparison with the first iteration. The algorithm stops
when the joint error reaches a minimum after decreasing continuously. Note that the final
projection space is not always the one with the lowest distance. This is because we need to
find a good compromise between the minimization of the H�H-distance and the one of the
source error. Thanks to the iterative procedure, DASF is then able to slightly auto-correct
the projection space when it allows a better adaptation. For the 30◦ example, DASF finds
a null error classifier on the target test sample. For the more difficult 50◦ example, DASF
performs better than the SF-classifier learned only on the source data. Note that the source
error increases, which is expected since we aim at being performing on the target domain.

DASF: Influence of the hyperparameters λ and β We aim at observing how the correct
classification rate evolves according to different values of the hyperparameters of our global
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Fig. 8 Toy problem: two DASF runs. On the left for a 30◦ rotation, on the right for a 50◦ rotation. On the
left y axis is the error rate, on the right y axis is the divergence measure. We provide the error rates of the
classifiers hl built at each iteration on the source and target test samples, the divergence d̂H�H, the reverse
classifier joint error, the error on the target test sample of a SF-classifier learning without DA as a baseline

(a) (b)

Fig. 9 Toy problem: the correct classification rate according to λ and β in Problem (D ASFopt ) of DASF.
a The average rate according to λ with β = 0.75. b The average rate according to β with λ = 0.15

Problem (D ASFopt ) for DASF. Experiments reported on Fig. 9a, respectively, Fig. 9b, corre-
spond to the average correct classification rate for each rotation angle according to λ ∈ [0; 1]
(with the bestβ), respectively, β ∈ [0; 1] (with the best λ). Moreover, in Table 3, we indi-
cate the average number of reasonable points (i.e., the sparsity) associated with the learned
models. We can make the following remarks:

– Concerning λ, on Fig. 9a we note that for the 4 easiest tasks, this parameter does not
influence a lot the results: The gain is between 0 and 0.1. However, for the 4 hardest
tasks, chosen a relevant λ shows better results: The gain is between 0.1 and 0.2. For
all problems, the best value seems to stand between 0.1 and 0.25. From Table 3(a), we
note that the sparsity of the models does not really depend on the value of λ, indeed this
sparsity is also influenced by β and it is the combination of the both that leads to sparser
models.

– On Fig. 9b, we remark that the models are more sensitive to β than λ. In fact, when β

tends to the best value, the increasing of the correct classification rate is more significant
than for λ: The gain is between 0.05 and 0.35. Like in the observation of λ, the hardest
tasks are more sensitive to β. The relevant value of β seems to stand between 0.5 and 1.
Moreover, as expected by Lemma 2, the sparsity increases with the value of β associated
with the best model (see Table 3(b)) and with the difficulty of the task.
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Table 3 Toy problem: the average landmark number (i.e., the sparsity) according to λ and β from DASF

Rotation angle 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦

(a) The sparsity according λ with β = 0.75
λ = 0 16 12 13 8 12 6 7 8

λ = 0.01 15 10 9 6 5 5 8 11

λ = 0.1 10 9 8 6 3 3 2 6

λ = 0.25 15 11 12 5 4 5 6 3

λ = 0.5 18 17 14 10 6 6 9 4

λ = 0.75 13 15 13 10 8 9 8 8

λ = 1 15 21 16 9 12 12 8 7

(b) The sparsity according to β with λ = 0.15

β = 0 24 24 24 24 22 20 20 20

β = 0.01 22 18 20 20 4 6 6 11

β = 0.1 16 17 17 19 3 4 5 9

β = 0.25 13 11 13 12 3 3 5 7

β = 0.5 11 10 8 11 3 3 3 7

β = 0.75 12 16 11 11 3 4 3 6

β = 1 14 11 8 6 3 5 4 5

Bold values are associated with the best model

SSDASF: Influence of combining source and target labeled learning sample We consider
here SSDASF, the semi-supervised extension of DASF combining source and target labeled
samples by solving (SSD ASFopt ) with the setup of Algorithm 2.

