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Abstract There are ongoing efforts to provide declarative formalisms of integrity
constraints over RDF/S data. In this context, addressing the evolution of RDF/S knowledge
bases while respecting associated constraints is a challenging issue, yet to receive a formal
treatment. We provide a theoretical framework for dealing with both schema and data change
requests. We define the notion of a rational change operator as one that satisfies the belief revi-
sion principles of Success, Validity and Minimal Change. The semantics of such an operator
are subject to customization, by tuning the properties that a rational change should adhere
to. We prove some interesting theoretical results and propose a general-purpose algorithm
for implementing rational change operators in knowledge bases with integrity constraints,
which allows us to handle uniformly any possible change request in a provably rational and
consistent manner. Then, we apply our framework to a well-studied RDF/S variant, for which
we suggest a specific notion of minimality. For efficiency purposes, we also describe special-
ized versions of the general evolution algorithm for the RDF/S case, which provably have
the same semantics as the general-purpose one for a limited set of (useful in practice) types
of change requests.
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1 Introduction

Recently, we have been witnessing an explosion on the number and size of curated knowl-
edge bases (KBs),1 published in RDF/S [10,47] in the context of the W3C Linked Open
Data Initiative.2 Several works [11,12,22,43,49,55,60] have acknowledged the need for
introducing integrity constraints in KBs (and RDF/S KBs in particular). This is motivated
by the ongoing discussion about the rule level of the Semantic Web [22], as well as by the
need to support various applications, such as semantic interoperability [43], the integration
of ontologies with relational databases [49,60], query optimization [55] and efficient query
answering [11,12].

Given that RDF/S does not impose any constraints on the data, any application-specific
constraints (e.g., functional properties) or semantics (e.g., acyclicity in subsumptions) can
only be captured using declarative formalisms for representing constraints on top of RDF/S
data. In this paper, we will use the term RDF/S KB to denote possibly interlinked and popu-
lated RDF/S ontologies (and their instance data) with associated integrity constraints.

RDF/S KBs are often subject to change for various reasons, including changes to the
modeled world, new information on the domain (e.g., due to extracted metadata from
text [32]), newly-gained access to information previously unknown or classified (e.g., due to
entity resolution or disambiguation [51]), and other eventualities [28,57,61]. To address this
problem, we propose a change framework that supports arbitrarily complex change requests
in RDF/S KBs, as well as customizable semantics for the change operator. We consider
both schema change requests (affecting the schema part of the RDF/S KB, i.e., classes and
properties) and data change requests (affecting the data part, i.e., individuals), as well as
combinations of the two. Note that the problem of determining the result of a change opera-
tion is complicated by the constraints associated with RDF/S KBs, because the result should
be valid, i.e., it should satisfy the associated validity model, represented by the integrity
constraints.

Our approach is driven by ideas of the belief revision literature [31]. In particular, we adopt
the principles of Success (a change request must be implemented if possible) and Validity
(the result should satisfy the validity model). To apply a given change request to an RDF/S
KB, we first check whether a direct application would result to a valid KB. For example,
if the integrity constraints state that the class subsumption hierarchy must be acyclic, then
the addition of a class subsumption causing a cycle would result to an invalidity. In such a
case, additional changes (called side-effects) should be applied on top of the original change
request, to enforce validity; in our example, the cycle could be broken by removing one of the
subsumptions causing it. In most cases, there are various alternatives for the side-effects to
be used, so a selection mechanism is necessary to determine the best (i.e., preferred) option;
such a mechanism should implement the Principle of Minimal Change [31], which states that
a change operation should have the minimal possible impact upon an RDF/S KB (under some
application-specific notion of minimality). Any change operator respecting these principles
will be called rational.

As RDF/S KBs are usually backended by relational databases, we will use the relational
model as an abstraction to formalize KBs and integrity constraints. In particular, we consider
DED constraints [20] (disjunctive embedded dependencies), which can capture several inter-
esting types of constraints, including constraints mainly used in the relational context, such
as primary key and foreign key constraints (used, e.g., in [43]), and constraints used in the

1 http://www.w3.org/wiki/DataSetRDFDumps.
2 http://linkeddata.org/.
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RDF/S and ontological context, such as acyclicity and transitivity constraints (as in [55]) and
cardinality constraints (used in [49]). In addition, DEDs can be used to detect and resolve
invalidities efficiently, using only syntactical manipulations which avoid the need to perform
standard (and inefficient) reasoning. Our mechanism for selecting the preferred (minimal)
side-effects is modeled as a user-defined ordering between the various solutions; as a result,
it can be freely defined and customized depending on the needs of the application at hand.
Using these abstractions, we provide a general framework for changing a KB in the presence
of integrity constraints; our approach will be initially described using the general abstraction
and then we will show how these ideas can be applied to RDF/S.

In addition, we describe a general-purpose algorithm which, given a customization (i.e., a
specific set of integrity constraints and selection mechanism), implements a rational change
operator for the given setting. The algorithm uses a recursive process. In each step of the
recursion one violated integrity constraint is selected, and we determine all the possible ways
to resolve this violation. Each resolution option may have unforeseen implications, so the
resolution that will lead to the most preferable overall result (set of side-effects) cannot be,
in general, determined a priori. Therefore, we have to consider each of the different options,
as side-effects, in alternative recursive branches. Then, another violated integrity constraint
is selected (possibly different for each branch) and the process is repeated. At the end of the
recursion, there will be no violated constraints, and the accumulated side-effects (one set per
recursion branch) are compared using the selection mechanism; the preferred one is singled
out and returned. Due to its generality, this algorithm is NP-hard even for the RDF/S case;
for this reason, we also develop efficient specializations of the general-purpose algorithm,
which exhibit the same behavior and semantics, but are applicable only for a specific setting.

This paper is structured as follows: in Sect. 2 we present an example that helps identifying
the main challenges associated with the problem we consider; this example will be used
for illustration purposes throughout the paper. In Sect. 3, we provide a general modeling of
the problem of changing KBs in the presence of integrity constraints. In Sects. 4, 5, 6, we
formalize the three guiding principles of this work (Success, Validity and Minimal Change,
respectively), as well as the validity model and the selection mechanism. In Sect. 7, we provide
an algebraic viewpoint for our framework, by defining rational change operators and prov-
ing that each different parameterization (validity model and selection mechanism) defines
uniquely a rational change operator. In Sect. 8, we describe the general algorithm that can be
used to implement a rational change operator and show its correctness. Section 9 shows how
the abstract ideas of the previous sections can be applied to the case of changes upon RDF/S
KBs, and Sect. 10 describes efficient algorithms that specialize the general-purpose one to
implement a rational change operator for the RDF/S setting. Section 11 provides a summary
of related work, whereas Sect. 12 concludes the paper. Finally, we include an Appendix con-
taining the proofs of all the formal results appearing in the paper. This paper is an extended
and highly revised version of [40]; additional contributions include a better formalization
and proofs, revised algorithms, more complete comparison to related work, more detailed
description of the special-purpose algorithms and a number of complexity results.

2 Motivating example

As explained above, RDF/S KBs are backended by relational databases, so we will ab-
stract and formalize our framework for RDF/S KB evolution using relational concepts. For
illustration purposes, we will use throughout the paper the example of Table 1, which shows

123



156 G. Flouris et al.

Table 1 Motivating example

a simple relational database with 4 tables, indicating papers that are published in journals, as
well as the papers’ citations.

Let us suppose that we would like to impose some constraints on the above schema, which
are formally expressed as shown below:

– σ1 = ∀x, y Published I n(x, y) → Paper(x)

– σ2 = ∀x, y Published I n(x, y) → Journal(y)

– σ3 = ∀x, yCites(x, y) → Paper(x)

– σ4 = ∀x, yCites(x, y) → Paper(y)

– σ5 = ∀x Paper(x) → ∃y Published I n(x, y)

– σ6 = ∀x, y, z Published I n(x, y) ∧ Published I n(x, z) → (y = z)
– σ7 = ∀x Paper(x) → ∃y(Cites(x, y) ∧ (x �= y))

The intuitive meaning of these constraints is that papers are published in journals (σ1),
and papers cite papers (σ2). Each paper must be published (σ5), but the same paper cannot
be published to two different journals (σ6). Finally, each paper must cite at least one other
paper (σ7).

Let us now suppose that a user notices that Cool_Paper is not actually published in
Cool_Journal, and issues an update request to delete Published I n(Cool_Paper, Cool_
Journal). If we go ahead and implement this change, we notice that σ5 will be violated,
because Cool_Paper will not be associated to any journal via the Published I n relationship
any more. This is not acceptable, per the Principle of Validity; on the other hand, the Principle
of Success forces us to implement this change, as it is the user’s desire to have the specific
tuple removed. Our only way out of the deadlock is to implement other changes, in addition
to the one explicitly requested by the user, in order to resolve the constraint violation. These
changes are called side-effects. In this particular example, we have two options:

1. To decide that Cool_Paper is actually published in some other journal, and introduce
a new tuple, in this case Published I n(Cool_Paper, K AI S). Further checks would
determine that no other constraint is violated and the process can stop, having as side-
effect only the addition of the above tuple.

2. To decide that Cool_Paper is an erroneous record (i.e., that Cool_Paper is not a paper
at all) and must be deleted. In this case, deleting the tuple Paper(Cool_Paper) causes
further problems, namely that all the tuples in Cites that involve Cool_Paper must be
deleted (otherwise, σ3, σ4 will be violated). Continuing recursively, we realize that the
deletion of Cites(DB_Paper, Cool_Paper) would further cause σ7 to be violated,
because now DB_Paper does not cite any other paper, causing further side-effects,
which can be resolved as above.
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In the above example, it makes sense to follow the first solution, as it causes a much
smaller set of side-effects; this is in accordance to the Principle of Minimal Change.

Note that the above problem could be resolved via user interaction, i.e., by informing
the user about the violation that his change is about to cause and asking him to resolve it
manually; this is the approach usually followed by ontology editors and other interactive
tools [42,58]. However, this could quickly lead to user frustration, as well as poor update
results, especially in case of complex datasets and/or constraints where the user is unable to
understand or predict the full ramifications of his choices.

In the following sections, we will elaborate in more details the above process, and for-
malize our approach for determining the change result.

3 Problem abstraction

3.1 Knowledge bases and change requests

As explained above, we will use the relational model as an abstraction mechanism for our
framework. Thus, knowledge will be expressed using expressions of the form p(�a), where
p is a predicate symbol and �a is a vector of constants (a1, . . . , an); we will call these expres-
sions ground facts. Expressions of the form ¬p(�a) will be called negated ground facts. For
simplicity of notation, we will often use the symbols g,¬g to denote (negated) ground facts.

A Knowledge Base (KB) is a finite set of positive ground facts. Under the relational nota-
tion, the KB of the example of Sect. 2 is: K = {Paper(DB_Paper), Paper(RDF_Paper),
Paper(Cool_Paper), Published I n(DB_Paper, K AI S), Published I n(RDF_Paper,
K AI S), Published I n(Cool_Paper, Cool_Journal), Journal(K AI S), Journal(Cool_
Journal), Cites(DB_Paper, Cool_Paper), Cites(RDF_Paper, DB_Paper), Cites
(Cool_Paper, R DF_Paper)}.

Per the standard relational semantics, for a KB K and a ground fact g, it holds that
K � g iff g ∈ K. Thus, in the above example we have: K � Journal(K AI S) and K �

Cites(DB_Paper, RDF_Paper). This is in accordance with the closed world semantics
adopted by relational databases, but also by standard RDF/S query languages [54]. The
semantics can be easily extended to logical formulas, e.g., K � g → g′ iff g /∈ K or g′ ∈ K.
For a set of formulas �, K � � iff K � φ for all φ ∈ �.

A change request C is a request to add and/or remove information (ground facts) to/from
the KB and will be modeled as a finite set of (possibly negated) ground facts. Positive
ground facts correspond to additions, whereas negated ones correspond to deletions; for
example C = {g1, g2,¬g3} is a request to add g1, g2 and remove g3. In the motivating
example, the request to remove Published I n(Cool_Paper, Cool_Journal) is modeled
as: C = {¬Published I n(Cool_Paper, Cool_Journal)}.
3.2 Integrity constraints and change operators

Integrity constraints will be represented using DEDs [20], in particular the slightly richer
class DE D �=, which also supports inequality axioms. Formulas in DE D �= are of the form
∀�x p̂(�x) → ∨i=1,...,n∃ �yi q̂i (�x, �yi ), where �x, �yi are tuples of variables and p̂(�x), q̂i ( �yi ) are
conjunctions of ground facts and (in)equality atoms of the form (w = w′), (w �= w′), where
w,w′ are variables or constants (note that p̂ may be the empty conjunction).

The class of constraints DE D �= is expressive enough for capturing several types
of constraints, including foreign key constraints (see, e.g., σ5 in Sect. 2), primary key
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constraints (e.g., σ6), inclusion dependencies (e.g., σ1, σ2, σ3, σ4), transitive, symmetric or
acyclic relations, cardinality constraints and others [20]; note that this covers the needs
that have appeared in the related literature in both the ontological and the relational setting
(e.g., [1,2,11,43,49,55,60]) as well as the needs of our RDF/S modelling (see Sect. 9.3).
Moreover, DEDs will prove suitable for constructing a convenient mechanism for detecting
and repairing invalidities.

A validity model is a finite set of DED constraints � = {σ1, . . . , σn}. Given a constraint
σ and an assignment of the variables in �x to constants �a, we define the grounded in-
stance of (or simply instance of ) σ with respect to �a (denoted by σ(�a)), to be the for-
mula that is produced by replacing all variables from �x in σ by their corresponding
assignment in �a. Returning to our motivating example, σ3(Cool_Paper, RDF_Paper) =
Cites(Cool_Paper, RDF_Paper) → Paper(Cool_Paper). As we will see later, the
detection and resolution of violations will be based on constraint instances.

