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Abstract Classification is one of the most popular behavior prediction tools in behavior
informatics (behavior computing) to predict group membership for data instances. It has been
greatly used to support customer relationship management (CRM) such as customer identifi-
cation, one-to-one marketing, fraud detection, and lifetime value analysis. Although previous
studies showed themselves efficient and accurate in certain CRM classification applications,
most of them took demographic, RFM-type, or activity attributes as classification criteria
and seldom took temporal relationship among these attributes into account. To bridge this
gap, this study takes customer temporal behavior data, called time-interval sequences, as
classification criteria and develops a two-stage classification framework. In the first stage,
time-interval sequential patterns are discovered from customer temporal databases. Then, a
time-interval sequence classifier optimized by the particle swam optimization (PSO) algo-
rithm is developed to achieve high classification accuracy in the second stage. The experiment
results indicate the proposed time-interval sequence classification framework is efficient and
accurate to predict the class label of new customer temporal data.

Keywords Behavior informatics · Customer relationship management (CRM) ·
Classification · Time-interval sequences · Particle swarm optimization (PSO) algorithm

1 Introduction

With the increasing needs and focus on social network analysis and social computing, behav-
ior informatics is now receiving much more attention [8,9]. Behavior informatics, also known
as behavior computing, is defined as the scientific field that aims to develop methodologies,
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techniques, and practical tools for representing, modeling, analyzing, understanding and/or
utilizing symbolic and/or mapped behavior, behavioral impacts, the formation of behav-
ior-oriented groups and collective intelligence, and behavioral intelligence emergence [10].
Behavior informatics, which greatly complements behavioral science and behavior studies
in social science, shows the potential for designing and supplying new and practical mecha-
nisms, tools, and systems for deep behavior understanding and use. It can be widely used in
many areas and domains, such as intrusion detection [54], social computing [55], behavior
analysis of terrorist and criminals [11], and customer relationship management [50].

In customer relationship management (CRM), it is wildly agreed that customer behavior
analysis is essential for deeply understanding customers, and eventually for boosting enter-
prise operation and enhancing business intelligence. CRM can be viewed as managerial
efforts to manage business interactions with customers by combining business processes
and technologies that seek to understand a company’s customers [27]. Typically, the CRM
framework can be classified into operational and analytical where operational CRM refers to
the automation of business processes and analytical CRM refers to the analysis of customer
characteristics and behaviors [47]. As such, analytical CRM can support the organization’s
customer management strategies and help an organization better discriminate and more effec-
tively allocate resources to the most profitable group of customers [42].

To support the complicate tasks in the analytical CRM framework, classification is iden-
tified as one of the best supporting tools for CRM. Classification aims at building a model
to predict future customer behaviors through classifying database records into a number of
predefined classes. Examples of using classification techniques for CRM applications include
direct marketing [16,53], customer identification [22,28], customer attraction [14,29], loyalty
program [15,32], one-to-one marketing [24,30], fraud detection [57], and lifetime value anal-
ysis [3]. The popular classification algorithms in CRM include decision tree [28], artificial
neural networks [22], logic regression [45], Bayesian network classifiers [4], genetic algo-
rithms [1], and support vector machine [13]. A complete literature review of classification in
CRM can be further found in the works of Lessmann and Voß [37] and Ngai et al. [42].

Although previous studies showed themselves efficient and accurate in certain CRM clas-
sification applications, most of them took demographic, RFM-type, or activity attributes
as classification criteria and seldom took temporal relationship among these attributes into
account [52]. For example, customer A has the behavior of “inkjet printer → ink cartridge
→ papers” and a customer B has the behavior of “papers → ink cartridge → inkjet printer.”
The two customers were regarded as having the same behavior of purchasing “inkjet printer”,
“ink cartridge”, and “papers” by previous studies. However, it is inappropriate to make this
claim since the two customers purchase products in totally different temporal order. In fact,
not only the purchasing order should be taken into consideration, but also the time-interval
information between purchasing activities should be included [60]. For example, customers
C and D have the same purchasing behavior of “notebook → printer”, but the time interval
between the two purchasing activities for customer C is 1 week and the time interval between
the two activities for customer D is 1 year. If the time-interval information between activities
is not considered, the two customers would be classified as the same behavior group which
is not acceptable in practice.

To solve the above difficulties, this research takes customer temporal behavior data, called
time-interval sequences, as classification criteria. The time-interval sequence of a customer
contains not only the temporal order of activities but also the time-interval information
between them. An example of the time-interval sequence is “inkjet printer → (1 week)
→ papers → (3 months)→ ink cartridge.” Based on the time-interval sequences, a two-
stage classification framework is proposed. In the first stage, a sequential pattern mining
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technique, I-PrefixSpan algorithm, is applied to derive readable time-interval sequential pat-
terns from customer behavior databases. In the second stage, a time-interval sequence clas-
sifier is developed to achieve the high classification accuracy while keeping users easily
understand the inherent characteristics of the classification result. The rest of this paper is
organized as follows. Section 2 introduces the background knowledge related to sequence
classification. Section 3 introduces the details of the proposed classification framework. In
Sect. 4, two cases are presented to show the computation process and parameter settings of the
proposed framework. Finally, the conclusion and future works of this study are summarized
in the last section.

2 Literature review

The sequence classification is to assign the most probable class label to a given sequence by
a generative model (or classifier). Sequence classification problem arises in many real-world
applications such as protein function prediction, text classification or speech recognition,
but seldom found in CRM applications. Sequential data are sequences of ordered “events”
or “activities”, where each event is described by a set of predicates. Examples of sequen-
tial data include text, bio-sequences (DNA, proteins), web-usage data, multiplayer games,
plan-execution traces, etc. Xing et al. [59] introduce a novel concept of MPL (minimum
prediction length) and develop ECTS (early classification on time series) method. ECTS
makes early predictions and at the same time retains the accuracy comparable with that of
a 1NN (1-nearest neighbor) classifier using the full-length time series. Köknar-Tezel and
Latecki [31] presented an innovative approach that augments the minority class by adding
synthetic points in distance space and use support vector machines for classification. The
experimental results on standard time series show that synthetic points significantly improve
the classification rate of the rare events, and in most cases also improve the overall accuracy
of SVMs. Joung et al. [25] employed hidden Markov model (HMM), a statistical model in
which the system being modeled is assumed to be a Markov process with unobserved state,
to generate a sequence classification model. Bouchaffra and Tan [7] extended the traditional
hidden Markov model named “structural hidden Markov model” by partitioning the set of
observation sequences into classes of equivalences to enhance the accuracy for the sequence
classification model. Bruyn et al. [6] integrated estimation, clustering, and classification into
the traditional, three-step approach to make the result of sequence classification more reliable.

Recently, sequential pattern classification problems are treated as feature mining problem.
The feature mining algorithm uses the extracted patterns as features. The patterns are vector-
ized based on their matched sequences and then standard classification method algorithms
such as Naïve Bayes or Winnow are applied to the vectorized sequences. Li et al. [38] used the
properties of singular value decomposition (SVD) of motion data to reduce multi-attribute
motion data of different lengths and then obtain a feature vector for each motion matrix.
By applying support vector machines (SVM) to the feature vectors, they efficiently clas-
sify and recognize real-world multi-attribute motion data. Lesh et al. [35] developed a new
feature mining technique of sequences to reform the traditional methods, which ignore the
potentially useful sequential patterns from large data. Lesh et al. [36] also proposed another
feature mining technique called “scalable feature mining,” which is the improved Feature-
Mine algorithm for sequential data to act as the preprocessor to select features for standard
classification algorithm such as Winnow and Naïve Bayes. Tseng and Lee [51] proposed a
data mining method, named Classify-By-Sequence (CBS), to classify large time-series data-
sets. Legrand et al. [33] developed a classifier based on dynamic time warping (DTW). Their
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Fig. 1 Framework of the proposed time-interval sequence classification model

proposed classifier outperforms than the conventional methods such as Bayesian methods
or neural networks in the experiment result. Exarchos et al. [19] used roll optimization to
generate the optimal sets of weights through a progressive method. Nevertheless, the solution
of their classification accuracy of the classification model is not efficient enough since the
iterative number of roll optimization method is very large, which leads heavy computation
of the objective function.