Firstly, on Fig. 10a, we observe the average correct classification rates by adding target
labeled samples of different sizes. The results show that the classifier’s performance increases
with the number of labeled target examples, which is an expected behavior. The more difficult
the problem, the more significant the increase. However, for the hardest tasks (≥ 70◦), we are
not able to find an efficient classifier in comparison with a SF-classifier only learned from the
labeled target sample (without DA). It is coherent with the analysis of the semi-supervised
generalization bound since for the hardest tasks, the models need more target labels when
the domains are far, and sometimes it is more reliable to focus only on target data.

Secondly, on Fig. 10b, we observe the behavior of SSDASF (using 10 target labels)
according to the hyperparameter κ , which weights the importance of the labeled target data
in Problem (SSD ASFopt ). We fix λ = 0.15 and β = 0.75. As expected, this method needs
a high κ value between 0.9 and 0.99: The gain is between 0.1 and 0.5, and again the impact
is higher for the hardest problems. From Table 4, κ directly influences the sparsity of the
models for the easiest tasks. However, for the hardest ones, that is, when BR tends to be high,
κ has a lower impact. Finally, as expected from Lemma 3, the use of target labeled data leads
to less sparse models.

Computational costs We report now in Table 5 the average execution time of each algorithm
with fixed parameters. We take the SF-classifier learning as the baseline, which with SVM
is the fastest. Firstly, we can observe that the first iteration of DASF (DASFi t1 ) needs the
same time as the usual SF algorithm. The additional cost due to the iterations of DASF is
reasonable since for at most 10 iterations, it is between 4 and 8 times longer than DASFi t1 .
Secondly, our method DASF is faster than DASVM. It takes between almost one-third as
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(a) (b)

Fig. 10 Toy problem: the average correct classification rates obtained by combining source and target labeled
samples in Problem (SSD ASFopt ), that is, with SSDASF. a The average rates for each rotation angle accord-
ing to the quantity of labeled target examples in the learning sample. The result obtained without source data
(i.e., considering only target labels) is indicated with the dashed black line with big dashes. b The average
rates according to κ with 10 target labeled examples, λ = 0.15 and β = 0.75

Table 4 Toy problem: the average number of landmarks selected (i.e., the sparsity) according to κ , with
λ = 0.15 and β = 0.75 from SSDASF

Rotation angle 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦

κ = 0 24 22 16 18 11 8 17 8

κ = 0.01 18 19 11 17 15 7 15 6

κ = 0.1 22 18 13 10 11 9 4 11

κ = 0.25 21 19 14 17 10 17 6 11

κ = 0.5 19 18 19 11 12 8 13 10

κ = 0.75 19 17 16 20 9 14 8 14

κ = 0.8 22 20 10 16 12 14 9 16

κ = 0.85 24 18 24 18 7 14 13 11

κ = 0.9 24 21 18 23 14 12 9 10

κ = 0.95 21 23 20 14 11 12 16 14

κ = 0.99 7 7 7 7 12 9 11 7

long. Nevertheless, TSVM is quicker than DASF, probably due to the cost of computing the
pairs for DASF. Finally, we observe for the three adaptive methods—TSVM, DASVM, and
DASF—that the lowest costs are obtained for 40◦ to 70◦ rotations. We have not reported the
costs for SSDASF, since the execution times of SSDASF and DASF for these easy tasks are
almost the same.