Regarding the instances of constraints that contain (in)equality axioms, a special note is
necessary. In this work, we employ the unique name assumption, which means that different
constants correspond (by default) to different real-world entities. This assumption is suitable
for the RDF/S context, where different URIs correspond to different resources (same for
literals). This assumption means that, given two different constants a1, a2, the (in)equality
axiom a1 = a2 (a1 �= a2) always evaluates to f alse (true), whereas a1 = a1 (a1 �= a1)
obviously evaluates to true ( f alse), respectively.

Thanks to this assumption, equality axioms can always be eliminated from constraint
instances. For example, σ6(Cool_Paper, K AI S, Cool_Journal) = Published I n(Cool_
Paper, K AI S) ∧ Published I n(Cool_Paper, Cool_Journal) → f alse, because K AI S
= Cool_Journal evaluates to false; thus, σ6(Cool_Paper, K AI S, Cool_Journal)
is equivalent to ¬Published I n(Cool_Paper, K AI S)∨ ¬Published I n(Cool_Paper,
Cool_Journal). On the other hand, σ6(Cool_Paper, K AI S, K AI S) = true, because
K AI S = K AI S evaluates to false.

This is not entirely true for inequality axioms: we can eliminate the inequality axioms
that involve universally quantified variables and/or constants, but not those that involve exis-
tentially quantified variables. For example, σ7(Cool_Paper) = Paper(Cool_Paper) →
∃y(Cites(Cool_Paper, y) ∧ (Cool_Paper �= y)).

We say that an RDF/S KB K satisfies the (instance of the) constraint σ (σ(�a)), iff K � σ

(K � σ(�a)). Similarly, K satisfies a validity model � = {σ1, . . . , σn} (denoted by K � �) iff
K � σi for i = 1, . . . , n. A constraint instance (or constraint, or validity model) is violated
by a KB K iff it is not satisfied. A KB that satisfies a validity model � is called a valid KB
with respect to �. It is trivial to note that, for a KB K, K � σ iff K � σ(�a) for all �a; similarly,
K � � iff K � σ(�a) for all σ ∈ � and �a.

A change operator • is an operator that takes in the input a KB and a change request and
returns a new KB. In this work we are interested in rational change operators, which satisfy
the principles of Success, Validity and Minimal Change, introduced in the next sections.

4 Principle of success

The Principle of Success informally states that the change request should be implemented.
Thus, given a change request C = {g1, . . . , gn,¬g′

1, . . . ,¬g′
m} and a KB K, a change oper-

ator • respects the Principle of Success iff gi ∈ K • C, g′
j /∈ K • C for all i = 1, . . . , n, j =

1, . . . , m. This condition can be more compactly (and equivalently) formulated as: K•C � C.
Obviously, the above condition cannot be satisfied if the change request requires both the
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addition and the deletion of the same ground fact, i.e., if g,¬g ∈ C, so we restrict our atten-
tion to change requests for which this does not hold. It is easy to devise operators that respect
the Principle of Success. The following operator will be of special interest for the following:

Definition 4.1 The raw application of a change request C upon a KB K (denoted by K + C)
is defined as: K + C = (K ∪ {g|g ∈ C}) \ {g|¬g ∈ C}.

As an example, taking the KB K and change request C of Sect. 2 (see Sect. 3.1 for
their representation using ground facts), we get: K1 = K + C = {Paper(DB_Paper),
Paper(R DF_Paper), Paper(Cool_Paper), Published I n (DB_Paper, K AI S),
Published I n(R DF_Paper, K AI S), Journal(K AI S), Journal(Cool_Journal), Cites
(DB_Paper, Cool_Paper), Cites(RDF_Paper, DB_Paper), Cites(Cool_Paper,
RDF_Paper)}.

It is trivial to show that the operator + respects the Principle of Success. In fact, the
raw application is the straightforward way to apply a change request when no integrity con-
straints are present. However, in the case of associated constraints, this naive way of apply-
ing a change request gives us no guarantees that the result will be valid (e.g., K1 violates
σ5(Cool_Paper)). In the next section, we will refine + to satisfy the Principle of Validity
as well.

5 Principle of validity

The Principle of Validity states that the resulting KB should be valid. Formally, given a
validity model �, a KB K and a change request C, a change operator respects the Principle of
Validity iff K • C � �. To develop a change operator that satisfies the Principles of Success
and Validity, we will start with the raw application operator (+) and adapt it to take into
account the validity model. The underlying idea is that, given a KB K and a change request
C, we consider K1 = K + C; if K1 is not valid, we apply additional changes to it, called side-
effects, to make it valid. To do so, we must first identify each invalidity, i.e., each constraint
instance σ(�a) for which K1 � σ(�a), and determine how it can be resolved, i.e., identify the
possible side-effect(s) that could be applied upon K1 to guarantee that the result will satisfy
σ(�a). Repeating this process for all invalidities, we will eventually reach a KB Kn which is
valid. In the following subsections, we describe the above process in detail.

5.1 Detection and resolution of invalidities

The DED form of constraints and the semantics described in Sect. 3.1 allow both the easy
detection of an invalidity, and the determination of all possible options for repairing it, using
just syntactical manipulations over the violated constraint instances.

This can be easily seen with an example: let us take the constraint instanceσ1(Cool_Paper,
Cool_Journal) from Sect. 2. Then, per our semantics, given some KB K, K �
σ1(Cool_Paper, Cool_Journal) iff Published I n(Cool_Paper, Cool_Journal) /∈ K
or Paper(Cool_Paper) ∈ K. If K � σ1(Cool_Paper, Cool_Journal), then none of
the above conditions holds, so we can resolve this invalidity by making one or more
of those conditions true, i.e., by removing Published I n(Cool_Paper, Cool_Journal)
from K, or by adding Paper(Cool_Paper) to K. For the KB of Sect. 2, K �
σ1(Cool_Paper, Cool_Journal) because Paper(Cool_Paper) ∈ K.
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The idea can be easily extended to DEDs that contain existential quantifiers. For the
case of σ5(Cool_Paper), K � σ5(Cool_Paper) iff Paper(Cool_Paper) /∈ K or there
is some constant b such that Published I n(Cool_Paper, b) ∈ K. As before, if K �

σ5(Cool_Paper) then the invalidity can be resolved by removing Paper(Cool_Paper)

from K, or by adding Published I n(Cool_Paper, b) to K for some constant b. Note that
when existential quantifiers are involved, we have many potential side-effects, namely one
for each different constant b. In our motivating example, K � σ5(Cool_Paper) because
Published I n(Cool_Paper, Cool_Journal) ∈ K, but K1 � σ5(Cool_Paper) because
Paper(Cool_Paper) ∈ K1 and there is no tuple of the form Published I n(Cool_Paper, b)

∈ K1 for any b. The two resolution options described in Sect. 2 (adding Published I n(Cool_
Paper, K AI S) or removing Paper(Cool_Paper)), are in accordance to the options dis-
cussed above.

Finally, note that equality axioms in a constraint need not be considered, because they
are eliminated in each of its instances (see Sect. 3.2). Inequality axioms can appear inside
existential quantifiers, in which case they simply overrule some of the options. For exam-
ple, if σ7(Cool_Paper) is violated, we can remove Paper(Cool_Paper) or we can add
Cites(Cool_Paper, b) for some constant b �= Cool_Paper .

The above process determines the different potential side-effects that can be applied upon
a KB in order to resolve a particular invalidity. Each of these side-effects is a set S of addi-
tions or deletions of ground facts, so S will be formally modeled as a set of possibly negated
ground facts; note that this set is usually a singleton (e.g., in our examples it is always a
singleton), but in some cases (depending on the form of the constraint) it could contain more
than one additions/deletions.

We define the resolution set of a constraint instance σ(�a) (denoted by Res(σ (�a))) to
be the set of all Si that can be used to resolve a violation of the constraint instance.
These are easy to identify by the constraint’s syntax: we first transform the constraint in-
stance into its disjunctive normal form,3 and use each disjunct to form a Si , by putting all
conjuncts in said disjunct in Si . For example, Res(σ1(Cool_Paper, Cool_Journal)) =
{ {¬Published I n(Cool_Paper, Cool_Journal)}, {Paper(Cool_Paper)} }, because
σ1(Cool_Paper, Cool_Journal) can be written as: ¬Published I n(Cool_Paper, Cool_
Journal) ∨ Paper(Cool_Paper).

Based on the analysis above, it is easy to show the following propositions:4

Proposition 5.1 Consider a KB K and a constraint instance σ(�a). Then K � σ(�a) iff there
exists some S ∈ Res(σ (�a)) such that K � S.

Proposition 5.2 Consider a KB K and a constraint instance σ(�a). If K � σ(�a) then for
any S ∈ Res(σ (�a)) it holds that K + S � σ(�a). Moreover, this is the minimal way (with
respect to ⊆) to resolve this invalidity, i.e., for any S ′ such that K +S ′ � σ(�a), there is some
S ∈ Res(σ (�a)) such that for all (possibly negated) ground facts g ∈ S it holds that K � g
or g ∈ S ′.

Proposition 5.1 shows how to detect an invalidity. Proposition 5.2 shows how a detected
invalidity can be resolved, and verifies that our resolution method is both correct and com-
plete, in the sense that any other side-effects used to resolve a given invalidity would have to
include at least the side-effects in some S ∈ Res(σ (�a)) (except from the ground facts that
are already implied by K).

3 http://en.wikipedia.org/wiki/Disjunctive_normal_form.
4 Proofs for all propositions can be found in the Appendix.
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In practice, it makes sense to assume that the KB being changed is valid to begin with.
Under this assumption, any invalidities in K+C will be introduced due to the raw application
of C, so it limits the constraint instances that need to be considered for violation. In the exam-
ple of Sect. 2, the change request C = {¬Published I n(Cool_Paper, Cool_Journal)}
could only cause the violation of σ5(Cool_Paper), i.e., this is the only constraint instance
that needs to be checked for violation after the raw application of C. Formally:

Proposition 5.3 Consider a valid KB K, a change request C, and a constraint instance σ(�a).
If K + C � σ(�a), then there is some S ∈ Res(σ (�a)) and some (positive or negative) ground
fact g such that g ∈ C and ¬g ∈ S.

Note that the condition of Proposition 5.3 is necessary but not sufficient for a constraint
violation.

5.2 Refining raw application

Now the process outlined in the beginning of this section can be described as follows: given a
valid KB K and a change request C, we first compute K1 = K + C. Then, we select one con-
straint instance that is violated by the result (say σ(�a)) and one possible set of side-effects
that resolve it (say S ∈ Res(σ (�a))), and apply it on K1, to get K2 = K1 + S. Then we
repeat the process, selecting another violated constraint instance and a corresponding set of
side-effects, until reaching a valid KB, which is returned as the result.

There are certain things that need to be noted in the above process. First, we make the
assumption that K is valid, so as to use Proposition 5.3 and check a small number of constraint
instances for violation. Second, more than one violations can be caused by a single change
request, and side-effects applied in previous steps may also cause violations of their own.
Therefore, at each step, we should check the constraints that are possibly violated by the
change request, as well as by all the side-effects that have so far been applied. This cascading
effect (side-effects causing side-effects of their own), may lead to complicated sequences of
side-effects and resolutions which are difficult to foresee in the general case.

Another important point is that the applied side-effects should not conflict with the
change request itself. In the example of Sect. 2, the violation of σ5(Cool_Paper) could
also be resolved by the addition of Published I n(Cool_Paper, Cool_Journal), and this
is also included in Res(σ5(Cool_Paper)); nevertheless, this option should be ignored,
because it directly contradicts the change request to remove Published I n(Cool_Paper,
Cool_Journal), so considering it would violate the Principle of Success. A similar comment
is that one should also not apply side-effects that conflict with previously applied side-effects,
as this could cause violations to previously resolved constraint instances, eventually leading
the process into an infinite loop.

Another problem with the refined raw application is that it does not specify the order in
which the violated constraint instances will be considered, nor a selection process for the
side-effects to apply (as there will usually be more than one options). The former issue will
be addressed in Sect. 8, where we will show that the presented process satisfies the required
principles, regardless of order. The latter issue is related to the Principle of Minimal Change
and will be resolved using a selection mechanism, to be described in Sect. 6.

One could devise change requests for which the above process cannot lead to any result. For
example, the change request:Cbad = {Published I n(DB_Paper, Cool_Journal),¬Paper
(DB_Paper)} specifies that DB_Paper was published in Cool_Journal, but, at the
same time, requires the deletion of DB_Paper . It is obvious that any operator that re-
spects the Principle of Success would lead to a result containing Published I n(DB_Paper,
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Cool_Journal), and not containing Paper(DB_Paper); such a result cannot respect the
Principle of Validity (as it does not satisfy σ1(DB_Paper, Cool_Journal)). The case stud-
ied in Sect. 4 where there is some ground fact g such that g,¬g ∈ C is a similar case. Change
requests with this property are called infeasible. Formally:

Definition 5.1 Consider a validity model �. A change request C is called feasible with
respect to � iff there is some valid KB K such that K � C. It is called infeasible otherwise.

6 Principle of minimal change

The Principle of Minimal Change informally states that the result of a change operation
should be as close as possible to the original KB. Thus, to formally define this principle, we
need to (a) define the notion of “distance” between KBs, and, (b) devise a way to “compare
distances”, in order to determine the preferred result. Given these tools, we can then modify
the process described in Sect. 5.2 so that it does not select the side-effects to apply during
each resolution randomly, but in such a way that the accumulated impact upon the KB is
minimal (according to the distance and the comparison method discussed). The following
subsections explain in detail these notions.

6.1 Deltas

The most straightforward way to determine the distance between KBs is using deltas, such
as those introduced in [7,21,53,62,64]. A delta is actually a description of the differences
between two KBs. In our context, we formalize deltas as sets of (possibly negated) ground
facts:

Definition 6.1 Consider two KBs K1, K2. We define the delta between K1, K2, denoted by
�(K1, K2) (or simply �, when K1, K2 are irrelevant, or obvious from the context) as follows:
�(K1, K2) = {g|g ∈ K2 \ K1} ∪ {¬g|g ∈ K1 \ K2}

It is trivial to see that �(K1, K2) = {g|K2 � g and K1 � g} ∪ {¬g|K2 � ¬g and K1 �

¬g} and that K1 + �(K1, K2) = K2. Thus, �(K1, K2) contains exactly the changes that
must be raw applied upon K1 to get K2. In this sense, �(K1, K2) captures accurately the
notion of distance.