3 The time-interval sequence classification framework

The existing temporal data classification methods were mostly based on statistical methods
[41], neural networks [34], or similarity-based techniques [58]. They focused on building clas-
sifiers with high accuracy; however, they were in lack of readable classification rules [20,52].
Therefore, to increase the readability of the classification results, a two-stage time-interval
sequence classification framework, as shown in Fig. 1, is proposed. In the first stage, the
customer transaction database TD is divided into n subdatabases {T D1, T D2, . . ., T Dn}
according to the class label each sequence belongs to. The I-PrefixSpan algorithm is then
applied to T Dc and generates a time-interval sequential pattern set F Pc for all c = 1, 2, . . .n.
In the second stage, the similarity measurement between two time-interval sequences is
defined first. Then, a time-interval sequence classifier is built based on the time-interval
sequential patterns in F Pc and sequences in T Dc for all c = 1, 2, . . .n by using the weighted-
majority voting approach. The particle swarm optimization (PSO) algorithm is developed to
iteratively adjust the weights in the classifier so that the accuracy of the classifier can be
maximized.

3.1 Time-interval sequential patterns and mining

Let I = {i1, i2, . . ., im} be the set of all items. Accordingly, a sequence Sa is denoted as
((a1, t1), (a2, t2). . ., (an, tn)) where a j ∈ I is an item, and t j represents the time a j happens
where 1 ≤ j ≤ n, and t j−1 < t j for 2 ≤ j ≤ n. In a sequence, if items occurred at the
same time, they are presented according to the alphabet order. A transaction is represented by
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<sid, s >, where sid is the identifier of this transaction and s is a sequence. A transaction
database TD is formed by a set of transactions < sid, s >. Additionally, let �t be time inter-
val between two successive items in a sequence, and Tr be a given constant for 1 ≤ r ≤ X −1.
Then the time interval is divided into X + 1 sections, where

I0 denotes the time interval �t satisfying �t = 0,
I1 denotes the time interval �t satisfying 0 < �t ≤ T1,
Ir denotes the time interval �t satisfying Tr−1 < �t ≤ Tr for 1 < r < X– 1, and
IX denotes the time interval �t satisfying TX−1 < �t < ∞.

Therefore, the set of time intervals can be represented as T I = {I0, I1, I2, . . ., IX }. For
instance, if T1 = 4, T2 = 8, and T3 = 12, then T I = {I0, I1, I2, I3, I4} where I0 : �t = 0,

I1 : 0 < �t ≤ 4, I2 : 4 < �t ≤ 8, I3 : 8 < �t ≤ 12, I4 : 12 < �t < ∞. Based
on the above symbols, a sequence SB = (b1, &1, b2, &2, . . ., &m−1, bm) is a time-interval
sequence if bi ∈ I for 1 ≤ i ≤ m and &i ∈ T I for 1 ≤ i ≤ m − 1.

For a sequence Sa = ((a1, t1), (a2, t2), . . ., (an, tn)) and a time-interval sequence Sb =
(b1, &1, b2, &2, . . ., &m−1, bm), Sb is said to be contained in Sa or Sb is a time-interval sub-
sequence of Sa if integers 1 ≤ j1 < j2 < · · · < jm ≤ n exist such that (1) b1 = a j1 , b2 =
a j2 , . . ., bm = a jm ; (2)t ji − t ji−1 satisfies the condition of interval &i−1 for 2 ≤ i ≤ m. The
total number of items in a time-interval sequence is referred to as the length of the sequence.
Therefore, a time-interval sequential pattern whose length is m is referred to as a m-time-inter-
val sequential pattern. For a given time-interval sequence Sb, the support count of the sequence
in database TD is denoted as support_count(Sb) = |{< sid, s > | < sid, s >∈ T D ∧ Sb

is contained in s}|. A time-interval sequence Sb is called a time-interval sequential pattern
or a frequent time-interval sequence if the percentage of transactions in TD containing Sb

is greater than or equals to the user-specified minimum support (called min_sup). Given a
sequence database TD and min_sup, time-interval sequential pattern mining is to determine
all the time-interval sequential patterns in TD whose supports are more than or equal to
min_sup.

In this study, the I-PrefixSpan algorithm proposed by Chen et al. [12] is used to generate
the time-interval sequential patterns since its high computation efficiency. Three important
concepts used in the I-PrefixSpan algorithm are introduced as follows. First, given a sequence
Sa = ((a1, t1), (a2, t2), . . ., (an, tn)) and a time-interval sequence Sb = (b1, &1, b2,

&2, . . ., &m−1, bm) where m ≤ n, Sb is a time-interval prefix of Sa if and only if (1) bi = ai

for 1 ≤ i ≤ m; (2) ti – ti−1 satisfies the condition of &i−1 for 1 ≤ i ≤ m − 1. Second,
assume that Sb is a time-interval subsequence of sequence Sa and that i1 < i2 < · · · < im

are the indexes of the elements in Sa which match the elements of Sb. A subsequence
S′

a = ((a′
1, t ′1), (a′

2, t ′2), (a′
3, t ′3), . . ., (a′

p, t ′p)) of Sa , where p = m + n − −im , is called
a projection of Sa with respect to Sb if and only if (1) Sb is a time-interval prefix of
S′

a ; (2) the last n – im elements of S′
a are the same as the last n – im elements of Sa .

Third, let S′
a = ((a′

1, t ′1), (a′
2, t ′2), (a′

3, t ′3), . . ., (a′
j , t ′j )) be the projection of sequence Sa

with respect to time-interval sequence Sb = (b1, &1, b2, &2, . . ., &k−1, bk). Then sequence
Sc = ((a′

k+1, t ′k+1), (a
′
k+2, t ′k+2), . . ., (a

′
j , t ′j )) is called the postfix of Sa with respect to

prefix Sb.
The pseudo-code of the I-PrefixSpan algorithm is described in Fig. 2. The α-projected

database, denoted as T D|α , is defined by the collection of postfixes for the sequences in
database TD with respect to α. A table TI_Table is used to store this type of relation, where
column corresponds to an item and a row corresponds to a time interval in TI. Each cell
TI_Table (Ii , f ) in the table records the number of transactions in T D|α that contain item
f and the time difference between this item and the last item of α lies within Ii . Processing
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Fig. 2 The pseudo-code of the I-PrefixSpan algorithm

every transaction in T D|α sequentially enables the table to be formed and the cells that are
frequent to be identified. If the cell TI_Table (Ii , f ) is a frequent cell, (Ii , f ) can be appended
to α to yield a time-interval sequential pattern α’ and to construct the α’-projected database
T D|α . Recursively discovering the time-interval sequential patterns in T D|α′ finally yields
all the time-interval sequential patterns in TD.