7.4 Image classification

Setup In this section, we experiment our approach on PascalVOC 2007 [23] and TrecVid
2007 [41] corpora. The goal is to identify visual objects and scenes in images and videos.
TrecVid corpus is constituted of images extracted from videos and can be seen as an image
corpus. Visual features used for those experiments are based on the prediction scores of 15
“intermediate” visual concepts (Animal, Building, Car, Cartoon, Explosion- Fire, Flag- US,

Greenery, Maps, Road, Sea, Skin_face, Sky, Snow, Sports, Studio_setting), which have been
successfully used in previous TrecVid evaluations. Each of those intermediate concepts is
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Table 5 Toy problem: the average computational costs of each method measured as a ratio of the baseline SF

Rotation angle 20◦ 30◦ 40◦ 50◦ 60◦∗ 70◦∗ 80◦∗ 90◦∗ Average

SVM 1 1 1 1 1 1 1 1 1.0

SF 1 1 1 1 1 1 1 1 1.0

TSVM 3 3 1 1 1 1 2 3 1.8

DASVM 29 14 13 8 8 19 26 28 18.1

DASFi t1 1 1 1 1 1 1 1 1 1.0

DASF 8 7 6 6 4 6 7 6 6.2

Fig. 11 Image classification: idea behind the visual features

detected using SVM-classifiers from color moments and edge orientations on 260 blocs of
32×32 pixels (data dimension is 3900) according to [4] (Fig. 11 is an illustration).

We performed two experiments. Section 7.4.1 deals with the first one where the objective
is to evaluate the DA capability of our algorithm on close domains. The Sect. 7.4.2 presents
the second experiment, which stands in an usual DA setup with potentially very different
domains.

7.4.1 Adaptation capability when the label ratio is different between source
and target sample

Setup The PascalVOC benchmark is constituted of 5,000 training images, 5,000 test images,
and a list of 20 concepts to identify. Train and test sets are in fact relatively close (d̂H�H �
0.05) and a DA step is not necessary. We rather propose to evaluate the DA capability of our
algorithm when the ratio+/− is different between the source and target samples, leading to a
harder DA task. Our objective is not to provide a solution in such a situation (specific methods
already exist like [40]), but rather to evaluate if our method can avoid negative transfer and
improve the accuracy over the test set. Since the two domains are close, we only evaluate
our unsupervised approach DASF (adding labeled target examples will actually correspond
to adding more labeled source instances).

In general, the ratio between positive and negative examples (ratio+/−) is less than 10 %
in this dataset. For each concept, we generated a source sample constituted of all the training
positive examples and negative examples independently drawn such that the ratio +/− is
1
3 / 2

3 . We keep the original test set as the target sample. We applied the five methods previ-
ously described for learning a binary classifier for each concept. Due to the relative small
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Table 6 Image classification: the F-measure results for each concept (Conc.) on the PascalVOC test target
domains according to the F-measure

Conc. Bird Boat Bottle∗ Bus Car Cat Chair Cycle Cow Diningtable

SVM 0.18 0.29 0.01 0.16 0.28 0.23 0.24 0.10 0.15 0.15

SV 867 351 587 476 1096 882 1195 392 681 534

SF 0.18 0.27 0.11 0.12 0.34 0.20 0.21 0.10 0.11 0.10

Land. 237 203 233 212 185 178 241 139 239 253

TSVM 0.14 0.14 0.11 0.16 0.37 0.14 0.22 0.13 0.12 0.13

SV 814 704 718 445 631 779 864 390 888 515

DASVM 0.16 0.22 0.11 0.14 0.37 0.20 0.23 0.14 0.11 0.15

SV 922 223 295 421 866 1011 1418 706 335 536

DASF 0.20 0.32 0.12 0.17 0.38 0.23 0.26 0.16 0.16 0.16

Land. 50 184 78 94 51 378 229 192 203 372

Conc. Dog∗ Horse Monitor Motorbike Person∗ Plane Plant Sheep Sofa Train Avg.