6.2 Comparing deltas

Our next step is to find a way to compare deltas. Consider a KB K, a change request C,
and a set of deltas which represent the candidate sets of changes that could be applied to
respect the Principles of Success and Validity; the comparison is used to determine which
delta represents the minimal change, i.e., which of the candidate deltas is preferred for appli-
cation. To do this, we will use an ordering ≤K between deltas, with the intuitive meaning that
�1 ≤K �2 iff �1 represents a set of changes that are preferable to apply upon K, compared
to �2. Recall that this comparison is needed to allow us to make the optimal set of choices
for the side-effects to apply during the resolutions of the violated constraint instances. The
ordering depends on K; this is necessary, because some changes (ground facts) in a delta
may be considered more, or less, important, depending on the contents of the KB itself. For
example, in the RDF/S context, the removal of a class that is low in the class hierarchy may
be preferable than the removal of a class that is higher in the hierarchy (see also Sect. 9.4).
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Some properties need to be imposed on said ordering for it to be suitable as a selection
mechanism. First, we require it to be total, so that all deltas are comparable. Second, we
impose antisymmetry, to guarantee that there will not be more than a single minimum. Third,
we require the order to be wellfounded, i.e., that there is always a minimum. These three
properties together guarantee that any set of deltas has a single minimum, so we will always
be able to determine the most preferable delta out of a set of deltas.

The fourth required property is transitivity, dictated by the intuitive fact that if �1 is
preferred over �2, and �2 is preferred over �3, then �1 should be preferred over �3. Fifth,
we impose the monotonicity property, which intuitively states that adding ground facts to a
delta cannot make it most preferable, i.e., if �1 ⊆ �2 then �1 ≤K �2; this is dictated by
our intuition behind the Principle of Minimal Change.

Combining the above properties, we conclude that ≤K should be a well-order that satisfies
the monotonicity property; such orderings will be called change-generating:

Definition 6.2 Consider a KB K. An ordering ≤K is called change-generating iff for all
�1,�2,�3:

– Totality: �1 ≤K �2 or �2 ≤K �1.
– Antisymmetry: �1 ≤K �2 and �2 ≤K �1 implies �1 = �2.
– Wellfoundedness: for any non-empty set of deltas Z, there is some � ∈ Z such that

there is no �′ ∈ Z for which �′ <K �.
– Transitivity: �1 ≤K �2 and �2 ≤K �3 implies �1 ≤K �3.
– Monotonicity: �1 ⊆ �2 implies �1 ≤K �2.

Note that a simple cardinality-based comparison is not change-generating, because it is
not wellfounded. However, it is easy to show that a change-generating order can always
be defined; for example, we could use cardinality comparison, and apply some wellorder
in case of a tie (wellorders can always be defined, per the wellordering theorem5), e.g., by
assigning priorities on the addition/removal of tuples from certain relations. An example of
a change-generating ordering that is useful for the RDF/S context will appear in Sect. 9.4.

Now consider a set of deltas Z which are candidates for application upon a KB K in
response to a change request C; then, as explained above, a change-generating ordering ≤K
allows us to select the most preferable delta to apply upon K; such a delta will be denoted by
minK(Z). Similarly, a family of change-generating orderings �= {≤K |K: valid KB, ≤K:
change-generating} allows us to select the most preferable delta to apply upon each valid KB
and will be called a selection mechanism.

Note that the selection mechanism selects deltas, rather than resulting KBs; this is
reasonable, because the distance of two KBs K, K′ is determined by �(K, K′). However,
our ultimate goal is to select the KB whose delta (distance) from the original KB is min-
imal. For this reason, we will often abuse notation and write K1 ≤K K2 to denote that
�(K, K1) ≤K �(K, K2); similarly, for a set of KBs �, we write minK(�) to denote the
KB K0 for which �(K, K0) = minK({�(K, K′)|K′ ∈ �}).
6.3 Formalizing the principle of minimal change

The Principle of Minimal Change dictates that a change operator should select the KB which
is closest to the original KB, over all other potential results, i.e., results that satisfy other
conditions related to the change operator (in our case, the Principles of Success and Valid-
ity). So, given a KB K and a change request C, and supposing a set � of potential results, the
Principle of Minimal Change states that K • C = minK(�).

5 http://en.wikipedia.org/wiki/Well-ordering_theorem.
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To modify the process described in Sect. 5.2 to respect the Principle of Minimal Change,
we need to make sure that the resolution selected in each step will lead to the preferred delta.
Note that we require the delta as a whole to be preferred, not each resolution in isolation,
therefore a greedy strategy selecting the locally preferred resolution (i.e., the set of side-
effects S ∈ Res(σ (�a)) that is preferred according to �) would not work. Instead, we need to
consider all possible options independently to form the set of candidate deltas, Z, and then
select the preferred one (according to �). Details on this process will appear in Sect. 8.

7 Rational change operators

Rational change operators are those which satisfy the Principles of Success, Validity and
Minimal Change. Formally:

Definition 7.1 Consider a validity model � and a selection mechanism �. A change opera-
tor • will be called rational with respect to �, � iff for all valid KBs K and feasible change
requests C it holds that K • C = minK(�), where � = {K′|K′ � C, K′ � �}. Moreover,
whenever K is invalid or C is infeasible, it holds that K • C = K.

Note that infeasible change requests have been exempted from the requirement to satisfy
the principles. Also, the input KB is assumed to be valid (this is necessary to use Proposi-
tion 5.3). According to Definitions 5.1 and 6.2 a rational change operator always exists. In
addition, it is unique, because by the definition of �, there is a unique minimum:

Proposition 7.1 For any given validity model � and selection mechanism �, there is a
unique rational change operator.

A rational change operator cannot be easily defined in a declarative way, because one
needs to take into account all possible combinations of KBs and change requests, and all
possible invalidities that a change request could cause on any given KB. On the other hand,
Proposition 7.1 shows that each selection mechanism uniquely identifies a rational change
operator, so one could indirectly use this feature to define a rational change operator by
defining a selection mechanism. A procedural way to define rational change operators will
be explained in Sect. 8 below.

8 Algorithm

In this section, we will formalize and elaborate on the algorithm sketch provided in Sect. 6.3.
In a nutshell, we first raw apply C upon K, and check for constraint instance violations.
Then, for each such violation, σ(�a), we explore all possible resolutions, i.e., all different
S ∈ Res(σ (�a)). Each different resolution spawns a new recursive branch, and the above
process is repeated recursively. Eventually, a multitude of different sets of resolutions are
generated, each corresponding to a delta; we compare those deltas using �, and return the
preferred (minimal) one.

More specifically, the algorithm will be based on a recursive function, Change (see Algo-
rithm 1), which takes as input the set Crem of ground facts that remain to be applied to the
KB, a valid KB K0, and the most preferred delta (�pre f ) that has been calculated so far for
Crem, so as to stop exploring potential solutions if they are already less preferred than �pre f

(exploiting the monotonicity and transitivity properties of ≤K). The Change function returns
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Algorithm 1: Change Function (Change(Crem, K0,�pre f ))
1: if there is a ground fact g such that g, ¬g ∈ Crem or �pre f ≤K0 �(K0, K0 + Crem ) then
2: return �∞
3: end if
4: if K0 + Crem : valid then
5: return �(K0, K0 + Crem )

6: end if
7: Take a (possibly negated) ground fact g ∈ Crem such that there exists a constraint instance σ(�a) for

which ¬g ∈ S for some S ∈ Res(σ (�a)) and K0 + Crem � σ(�a)

8: if there is at least one S ′ ∈ Res(σ (�a)) such that S ′ �= S then
9: for all S ′ ∈ Res(σ (�a)), S ′ �= S do
10: �pre f := minK0 ({�pre f ,Change(Crem ∪ S ′,K0, �pre f )})
11: end for
12: else
13: return �∞
14: end if
15: return �pre f

the preferred set of ground facts that are required to apply Crem to K0; this set contains the
ground facts in Crem, plus all their side-effects, but does not contain any ground facts already
implied by K0. For implementation purposes, we assume a special delta, denoted by �∞,
which is used to mark unacceptable resolution branches and is assumed to be less preferable
than any other delta.

In the first call to Change, Crem is set equal to the original change request C, K0 is
the original KB K (and does not change between the recursive calls) and �pre f is set to
�∞, so as to allow any solution to constitute the first potentially preferred result; hence,
�pre f is either equal to �∞ (for as long as no complete solution has been found), or equal
to the most preferred of the complete solutions that have been found so far. So, the first
call (Change(C, K,�∞)) returns the preferred set of effects and side-effects (delta) for the
original change request upon K. Note that this call should be made through another proce-
dure that will check whether K is valid and will, upon return of Change, apply its output to
K (using raw application), unless the output is �∞ (denoting that the original update was
infeasible—see also Proposition 8.1). This procedure is simple and omitted.

Change relies on a recursive process. In line 1 we check whether it makes sense to con-
tinue exploring this recursive branch. If Crem is contradictory, then the previously selected
resolution options contradict each other, so the current resolution branch must be dropped.
Similarly, if the cost of applying Crem is larger than �pre f , then the current branch cannot
lead to a preferred solution, so it need not be explored further. In both cases, the branch is
rejected by returning �∞ (see line 2). If, on the other hand, K0 +Crem is valid (line 4), then a
solution has been reached, so the recursion stops, returning the effects and side-effects found
(�(K0, K0 + Crem)).

If none of the above is true, then there are still violations that need to be considered. One
of them is arbitrarily selected in line 7 (say σ(�a)); note how Proposition 5.3 is used here to
avoid checking all constraint instances. To resolve the given violation, we need to take one or
more S ′ ∈ Res(σ (�a)), different from S, i.e., different from the one that allowed us to identify
the violation and is part of Crem. If there are no such S ′, then we return �∞ in line 13 (this
can happen only when Res(σ (�a)) is a singleton). If such an S ′ exists, then it is added to our
side-effects. Given that we cannot know a priori which S ′ will lead to the preferred solution,
we consider them all separately: each S ′ is added to the current Crem, and a new instance of
Change (in effect, a new recursive subtree) is spawned to calculate the consequences of this
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choice, i.e., S ′ (lines 9-11). The returned delta of each alternative is compared with the best
that has been found so far (�pre f ), and the next S ′ is considered. Eventually, one branch will
return the preferred delta, which will be recursively propagated to the caller through line 15.

In all comparisons, any delta is preferable over �∞; if any two alternatives are equally
preferred, then they must be equal (antisymmetry). Upon termination, the output of the
algorithm (say �out) is the delta that should be raw applied upon K (to produce the result,
K + �out), unless �∞ is returned, in which case the original change is infeasible.

Example 8.1 Let us see how this algorithm would handle the example of Sect. 2. Initially,
Change will be called with parameters: Crem = {¬Published I n(Cool_Paper, Cool_
Journal)}, K0 = K and �pre f = �∞. The check of line 1 will fail, so the algorithm will
proceed to compute K0 +Crem (line 4); let’s denote this result by K1. As explained before, K1

is not valid because it violates σ5(Cool_Paper), so the check of line 4 will fail and line 7 will
identify this violation and set: g = ¬Published I n(Cool_Paper, Cool_Journal), σ (�a) =
σ5(Cool_Paper) and S = {Published I n(Cool_Paper, Cool_Journal)}. For the partic-
ular constraint instance it holds that: Res(σ5(Cool_Paper)) = {{¬Paper(Cool_Paper)},
{Published I n(Cool_Paper, K AI S)}, {Published I n(Cool_Paper, Cool_Journal)}.
Thus, the F O R loop of line 9 will iterate over the first two sets of side-effects (which
also correspond to the two options described in Sect. 2).

For the sake of this example, let’s assume thatS ′ = {Published I n(Cool_Paper, K AI S)}
is considered first. Then, line 10 will call the function: Change({¬Published I n (Cool_
Paper, Cool_Journal), Published I n(Cool_Paper, K AI S)}, K,�∞). In this new recur-
sive call, the check of line 1 is again false, but the check of line 4 is true, because no rule
is violated for the new KB, as Cool_Paper appears now to be published in some other
journal (K AI S). Thus, line 5 will return {¬Published I n(Cool_Paper, Cool_Journal),
Published I n(Cool_Paper, K AI S)}; this corresponds to a candidate full solution for the
set of side-effects to apply upon the original KB.

After the recursive call returns, the original Change function will execute line 10 and,
since �pre f = �∞, it will set �pre f = {¬Published I n(Cool_Paper, Cool_Journal),
Published I n(Cool_Paper, K AI S)}. Then, the second S ′ will be considered, namely S ′ =
{¬Paper(Cool_Paper)}, spawning a new recursive call: Change({¬Published I n(Cool_
Paper , Cool_Journal),¬Paper(Cool_Paper)}, K,�pre f ).

In this new recursive call, line 1 will determine whether {¬Published I n(Cool_Paper ,
Cool_Journal), Published I n(Cool_Paper, K AI S)} ≤ K0 {¬Published I n(Cool_
Paper , Cool_Journal),¬Paper(Cool_Paper)}. This, of course, depends on the definition
of ≤K0 , so let’s assume that the comparison is based on the cardinality of the deltas (smaller
deltas are preferred); in case of equal cardinality, one prefers the deltas that remove (rather
than add) tuples; in case of a further tie, the actual tuples are considered, taking into account
both the relations and the constants involved (details are irrelevant and omitted). For the
particular selection mechanism, the check fails, so we proceed with line 4, which identifies
an invalidity. In particular, line 7 will identify that σ3(Cool_Paper, RDF_Paper) is vio-
lated because for g = ¬Paper(Cool_Paper), S = {Paper(Cool_Paper)} the conditions
of line 7 hold.