3.2 Time-interval sequence similarity measurement

Different to traditional sequence comparison, the sequence discussed in this research contains
time-interval information. Therefore, the similarity between two time-interval sequences is
re-defined based on the following two considerations [49]. First, the more the number of
mismatched items between two time-interval sequences is, the lower the similarity between
the two sequences is. For example, the similarity between A → I1 → B → I4 → C and
A → I1 → B → I4 → D should be higher than the similarity between A → I1 → B →
I4 → C and A → I1 → E → I3 → G, since the former case has only one mismatched
item and later case has two mismatched items. Second, the similarity between time intervals
is taken into account if and only if they have the same priori item. For example, there are
two time-interval sequences A → I1 → B → I4 → C and A → I2 → D → I3 → E . The
similarity between I1 and I2 will be examined since they have the same priori item (i.e., item
A). On the other hand, it is meaningless to evaluate the similarity between I4 andI3 since
their priori items B and D are different.

Let Sa = (a1, &a
1, a2, &a

2, . . . , av−1, &a
v−1, av) and Sb = (b1, &b

1, b2, &b
2, . . . , bw−1,

&b
w−1, bw) be the two time-interval sequences. Based on the above two considerations, the

similarity measurement between Sa and Sb, denoted as Sima,b, is formulated as:

Sima,b =
L∑

p=1

(1 − Costa,b,p)/L . (1)

L = max(|Sa |, |Sb|) is the maximal length of Sa and Sb, Costa,b,p is the cost that changes(
bp, &b

p

)
in Sb to

(
ap, &a

p

)
in Sa , which can be derived using the proposed cost evaluation

algorithm discussed later. In addition, the time-interval dissimilarity between &b
p and &a

p is
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defined as

ϕa,b,p =
∣∣∣ f (&b

p) − f (&a
p)

∣∣∣
f (IX ) − f (I0) + 1

(2)

where f (&b
p) is the rank of the time-interval &b

p in time-interval set TI and is defined as
f (Ir ) = r where r = 0, 1, . . ., X . Note that I0 is inserted to the last position of the two time-
interval sequences so that the last items in the two time-interval sequences can be compared
with others.

The cost evaluation algorithm calculates the minimal total cost, also called the edit distance
or Levenshtein distance, that transforms Sb = (b1, &b

1, b2, &b
2, . . . , bw−1, &b

w−1, bw) to
Sa = (a1, &a

1, a2, &a
2, . . . , av−1, &a

v−1, av) using the dynamic programming approach. Dur-
ing the transformation, four basic edit operations of “no change,” “substitution,” “deletion,”
and “insertion” are used. The cost of taking required edit operations that change (bp, &b

p) in
Sb to (ap, &a

p) in Sa is defined as:

Costa,b,p =

⎧
⎪⎪⎨

⎪⎪⎩

1 if insertion or deletion
1 if substitution (with different priori items)
0 + ζ × ϕa,b,p if substitution (with the same priori item)
0 if no change

(3)

where ϕa,b,p is defined in Eq. (2) and ζ is the maximum degree of time-interval affection.
In this study, ζ is recommended as the value less than 0.5. The pseudo-code of the proposed
cost evaluation algorithm is shown in Fig. 3. The inputs to the algorithm are the time-interval
sequences Sa and Sb, the maximum degree of time-interval affection ζ , and the time-interval
set TI. The output is the cost vector recording the cost value in each position of Eq. (3). This
algorithm is similar to the work of Tsai et al. [48] but different in Time_Interval_Cost( )
function in line 22.

For example, there are two time-interval sequences Sa = A → I1 → C → I2 →
D → I3 → G → I1 → E and Sb = A → I1 → C → I3 → E → I2 → G →
I1 → H → I4 → J where T I = {I0, I1, I2, I3, I4, I5}. In addition, the maximum degree
of time-interval affection ζ is set as 0.3. Note that I0 is inserted after the last item in the
two sequences before conducting similarity evaluation. Based on similarity measurement in
Eq. (1) and the cost evaluation algorithm in Fig. 3, the similarity value between Sa and Sb is
((1−0)+(1−0.05)+(1−1)+(1−0)+(1−1)+(1−1))/6 = 0.49167. Note that the cost of
transforming C→ I3 in Sb to C → I2 in Sa is Costa,b,2 = 0+0.3×(|3−2|/(5−0+1)) = 0.05
because f (I3) = 3, f (I2) = 2, and f (I5) = 5.

3.3 A time-interval sequence classifier

In this section, the time-interval sequence classifier is introduced in details. As mentioned
before, the time-interval sequential patterns in F Pc are frequent patterns appeared in T Dc.
Therefore, this research takes the time-interval sequential patterns in F Pc to represent the
behaviors of all sequences in class c. If a new time-interval sequence s is similar to the
time-interval sequential patterns in F Pc, the new time-interval sequence s has more chance
belonging to class c. However, not all time-interval sequential patterns have the same clas-
sification judgment capability. Thus, each time-interval sequential pattern in F Pc should
be assigned an important weight to reflect its own importance. Similarly, different fre-
quent pattern set F Pc might have different affection to the class prediction result since the
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Fig. 3 The pseudo-code of the proposed cost evaluation algorithm

representatives of sequential patterns in F Pc is different. Therefore, each frequent pattern
set F Pc should be assigned an important weight to reflect its judgment importance also.

Based on the above concept, the following notations are defined. Let f pc,k be the kth
time-interval sequential pattern in F Pc, pwc,k be the important weight of f pc,k , and cwc

be the important weight of F Pc. According to Eq. (1), the similarity between time-interval
sequential pattern f pc,k and a new time-interval sequence s, denoted as Sim( f pc,k, s), can
be derived. Therefore, based on majority voting scheme, the time-interval sequence classifier
is modeled as:

Classifier(x) = arg max
c=1,2,...,n

⎡

⎣cwc ×
⎛

⎝
∑

k=1,2,...,|F Pc|

pwc,k × Sim( f pc,k, s)

|F Pc|

⎞

⎠

⎤

⎦ (4)

All weights are assigned as 1 at the initial stage to indicate they are equally important, but
will be automatically adjusted by the particle swarm optimization (PSO) algorithm later.

A labeled instance is a pair < s, y > where s is a time-interval sequence and y is the
discrete class label associated with x where y ∈ {1, 2, . . . , n}. Let a testing set TS’ is a set
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of labeled instances where T S′ = {< s1, y1 >,< s2, y2 > · · · < sm, ym >}. The prediction
accuracy of the classifier is calculated as:

Accuracy =
∑

j=1,...,|T S′| I (Classifier(s j ) == y j )

|T S′| (5)

where I (·) is an indicator function that returns the value 1 if its argument is true and 0
otherwise.

3.4 Particle swarm optimization

It is clear that the two sets of weights (pwc,k and cwc) in Eq. (4) might dramatically affect the
accuracy of the proposed time-interval sequence classifier. Therefore, this research employs
particle swarm optimization (PSO) algorithm [26] to find the best weights. Unlike other
evolutionary algorithms such as genetic algorithm or bacterial chemotaxis optimization, the
coding procedure for the PSO algorithm is relatively simple and easy. In addition, the compu-
tation complexity and running time of the PSO are much lower [2]. Peng et al. [44] presented
a novel text classifier using positive and unlabeled examples and used the particle swarm
optimization (PSO) algorithm to evolve the weights of all classifiers generated in the itera-
tion steps. Lin et al. [39] proposed a particle swarm optimization–based back-propagation
network approach (PSOBPN) to obtain the suitable parameter settings for BPN and to select
the beneficial subset of features that result in a better classification accuracy rate. Wang and
Yang [56] proposed a PSO-based Bayesian Networks Learning algorithm (PSOBNL) that
introduced two major modifications on velocity and position updating rules. The experi-
ments showed that this method outperformed other heuristic methods such as GA (genetic
algorithm) and classical binary PSO.