SVM 0.24 0.31 0.16 0.17 0.56 0.34 0.12 0.16 0.16 0.36 0.22

SV 436 761 698 670 951 428 428 261 631 510 642

SF 0.18 0.24 0.12 0.17 0.46 0.34 0.13 0.12 0.13 0.20 0.19

Land. 200 247 203 243 226 178 236 128 224 202 210

TSVM 0.22 0.17 0.12 0.12 0.44 0.18 0.10 0.12 0.15 0.19 0.17

SV 704 828 861 861 1111 585 406 474 866 652 705

DASVM 0.22 0.23 0.12 0.14 0.55 0.30 0.12 0.13 0.17 0.28 0.20

SV 180 802 668 841 303 356 1434 246 486 407 622

DASF 0.25 0.32 0.16 0.18 0.58 0.35 0.15 0.20 0.18 0.42 0.25

Land. 391 384 287 239 6 181 293 153 167 75 200

Avg. is the average result

ratio +/− in the target sample, we evaluate the performances according to the well-known
F-measure defined by 2.Precision.Recall

Precision+Recall .

Results The results are reported in Table 6. First, TSVM and DASVM perform badly,
probably because of the difference between target and source ratios +/−, which cannot be
estimated due to the lack of information on the target sample. SVM performs often better
than the two previous ones that can be explained by the similarity between the train and test
data. DASF has the best behavior on average. It always improves the results of a SF-classi-
fier, avoiding negative transfer, and is the best for 18 concepts. Moreover, it always outputs
significantly sparser models. As an illustration, we give in Fig. 12 the landmarks selected for
the concept person.

Computational costs The average execution time of each algorithm (with fixed parameters)
is reported in Table 7. We recall that the SF-classifier learning is the baseline. For this real
corpus, DASVM is significantly more costly. Unlike the toy problem, SVM is on average
longer than the baseline and DASF quicker than TSVM. This is probably a direct conse-
quence of the use of the L1-norm regularization. Indeed, the size of the set of landmarks is
lower than the quantity of possible support vectors. Again, an interesting point is that the
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Fig. 12 Image classification: the 6 landmarks selected for the concept person, the first three images are
positive and the last three are negative (PascalVOC)

Table 7 Image classification: the average computational costs of each method measured as a ratio of the
baseline SF

Conc. Bird Boat Bottle∗ Bus Car Cat Chair Cycle Cow Diningtable

SVM 5.5 0.8 2.1 2 1.3 9 3.4 8.8 0.3 1.9

SF 1 1 1 1 1 1 1 1 1 1

TSVM 18.2 4.1 8 6 3.3 11.4 8.7 28.6 2.8 5.7

DASVM 4,254 1,440 3,870 4,860 1,470 3,428 2,674 2,828 900 1,300

DASFi t1 1 1 1 1 1 1 1 1 1 1

DASF 4.9 6 6 9 7.3 5 3.8 6.8 2.7 2.1

Conc. Dog∗ Horse Monitor Motorbike Person∗ Plane Plant Sheep Sofa Train Avg.

SVM 1.4 3.7 4.2 5 2.1 2.9 0.5 1.4 2 1.4 2.2

SF 1 1 1 1 1 1 1 1 1 1 1

TSVM 1.9 7.4 12.2 5.9 4.5 10 0.7 4.4 15.9 10.1 8.49

DASVM 340 3,553 4,230 3,060 675 1,710 3,900 1,836 1,912 1,550 2,489

DASFi t1 1 1 1 1 1 1 1 1 1 1 1

DASF 6.1 5.8 8.8 5.5 5.6 5 3.7 3.6 5.7 5.5 5.4

cost of the first iteration of our method (DASFi t1 ) is the same as the cost of a SF learning.
Moreover, the additional cost due to the iterations of DASF is again very reasonable: it is of
a factor 5.4 on average and significantly lower than DASVM and TSVM.

7.4.2 Adaptation from PascalVOC 2007 to TrecVid 2007

Setup In the last experiment, we select the 6 common concepts between TrecVid 2007 and
PascalVOC 2007. For each concept, we keep our previous PascalVOC train set as the source
domain and take, as the target domain, a TrecVid set of examples with the same ratio+/− as
the train set. d̂H�H is about 1.4, justifying the high difference between the two corpora and
thus a potentially hard DA task.