The only S ′ ∈ Res(σ3(Cool_Paper, RDF_Paper) for which S �= S ′ is S ′ = {¬Cites
(Cool_Paper, R DF_Paper)}. Thus, a new recursive call will be spawned, namely:
Change ({¬Published I n(Cool_Paper, Cool_Journal),¬Paper(Cool_Paper),¬Cites
(Cool_Paper, R DF_Paper)}, K,�pre f ). However, for this recursive call, the check of
line 1 will succeed because �pre f = {¬Published I n(Cool_Paper, Cool_Journal),
Published I n(Cool_Paper, K AI S)}≤K0{¬Published I n(Cool_Paper, Cool_Journal),
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¬Paper(Cool_Paper), ¬Cites(Cool_Paper, RDF_Paper)}, as the former has cardinal-
ity 2, whereas the latter has cardinality 3. This will force the final recursive call to return �∞.

Line 10 of the old recursive call will now compare �∞ with �pre f and keep �pre f to
return to the original call, which, in turn will also keep �pre f in its own comparison of
line 10, eventually returning it. Thus, the result of said change operation is K + �pre f , i.e.,
{Paper(DB_Paper), Paper(RDF_Paper), Paper(Cool_Paper), Published I n(DB_
Paper, K AI S), Published I n (RDF_Paper, K AI S), Published I n(Cool_Paper,
K AI S), Journal(K AI S), Journal(Cool_Journal), Cites(DB_Paper, Cool_Paper),
Cites(R DF_Paper, DB_Paper), Cites(Cool_Paper, RDF_Paper)}.

It can be shown that the Change function described in Algorithm 1 implements a rational
change operator:

Proposition 8.1 Consider a validity model �, a selection mechanism �, and the correspond-
ing rational change operator •. Consider also some valid KB K and a change request C.
Suppose that the call Change(C, K,�∞) terminates with output �out. If C: feasible, then
�out �= �∞ and K + �out = K • C. If C:infeasible then �out = �∞.

Note that the Change function (Algorithm 1) does not specify the order in which the rules
are considered in line 7 (see also the related discussion in Sect. 5.2); Proposition 8.1 shows
that this is not an issue, as the algorithm will report the correct result, regardless of the order.

The computational properties (termination and complexity) of Algorithm 1 depend on the
actual validity model and selection mechanism employed. Since these are not specified in
the above general discussion, one cannot predict, e.g., the complexity of comparing deltas
in lines 1 and 10, which could range to anything from constant to undecidable, depending
on the actual selection mechanism. Similarly, the validity checking in lines 4, 7 depends on
the actual constraints considered; an extensive complexity analysis for this problem under
various assumptions appears in [1,15]. In the next sections, we will confine ourselves to
the RDF/S context and show how the presented framework can be applied to RDF/S KB
evolution, as well as the related termination results.

9 Tailoring the framework to RDF/S

To apply our framework to a given evolution context (such as RDF/S KB evolution), we need
to:

– determine the predicates and constants that will be used to model the information (ground
facts) in the corresponding KBs;

– define, using DE D �= constraints, the validity model that expresses the constraints/seman-
tics of said context;

– define a selection mechanism that captures the intuition of the knowledge engineer regard-
ing the preferred delta to apply upon a KB for the specific context.

In this section, we will perform this exercise for the RDF/S context under the semantics
proposed in [55]; a similar approach can be used for other contexts (including other RDF/S
formalizations).

9.1 An introduction to RDF/S

RDF [47] uses resources to represent real-world entities. Triples of the form (subject, predi-
cate, object) are used to describe resources. The set U × U × (U ∪ L) is the set of all triples,
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where U, L are two disjoint and infinite sets denoting the URIs (identifiers for resources) and
literals, respectively.

RDFS [10] introduces typing and inference semantics to RDF. Typing semantics deter-
mines whether a resource is a particular object in the real world (i.e., it is an individual), or it
is a collection of other resources (i.e., it is a class) or it is a binary relation between resources
(i.e., it is a property) [55]. Inference semantics allows us to infer knowledge that is not explicit
in the KB (e.g., implicit subsumption relations) [55]. In addition, RDFS introduces special
URIs (e.g., rdfs:subClassOf ), which allow triples to describe, for example, subsumption and
instantiation relationships, or to determine the domain and range of a property. For more
details on typing, inference, and the semantics of the various RDFS constructs, see [10,55].

The term RDF/S refers to RDF that is enhanced with RDFS semantics. An RDF/S KB K
is defined as a finite set of RDF triples that adhere to the semantics of RDFS.

For simplicity, we focus on the semantical information of RDF/S, so certain features like
bags, lists, comments, reification, blank nodes etc are not considered in this version of the
work. Moreover, metaclasses (collections of classes) and metaproperties (collections of prop-
erties) [55] can be easily handled, and are omitted for simplicity. The ideas presented in this
paper can easily be extended to include these features (see also [39]).

9.2 Modeling RDF/S KBs using ground facts

The semantical information contained in RDF/S triples can easily be mapped to ground facts.
The basic idea is that each triple type is associated with some predicate that models this type
of information, whereas the constants used are the URIs and literals (U∪L). We define the set
Sp ⊂ U which contains all the RDF/S URIs which have special semantics, such as: rdf :type,
rdfs:Class, rdf :Property, rdfs:Resource, rdfs:subClassOf , rdfs:subPropertyOf , rdfs:domain,
rdfs:range, etc. Constants in Sp will be called special URIs, whereas URIs in U \ Sp will be
called custom URIs.

The used predicates are those shown in Table 2. The predicates Cl, Pr, I nd are used to
determine the type of a given custom URI. The rest of the predicates (C Sub, P Sub, Dom,

Rng, C I, P I ) are used to determine various relationships between URIs and/or literals (sub-
sumption, domain, instantiation etc), as described in the table.

Table 3 shows how the different RDF/S triples are associated with particular ground facts
and allows the transformation of a set of triples into a set of ground facts (and vice-versa).

Table 2 Predicates for RDF/S modeling

Predicate Intuitive meaning

Cl(A) A is a custom URI, and represents a class

Pr(A) A is a custom URI, and represents a property

I nd(A) A is a custom URI, and represents an individual

C Sub(A, B) A is a subclass of B

P Sub(A, B) A is a subproperty of B

Dom(A, B) B is the domain of property A

Rng(A, B) B is the range of property A

C I (A, B) A is an instance of class B

P I (A, B, C) A has property C with value B (i.e., the pair (A, B) is an instance of property C)
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Table 3 Association of RDF/S triples with ground facts

RDF/S triple Ground fact

(A, rdf :type, rdfs:Class) Cl(A)

(A, rdf :type, rdf :Property) Pr(A)

(A, rdf :type, rdfs:Resource) I nd(A)

(A, rdf :type, B) C I (A, B)

(A, rdfs:subClassOf , rdfs:Resource) C Sub(A, rdfs:Resource)

(A, rdfs:subClassOf , B) C Sub(A, B)

(A, rdfs:subPropertyOf , B) P Sub(A, B)

(A, rdfs:domain, rdfs:Resource) Dom(A, rdfs:Resource)

(A, rdfs:domain, B) Dom(A, B)

(A, rdfs:range, rdfs:Resource) Rng(A, rdfs:Resource)

(A, rdfs:range, rdfs:Literal) Rng(A, rdfs:Literal)

(A, rdfs:range, B) Rng(A, B)

(A, B, C) P I (A, C, B)

Note that the constants A, B that appear in Table 3 are assumed to be custom URIs, whereas
C (that appears in the last row) may be a custom URI or a literal. These associations follow the
semantics described in [55]. The typing semantics of RDF/S is determined by the three special
RDF/S resources, rdfs:Class, rdf :Property, rdfs:Resource, as shown in the first three rows of
Table 3. The other triple types express factual information, like class/property subsumption,
the specification of the domain/range of a property, and class/property instantiation. In the
last row, B in triple (A, B, C) is the property which is being instantiated by the pair (A, C)

(associated with the ground fact P I (A, C, B)).
Using Table 3, a set of triples can easily be transformed into a set of ground facts (and

vice-versa). The only thing that should be noted is that the originally provided triples may
be incomplete, in the sense that certain implicit information may be missing. For example,
seeing the triple (A, rdf :type, rdfs:Class) we conclude that A is a class and add Cl(A),
according to Table 3; however, all classes are subclasses of rdfs:Resource, but this fact is often
omitted (i.e., the triple (A, rdfs:subClassOf , rdfs:Resource) may not be in the RDF/S KB,
so C Sub(A, rdfs:Resource) will not be added), even though it is actually an indispensable
part of the knowledge that A is a class. Similarly, implicit (transitive) instantiations or sub-
sumptions are often omitted. Identifying this missing information and adding it to the RDF/S
KB can be done in a post-processing phase that would use rules to identify which triples (or
ground facts) follow from other triples (or ground facts). As this is a purely technical process
that poses no research challenges, it is omitted.

Note that we could alternatively use logical propositions to express certain triples; for
example, class subsumption between two classes A, B is often captured using a formula of
the form ∀x A(x) → B(x). This approach is often called schema-aware because the relations
used for the representation are the classes and properties of the schema.

On the other hand, our approach is schema-agnostic, because the same relations are used
for the representation of any RDF/S KB, regardless of the classes or properties appearing in
it. The schema-agnostic approach is more adequate for our purposes because it allows us to
capture assertions of the form “A is a class”, and, consequently, support operations such as
the addition and removal of classes, properties etc [26].
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9.3 An RDF/S validity model

As already mentioned, this work uses the RDF/S model which was proposed in [55] in an
effort to provide a group of sound and complete algorithms for RDF/S query containment and
minimization. This model enforces a clear role distinction between types (classes, properties,
individuals), requires explicitly specified and unique domains/ranges for properties, no cycles
in the subsumptions, while property subsumption and instantiation respects corresponding
domain/range subsumption/instantiation relationships. Similar semantics for RDF/S have
also been recognized and suggested in [52] in an effort to provide compatibility between
RDF/S and OWL DL.

Table 4 shows the integrity constraints that we impose on RDF/S KBs to capture the
semantics of RDF/S (e.g., R10.1 ensures transitivity of class subsumption), as well as the
restrictions imposed by [55] (e.g., R13 guarantees that the domain of a property is unique).
For simplicity, Table 4 uses the additional predicates U RI, Lit to represent custom URIs and
literals, respectively, i.e., U RI (x) (Lit (x)) is true iff x ∈ U \ Sp (x ∈ L); U RI (x), Lit (x)

should be replaced by true or f alse depending on the value of x in each constraint instance.
In Table 4, constraints R1.1 − R7.3 determine the required types for the constants that

appear in each of the predicates. Constraints R8.1 − R8.3 guarantee the role distinction
between different custom URIs, i.e., that classes, properties and individuals are disjoint. The
special URI rdfs:Resource is the root of the class hierarchy, so all individuals are instantiated
under it, and all classes are subsumed by it (R9.1, R9.2). The constraints R10.1 − R11.2
guarantee that C Sub, P Sub are transitive and irreflexive; the former property is imposed by
RDFS, whereas the latter stems from the requirement expressed in [55] for acyclic hierar-
chies. Note that ⊥, appearing in R10.2, R11.2 is the logical falsehood; to transform those
constraints to the standard DE D �= form, we can replace ⊥ with, e.g., (x �= x). The exis-
tence and uniqueness of the domain/range of a property is imposed through R12 − R14.
Inheritance of instantiation is imposed using R15, R16. Finally, the domain and range of a
property should be respected by subsumed properties and by property instances, as described
by R17.1 − R18.2.

9.4 An RDF/S selection mechanism

In this subsection, we describe the third and final step towards applying our evolution
approach, which is to propose a selection mechanism suitable for RDF/S. To do so, we
consider an ordering over predicates and define that the preferred delta is the one that con-
tains less changes involving the least preferable predicates; in case of a tie, a further ordering
over constants (URIs and literals) allows us to define an ordering over ground facts that
have the same predicate and break the tie (to satisfy the requirement for the ordering to be
wellfounded).

Even though the assumptions and intuitions underlying our proposal are reasonable for
most applications (and, in particular, for the evolution of curated RDF/S KBs), we understand
that there may be applications where it fares poorly; in fact, we argue that no single selection
mechanism is suitable for all evolution contexts/applications, because it should reflect the
application’s peculiarities. Therefore, our proposal should be viewed as a general guideline,
and as an example of how the intuition regarding a selection mechanism can be formalized
and used to define a rational change operator.