Given a training set TS, the objective function of the PSO optimization method is to maxi-
mize the accuracy of the classifier by determining the values of pwc,k and cwc. The maximal
value of the objective function is 1 if all sequences in TS are correctly classified. Therefore,
the accuracy of the classifier defined in Eq. (5) is used as the fitness function in the PSO
algorithm. That is,

max f (x) =
∑

j=1,...,|T S| I (Classifier(s j ) == y j )

|T S| (6)

where x is one of the particles in the PSO algorithm that represents the values of two sets of
weights (pwc,k and cwc). Therefore, the i th particle is represented as

xi = [
pw1,1, pw1,2, . . . , pw1,|F P1|, pw2,1, pw2,2, . . . , pw2,|F P2|, . . . ,

pwn,1, pwn,2, . . . , pwn,|F Pn |, cw1, cw2, . . . , cwn
]

(7)

where the total dimension of the particle is D = (
∑n

c=1 |F Pc|) + n. To make the following
explanation easier, the i th particle is represented as xi = [xid ] where d = 1, 2, . . ., D. In
the PSO algorithm, each particle moves depending on the best position the current particle
found so far, denoted as pbest or Pi = [pid ], and the global best position identified from
the whole population (or within the neighborhood), denoted as gbest or Pg = [pgd ]. Shi
and Eberhart [46] called the best previous experience (pbest) as the cognition part, and the
best experience (gbest) as the social part. The i th particle changes its position by the given
velocity Vi = [vid ]. The velocity of i th particle in position d is updated according to Eq. (8)
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Fig. 4 The pseudo-code of the PSO method for weight adjustment

every iteration, while the position d of the i th particle is updated as Eq. (9) in the search
space.

vt
id = wvt−1

id + c1r1(pt
id − xt

id) + c2r2(pt
gd − xt

id) for d = 1, 2 . . . D (8)

xt+1
id = xt

id + vt
id for d = 1, 2 . . . D (9)

where w is the inertia weight; c1 indicates the cognition learning factor; c2 indicates the social
learning factor, and r1 and r2 are the random numbers that allow to maintain the diversity
of the population and are uniformly distributed in U(0, 1). Inertia weight w is brought into
PSO to balance the global and local search ability. A large w facilitates a global search and
a small w eases a local search [17]. c1 and c2 are positive constants and usually are set as 2.

The pseudo-code of the proposed PSO method for weight adjustment is shown in Fig. 4.
The input to the method includes the training set TS and the parameters for the PSO method of
pn, vmax , w, c1, and c2 where pn is the particle population and vmax is the velocity restriction
of particles. The output of the PSO method is the particle with highest fitness value so that
the accuracy of the proposed classifier is highest. Variable t is the iteration number in the
algorithm. As shown in lines 1 and 2, x0

i,d is set as 1 and v0
id is set as a random value ranging

from -vmax to vmax for all i and d to keep off trapping in a local area. Subsequently, as shown
from lines 4 to 21, xt

i are iteratively modified until the stopping criterion is reached. The
stopping criterion is reached when the error of all objective values obtained by the particles
within one iteration is smaller than 5 % (i.e., ST D <= 0.05).
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Table 1 The dataset of the
example I

sid si ci

1 〈(A, 3)(B, 5)(C, 25)(C, 35)(D, 72)〉 1

2 〈(A, 5)(B, 7)(E, 41)(C, 70)〉 1

3 〈(B, 4)(C, 6)(A, 37)(A, 65)〉 1

4 〈(A, 10)(C, 49)(D, 52)(C, 106)〉 1

5 〈(B, 2)(A, 27)(B, 35)〉 1

6 〈(A, 1)(C, 36)(D, 61)(D, 70)〉 1

7 〈(A, 2)(B, 7)(C, 20)(D, 25)〉 1

8 〈(A, 3)(B, 15)(D, 17)〉 1

9 〈(B, 7)(D, 21)(D, 44)(B, 53)〉 2

10 〈(A, 6)(A, 13)(D, 25)(D, 46)〉 2
11 〈(B, 8)(B, 32)(D, 43)(C, 79)(D, 85)〉 2

12 〈(B, 1)(D, 8)(A, 22)(D, 58)〉 2

13 〈(C, 3)(B, 17)(D, 29)(C, 41)〉 2

14 〈(C, 12)(B, 18)(D, 23)〉 2

15 〈(B, 12)(A, 21)(D, 23)(B26)(D, 30)〉 2

16 〈(B, 3)(B, 7)(C, 12)(D, 18)〉 2

17 〈(C, 3)(B, 15)(E, 21)〉 3

18 〈(C, 9)(B, 17)(A, 30)(E, 39)〉 3

19 〈(A, 3)(B, 10)(C, 23)(E, 37)〉 3

20 〈(C, 16)(A, 28)(E, 31)(A, 45)〉 3

21 〈(B, 4)(C, 32)(B, 38)(E, 50)(A, 82)〉 3

22 〈(B, 4)(C, 11)(E, 29)(A, 63)〉 3

23 〈(A, 1)(C, 5)(E, 8)(A, 16)〉 3

24 〈(C, 9)(B, 12)(E, 16)(A, 32)〉 3

4 Experimental illustration

4.1 Example I

To show the computation process of the proposed time-interval sequence classification frame-
work, a dataset shown in Table 1 is used as an example. Each sequence in the dataset is
represented by the set of items I = {A, B, C, D, E} and corresponding timestamps. There
are totally 24 sequences in the dataset where a sequence belongs to one of three class labels
(c = 1, 2, 3). In each class, 6 sequences are randomly selected as testing data and others are
training data. Therefore, the training dataset TD consist of 18 sequences and the testing data-
set TD’ consists of 6 sequences. In addition, according to the timestamps of sequences in the
dataset, the set of time intervals is set as T I = {I0, I1, I2, I3, I4, I5}, where I0 : t = 0, I1 :
0 < t ≤ 10, I2 : 10 < t ≤ 20, I3 : 20 < t ≤ 30, I4 : 30 < t ≤ 40, and I5 : 40 < t < ∞.

In the first stage of the proposed time-interval sequence classification framework, the
training dataset TD is divided into 3 subdatabases {T D1, T D2, T D3} according to the class
label of each sequence. Then, the I-PrefixSpan algorithm is applied to T Dc and generates
a time-interval sequential pattern set F Pc for all c. If min_sup is set as 2, the generated
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Table 2 Time-interval sequential patterns in each class