Results The results evaluated with the F-measure are reported in Table 8. DASF obtains the
best results on average and outputs again significantly sparser models. Finally, for those hard
tasks, the normalized similarity is always preferred (∗), showing that DASF is effectively able
to deal with non-symmetric non-PSD good similarities. KST has the interest of incorporating
some target information, which seems useful for hard DA tasks.

DASF: Influence of the hyperparameters λ and β In these experiments, we observe on
Fig. 13 the impacts on the F-measure of λ (with the best β) and β (with the best λ). We make
the following remarks:
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Table 8 Image classification: the F-measure results obtained for each concept on the TrecVid target domains
according to the F-measure

Concept Boat∗ Bus∗ Car∗ Monitor∗ Person∗ Plane∗ Average

SVM 0.56 0.25 0.43 0.19 0.52 0.32 0.38

SV 351 476 1,096 698 951 428 667

SF 0.49 0.46 0.50 0.34 0.45 0.54 0.46

Land. 214 224 176 246 226 178 211

TSVM 0.56 0.48 0.52 0.37 0.46 0.61 0.50

SV 498 535 631 741 1024 259 615

DASVM 0.52 0.46 0.55 0.30 0.54 0.52 0.48

SV 202 222 627 523 274 450 383

DASF 0.57 0.49 0.55 0.42 0.57 0.66 0.54

Land. 120 130 254 151 19 7 113

Avg is the average result

(a) (b)

Fig. 13 Image classification: the results for each concept according to λ and β in Problem (D ASFopt ), with
DASF. a The F-measure according to λ with β fixed. b The F-measure according to β with λ = 0.15

– From Fig. 13a, the parameter λ shows a relative influence except for the concept Car

where the value leading to the best classifier is near 0.25 (for which the gain is at least
0.15). For the others, the gain is lower than 0.1. The best λ depends on the considered
problem but must be greater than 0, indicating that the corresponding regularization is
necessary.

– From Fig. 13b, β clearly shows a higher impact: For Boat, Car and Plane the gain is
between 0.1 and 0.15. Except for Person where the gain is quasi null, the choice of a rel-
evant β can imply an improvement of at least 0.05 and even more. The value associated
with the best classifier is greater than 0 and belongs to [0.01; 0.25] except for the concept
Plane which prefers a β greater than 0.5.

Like for the toy problems, the parameter β has a higher impact. Thus, for lightening a bit the
search of relevant parameters, one can focus more precisely on β than on λ.

SSDASF: Influence of combining source and target labeled learning sample On Fig. 14a,
we can observe the average results for each concept by running SSDASF on a combination
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(a)

(b)

Fig. 14 Image classification: the F-measure obtained for each concept by combining source and target labeled
samples in Problem (SSD ASFopt ), that is, with SSDASF. a The F-measure according to the quantity of labeled
target examples in the learning sample. “Without Source Data” corresponds to the result obtain with a SF-
classifier learned only from the target labeled sample. b The F-measure according to κ with 10 labeled target
examples, λ = 0.15 and β fixed

of source and target labeled learning samples. These results improve those obtained without
target labels. We can remark that with less than 8 target labeled examples, our extended
approach SSDASF always improves the results in comparison with a SF-classifier learned
only from the target labeled data. Some concepts may even need more than 20 target examples
that shows that the addition of a few target labels can be very useful.

In Fig. (14b) are reported results for the different values of κ (with 10 target labels and
the best λ and β). Then, we clearly see that a relevant value for κ stands between 0.9 and
0.99 showing that the target labels give an important—additional—information during the
learning process for these hard DA tasks.