The basic idea is that certain changes on the KB are more disruptive than others. For
example, deleting a class is a more important change than deleting a class subsumption rela-
tionship, so side-effects containing ground facts of the form ¬Cl(A) are less preferable than
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Table 4 Integrity constraints for RDF/S

Integrity constraint Intuitive meaning

R1.1: ∀xCl(x) → U RI (x) Allowable constants for Cl, Pr, I nd

R1.2: ∀x Pr(x) → U RI (x)

R1.3: ∀x I nd(x) → U RI (x)

R2.1: ∀x, yC Sub(x, y) → Cl(x) Typing of C Sub

R2.2: ∀x, yC Sub(x, y) → Cl(y) ∨ (y = rdfs:Resource)

R3.1: ∀x, y P Sub(x, y) → Pr(x) Typing of P Sub

R3.2: ∀x, y P Sub(x, y) → Pr(y)

R4.1: ∀x, y Dom(x, y) → Pr(x) Typing of Dom

R4.2: ∀x, y Dom(x, y) → Cl(y) ∨ (y = rdfs:Resource)

R5.1: ∀x, y Rng(x, y) → Pr(x) Typing of Rng

R5.2: ∀x, y Rng(x, y) → Cl(y)∨(y = rdfs:Resource)∨
(y = rdfs:Literal)

R6.1: ∀x, yC I (x, y) → I nd(x) Typing of C I

R6.2: ∀x, yC I (x, y) → Cl(y) ∨ (y = rdfs:Resource)

R7.1: ∀x, y, z P I (x, y, z) → I nd(x) Typing of P I

R7.2: ∀x, y, z P I (x, y, z) → I nd(y) ∨ Lit (y)

R7.3: ∀x, y, z P I (x, y, z) → P S(z)

R8.1: ∀x, yCl(x) ∧ Pr(y) → (x �= y) Classes, properties and individuals are
R8.2: ∀x, yCl(x) ∧ I nd(y) → (x �= y) disjoint

R8.3: ∀x, y Pr(x) ∧ I nd(y) → (x �= y)

R9.1: ∀xCl(x) → C Sub(x, rdfs:Resource) Semantics for rdfs:Resource (root of the class
R9.2: ∀x I nd(x) → C I (x, rdfs:Resource) hierarchy)

R10.1: ∀x, y, zC Sub(x, y) ∧ C Sub(y, z) → C Sub(x, z) Semantics for C Sub (transitive, irreflexive)

R10.2: ∀x, yC Sub(x, y) ∧ C Sub(y, x) → ⊥
R11.1: ∀x, y, z P Sub(x, y) ∧ P Sub(y, z) → P Sub(x, z) Semantics for P Sub (transitive, irreflexive)

R11.2: ∀x, y P Sub(x, y) ∧ P Sub(y, x) → ⊥
R12: ∀x P S(x) → ∃y, z(Dom(x, y) ∧ Rng(x, z)) Each property has a domain and a range

R13: ∀x, y, zDom(x, y) ∧ Dom(x, z) → (y = z) Unique property domain

R14: ∀x, y, z Rng(x, y) ∧ Rng(x, z) → (y = z) Unique property range

R15: ∀x, y, zC I (x, y) ∧ C Sub(y, z) → C I (x, z) Class instance propagation

R16: ∀x, y, z, wP I (x, y, z) ∧ P Sub(z, w) → P I (x, y, w) Property instance propagation

R17.1: ∀x, y, z, wP Sub(x, y) ∧ Dom(x, z) ∧
Dom(y, w) → C Sub(z, w) ∨ (z = w)

Subsumption between properties reflects in
their domains/ranges

R17.2: ∀x, y, z, wP Sub(x, y) ∧
Rng(x, z) ∧ Rng(y, w) → C Sub(z, w) ∨ (z = w)

R18.1: ∀x, y, z, wP I (x, y, z) ∧ Dom(z, w) →
C I (x, w)

R18.2: ∀x, y, z, wP I (x, y, z) ∧ Rng(z, w) →
C I (y, w) ∨ (Lit (y) ∧ (w = rdfs:Literal))

Correct property instantiation
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Table 5 Ordering of predicates (≤P )

P I ≤P C I ≤P P Sub ≤P C Sub ≤P ¬P I ≤P ¬C I ≤P ¬P Sub ≤P ¬C Sub ≤P
¬Dom ≤P ¬Rng ≤P ¬I nd ≤P ¬Pr ≤P ¬Cl ≤P Dom ≤P Rng ≤P I nd ≤P Pr ≤P
Cl

side-effects containing ground facts of the form ¬C Sub(B, C). This intuition is encoded as
an order (denoted by ≤P ) over predicates and negated predicates, and is shown in Table 5. The
table shows that the less preferred changes are the addition of new resources (classes, prop-
erties, individuals), followed by the introduction of new domains/ranges of properties; this is
based on the idea that adding new, artificial resources as side-effects is a change that should be
avoided if possible (same for new domains/ranges). Deleting resources and domains/ranges
follows; thus, it is preferable to delete an existing resource (or domain/range) than to add a
new one. On the contrary, adding subsumption/instantiation relationships is preferable than
deleting said relationships because it is intuitively preferable to enhance our knowledge with
new facts, rather than delete existing facts. Deleting/adding instantiation relationships is pref-
erable than deleting/adding subsumption relationships (as the latter refer to the schema part
of the RDF/S KB), but all such changes are preferable than the addition/deletion of resources
or domains/ranges.

The idea behind ≤P is driven one step further to allow the comparison of deltas: intui-
tively, �1 is preferable over �2 iff �1 contains less important changes than �2, i.e., if the
ground facts in �1 use less important predicates, according to ≤P . Thus, the comparison is
not based on the number of ground facts that a delta (as a whole) contains, but on the number
of the “important” ground facts that it contains, as determined by the predicates they use.
So, in order to compare �1,�2, we start with the least preferred predicate (according to
≤P , i.e., predicate Cl) and count the number of ground facts in �1,�2 that use Cl (less is
preferable). In case of a tie, we proceed to the next predicate (Pr in this case) and repeat the
process until we reach a conclusion. A consequence of this fact is that a delta containing any
number of less disruptive changes is more preferable than a delta containing even a single
more disruptive one, e.g.: {¬C Sub(A1, B1),¬C Sub(A2, B2), P Sub(A3, B3)} is preferred
over {¬Cl(A)}. This is similar to the notion of component-cardinality repairs [1] that has
been used in the context of database repairs; unlike component-cardinality repairs however,
where all predicates are considered of equal importance, here we impose a strict ordering
between predicates (and their negations).

In some cases, it could happen that two deltas contain the same number of ground facts for
all predicates; in such cases, we need a more fine-grained criterion to determine the preferred
one. This criterion is based on a comparison of the individual ground facts based on their
arguments (used constants), and identifies the least preferred delta as the one that contains
the most important ground fact. To compare ground facts that use the same predicate, we
consider the constants that they use, and determine their importance based on the constants’
position in the corresponding hierarchy. This is based on the intuition that, e.g., a class that
is high in the class subsumption hierarchy represents an abstract, general concept, that is
usually important conceptually, so it is less prone to change; therefore, deleting such a class
should be less preferred than deleting a lower-level class. Similar arguments can be given for
other predicates: for example, a class subsumption is more important if the subsumed class
represents a concrete concept (low in the hierarchy) whereas the subsuming class represents
an abstract concept (high in the hierarchy). In rare cases, it could happen that this criterion is
not a tie-breaker either (e.g., when comparing the deletion of two sibling classes); to resolve
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such ties we could use any arbitrary wellorder over U∪L. We will denote this ordering using
≤UL Note that such an ordering always exists, by the well-ordering theorem.

To formalize the above ideas we need to define some notions. First, we say that a constant
A ∈ U ∪ L appears in an RDF/S KB K iff there is some ground fact p(A1, . . . , An) ∈ K
such that A = Ai for some i = 1, 2, . . . , n. For A, B ∈ U, we say that A is a direct sub-
class of B in K iff C Sub(A, B) ∈ K and there is no C such that C Sub(A, C) ∈ K and
C Sub(C, B) ∈ K. Similar notions can be defined for properties, as well as for instantiation
relationships (e.g., an individual A is a direct instance of B iff C I (A, B) ∈ K and there
is no C such that C I (A, C) ∈ K and C Sub(C, B) ∈ K). We use the general term direct
sub-resource to describe those notions. We say that A ∈ U is a top resource in K iff A appears
in K and there is no B ∈ U such that A is a direct sub-resource of B. The intuitive meaning of
these definitions in RDF/S KBs are obvious: direct sub-resources are those pairs of resources
that are related through a direct (i.e., non-redundant) subsumption or instantiation relation,
whereas a top resource is one that is no sub-resource of any resource.

A path from A to the top in K is a sequence S of the form S = 〈A1, A2, . . . , An〉 where
A1 = A, An is a top resource in K and for all i = 1, 2, . . . , n − 1, it holds that Ai is a direct
sub-resource of Ai+1. The length of S = 〈A1, A2, . . . , An〉 is n. Note that if A does not
appear in K, or if it is a literal, then there is no path from A to the top. If A is a top resource,
then the only path from A to the top is 〈A〉, whose length is 1. In general however, there
may be many top resources and/or more than one paths from any given A to (each of) the
top resource(s); in such cases, we are interested in the shortest path from A to the top (given
that K is finite and no cycles are allowed in the subsumption relationships by the integrity
constraints, there will always be a shortest path). Given a constant A (URI or literal) we set
Dist (A) to be the length of the shortest path from A to the top; if no such path exists (e.g.,
if A does not appear in K), we set Dist (A) = 0. Note that Dist represents the position of
a constant in its corresponding hierarchy, in the sense that resources higher in the hierarchy
have a lower Dist .

To define the wellorder ≤UL that is necessary as the ultimate tie-breaker, we will treat
URIs and literals as strings and use the so-called shortlex order.6 The shortlex order com-
pares the length of two strings (shortest one comes first); in case of equal size, the standard
lexicographic ordering is used to determine the order. Shortlex can be easily shown to be a
wellorder.7

Combining the above, the fine-grained ordering on ground facts is defined as shown in
Table 6. Whenever two ground facts are using a different predicate, their order is determined
using ≤P ; if they use the same predicate, we resort to comparing the constants involved using
Dist and ≤UL, as shown in Table 6.

Now we have all the necessary formalisms to define our selection mechanism. In Defini-
tion 9.1 below, �q is a set containing the ground facts from � that use the (possibly negated)
predicate q .

Definition 9.1 Consider two deltas �1,�2 and a valid KB K. We define an ordering ≤K
such that �1 ≤K �2 iff any of the following is true:

1. There is some (possibly negated) predicate q such that |�q
1 | < |�q

2 | and for all predicates

q ′ such that q <P q ′ it holds that |�q ′
1 |=|�q ′

2 |.
2. For all (possibly negated) predicates q it holds that |�q

1 | = |�q
2 | and there is some

g ∈ �1 \ �2, such that g <G g′ for all g′ ∈ �2 \ �1.

6 http://en.wikipedia.org/wiki/Shortlex_order.
7 http://en.wikipedia.org/wiki/Lexicographical_order.
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Table 6 Ordering of ground facts (≤G )

Predicate arity Ground fact order

Arity 1: Assuming q(a1), q(a2) such that q(a1) �= q(a2) then:

q(x) q(a1) <G q(a2) iff Dist (a1) > Dist (a2);

(Cl, Pr, I nd) if tied, q(a1) <G q(a2) iff a1 <UL a2.

Arity 2: Assuming q(a1, b1), q(a2, b2) such that q(a1, b1) �= q(a2, b2) then:

q(a, b) q(a1, b1) <G q(a2, b2) iff Dist (a1) > Dist (a2);

(C Sub, P Sub, Dom, Rng, C I ) if tied, q(a1, b1) <G q(a2, b2) iff Dist (b1) < Dist (b2);

if tied, q(a1, b1) <G q(a2, b2) iff a1 <UL a2);

if tied, q(a1, b1) <G q(a2, b2) iff b1 <UL b2).

Arity 3: Assuming q(a1, b1, c1), q(a2, b2, c2) such that q(a1, b1, c1) �=
q(x, y, z) q(a2, b2, c2) then:

(P I ) q(a1, b1, c1) <G q(a2, b2, c2) iff Dist (a1) > Dist (a2);

if tied, q(a1, b1, c1) <G q(a2, b2, c2) iff Dist (b1) > Dist (b2);

if tied, q(a1, b1, c1) <G q(a2, b2, c2) iff Dist (c1) < Dist (c2);

if tied, q(a1, b1, c1) <G q(a2, b2, c2) iff a1 <UL a2);

if tied, q(a1, b1, c1) <G q(a2, b2, c2) iff b1 <UL b2);

if tied, q(a1, b1, c1) <G q(a2, b2, c2) iff c1 <UL c2).

3. �1 = �2.

This definition formally captures the intuitive description provided above. Our definitions
guarantee that the ordering ≤K is change-generating, so it can be used to define a selection
mechanism. Formally:

Proposition 9.1 The set �= {≤K |K : valid KB} (where ≤K as in Definition 9.1) is a
selection mechanism.

Note that some of the orderings imposed by ≤P (e.g., Dom ≤P Rng), may seem artificial,
but are necessary in order for ≤K to be antisymmetric (thus, change-generating, cf. Defi-
nition 6.2). However, a detailed examination of our integrity constraints and the algorithm
itself can reveal that, in practical change scenarios, determining the preferred delta cannot
boil down to such a comparison. Similarly, using shortlex is arguably an arbitrary choice, but
necessary to guarantee antisymmetry when all else fails; for this reason, it constitutes our last
resort in the rare case when two deltas are very similar. An alternative approach here would
be to drop the antisymmetry requirement from Definition 6.2; this would essentially allow
deltas to be equally preferable, so the change operator could return more than one results.
This scenario could be viable only for applications where it is desirable (and possible) to
directly involve the knowledge engineer in the evolution process. We plan to consider such
a relaxation as a future work.

9.5 Algorithm: termination and complexity

Algorithm 1 can be used as-is for the RDF/S setting, with the modeling, validity model
and selection mechanism as described in the previous subsections. One thing that should be
noted is that, given a KB K and a change request C, we only need to consider constants that
appear in K and C, plus one “fresh” URI (i.e., a URI not appearing in K, C), say γ , that

123



RDF/S KB evolution 175

is the minimum (according to ≤UL) of the custom URIs that do not appear in K or C; we
denote this set of constants by 	. This is a useful assumption for both intuitive and practical
purposes, but is also correct from a formal point of view, because even if we considered
arbitrary URIs, all solutions (potential change results) containing them would be rejected
as non-preferred due to the preference ordering (see Proposition 9.2). As a result, the FOR
loop in lines 9-11 of Algorithm 1 need only consider those S ′ which use constants from 	

(because all other S ′ cannot possibly lead to the correct result). We denote this modified
algorithm by ChangeRDF (the pseudocode is almost identical to Algorithm 1 and omitted).
This modification guarantees termination, without jeopardizing correctness:

Proposition 9.2 Consider the validity model � defined in Sect. 9.3, the selection mechanism
� defined in Sect. 9.4, and the corresponding rational change operator •. Consider also some
valid RDF/S KB K and a change request C. Then, the call ChangeRDF (C, K,�∞) termi-
nates. Supposing that the output of ChangeRDF (C, K,�∞) is �out , then if C: feasible, then
�out �= �∞ and K + �out = K • C; if C:infeasible then �out = �∞.