F P1 F P2 F P3

f p1,1 A → I1 → B f p2,1 A → I1 → D f p3,1 A → I1 → E

f p1,2 A → I4 → C f p2,2 A → I2 → D f p3,2 B → I1 → E

f p1,3 A → I5 → D f p2,3 A → I4 → D f p3,3 B → I2 → A

f p1,4 B → I2 → C f p2,4 B → I1 → C f p3,4 B → I3 → E

f p1,5 C → I1 → D f p2,5 B → I1 → D f p3,5 B → I5 → A

f p1,6 C → I4 → D f p2,6 B → I2 → D f p3,6 C → I1 → B

f p1,7 A → I1 → B → I2 → C f p2,7 B → I4 → D f p3,7 C → I2 → E

f p1,8 A → I4 → C → I4 → D f p2,8 B → I5 → C f p3,8 C → I3 → A

f p2,9 B → I5 → D f p3,9 C → I5 → A

f p2,10 C → I1 → D f p3,10 E → I2 → A

f p2,11 D → I1 → B f p3,11 E → I4 → A

f p2,12 D → I3 → D f p3,12 C → I1 → B → I2 → A

f p2,13 A → I2 → D → I3 → D f p3,13 C → I2 → E → I4 → A

f p2,14 B → I1 → C → I1 → D

f p2,15 B → I5 → C → I1 → D

Table 3 The similarities between sequential patterns in F P1 and sequences in TD

s1 s3 s4 s6 s7 . . . s21 s22 s24

f p1,1 0.38 0.72 0.21 0.21 0.48 . . . 0.38 0.50 0.24

f p1,2 0.36 0.20 0.49 0.46 0.45 . . . 0.19 0.22 0.50

f p1,3 0.36 0.72 0.44 0.48 0.45 . . . 0.60 0.50 0.50

f p1,4 0.59 0.44 0.24 0.21 0.74 . . . 0.38 0.46 0.49

f p1,5 0.80 0.46 0.70 0.71 0.48 . . . 0.40 0.49 0.25

f p1,6 0.77 0.50 0.66 0.72 0.96 . . . 0.37 0.48 0.21

f p1,7 0.59 0.44 0.46 0.21 0.74 . . . 0.40 0.46 0.24

f p1,8 0.54 0.25 0.66 0.72 0.68 . . . 0.17 0.22 0.25

time-interval sequential pattern sets are shown in Table 2. In the second stage, the similarity
between two time-interval sequences can be derived using Eq. (1) where the maximum degree
of time-interval affection ζ in Eq. (3) is set as 0.3. Table 3 shows the similarities between
sequential patterns in F P1 and all time-interval sequences in TD.

To show the performance of the proposed time-interval sequence classifiers, the following
two classifiers (i.e., classifier I and classifier II) are conducted. In classifier I, the PSO method
is not applied so that the two set of weights (pwc,k and cwc) in the classifier are all set as 1.
In classifier II, the PSO method is used to automatically adjust the two set of weights. The
set of parameters in the PSO method is set as follows: pn = 20; vmax = 2.5; w = 0.5+
Rand(0,1)/2; c1 = 1.5; and c2 = 1.5. After performing the PSO method, the final weight
vector in the classifier II is [1.1941, 1.0806, 0.9217, 1.0010,…, 0.9677, 1.0438, 1.1897,
0.9814]. Note that the last three elements in the vector indicate that cw1 = 1.0438, cw2 =
1.1897, cw3 = 0.9814.
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Table 4 The classification
results for the two classifiers

si ci Predicted class
using classifier I

Predicted class
using classifier II

s1 1 1 1

s3 1 3 1

s4 1 1 1

s6 1 3 1

s7 1 1 1

s8 1 2 2

s9 2 3 2

s10 2 2 2

s11 2 2 2

s14 2 2 2

s15 2 2 2

s16 2 1 1

s17 3 3 3

s18 3 3 3

s20 3 3 3

s21 3 3 3

s22 3 3 3

s24 3 3 3

Table 5 Classification accuracy
for the training dataset

Experiments Prediction Prediction Improvement
accuracy using accuracy using (%)
classifier I (%) classifier II (%)

I 72.22 88.89 16.67

II 61.11 66.67 5.56

III 55.56 83.33 27.77

IV 61.11 77.78 16.67

Average 62.50 79.17 16.67

Max 72.22 88.89 27.77

Table 4 shows the classification results of the two classifiers. Based on the result, the
prediction accuracy of the classifier I is (3 + 4 + 6)/18 = 13/18 = 72.22 % and the pred-
ication accuracy of the classifier II is (5 + 5 + 6)/18 = 16/18 = 88.89 % for the training
dataset TD. The reasons is that sequences s3 =< (B, 4)(C, 6)(A, 37)(A, 65) >, s6 =<

(A, 1)(C, 36)(D, 61)(D, 70) >, and s9 =< (B, 7)(D, 21)(D, 44)(B, 53) > incorrectly
classified in classifier I are now correctly classified in classifier II. Thus, the classification
accuracy for the training dataset increases 16.67 % after the PSO method is applied. However,
when the testing dataset is evaluated, the classification accuracy for classifier I and classifier
II is both 83.33 %.
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Table 6 Classification accuracy for the testing dataset

Experiments Prediction accuracy
using classifier I (%)

Prediction accuracy
using classifier II (%)

Improvement (%)

I 83.33 83.33 0.00

II 33.33 50.00 16.67

III 50.00 50.00 0.00

IV 66.67 83.33 16.66

Average 58.33 66.67 8.33

Max 83.33 83.33 16.67

Table 7 The basic information
of the dataset in the example II

Class label Industry type Number
of customers

1 Education 9

2 Finance and insurance 18

3 Traditional industry 18

4 Technology 15

To confirm the reliability of the proposed framework, k-fold cross-validation, where k = 4,
is employed to the above process. Table 5 shows the classification accuracy for the two clas-
sifiers when training dataset is evaluated, while Table 6 shows the classification accuracy
when testing dataset is evaluated. Based on the tables, the average improvement of the clas-
sification accuracy is 16.67 % for the training dataset and 8.33 % for the testing dataset. In
addition, both tables indicate that the classifier II adopting the PSO method is significantly
better than the classifier I without adopting the PSO method.

4.2 Example II

Another dataset contributed from the NorthWind database of Microsoft is used to demonstrate
how the system parameters in the proposed time-interval sequence classification framework
affect the classification result. This dataset consists of 341 order sequences generated by 60
customers within one year time period (from 4th July, 1996 to 3rd July, 1997). Since no
class label information is provided for customers at the original database, this study takes the
industry type of a customer as its class label. Table 7 shows the relationship between class
label, industry type, and the number of customers in the dataset.

The system parameters that might affect the performance of the proposed system include
two parameters in the I-PrefixSpan algorithm (i.e., the minimum support value min_sup and
the set of the time interval TI) and four parameters in the PSO method (the population of
particles pn, the cognitive and social learning factor c1 and c2, inertial constant w, and moving
velocity vmax ). Therefore, a set of experiments are designed to observe their affections. In
the following discussion, the initial settings of system parameters are summarized in Table 8.
Note that each experiment is evaluated using k-fold cross-validation where k = 3.

• The set of time intervals

The set of time intervals TI in the first stage of the proposed framework might affect the
result of generated time-interval sequential patterns in the I-PrefixSpan algorithm. Therefore,

123



A time-interval sequence classification method 265

Table 8 The initial system
parameter settings

Parameter Initial value

pn 20

c1 1.5

c2 1.5

w 0.5+ rand( )/2

vmax 2.5

min_sup 70%

TI TI = {I0, I1, I2, I3, I4,} where
I0 : t = 0, I1 : 0 < t ≤ 90, I2 :
90 < t ≤ 180, I3 : 180 < t ≤
270, I4 : 270 < t ≤ ∞

Table 9 Classification accuracy with different TI

Experiment T I = {I0, I1, I2, I3} T I = {I0, I1, I2, I3, I4} T I = {I0, I1, I2, I3, I4, I5, I6}

Without
optimization
(%)

With
optimization
(%)

Without
optimization
(%)

With
optimization
(%)

Without
optimization
(%)

With
optimization
(%)

I 32.50 40.00 35.00 42.50 20.00 30.00

II 25.00 42.50 22.50 45.00 17.50 42.50

III 17.50 35.00 20.00 42.50 17.50 35.00

Average 25.00 39.17 25.83 43.33 18.33 35.83

the following three time-interval settings are tested, while other parameters remain the same
as the ones in Table 8:

1. T I = {I0, I1, I2, I3}, where I0 : t = 0, I1 : 0 < t ≤ 120, I2 : 120 < t ≤ 240, I3 :
240 < t < ∞.

2. T I = {I0, I1, I2, I3, I4}, where I0 : t = 0, I1 : 0 < t ≤ 90, I2 : 90 < t ≤ 180, I3 :
180 < t ≤ 270, I4 : 270 < t < ∞.