Finally, it appears that, for some concepts, the used visual features may be not very expres-
sive, which can explain the difficulty to obtain better results. In fact, in many image processing
or multimedia issues, data are often represented with multimodal or multiview features in
order to have a higher level of expressiveness. Taking into account such multimodal features
would lead to further investigation, out of the scope of this paper. But this might be clearly
a promising perspective.
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Table 9 Image classification: the average computational costs of each method measured as a ratio of the
baseline SF

Concept Boat∗ Bus∗ Car∗ Monitor∗ Person∗ Plane∗ Average

SVM 0.8 2 1.3 4.2 2.1 2.9 2.2

SF 1 1 1 1 1 1 1

TSVM 5 7 3.6 13.2 5.5 11 7.5

DASVM 3,870 720 2,370 2,790 300 540 1,765

DASFi t1 1 1 1 1 1 1 1

DASF 9.5 10 8 23 3.4 10.5 10.7

SSDASFi t1 4.4 2 0.4 1 0.6 1.5 1.6

SSDASF 29.8 14.4 6.6 29 3.4 13 16

Computational costs Table 9 corresponds to the average computational costs (with fixed
parameters) reported as a ratio of the baseline (SF). The only difference with the previous
image classification task (c.f. Sect. 7.4.1) is that TSVM is here quicker than DASF. This may
be due to the difficulty of the task. In fact, in Sect. 7.4.1, the distance between the marginal
distributions is low, whereas in this experiment the distance is large. This imply a harder
construction of the set of pairs: When the points are far from each other, the minimization of
the objective function of Problem (7) needs more time.

Lastly, SSDASF (and its first iteration) is about 1.5 more longer than the unsupervised
DASF. The Problem (SSD ASFopt ) is actually constructed by adding constraints to Problem
(D ASFopt ). Then, it explains why it may need more time for being solved. For both DASF
and SSDASF, the overhead cost due to the iterations is again relatively reasonable with a
factor 10 on average, showing that the iterative approach is still competitive in terms of
computational cost.

8 Conclusion and perspectives

In this paper, we have proposed a novel domain adaptation approach that makes use of the
framework of Balcan et al. [6,7] allowing one to deal with similarity functions potentially
non-PSD and non-symmetric. Our method relies on a regularization term that helps to build
a projection space—made of similarities to landmark points—by selecting the landmarks
that are both close to the source and target examples. We have also proposed an effective
iterative procedure in order to lighten the search of the projection space by a reweighting
of the similarities. The linear formulation of the method enables the proposed algorithm to
output sparse models, even when the DA task is hard. We have also studied the general-
ization ability of our method according to the framework of robustness, which allows us to
take into account our regularizers. Moreover, we have extended our method for allowing the
use of some few target labels. We have shown experimentally good adaptation capabilities
on various tasks. Furthermore, our method always outputs sparser models, which is clearly
an advantage for a large-scale application perspective. Additionally, our results show that a
similarity renormalized according to a DA objective in a non-PSD and non-symmetric way
enables us to infer better models for difficult domain adaptation problems.

Finally, we present and discuss several perspectives.

Designing non-PSD similarity function by metric learning From our experimental evalua-
tion (Sect. 7.1), it appears that the use of non-PSD, non-symmetric functions can be useful
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for solving domain adaptation tasks. So far, we have only proposed a simple heuristic for
designing such similarities. It is nevertheless an important issue to be able to automati-
cally design relevant good similarities. We think that a possible direction is to investigate
some metric learning approaches for domain adaptation. At the moment, few methods exist
[15,26,33,50] and they mainly focus on PSD similarities. A possible way could be to combine
such approaches with non-PSD similarity learning like the work of [8].

Building a projection space of landmark points According to the theory of [6,7], a low-error
linear classifier can be learned in the explicit φR-space induced by the mapping function φR ,
defined by the landmarks (see Eq. (2)). In fact, according to Theorem 2, the process needs
enough different and representative landmarks for learning a good classifier. On the other
hand, using a lot of landmarks implies a high-dimensional projection space and thus to deal
with a more complex optimization problem. One possible perspective is to use a preprocess-
ing step for selecting a limited set of relevant landmark points (such as clustering [34] for
example) in order to deal with a lower dimensional space. An important issue in this context
is to select the ratio of source and target instances to use in the projection space. Indeed,
in our experiments, we have noticed that in the unsupervised setting, the addition of target
instances in the space of landmarks does not improve the results while the addition of target
landmarks appears necessary in the semi-supervised approach. Moreover, this step is clearly
related with the metric learning perspective evoked above since the projection space also
depends on the similarity and a good similarity could compensate the lack of dimension.