The proof of Proposition 9.2 exploits the fact that the validity model and selection mech-
anism for the RDF/S setting are fixed in order to show the correctness and termination of
ChangeRDF (note that termination in particular is not guaranteed for the general case—
see Sect. 8). Similarly, we can show that for the particular setting the algorithm is, in the
worst-case scenario, exponential, because the recursive tree of evaluation generated by the
ChangeRDF function can be exponential in size. However, it should be emphasized that this
is an inherent property of the problem setting, rather than an artifact of the proposed solution.
To see that, let us consider the easier subproblem “find a set of side-effects that would lead to
a valid KB”; it is easy to note that this problem is equivalent to finding one set of ground facts
satisfying all constraints, i.e., it is a satisfiability problem, which for the particular DE D �=
constraints (Table 4) is equivalent to SAT; thus, implementing a rational change operator is
NP-hard.

This issue is addressed using special-purpose algorithms, in which we trade generality
for computational efficiency to develop optimized (and fast) algorithms that partially imple-
ment rational change operators for a given setting (RDF/S in our case); this process will be
discussed in the next section.

10 Special-purpose algorithms

Special-purpose algorithms are based on the idea that, once we fix the setting (predicates,
validity model, selection mechanism), we can determine the preferred way to handle certain
types of change requests at design time, without having to recursively check all possible
options; this leads to more efficient implementations. On the other hand, special-purpose
algorithms do not enjoy the same generality as the general-purpose one, because they work
only for the given setting, and only for the given types of change requests; for other change
requests, one has to resort to the general-purpose algorithm.

In order to make sure that the special-purpose algorithms respect our principles (Success,
Validity and Minimal Change), one should verify that they produce the same results as the
general-purpose one for the change requests that they tackle, i.e., that each of them (partially)
implements a rational change operator. Towards this end, the development of the general-
purpose algorithm and the related theory is an essential first step, as (i) it allows proving
that a special-purpose algorithm exhibits the required properties, something that would not
be possible without the theoretical framework presented in the previous sections, and, (ii) it
allows us to handle any unforeseen change requests.
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Algorithms 2, 3, 4, 5, 6 show five of the special-purpose algorithms that we developed.
Each of these algorithms corresponds to one type of change request, namely:

Algorithm 2: Add Class Instantiation (Add_C I (K, I, C))
1: if C I (I, C) ∈ K then
2: return ∅
3: else
4: � := {C I (I, C)}
5: end if
6: if I nd(I ) /∈ K then
7: �0 := Add_I nd(K, I )
8: if �0 = �∞ then
9: return �∞
10: else
11: � := � ∪ �0
12: end if
13: end if
14: if Cl(C) /∈ K then
15: �0 := Add_Cl(K, C)

16: if �0 = �∞ then
17: return �∞
18: else
19: � := � ∪ �0
20: end if
21: end if
22: for all C Sub(C, A) ∈ K do
23: � := � ∪ {C I (I, A)}
24: end for
25: return �

– Add_C I (K, I, C) corresponds to the change request C = {C I (I, C)}, i.e., it implements
the operation K • {C I (I, C)}.

– Add_Cl(K, C) corresponds to C = {Cl(C)}.
– Rem_I nd(K, I ) corresponds to C = {¬I nd(I )}.
– Rem_Dom(K, P, C) corresponds to C = {¬Dom(P, C)}.
– Rem_P Sub(K, P1, P2) corresponds to C = {¬P Sub(P1, P2)}.
In total, we developed 18 special-purpose operations, each of which corresponds to one of
the 18 types of singular change requests that can be defined (due to space limitations, we
do not describe them all here—a full list can be found in [39]). One could define more, if
interested in addressing some other type of change request in an efficient manner.

The algorithms have the same general structure: first, we check whether the change request
that corresponds to said algorithm is already implied by the KB, in which case we return
without reporting any effects or side-effects (this could happen, for example, if we are asked
to add an already existing class). Otherwise, we determine which constraints from Table 4
can be violated via said change request. In most cases, we can determine (at design time) the
best invalidity resolution to follow for each violated constraint, so the selection mechanism
is hard-coded in the algorithm. For example, in Algorithm 5, the removal of a domain would
violate rule R12, which could be resolved either by the removal of the associated property or
by the addition of a new domain; however, we can show that the latter option will always lead
to non-preferred deltas (due to the ≤P ordering), so we only consider the former. In other
cases, it is not clear which is the best option, as, e.g., in Algorithm 6 where several options
are evaluated before determining the result.
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Algorithm 3: Add Class (Add_Cl(K, C))
1: if Cl(C) ∈ K then
2: return ∅
3: else
4: � := {Cl(C), C Sub(C, rdfs:Resource)}
5: end if
6: if C : is not a custom URI (C /∈ U \ Sp) then
7: return �∞
8: end if
9: if Pr(C) ∈ K then
10: return � ∪ Rem_Pr(K, C)

11: end if
12: if I nd(C) ∈ K then
13: return � ∪ Rem_I nd(K, C)

14: end if
15: return �

Algorithm 4: Remove Individual (Rem_I nd(K, I ))
1: if I nd(I ) /∈ K then
2: return ∅
3: else
4: � := {¬I nd(I )}
5: end if
6: for all C I (I, A) ∈ K do
7: � := � ∪ {¬C I (I, A)}
8: end for
9: for all P I (I, A, B) ∈ K do
10: � := � ∪ {¬P I (I, A, B)}
11: end for
12: for all P I (A, I, B) ∈ K do
13: � := � ∪ {¬P I (A, I, B)}
14: end for
15: return �

Algorithm 5: Remove Domain (Rem_Dom(K, P, C))
1: if Dom(P, C) /∈ K then
2: return ∅
3: else
4: return {¬Dom(P, C)} ∪ Del_Pr(K, P)

5: end if

Algorithm 6: Remove Property Subsumption (Rem_P Sub(K, P1, P2))
1: if P Sub(P1, P2) /∈ K then
2: return ∅
3: end if
4: Find all sets Si := {P Sub(A j−1, A j )| j = 1, . . . , ni )} such that P Sub(A j−1, A j ) ∈ K for all

j = 1, . . . , ni and A0 = P1, Ani = P2, ni ≥ 1
5: Find all minimal hitting sets of the family {Si }, and name them �1, . . . , �n
6: � := minK({�i |i = 1, . . . , n})
7: return �

Taking Algorithm 2 as an illustrative example, we note that the addition of C I (I, C) can
only cause the violation of constraints R6.1, R6.2 and R15. These are checked and resolved
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Table 7 Special-purpose algorithms and their complexity

Complexity Special-purpose algorithms

O(|K|) Add_Cls, Add_Pr, Add_I nd, Add_C I, Rem_Pr, Rem_I nd,

Rem_Dom, Rem_Rng, Rem_P I
O(|K|2) Add_Dom, Add_Rng, Add_P I, Rem_Cl, Rem_C I
NP-complete Add_C Sub, Add_P Sub, Rem_C Sub, Rem_P Sub

in lines 6–13, 14–21 and 22–24, respectively. In particular, line 6 checks whether R6.1 is
violated; if so, the only possible resolution is by adding I nd(I ), so another special purpose
algorithm is called to perform this operation (line 7). Similarly, line 14 checks whether
R6.2 is violated and, if so, it resolves it by calling Add_Cl(K, C) (line 15). Finally, line 22
determines all the instances of R15 that are violated, and resolves the violation by adding
the corresponding C I ground fact (line 23); note that the other resolution option (removing
C Sub(C, A)) is not considered, because it will always lead to non-preferred deltas (adding
C I (I, A) has no further side-effects, and C I <P C Sub). This argumentation is the sketch of
the proof showing that Algorithm 2 is equivalent to the general-purpose one (for the specific
change request), so it implements part of a rational change operator. More details on the proof
of this correctness result (as well as the corresponding results for the other special-purpose
algorithms) are omitted due to lack of space.

Note that it is not correct to use the above algorithms for more complicated change requests.
For example, the change request C = {C I (I, C),¬I nd(I )} should not be handled through a
call to Add_C I (K, I, C) followed by a call to Rem_I nd(K, I ); the above sequence of opera-
tions would return some result, whereas C itself is infeasible. The same holds even for feasible
change requests. For example, consider the removal of a property subsumption relationship,
say ¬P Sub(P1, P2). Algorithm 6 will determine the shortest path of subsumptions between
P1, P2 and remove these as side-effects. If, however, a change request contains an additional
subsumption removal (say ¬P Sub(P3, P4)), then taking the shortest paths between P1, P2

and P3, P4 may give a non-preferred compound set of side-effects. An interesting subject
of future work is to determine conditions of irrelevance, i.e., conditions under which com-
plicated change requests can be handled as sequences of independent (and simpler) change
requests without jeopardizing the correctness of the change result.

It is trivial to show that the above algorithms exhibit much better computational complex-
ity than the general purpose one. In fact, half of the algorithms (9 out of 18) exhibit linear
complexity with respect to the size of K (O(|K|)), some (5) quadratic (O(|K|2)), whereas the
rest (4) can be shown to be NP-complete. Table 7 summarizes the related complexity results.

NP-completeness appears in the algorithms that are related to the subsumption relation-
ships. For example, in Algorithm 6, due to transitivity (R10.2), we must find all subsumption
paths that connect P1 and P2, and remove one link in each; by the selection mechanism, a
minimal number of links must be removed. As the paths may have intersections in the case
of DAG hierarchies, the problem of finding such a minimal set is actually an instance of the
Minimum Hitting Set problem (see line 5), which is an NP-complete problem. The same
problem appears in all operations that directly or indirectly involve the removal of a sub-
sumption relationship in a DAG hierarchy. Fortunately, few real-world schemata are DAGs,
and even in those, most pairs of classes are connected with a single (or very few) subsumption
path(s) [63]; thus, these algorithms are expected to be efficient in practical cases.
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11 Related work

This work is related to different research fields, including ontology evolution [28], belief
revision [31], database repairs [1,4], ontology debugging [28] and updating databases through
views [5,37].

Ontology evolution deals with adapting an ontology to changes in its domain or conceptu-
alization [28]. The integrity constraints considered are special constraints on certain relations
(e.g., acyclicity/transitivity of subsumption) or property-related constraints (e.g., functional
properties); in many cases though, there are no constraints considered at all. In addition,
most of the works in this field employ simple and informal methodologies, with limited
customization capabilities, and/or address only changes upon the data part of an ontology.

A detailed survey of the field appears in [28]. Some works address the problem using
ontology editors [58] or other frameworks that help the engineers decide and implement
manually the required changes in their preferred manner [42]. However, it has been argued
([40,58]) that manual application of changes is insufficient. In response to this need, some
works like [6,30,38,50,59] have proposed and implemented change semantics, by determin-
ing, a priori, the side-effects necessary for each type of change request. This approach requires
a highly tedious and error-prone design process, during which all possible problems (invalid-
ities) caused by the supported requests need to be anticipated and resolved a priori, giving no
formal guarantees that all cases have been considered or that the various resolution choices
made are consistent, as there is no general theoretic treatment to determine the desired result.
In certain cases, some flexibility is provided to independently customize [30] the semantics
of some of the operations; this is similar to our selection mechanism, but it is restricted to
certain operations only. Similarly, in [45], one can explicitly define the semantics of change
operators in an event-driven manner. Given the infinite number of potential change requests
however, the set of supported changes in all these works is necessarily incomplete [38], unlike
in our work. In [46], a declarative approach for the evolution of RDF/S KBs is presented,
which can handle all possible changes on the data part of an RDF/S KB, but it is based on
fixed semantics, and cannot handle the schema part. In [13], the authors adopt the set of con-
straints found in [33] and study the “determinism” of changes by providing a characterization
of when a deletion of a single triple can be applied unambiguously. In addition, they provide
an algorithm which rejects changes that would cause side-effects. Note that our work can
also handle side-effects, as well as changes involving more than a single triple.

Belief revision also addresses the problem of dynamic knowledge, but it is usually applied
for standard logical formalisms like propositional or first-order logic [31]. In addition, most
of the works in belief revision do not consider integrity constraints; as a result, the Principle
of Validity in that context amounts to making sure that the resulting KB is consistent (in the
standard logical sense).

The use of belief revision approaches for ontology evolution has been advocated in several
works, but in several cases, the study remained at a theoretical level without proposing specific
algorithms [25]. In addition, many results were negative, i.e., it was shown that certain belief
revision approaches cannot be applied to many ontological languages, including RDF/S [29].
An algorithm inspired by belief revision for DL ontologies appears in [19], but it deals only
with the data part. In [34], a similar belief-revision-inspired algorithm for changing RDF/S
KBs is presented; however, in that setting, no integrity constraints are considered, so addi-
tions are trivial and the focus is on deletions, which are non-trivial due to the RDFS inference
rules. Our work did not try to adapt any existing belief revision algorithm for the RDF/S
setting, but was inspired by ideas presented in that context, such as the principles of Success,
Validity and Minimal Change.
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The field of database repairs addresses the problem of maintaining the integrity of data
whenever some abnormal situation (e.g., a failed transaction) leads to an integrity viola-
tion [1,4,44]. Various terms have been used to describe this field, like minimal-change integ-
rity maintenance [15], data reconciliation [23] or data cleaning [24]. In the context of database
repairing, the invalidity is not necessarily caused by a change in the data (e.g., it could be
caused by a change in the integrity constraints, a disk crash, an aborted transaction, or some
other reason) and the focus is on repairing, i.e., the cause of the invalidity is not considered;
as a result, the Principle of Success is irrelevant. In addition, even though several useful types
of constraints (subsets of DEDs) have been identified (see [1] for a list), most works deal
with primary and foreign key constraints only.

In many works related to database repairing, there are no guarantees on the distance of
the resulting database from the original one (i.e., the Principle of Minimal Change does not
apply), but others consider some distance metrics (e.g., symmetric difference [1]). Using such
a metric, a repair is defined as a database instance which satisfies the integrity constraints
and has minimal distance (according to said metric) from the original inconsistent database.
Different metrics are important for different contexts (e.g., in the data warehousing con-
text, subset-repairs are used [1]). Repair checking techniques [15] can be used to determine
whether a given database is a repair of another. An extensive complexity analysis for these
problems under various assumptions appears in [1,15].