3. T I = {I0, I1, I2, I3, I4, I5, I6}, where I0 : t = 0, I1 : 0 < t ≤ 60, I2 : 60 < t ≤
120, I3 : 120 < t ≤ 180, I4 : 180 < t ≤ 240, I5 : 240 < t ≤ 300, I6 : 300 < t < ∞.

Table 9 exhibits the classification accuracy for the three time-interval settings. It is obvi-
ous the highest average classification accuracy is obtained when T I = {I0, I1, I2, I3, I4}
and the PSO method is adopted. It is interesting that the classification accuracy when T I =
{I0, I1, I2, I3, I4, I5, I6} is worst. The reason is that, if the time intervals are too many, gen-
erated sequential patterns are not strong enough to represent the behaviors in a specific class.
Therefore, the set of time intervals is suggested as {I0, I1, I2, I3, I4}.
• The minimum support value

The min_sup is a critical value affecting the number of time-interval sequential patterns
generated by I-PrefixSpan algorithm. Table 10 summarizes the classification accuracy when
min_sup is set as 50, 60 and 70 % (i.e., 30, 36, and 42), while other parameters remain the
same as the ones in Table 8. It is obvious, when min_sup = 70 %, the average classifica-
tion accuracy with optimization process is the highest. Originally, we expect that a lower
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Table 10 Classification accuracy with different min_sup values

Experiment min_sup = 50% min_sup = 60% min_sup = 70%

Without
optimization
(%)

With
optimization
(%)

Without
optimization
(%)

With
optimization
(%)

Without
optimization
(%)

With
optimization
(%)

I 27.50 32.50 27.50 32.50 35.00 42.50

II 25.00 37.50 22.50 37.50 22.50 45.00

III 22.50 40.00 20.00 40.00 20.00 42.50

Average 25.00 36.67 23.33 36.67 25.83 43.33

min_sup value makes the classification accuracy higher, since more sequential patterns are
generated by the I-PrefixSpan algorithm. However, this experiment result shows that using
more sequential patterns to represent sequences in classes does not guarantee higher classifi-
cation accuracy. Based on the above observation, the minimum support value is recommended
as 70 % for this dataset.

• The population of particles

It is suggested that a good solution might be obtained if the population of particles pn in
the PSO algorithm is set as 20 or 30 [26]. However, since the dimension of a particle in
this study is relatively large, the population of particles is tested using 20, 50, and 80, while
other parameters remain the same as the ones in Table 8. Figure 5 shows the classification
accuracy without running the PSO algorithm and the ones after running the PSO algorithm
with different pn values. It is clear that, after running the PSO algorithm, the classification
accuracy is greatly improved. The highest average classification accuracy happened when
pn = 50. Note that, when pn is 80, the classifier is over-trained so that its average classifica-
tion accuracy drops to 39.17 %. Based on the above observation, the population of particles
is recommended as 50.

• The cognitive and social learning factors

In the PSO algorithm, the cognitive learning factor c1 controls the acceleration of local search,
while the social learning factor c2 controls the acceleration of global search. Typically, c1and
c2 are recommended as 2 in many studies [17. 26]. In this experiment, five combinations
as shown in Fig. 6 are conducted. It is clear the classification accuracy is highest when
c1 = c2 = 1.5, c1 = c2 = 2, and c1 = 1, c2 = 3. However, the variance of the classification
accuracy is larger when c1 = c2 = 2. Therefore, the cognitive learning factor c1 and social
learning factor c2 are both set as 1.5.

• The inertia weight

The inertia weight w in the PSO algorithm balances the global exploration and local exploi-
tation in the PSO algorithm. Global search performs well if a large inertia weight is applied,
while a small inertia weight facilitates the local search performance. According to the liter-
atures [23], inertia weight is recommended as the value ranging from 0.5 to 1. Therefore, in
this experiment, inertia weight is set as 0.5, 0.5 + rand( )/2, and 1 where rand( ) generates
a random number uniformly distributed within [0,1]. As shown in Fig. 7, the highest aver-
age classification accuracy appears when w = 0.5 + rand( )/2. Therefore, inertia weight is
suggested as 0.5+rand( )/2 in this case.
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Fig. 5 Classification accuracy under different pn values

Fig. 6 Classification accuracy under different c1and c2 values

Fig. 7 Classification accuracy under different w values

• The maximum velocity

In the PSO algorithm, slower moving velocity of particles drives a better solution. However,
when the moving velocity is too small, it is difficult for particles to reach global optimal
solution. Oppositely, if moving velocity is too large, particles will move too fast and hard to
reach convergence. Therefore, the moving velocity of a particle is restricted to the range of
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Fig. 8 Classification accuracy under different vmax values

Table 11 The computational
time of the proposed
classification framework
(unit: seconds)

The time in each experiment is
the average value after 10 runs

Experiments First stage Second stage

I 10.2078 166.5802

II 9.3813 187.8401

III 4.1797 289.7151

Average 7.9229 214.7118

[−vmax , vmax ]. Based on the suggestion of Eberhart and Shi [17], this experiment tests vmax

is used 1.25, 2.5, and 5. As shown in Fig. 8, the highest average classification accuracy is
found when vmax is 2.5. Therefore, maximum velocity is suggested as 2.5 in this case.

Based on the above experiments, the system parameters are suggested as min_sup =
70 %, T I = {I0, I1, I2, I3, I4}, pn = 50, c1 = c2 = 1.5, w = 0.5+ rand( )/2, and vmax =
2.5. Based on these parameters, the average classification accuracy of the proposed frame-
work is 43.33 %, while it is 25.83 % if no optimal process is performed. Although a great
improvement in the average classification accuracy can be found for the proposed frame-
work, the classification accuracy is not high. The major reason is that this study subjectively
adopts the industry type of a customer as its class label, since no class information is pro-
vided at the original database. If a more representative attribute can be found and used as
class label, the classification accuracy should increase dramatically.

Table 11 shows the computational time for the two stages of the proposed classification
framework in the three experiments. The average time of the first stage in the proposed
framework takes about 8 s to complete, while the average time of the second stage takes
about 215 s to complete. It is obvious that the time of weight optimization in the second stage
is significantly longer than the time of sequential pattern mining in the first stage. Figure
9 displays the more detail of the computational time of the 10 runs in the second stage.
Among the 10 runs, the minimum computational time for experiments I–III is 50.89, 42.77,
and 11.81 s respectively, while the maximum computational time is 357.33, 641.97, 768.08 s,
respectively. The variance of the computational time in the second stage is large since the
random characteristics of the PSO algorithm exist.