Relationships with other DA frameworks The two previous perspectives are of high impor-
tance for precisely modeling the domain adaptation problem. For example, if the source and
target domains are not very different, we have to slightly modify a relevant projection space
for the source domain. This can be done by looking for some few new relevant landmark
points. Some outlier detection can eventually help to find the part of the density that requires
more attention. However, if the two domains are very different, we then must modify drasti-
cally the projection space. Another interesting and important perspective is also to investigate
the link with reweighting methods for domain adaptation like [30,36,42] and in particular
their relationships with our iterative procedure for reweighting similarities. Another point
concerns our generalization bound: The divergence measure dH�H used is not directly linked
with the framework of robustness. In their extended work, [46] mention in their perspectives
that the sum of the absolute values of the deviations between the expectations of source and
target examples in each part of the instance space cover can be used to bound the domain
adaptation error. It may lead to better convergence bound but deserves more investigation in
our case.

Combining multiple source data To deal efficiently with images or video corpora, it is
necessary to use multimodal or multiview representations allowing one to combine multiple
features taking into account various information (such as colors, textures, spatiotemporal
descriptors, …). A perspective is then to consider an adaptation of some multisource frame-
works presented in [7,9,17,22,35]. Another standpoint could be to study some multi-tasks
approaches [2,24,47].
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Appendix

Proof of Theorem 8

In order to prove this theorem, we first need two technical lemmas from [9] able to link
errT (h), errκ (h) and ˆerrκ (h).

Lemma 4 [9] Let h be an hypothesis in a class H, then

| errκ (h)− errT (h)| ≤ (1− κ)

(
1

2
dH�H(DS, DT )+ ν

)
.

Lemma 5 [9] Let h be a fixed hypothesis, if a random sample of size dl is generated by
drawing i.i.d. θdl points from PT and (1 − θ)dl points from PS, then for any δ > 0, with
probability at least 1− δ (over the choice of the samples),

| ˆerrκ (h)− errκ (h)| <
√

κ2

θ
+ (1− κ)2

1− θ

√
log 2

δ

2dl
.

Then, in order to take into account our regularizers, we use again the framework of
robustness. For readability reasons, we recall the generalization bound of [45] for robust
algorithms introduced previously in Sect. 4.2.2.

Theorem 4 ([45]) If a learning sample L S = {(xi , yi )}dl
i=1 is drawn i.i.d. from a distribution

P and if an algorithm A is (M, ε(L S)) robust, then for any δ > 0, with probability at least
1− δ,

errP (AL S) ≤ ˆerrP (AL S)+ ε(L S)+ LU P

√
2M ln 2+ 2 ln 1

δ

dl
,

where errP (AL S) and ˆerrP (AL S) are respectively the generalization and the empirical errors
over P of the model AL S learned from L S, L(·, ·) being upper bounded by LU P .

By combining source and target labels, this theorem cannot be used directly on errκ
since the learning sample L S = (L SS, L ST ) contains examples coming from two different
distributions. However, by definition of errκ and ˆerrκ , the corresponding error on the source
domain and on the target one are evaluated independently on each domain. A solution is
then to apply the robustness theorem on each domain error and then to consider the convex
combination of the two bounds with respect to κ .

Assuming a normalization such that LU P = 1 in our case, we can now prove Theorem 8.