On the other hand, only a few efforts have been made in the direction of computing
repairs. In [14], repair checking algorithms are adapted to non-deterministically compute
repairs. Another algorithm for computing repairs, based on a cost model, appears in [9],
but it is sensitive to the order in which invalidities are considered and resolved. In [16], an
algorithm which uses a flexible distance model to compute repairs is presented; however, the
types of constraints used there are only a subset of DEDs.

An approach similar to database repairing advocates the introduction of an extra layer that
allows reasoning and consistent querying over the invalid database without explicitly repair-
ing it. This approach is called consistent query answering [8] and could be used for invalid
ontologies as well [3,36]. However, this method is more useful when we have no control
over the data (so we cannot repair it), which is not the case in our setting. Furthermore, it is
restrictive, because it considers only common knowledge over all possible repairs associated
with the original data: a tuple is an answer to a given query over a database iff it is an answer
in every repair of said database. As a result, we cannot set any preferred repairs, or prevent
certain repairs from being considered.

The field of ontology debugging addresses the problem of resolving invalidities in ontol-
ogies [28]. Like with database repairs, the cause of the invalidity is not considered during
ontology debugging, so the Principle of Success is irrelevant. Ontology debugging consists
of ontology diagnosis (identifying inconsistencies and other modeling errors) and ontology
repair (repairing such modeling errors). Most works in the field deal with the former problem
(diagnosis). In addition, ontology debugging usually deals with inconsistencies or incoher-
encies only (see [27] for a definition of inconsistency and incoherency), i.e., general integrity
constraints are not considered. Surveys of existing ontology debugging approaches can be
found at [28,35]. Our work can be applied for ontology diagnosis and repair if we drop the
Principle of Success from our requirements and adapt our algorithm accordingly; we plan to
explore this research path as a future work.

The problem of updating databases through views [5,17,37] addresses the problem of
updating a database view on which updates cannot be issued directly (because, e.g, the view
is virtual). In this case, the underlying database needs to change in a way that the evaluation
of the view on the new database will give the updated view instance per the user’s intention.
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This is similar to our work in the sense that it requires changing the database in a way that
the end result satisfies a certain condition (in this case, the changing of the view in a certain
way; in our case, the satisfaction of the integrity constraints). Initial studies have focused
on the characterization of “side-effect-free” updates [18,37], which are not always possible.
For example, we might want to delete a tuple from a view instance, which comes from a
join of two tuples in the base tables. Unless we change the join attribute or delete one of
the latter tuples, the update cannot be implemented. This led researchers to restrict the kinds
of updates supported [37], to develop frameworks to detect and present side-effects to the
user [48], let the user encode some kind of ad-hoc resolution rules in the face of alterna-
tive side-effects [56], or relax the constraint that the view should materialize only the user’s
update and nothing more [41] (this is equivalent to implementing not the user’s update but
another one which is “close” to it). To the best of our knowledge, there is no approach related
to the field of updating databases through views that enforces all updates (adhering to our
Principle of Success), or that parameterizes the system with some “preference” mechanism
in order to automatically resolve ambiguity.

12 Conclusion

We studied the problem of evolving KBs in the face of new information, while respecting
the associated integrity constraints. We applied our work to RDF/S KBs with integrity con-
straints, considering schema and data change requests, as well as change requests involving
any mixture of schema and data operations. We proposed a formal framework to describe
such changes and their effects, as well as a general-purpose algorithm that identifies the
effects and side-effects of a change request and implements a change operator. Our method-
ology is inspired by the general belief revision principles of Success, Validity and Minimal
Change [31]. The end result is a general-purpose algorithm that is parameterizable, both in
terms of the application context (language and validity model) and in terms of the implemen-
tation of the Principle of Minimal Change (selection mechanism). Using our framework, the
knowledge engineer only needs to specify the change request, and does not need to address
how any potential invalidities will be resolved; the system will automatically identify and
apply any necessary side-effects, depending on the parameterization.

Our algorithm avoids resorting to the error-prone, per-case reasoning of other systems,
as all the alternatives regarding the side-effects of a change request can be derived from the
integrity constraints themselves, in an exhaustive and provably correct manner. In addition,
it can support all imaginable operations, including operations not considered at design time.
Finally, it can handle quite complex types of constraints (DE D �= [20]).

We applied our ideas on RDF/S, using a specific validity model inspired by [55]. This
allowed us to develop simpler, special-purpose variations of the general-purpose algorithm,
which provably return the same result for specific change requests in a much more efficient
manner. Note that the general-purpose algorithm can be still relied upon for change requests
that are not considered by the special-purpose ones.

Our approach was recently implemented in a large scale real-time system, as part of the
ICS-FORTH Semantic Web Knowledge Middleware (SWKM), which includes a number of
web services for managing RDF/S KBs.8 Future work includes experimental evaluation of
the algorithms’ performance and the incorporation of heuristics for improving their efficiency.

8 http://athena.ics.forth.gr:9090/SWKM.
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Appendix: Proofs of propositions

Proof of Propostion 5.1 By the construction of Res(σ (�a)), a constraint instance σ(�a) can be
written as the disjunction of the conjunction of the elements in each S ∈ Res(σ (�a)). Thus,
the result follows from standard reasoning and our semantics. ��
Proof of Propostion 5.2 By Definition 4.1, it follows that K +S � S, so by Proposition 5.1,
K + S � σ(�a). For the second part, by Proposition 5.1 it follows that there is some S ∈
Res(σ (�a)) such that K + S ′ � S. So take some (possibly negated) ground fact g ∈ S. Given
that K + S ′ � S it follows that K + S ′ � g; using Definition 4.1 it is trivial to conclude that
K � g or g ∈ S ′. ��
Proof of Propostion 5.3 Since K is valid, there is some S ∈ Res(σ (�a)) such that K � S. By
our hypothesis, K + C � σ(�a) so K + C � S. Thus, there is some (possibly negated) ground
fact g ∈ S such that K + C � g; on the other hand, K � g. Combining these facts and the
definition of raw application, it is trivial to show the result. ��
Proof of Propostion 7.1 Take some KB K and change request C. Suppose initially that K is
valid and C is feasible. Since C is feasible, there is some valid KB K such that K � C, i.e.,
� �= ∅. By wellfoundedness of ≤K, � has at least one minimum; by totality and antisym-
metry, this minimum is unique. We conclude that whenever K is valid and C is feasible there
is exactly one result that satisfies the conditions of Definition 7.1; the same is obviously true
if K is not valid, or C is not feasible. Thus, there is a unique rational change operator with
respect to �, �. ��
Proof of Propostion 8.1 According to Algorithm 1, each recursive call can return at lines 2,
5, 13 or 15. If any specific call returns through line 15, it means that it had spawned at least
one new call to Change (in line 10). If any call returns through lines 2 or 13, then it does not
spawn a new call and it returns �∞. If any call returns through line 5, then it does not spawn
a new call and it returns some � �= �∞. We will call the recursive calls returning through
line 15 “intermediate” calls, the calls returning through lines 2 or 13 “rejected”, and the calls
returning through line 5 “accepted”. ��
Moreover, we set �min = �(K, K • C).
For presentation clarity, we will show some intermediate conclusions before showing the
proposition. The proposition follows from conclusions #5, #6 below.

Conclusion #1: If �out �= �∞ is returned, then there is at least one accepted call.

Proof If all the calls are either rejected or intermediate, then all executions of line 10 in
intermediate calls will compare �∞ with �∞; thus all intermediate calls will also return
�∞. Thus, the algorithm will return �∞, a contradiction by our hypothesis. Therefore, there
is at least one accepted call. ��
Conclusion #2: If an accepted call returns �out, then �out �= �∞, K+�out � C, K+�out �
�, and �min ≤K �out.

Proof In any given accepted call, the condition of line 4 is true and the returned delta will be
�out = �(K, K + Crem) �= �∞. It is trivial to show that K + �out = K + Crem. Thus, by the
fact that the condition of line 4 is true, we conclude that K + �out � �. Moreover, note that
we never remove ground facts from Crem, thus, given that the initial value of Crem (in the first
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recursive call) is C, we conclude that in any recursive call, it holds that Crem ⊇ C. Thus, by
our hypotheses and the definition of raw application, K + �out = K + Crem � C. Given the
above facts and the definition of the rational change operator, the condition �min ≤K �out,
holds. ��
Conclusion #3: If �out �= �∞ is returned, then K + �out � C and K + �out � �. Further-
more, �min ≤K �out.

Proof By conclusion #1, there is at least one accepted call. If the first call to Change is an
accepted one, then the result is obvious by conclusion #2. If the first call to Change is a
rejected call, then there is no accepted call (a contradiction). If the first call is an intermediate
call, then it will return the preferred of all deltas returned through line 10. Given that all
deltas are preferred over �∞, it follows that the returned delta is a delta returned by one of
the accepted calls, so the result follows from conclusion #2. Thus, the conclusion holds in
all cases. ��
Conclusion #4: If C is feasible, then there is at least one accepted call which returns �min.

Proof If the first call is a rejected call, then the condition of line 1 is true. Note that, since
�pre f = �∞, it cannot be the case that �pre f ≤K0 �(K0, K0 + Crem). Thus there is some
g such that g,¬g ∈ Crem = C, i.e., C is infeasible, a contradiction. ��

If the first call is an accepted call, then for the returned delta (�out), it holds that �out =
�(K, K + C). Take some ground fact g ∈ �out; then g /∈ K, but g ∈ K + C, so g ∈ C, i.e., by
the Principle of Success, g ∈ K • C, thus, by definition, g ∈ �min. Using similar arguments,
we can show that if ¬g ∈ �out, then ¬g ∈ �min. Thus, �out ⊆ �min, so �out ≤K �min,
by the monotonicity of ≤K. By conclusion #3, �min ≤K �out. By antisymmetry of ≤K, we
conclude that �out = �min.

If the first call is an intermediate call, then it will pass through line 7. Suppose that line
7 selected ground fact g1 ∈ C for which there is a constraint instance σ1( �a1), such that
¬g1 ∈ S1 for some S1 ∈ Res(σ1( �a1)) and K + C � σ1( �a1).

Given that K•C � σ1( �a1), there is some S ′
1 ∈ Res(σ1( �a1)) such that K•C � S ′

1. Suppose
that S1 = S ′

1. Then K • C � S1. But ¬g1 ∈ S1, so K • C � ¬g1. On the other hand, g1 ∈ C
(by line 7), which is a contradiction because K • C � C (by the Principle of Success). Thus
S1 �= S ′

1, so the algorithm will pass through line 10 for S ′
1.

Let us consider the new recursive call to Change which uses S ′
1; for this call, it holds that

Crem = C ∪ S ′
1. Take some g ∈ �(K, K + Crem). Then, g /∈ K so g ∈ Crem. If g ∈ C, then

g ∈ �min (because K+�min = K•C � g by the Principle of Success and g /∈ K); similarly,
if g ∈ S ′

1 then g ∈ �min (because, by construction, K+�min = K •C � g and g /∈ K). Thus
g ∈ �min; using similar arguments we can show that if¬g ∈ �(K, K+Crem) then¬g ∈ �min.
It follows that �(K, K + Crem) ⊆ �min. Consequently, �(K, K + Crem) ≤K �min.

Suppose that in this call, g,¬g ∈ Crem. Then, since C is feasible to begin with, and the
construction of Crem it holds that g ∈ C and ¬g ∈ S ′

1 (or vice-versa). But this is impossible
by the definition of S ′

1. Similarly, suppose that �pre f ≤K �(K, K + Crem) ≤K �min. Note
that �pre f is either equal to �∞ (a contradiction), or it has been returned by an accepted
call, so by Conclusion #2, it follows that �min ≤K �pre f . Thus, �min = �pre f and �pre f

has been returned by some accepted call, so the conclusion has been proven. Thus, let us
suppose that the condition of line 1 is not true.

If the condition of line 4 is true, then the call is accepted and �(K, K + Crem) will
be returned, so by Conclusion #2 �min ≤K �(K, K + Crem), and by the fact above (i.e.,
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�(K, K + Crem) ≤K �min) and antisymmetry, it follows that �(K, K + Crem) = �min, so
the conclusion has been proven. Thus, let us suppose that the condition of line 4 is not true
either.

Then, the algorithm will pass through line 7. As above, suppose that line 7 selected ground
fact g2 ∈ Crem for which there is a constraint instance σ2( �a2), such that ¬g2 ∈ S2 for some
S2 ∈ Res(σ2( �a2)) and K + Crem � σ2( �a2).

Given that K•C � σ2( �a2), there is some S ′
2 ∈ Res(σ2( �a2)) such that K•C � S ′

2. Suppose
that S2 = S ′

2. Then K • C � S2. But ¬g2 ∈ S2, so K • C � ¬g2. On the other hand, by
line 7, g2 ∈ Crem = C ∪ S ′

1. If g2 ∈ C, then we have a contradiction because K • C � C (by
the Principle of Success). If g2 ∈ S ′

1, then by the definition of S ′
1, K • C � S ′

1. So, in both
cases, K • C � g2, a contradiction. Thus, S2 �= S ′

2, so the algorithm will pass through line 10
for S ′

2.
Therefore, this call is an intermediate call, and consider the new recursive call to Change

(spawned through line 10) which uses S ′
2 (as in the previous case). Repeating the same argu-

ments as above, we conclude that the new call is either a rejected call (in which case the
conclusion is proven, because there is some other accepted call returning �min—see above),
or it is an accepted call that returns �min, or it is an intermediate call; in the latter case,
there is one spawned call for which the above properties hold, so we can repeat the above
argumentation. Given that the algorithm terminates, there will be a finite number of interme-
diate calls; thus, repeating the argument a finite number of times, we will eventually reach
an accepted or rejected call, so the conclusion is proved.

Conclusion #5: If C: feasible, then �out �= �∞ and K + �out = K • C.

Proof By conclusion #4, there is at least one accepted call which returns �min. For any
other accepted call, it holds (by Conclusion #2), that the produced delta is less preferable
(according to ≤K) than �min, so it will be eventually rejected when compared with �min

(either in line 1 or in line 10). Thus, �out = �min. The result now follows easily. ��

Conclusion #6: If C: infeasible then �out = �∞.