4.3 Validation

As the best we know after a complete literature survey, none of researches takes time-interval
information between activities into consideration when conducting sequence classification.
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Fig. 9 The computational time for different experiments in the second stage

Therefore, validation for the proposed time-interval sequence classification method will be
separated into two folds. The first fold is to compare the proposed sequence classification
method optimized with PSO to the sequence classification method proposed by Exarchos et
al. [19]. No time-interval information is considered in this fold for both methods. The work
of Exarchos et al. was originally applied to evaluate the biological sequence dataset. The
weight values in their sequence classification method are optimized by Roll optimization.
Roll optimization method proposed by Evangelakis et al. [18] belongs to the class of pattern
search methods. It resembles the obvious (and ad hoc) alternating variables method [21] and
proceeds by exploring the local topology of the objective function and taking proper steps
along each direction separately. Since no time-interval consideration is taken in Exarchos et
al., the validation in the first fold will focus on classification accuracy comparison.

To fulfill the goal of classification accuracy comparison, a group of primary protein
sequences derived from the Protein Data Bank (PDB) [5] is utilized. All data in this group
correspond to a specific fold of the structural classification of proteins (SCOP) database [40].
In this validation, 1,000 proteins (sequences) belonging to 17 SCOP classes are retrieved.
Two-third of them randomly selected from each class is formed as a training dataset, while
the rest are formed as a testing dataset. In addition, six approaches are applied to evaluate
the classification accuracy [19]:

• Approach 1 (App. 1): Set both pattern and class weights equal to 1 and calculate sequence
similarity without optimization.

• Approach 2 (App. 2): Set the pattern weights equal to 1 (pw = 1) and maximize the
prediction accuracy to find the optimal class weights cw∗.

• Approach 3 (App. 3): Set the class weights equal to 1 (cw = 1) and maximize the prediction
accuracy to find the optimal pattern weights pw∗.

• Approach 4 (App. 4): From App. 3, set the pattern weights equal to the optimal ones pw∗
and maximize the prediction accuracy to identify the optimal class weights cw∗.

• Approach 5 (App. 5): From App. 2, set the class weights equal to the optimal ones cw∗
and maximize the prediction accuracy to identify the optimal pattern weights pw∗.

• Approach 6 (App. 6): Together optimize both pw and cw and find the optimal pattern
weights pw∗ and the optimal class weights cw∗.

Table 12 shows the classification accuracy of the two methods for the training dataset and
testing dataset when min_sup = 0.5. For the training dataset, the average classification
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Table 12 Classification accuracy comparison using a protein sequence dataset

Approach Training dataset Testing dataset

Exarchos et al.
method (%)

Proposed
method (%)

Exarchos et al.
method (%)

Proposed
method (%)

App. 1 36.50 35.89 22.50 22.46

App. 2 58.70 56.76 31.40 34.13

App. 3 52.30 53.15 26.70 31.44

App. 4 54.40 57.36 27.50 33.23

App. 5 63.80 58.56 35.60 33.83

App. 6 57.50 52.85 31.70 35.63

Average 53.87 52.43 29.23 31.79

accuracy of Exarchos et al. method is 53.87 %, while the average classification accuracy
of the proposed method is 52.43 %. The classification accuracy of the proposed method is
1.44 % lower than the one of Exarchos et al. method for the training dataset. However, for the
testing data, the average classification accuracy of Exarchos et al. method is 29.23 %, while
the average classification accuracy of the proposed method is 31.79 %. The classification
accuracy of the proposed method is 2.56 % higher than the one of Exarchos et al. method for
the testing dataset in average. Moreover, for App. 6 in which optimization is simultaneously
conducted for the two sets of weights, the classification accuracy of the proposed method is
3.93 % (35.63–31.70 %) higher than the one of Exarchos et al. method. It indicates that the
proposed method has better class prediction capability for unseen sequences. One possible
reason is that the Exarchos et al. method optimized using Roll optimization tends to over-
fit the sequence classification model while the proposed method optimized using PSO can
resolve the over-fitting problem.

The second fold of the validation is to show the strengths and benefits of the proposed
time-interval sequence classification method. Therefore, the proposed time-interval sequence
classification method (called Model 2) is compared with the sequence classification method
without time-interval consideration (called Model 1). In Model 1, a sequence is collected in
the form of Sa = (a1, a2, , . . ., an)where an is an activity and ai−1 happens before ai . In Mode
2, a sequence is collected in the form of Sb = ((b1, t1), (b2, t2), . . ., (bn, tn)) where bi is an
activity and ti is the timestamp bi happens. Then, sequence Sb is changed as the time-interval
sequence format of S′

b = (b1, &1, b2, &2, . . ., &m−1, bm) where &i ∈ {I0, I1, I2, . . ., IX }.
Three different size datasets are experimented to show the benefits of the proposed classi-

fication method. For small size dataset, the dataset in Sect. 4.1, which contains 24 sequences
with 3 class labels, is tested. Table 13 shows the classification accuracy of Model 1 and Model
2 for small size dataset when PSO optimization is not applied for. The average classification
accuracy for Model 1 is 50.00 % and the one for Model 2 is 58.33 %. Table 14 shows the
classification accuracy of Model 1 and Model 2 for the same dataset when PSO optimization
is applied for. The average classification accuracy for Model 1 is 62.50 % while the average
classification accuracy for Model 2 is 66.67 %. Based on the two tables, the classification
accuracy rates improve 8.33 and 4.17 % if time-interval information is considered in the
sequence classification framework.

For medium size dataset, there are totally 200 sequences in the dataset where a sequence
belongs to one of 4 class labels (c = 1, 2, 3, 4). Each sequence is randomly generated by the
set of 11 activity items I = {A, B, C, . . ., K } with the length of [5,8]. The corresponding
timestamp for each activity is ranging from [0, 100]. After transformation, time-intervals
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Table 13 Classification accuracy for the small size dataset when PSO optimization is not applied for

Experiments Sequence classification model
without time-interval
consideration (Model 1) (%)

The proposed time-interval
sequence classification model
(Model 2) (%)

I 66.67 83.33

II 50.00 33.33

III 33.33 50.00

IV 50.00 66.67

Average 50.00 58.33

Max 66.67 83.33

Table 14 Classification accuracy
for the small size dataset when
PSO optimization is applied for

Experiments Model 1 (%) Model 2 (%)

I 66.67 83.33

II 66.67 50.00

III 66.67 50.00

IV 50.00 83.33

Average 62.50 66.67

Max 66.67 83.33

between activities is transferred as T I = {I0, I1, I2, I3, I4, I5}, where I0 : t = 0, I1 : 0 <

t ≤ 10, I2 : 10 < t ≤ 20, I3 : 20 < t ≤ 30, I4 : 30 < t ≤ 40, and I5: 40 < t < ∞.
Table 15 shows the average numbers of sequential patterns generated for each class label in
the first stage of the classification framework. If time interval is not taken into consideration,
PrefixSpan algorithm [43] is applied for generating the sequential patterns. On the other hand,
if time-interval consideration is taken, I-PrefixSpan algorithm [12] is applied for generating
time-interval sequential patterns. For both algorithms, when min_sup value increases, the
average number of generated patterns decreases. In addition, the average number of pat-
terns generated by I-PrefixSpan algorithm is larger than PrefixSpan algorithm except when
min_sup is 35 %.

In the second stage, for each class label, 40 sequences are randomly selected as training
data and 10 as testing data. Tables 16 and 17 show the classification accuracy of training data
and testing data respectively for the medium size dataset under different min_sup values. It
is observed that classification accuracy gradually decreases when min_sup values increases
although it is not very significant. The lowest accuracy happens when the classification model
without applying time interval and PSO optimization, while the highest accuracy happens
when the classification model applying time interval and PSO optimization. Figure 10 shows
the computational time for building Model 1 and Model 2 under different min_sup values.
It takes 10.53 and 17.71 s for building Model 1 and Model 2 respectively when min_sup is
20 %. However, when min_sup is 35 %, the computational time for Model 2 is less than the
one for Model 1 since the number of patterns in Model 2 is less than the one in Model 1.