Theorem 8 Let θ ∈ [0, 1], κ ∈ [0, 1], and L S be a labeled learning sample of size dl

constituted of θdl instances i.i.d. from target distribution PT and (1 − θ)dl examples i.i.d.
from source distribution PS. Let η′, η > 0 with M = max(Mη, Mη′) a covering number
for X, β > 0, λ > 0 and BR > 0. For all h ∈ H minimizing the empirical error by
Problem (SSD ASFopt ), if h∗ = argminh′∈H{errT (h′)/ ˆerrκ (h) ≤ ˆerrκ (h′)}, then with
probability at least 1− δ,

errT (h) ≤ errT (h∗)+
√

κ2

θ
+ (1−κ)2

1−θ

√
ln 4

δ

2dl
+ κ(N T

η′ − N S
η )+ N S

η

(1−κ)β BR + λ

+
√

4M ln 2+ 2 ln 4
δ

dl

(
κ√
θ
+ 1−κ√

1−θ

)
+ 2(1−κ)

(
1

2
dH�H(DS, DT )+ν

)
,
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where BR = min
x′j∈R

{
max

(xs ,xt )∈CST
|K (xs, x′j )− K (xt , x′j )|

}
and

N S
η = max

xa ,xb∼DS
ρ(xa ,xb)≤η

‖tφR(xa)− tφR(xb)‖∞, N T
η′ = max

xa ,xb∼DT
ρ(xa ,xb)≤η′

‖tφR(xa)− tφR(xb)‖∞.

Proof First, using the principle of Theorem 5, by applying Theorem 4 on the target domain
and on the source domain, with Lemma 3 and eventually two different covers of X , we have
respectively:

with probability 1− δ

4
and N T

η′ = max xa ,xb∼DT
ρ(xa ,xb)≤η′

‖tφR(xa)− tφR(xb)‖∞,

κ ˆerr T (h) ≤ κ

⎛

⎝errT (h)+ N T
η′

(1− κ)β BR + λ
+
√

4Mη′ ln 2+ 2 ln 4
δ

θdl

⎞

⎠ ,

with probability 1− δ

4
and N S

η = max xa ,xb∼DS
ρ(xa ,xb)≤η

‖tφR(xa)− tφR(xb)‖∞,

(1− κ) ˆerr S(h) ≤ (1− κ)

⎛

⎝errS(h)+ N S
η

(1− κ)β BR + λ
+
√

4Mη ln 2+ 2 ln 4
δ

(1− θ)dl

⎞

⎠ .

Let h be the hypothesis minimizing ˆerrκ (h), h∗ = argminh′∈H{errT (h′)/ ˆerrκ (h) ≤
ˆerrκ (h′)} and let A = 1

2 dH�H(DS, DT )+ ν, then

errT (h) ≤ errκ (h)+ (1− κ)A, from Lemma 4,

≤ ˆerrκ (h)+ κ(N T
η′ − N S

η )+ N S
η

(1− κ)β BR + λ
+
√

4M ln 2+ 2 ln 4
δ

dl

(
κ√
θ
+ 1− κ√

1− θ

)

+ (1− κ)A, by Theorem 4 on the two domain errors with M = max(Mη′ , Mη),

≤ ˆerrκ (h∗)+ κ(N T
η′ − N S

η )+ N S
η

(1− κ)β BR + λ
+
√

4M ln 2+ 2 ln 4
δ

dl

(
κ√
θ
+ 1− κ√

1− θ

)

+ (1− κ)A, since ˆerrκ (h) ≤ ˆerrκ (h∗),

≤ errκ (h∗)+
√

κ2

θ
+ (1− κ)2

1− θ

√
ln 4

δ

2dl
+ κ(N T

η′ − N S
η )+ N S

η

(1− κ)β BR + λ

+
√

4M ln 2+ 2 ln 4
δ

dl

(
κ√
θ
+ 1− κ√

1− θ

)
+ (1− κ)A, by Lemma 5,

≤ errT (h∗)+
√

κ2

θ
+ (1− κ)2

1− θ

√
ln 4

δ

2dl
+ κ(N T

η′ − N S
η )+ N S

η

(1− κ)β BR + λ

+
√

4M ln 2+ 2 ln 4
δ

dl

(
κ√
θ
+ 1− κ√

1− θ

)
+ 2(1− κ)A, by Lemma 4.

��
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