Proof Suppose that there is an accepted call which returns �out. Then, by Conclusion #2,
K + �out � �, K + �out � C, so by Definition 5.1, C is feasible, a contradiction. So, there
is no accepted call, i.e., all calls are either intermediate or rejected. Therefore, it is easy to
see that the algorithm will return �∞.

Conclusions #5, #6 show the proposition. ��

Proof of Propostion 9.1 Firstly, we note that the shortlex order (≤UL) is obviously total, tran-
sitive, antisymmetric and wellfounded9 (i.e., a wellorder). The same is true for ≤P . Given
these, and the definition of ≤G through Table 6, it is trivial to see that ≤G is also total, tran-
sitive and antisymmetric. For wellfoundedness, consider a set of (possibly negated) ground
facts G = {gi } and suppose that G has no minimal. By antisymmetry, it follows that there
is an infinite sequence g1, g2, . . . such that g1 >G g2 >G . . .. Since there is a finite number
of predicates, there will be some index, say n1, such that all gi for i > n1 use the same
(possibly negated) predicate. Furthermore, K is finite, as well as valid, so the subsumption
relationships are acyclic (R10.2, R11.2); thus all distances are finite. Therefore, there will be
some index, say n2, such that all gi for i > n2 use the same (possibly negated) predicate, and

9 http://en.wikipedia.org/wiki/Lexicographical_order.
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the constant(s) used in this predicate has (have) the same Dist . Thus, the comparison boils
down to comparing the constants using ≤UL, which is wellfounded, so there is a minimum.
Concluding, ≤G is a wellorder.

Now consider some valid RDF/S KB K. To show that � is a selection mechanism, we
need to show that ≤K is change-generating.

Totality: consider �1,�2. If there is some (possibly negated) predicate q such that |�q
1 | �=

|�q
2 | then the result is obvious. If |�q

1 | = |�q
2 | for all q , then, if �1 = �2, the result is obvious.

So suppose that |�q
1 | = |�q

2 | for all q and �1 �= �2. Then, set � = (�1 \�2)∪(�2 \�1). It
follows that � �= ∅. Given that ≤G is a wellorder, there is exactly one minimum (according to
≤G ) in �, say g. If g ∈ �1 \�2, then �1 <K �2, whereas if g ∈ �2 \�1, then �2 <K �1.

Antisymmetry: consider �1,�2 such that �1 ≤K �2 and �2 ≤K �1, and suppose that
�1 �= �2. If there is some (possibly negated) predicate q such that |�q

1 | �= |�q
2 | and for all

predicates q ′ such that q <P q ′ it holds that |�q ′
1 | = |�q ′

2 |, then either �1 <K �2 or �2 <K
�1, a contradiction. So, |�q

1 | = |�q
2 | for all q . Consider the set � = (�1 \�2)∪ (�2 \�1).

Since �1 �= �2, it follows that � �= ∅. Since ≤G is a wellorder, there is exactly one minimum
(according to ≤G ) in �, say g. If g ∈ �1 \ �2, then �1 <K �2, whereas if g ∈ �2 \ �1,
then �2 <K �1, both of which contradict with our hypothesis. Thus, �1 = �2.

Transitivity: consider �1,�2,�3 such that �1 ≤K �2 and �2 ≤K �3.
If �1 = �2 or �2 = �3, then the result is obvious.
Suppose that (a) there is some predicate q such that |�q

1 | < |�q
2 | and for all predicates

q0 such that q <P q0 it holds |�q0
1 | = |�q0

2 | and (b) there is some predicate q ′ such that

|�q ′
2 | < |�q ′

3 | and for all predicates q ′
0 such that q ′ <P q ′

0 it holds |�q ′
0

2 | = |�q ′
0

3 |. Then,
obviously, there is some predicate q ′′ (which is either q or q ′, depending on whether q <P q ′

or q ′ <P q or q = q ′) such that |�q ′′
1 | < |�q ′′

3 | and for all predicates q ′′
0 such that q ′′ <P q ′′

0

it holds |�q ′′
0

1 | = |�q ′′
0

3 |. Thus, �1 ≤K �3.
Suppose now that (a) there is some predicate q such that |�q

1 | < |�q
2 | and for all predicates

q0 such that q <P q0 it holds |�q0
1 | = |�q0

2 | and (b) that for all predicates q ′ it holds that

|�q ′
2 | = |�q ′

3 |. Then, |�q
1 | < |�q

3 | and for all predicates q0 such that q <P q0 it holds that
|�q0

1 | = |�q0
3 | so �1 ≤K �3.

Similarly, if we suppose that (a) for all predicates q it holds that |�q
1 | = |�q

2 | and (b)

that there is some predicate q ′ such that |�q ′
2 | < |�q ′

3 | and for all predicates q ′
0 such that

q ′ <P q ′
0 it holds that |�q0

2 | = |�q ′
0

3 |, then we can show that �1 ≤K �3.
Now, consider the case that for all predicates q it holds that |�q

1 | = |�q
2 | = |�q

3 | and
�′

1 �= �′
2 and �′

2 �= �′
3. Then the comparison boils down to comparing ground facts, and

the ground facts that are relevant for the comparison of �1,�2,�3 are those that belong to
at least one, but not all, of �1,�2,�3, so set �0 = (�1 ∪�2 ∪�3)\ (�1 ∩�2 ∩�3). Since
�1,�2,�3 are different, it follows that �0 �= ∅. Suppose that g0 is the minimal (with respect
to ≤G ) element of �0; then, by the construction of �0, there are some i, j ∈ {1, 2, 3}, i �= j
such that g0 ∈ �i , g0 /∈ � j , i.e., g0 ∈ �i \ � j . Given that g0 is minimal (with respect to
≤G ) in �0, g0 <K g′ for all g′ ∈ � j \�i ⊆ �0, so �i ≤K � j . Thus, g0 ∈ �i \� j implies
�i ≤K � j . Given this argumentation, and the fact that �1 <K �2,�2 <K �3 (by our
hypotheses and the antisymmetry property of ≤K), it follows that:

– If g0 ∈ �1 then:

• If g0 /∈ �3 then �1 ≤K �3.
• If g0 ∈ �3 then g0 /∈ �2, so �3 <K �2, a contradiction.
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– If g0 /∈ �1 then:

• If g0 ∈ �2 then �2 ≤K �1, a contradiction.
• If g0 /∈ �2 then g0 ∈ �3, so �3 ≤K �2, a contradiction.

Thus, �1 ≤K �3.
Wellfoundedness: consider any set of deltas Z = {�i } and suppose that Z has no minimal.

Given the antisymmetry property of ≤K, this can happen only if Z is infinite and there is an
infinite sequence, say �1,�2, . . . ∈ Z, such that �i+1 <K �i for all i .

Take Cl, the least preferred predicate according to ≤P . Given that �i+1 <K �i , it follows
(by the definition of ≤K) that |�Cl

i+1| ≤ |�Cl
i |. Moreover, each �i is finite, so each �Cl

i is
finite also, so eventually, there will be some index nCl for which |�Cl

i+1| = |�Cl
i | for all

i > nCl . Using the same argumentation for the next predicate according to ≤P (namely Pr ),
and for indexes i > nCl , we can similarly find an index n Pr ≥ nCl such that |�Pr

i+1| = |�Pr
i |

for all i > nC S (of course, it also holds that |�Cl
i+1| = |�Cl

i | for all i > nC S ≥ nCl ). Repeat-
ing the same process for all predicates, we will eventually find some index, say n such that
for all i > n and all predicates q it holds that |�q

i | = |�q
i+1|, i.e., for all i, j > n it holds

that |�i | = |� j |. Set n� = |�i | for some i > n.
Now set �1 = ⋃

i>n �i \ ⋂
i>n �i . Since ≤G is wellfounded, �1 has a minimal, say g1.

By the definition of �1, there is some k > n such that g1 ∈ �k . Take any m > k > n. If
g1 /∈ �m , then �k <K �m , a contradiction, so g1 ∈ �m , for all m > k. Thus, there is some
index, say n1 ≥ n for which g1 ∈ �i for all i > n1. Similarly, we define �2 = �1 \ {g1},
find the minimal of �2, say g2, and prove that there is some index, say n2 ≥ n1 for which
g2 ∈ �i for all i > n2. Continuing this recursive process, for any k > 1, we define the set
�k = �k−1 \ {gk−1} (where gk−1 is the minimal of �k−1), we find the minimal, say gk , and
prove that there is some index, say nk ≥ nk−1 for which gk ∈ �i for all i > nk .

If there is some k for which �k = ∅, then �1 was finite to begin with; given that each
�i is finite,

⋂
i>n �i is finite, thus, since �1 is finite it follows that

⋃
i>n �i is finite also,

which implies that not all �i can be different, i.e., there is some index m for which �i = � j

for i, j > m, a contradiction. Therefore, this process can be performed for all k = 1, 2, . . ..
Now set j = n� + 1; by construction, it follows that for any i > n j , g1, . . . , g j ∈ �i

(where g1, . . . , g j selected as above), and all the g1, . . . , g j are different, so |�i | ≥ j >

n� = |�i |, a contradiction. We conclude that there is no such sequence, i.e., we have reached
a contradiction, so Z has a minimum.

Monotonicity: consider �1,�2 such that �1 ⊆ �2. If �1 = �2 then obviously �1 ≤K
�2. If �1 ⊂ �2, then for all (possibly negated) predicates q it holds that |�q

1 | ≤ |�q
2 | and

there is at least one (possibly negated) predicate q0 such that |�q
1 | < |�q

2 |. Thus, �1 ≤K �2.
��

Proof of Propostion 9.2 Take any valid KB K and feasible change request C. Consider the
sets 	K, 	C ⊆ U ∪ L, which contain all the constants that appear in K, C, respectively, as
well as the custom URI γ ∈ U \ Sp such that γ is the minimum, according to ≤UL of all
constants in U \ (	K ∪ 	C ∪ Sp). Set 	 = 	K ∪ 	C ∪ {γ }.

Now consider a constraint instance σ(�a) from Table 4, such that �a contains at least one
constant that does not appear in K or C. In order for K + C to violate σ(�a) it should be the
case that all the predicates in the antecedent of the constraint must be true. By the form of the
constraints in Table 4 it follows that all the universally quantified variables in all constraints
appear in predicates in the antecedent of said constraint. Combining these two facts, we can
show that K + C � σ(�a), because �a contains at least one constant that does not appear in K
or C, so not all antecedents of σ(�a) can be true.
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Given the modification of ChangeRDF in line 9, for all calls in ChangeRDF (Crem, K0,

�pre f ) it will hold that Crem, K0,�pre f contain only constants from 	. Therefore, line 7 will
never have to consider constraints containing constants that are not in 	. Moreover, any given
recursive branch cannot consider the same constraint instance twice, because, once we con-
sider one constraint instance, it is resolved by adding side-effects toCrem; furthermore, we only
add ground facts to Crem, and if we add contradictory ground facts, line 1 will stop the recur-
sion, so a resolution cannot be undone in subsequent recursive calls. Since K, C are finite, 	 is
finite also, so, even if a recursive branch considers all possible constraint instances once, it will
still have to consider a finite number of constraint instances, so it will have a finite length (equal
to the number of different constraint instances considered). Similarly, due to the modification
in line 9, the number of recursive branches spawned by each call will be finite. As a result, the
total number of recursive calls is finite. Similarly, each individual call to ChangeRDF will
terminate for the same reasons. We conclude that the call ChangeRDF (C, K,�∞) terminates.

It remains to show that the algorithm returns the correct result upon termination. Using
Proposition 8.1, it suffices to show that the modification of line 9 (i.e., ignoring some of the
S ′ ∈ Res(σ (�a))) does not jeopardize correctness, i.e., none of the ignored branches could lead
to the correct result. Equivalently, we need to show that K•C contains only constants from 	.

Suppose that this is not true, and that K • C contains at least one constant that does not
appear in 	. Set � = �(K, K • C), and let γ1, γ2, . . . , γm be the constants that appear in
K • C but are not in 	. Set �γ the delta that occurs from � by replacing γi ∈ U \ Sp by γ

and by dropping all ground facts that contain some γ j /∈ U \ Sp.
By definition, K + � � C. Given that �γ occurs from � by editing the ground facts that

contain γ1, γ2, . . . , γm only, and that it replaces (some of) these constants with γ , as well as
the fact that γ, γ1, γ2, . . . , γm do not appear in C by definition, the above fact implies that
K + �γ � C.

Similarly, K+� � � implies that K+�γ � �. This is true, intuitively, because all invalid-
ities can be resolved using ground facts from 	K∪	C only, except from the invalidities that in-
volve the existential quantifier, for which any other custom URI can be used (butγ is preferred,
by definition). More formally, let’s assume, for the sake of contradiction, that there is some
constraint instance σ(�a) such that K+�γ � σ(�a). If σ(�a) = R1.1(A) then Cl(A) ∈ K+�γ

and A is not a custom URI. If A ∈ 	K ∪ 	C then by the construction of �γ it follows that
Cl(A) ∈ K+� as well, i.e., K+� � R1.1(A), a contradiction. If A = γ then γ is a custom
URI by definition, so R1.1(A) is not violated. If A /∈ 	 then it cannot be the case that Cl(A) ∈
K + �γ because A does not appear in K or in �γ . We conclude that, in any case, K + �γ �
R1.1(A). We can use similar arguments for all constraints in Table 4. Thus, K + �γ � �.

Finally, it is easy to note that for all predicates q it holds that |�q
γ | ≤ |�q |. If |�q

γ | < |�q |
for some q , then �γ <K �, a contradiction by the definition of �. So suppose that
|�q

γ | = |�q | for all q . Then, all γi are custom URIs. In addition, Dist (γ ) = Dist (γi ) = 0,
because γ, γ1, γ2, . . . , γm do not appear in K. Therefore, the comparison between �,�γ

boils down to comparing the constants using ≤UL; by the definition of γ , this implies that
�γ <K �. This is a contradiction by the definition of �. We conclude that K • C contains
only constants from 	. The result follows from Proposition 8.1. ��
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