For large size dataset, there are totally 500 sequences in the dataset where a sequence
belongs to one of 5 class labels (c = 1, 2, 3, 4, 5). Each sequence is randomly generated by
the set of 12 activity items I = {A, B, C, . . ., L} with the length of [8,12]. The correspond-
ing timestamp for each activity is ranging from [0, 200]. After transformation, time intervals
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Table 15 The average numbers of sequential patterns generated in the first stage for the medium size dataset

min_sup (%) Class 1 Class 2 Class 3 Class 4 Total

Without time-interval
consideration
(PrefixSpan algorithm)

20 48.50 57.50 57.50 46.75 210.25

25 30.50 33.00 33.75 29.75 127.00

30 24.00 24.50 26.00 23.50 98.00

35 21.75 19.75 20.75 18.50 80.75

With time-interval
consideration
(I-PrefixSpan algorithm)

20 84.50 56.25 60.50 46.50 247.75

25 57.50 34.25 32.75 25.25 149.75

30 43.25 20.00 15.50 15.25 94.00

35 33.50 12.00 6.25 9.50 61.25

Fig. 10 The computational time for building Model 1 and Model 2 for the medium size dataset

Table 16 Classification accuracy of the training data for the medium size dataset

min_sup (%) Model 1 without
optimization (%)

Model 2 without
optimization (%)

Model 1 with
optimization
(%)

Model 2 with
optimization
(%)

20 91.25 97.34 97.50 99.06

25 92.50 95.63 97.60 98.75

30 91.09 95.16 97.66 98.28

35 90.31 91.88 97.50 97.81

between activities is transferred as T I = {I0, I1, I2, I3, I4, I5}, where I0 : t = 0, I1 : 0 <

t ≤ 20, I2 : 20 < t ≤ 40, I3 : 40 < t ≤ 60, I4 : 60 < t ≤ 80, and I5 : 80 < t < ∞.
Table 18 shows the average numbers of sequential patterns generated for each class label in
the first stage of the classification framework. Similarly, when min_sup value increases, the
average number of generated patterns decreases for both algorithms. However, the average
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Table 17 Classification accuracy of the testing data for the medium size dataset

min_sup (%) Model 1 without
optimization (%)

Model 2 without
optimization (%)

Model 1 with
optimization
(%)

Model 2 with
optimization
(%)

20 91.25 97.50 92.50 98.13

25 90.00 95.00 88.75 96.88

30 93.75 94.38 91.88 96.88

35 92.50 91.88 91.25 92.50

Table 18 The average numbers of sequential patterns generated in the first stage for the large size dataset

min_sup (%) Class 1 Class 2 Class 3 Class 4 Class 5 Total

Without time-interval
consideration (PrefixSpan
algorithm)

20 104.50 124.5 112.00 129.75 100.00 570.75

25 72.25 84.00 74.00 84.50 68.50 383.25

30 40.25 48.25 47.25 51.75 40.25 227.75

35 21.75 30.00 29.00 31.25 23.50 135.50

40 16.75 19.00 17.00 20.25 15.00 88.00

With time-interval
consideration (I-PrefixSpan
algorithm)

20 118.00 156.5 83.75 77.25 75.00 510.50

25 85.25 101.00 58.25 61.00 53.25 358.75

30 56.75 61.50 38.25 43.75 31.00 231.25

35 39.50 41.75 23.00 26.25 22.75 153.25

40 32.50 32.00 18.25 16.25 18.25 117.25

number of patterns generated by I-PrefixSpan algorithm is less than the one by PrefixSpan
algorithm when min_sup is less than 30 %.

In the second stage, for each class label, 75 sequences are randomly selected as training
data and 25 as testing data. Table 19 shows the classification accuracy of testing data for the
large size dataset under different min_sup values. The lowest accuracy happens when the
classification model without applying time interval and PSO optimization, while the highest
accuracy happens when the classification model applying time interval and PSO optimization.
Figure 11 shows the computational time for building Model 1 and Model 2 under different
min_sup values. It takes 42.42 s for building Model 1 and 37.16 s for Model 2 respectively
when min_sup is 20 %. However, when min_sup is 35 and 40 %, the computational time for
Model 2 is larger than the one for Model 1 since the number of patterns in Model 2 is larger
than the one in Model 1.

Based on the experiment results of three different size datasets, it is clear that the proposed
time-interval sequence classification method is superior to the method without time-interval
consideration. In addition, when PSO optimization is applied, the classification accuracies
of the three experiments improve significantly.
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Table 19 Classification accuracy of the testing data for the large size dataset

min_sup Model 1 without
optimization

Model 2 without
optimization

Model 1 with
optimization

Model 2 with optimization

20 91.80 93.60 95.00 96.60

25 91.80 92.80 95.00 96.20

30 90.60 92.40 95.20 96.40

35 87.60 91.80 94.00 95.60

40 86.20 90.40 93.40 94.60

Fig. 11 The computational time for building Model 1 and Model 2 for the large size dataset

5 Conclusions

The importance of behavioral study from the informatics perspective is receiving increasing
recognition. Behavior informatics, also known as behavior computing, aims at computing
methodologies and techniques for handling behavior modeling, representation, dynamics,
network analysis, impact analysis, and pattern analysis. When applying to customer relation-
ship management (CRM), classification, one of the most popular behavior prediction tools
in behavior informatics, can be used to build a customer behavior model and predict their
future behaviors through classifying database records into a number of predefined classes.
Although this behavior analysis tool can help business intelligence accumulate and enterprise
operation boost, two major problems are identified. First, most previous CRM classification
methods took demographic, RFM-type, or activity attributes as classification criteria and
seldom took temporal relationship among these attributes into account. Second, the time-
interval information between activities was not discussed in their classification frameworks
so that customer behaviors cannot be correctly classified.

Therefore, the contribution of this research in behavior informatics is to take customer
temporal behavior data, called time-interval sequences, as classification criteria and develop a
two-stage customer temporal behavior classification framework. In the first stage, time-inter-
val sequential patterns are discovered from customer temporal databases. The purpose of the
first stage is to obtain less but representative time-interval sequences (sequential patterns) so
that the computational speed of building a classifier in the second stage will be boosted. In the
second stage, a new similarity measure and evaluation approach for time-interval sequences
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was developed. Then, a time-interval sequence classifier optimized by the particle swam
optimization (PSO) algorithm is proposed to achieve high classification accuracy. With the
proposed classification framework, a new customer can be easily and accurately predicted as
one of previous known class based on his/her temporal behavior data. The comparison experi-
ments show that classification accuracy of the proposed sequence classifier with time-interval
consideration is much better than that without time-interval consideration.

Although the proposed time-interval sequence classification framework has been
successfully implemented and tested well in this research, some works can be improved
further. First, different time-interval sequence similarity measurements can be tried. For
example, the editing distance between two sequences is computed through the dynamic pro-
gramming algorithm in this study. It is suggested that variant string matching algorithms or
strategies can be studied so that their influences can be revealed. Second, different optimi-
zation methods such as neural networks and genetic algorithms can be employed to obtain
the optimized weights in the classifier. Finally, the developed time-interval sequence clas-
sification framework can be applied not only in CRM applications but also in stock market
prediction, medical disease prediction, and anomaly manufacturing process detection.
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