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Abstract Interval type-2 fuzzy sets are associated with greater imprecision and more
ambiguities than ordinary fuzzy sets. This paper presents a signed-distance-based method
for determining the objective importance of criteria and handling fuzzy, multiple criteria
group decision-making problems in a flexible and intelligent way. These advantages arise
from the method’s use of interval type-2 trapezoidal fuzzy numbers to represent alternative
ratings and the importance of various criteria. An integrated approach to determine the over-
all importance of the criteria is also developed using the subjective information provided by
decision-makers and the objective information delivered by the decision matrix. In addition,
a linear programming model is developed to estimate criterion weights and to extend the pro-
posed multiple criteria decision analysis method. Finally, the feasibility and effectiveness of
the proposed methods are illustrated by a group decision-making problem of patient-centered
medicine in basilar artery occlusion.

Keywords Interval type-2 fuzzy set · Signed distance · Objective importance · Multiple
criteria group decision-making · Linear programming model · Patient-centered medicine

1 Introduction

A type-2 fuzzy set (T2FS) is a membership function represented by a fuzzy set on the inter-
val [0, 1] [64]. T2FSs are more capable than ordinary fuzzy sets of handling imprecision
and imperfect information in real-world applications. In addition, T2FS theory provides an
intuitive and computationally feasible method for dealing with uncertain and ambiguous
properties. Considering the decision-maker’s point of view and the circumstances of the
multiple criteria decision-making process, we find that subjective opinions and judgments
are inherently imprecise and involve many uncertainties, especially when hybrid data, vague
concepts, and uncertain data were involved in the decision process [18]. In this respect,
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we represent multiple criteria decisions in terms of T2FSs in this study. Nonetheless, prior
scholars have argued against T2FSs by pointing out the difficulties in construction and manip-
ulation [1]. To resolve the difficulties in establishing and handling the secondary membership
functions, scholars use interval type-2 fuzzy sets (IT2FSs), which are also known as inter-
val-valued fuzzy sets [48,64]. IT2FSs contain membership values that are crisp intervals,
and they are the most widely used of the higher order fuzzy sets because of their relative
simplicity [39,59].

The concept of IT2FSs is defined by an interval-valued membership function [48,64].
Many useful methods have been developed to enrich IT2FS theory [8,6,11,26,32,59,65].
Recently, IT2FSs have been applied to several areas, including power systems [50,51], nonlin-
ear systems [3,33], chaotic systems [34], fuzzy logic systems [7,43], and conceptual designs
[2]. IT2FSs are especially useful in circumstances in which a crisp degree of membership is
difficult to determine. Decision-makers often have a difficult time precisely quantifying their
opinions of subjective judgments as a number in an interval [0, 1] during the decision-making
process. Thus, the degree of membership is better represented by a higher order fuzzy set
than an exact membership grade. A growing number of scholars are becoming interested in
developing the methods for multiple criteria decision analysis (MCDA) within the context
of IT2FSs.

Chen and Tsao [20] extended the technique for order preference by similarity to an ideal
solution (TOPSIS) that is based on IT2FSs. They conducted an experimental analysis on
distance measures as well. Yang et al. [63] combined IT2FSs and soft sets to obtain an
interval-valued fuzzy soft set. They defined the complement, defined the “and” and “or”
operations, proved DeMorgan’s associative and distribution laws and applied these laws to a
decision-making problem. Chen and Wang [21] developed an interval-valued fuzzy permu-
tation method to solve multi-criteria decision-making problems with IT2FS data and con-
ducted an experimental analysis on cardinal and ordinal evaluations. Lu et al. [36] developed
an interval-valued fuzzy linear programming method based on infinite α-cuts and applied
this method to the problem of water resource management. Chen and Lee [19] presented an
interval type-2 fuzzy TOPSIS method to handle group decision-making problems based on
IT2FSs. Vahdani and Hadipour [52] proposed an elimination and choice translating reality
(ELECTRE) method based on IT2FSs to solve a problem involving the selection of a mainte-
nance strategy. Vahdani et al. [53] developed an ELECTRE method with interval weights and
data to solve multi-criteria decision-making problems. Chen [12] presented a useful method
for estimating the importance of the criteria in MCDA and for reducing the leniency bias in
MCDA based on IT2FSs. Wei et al. [58] introduced correlation and correlation coefficients
for interval-valued intuitionistic fuzzy sets and proposed a multiple attribute decision-mak-
ing method with incomplete weight information. Chen [13] utilized several score functions
based on interval type-2 fuzzy point operators to quantify both optimistic and pessimistic
estimations and developed a model to reduce cognitive dissonance based on IT2FSs. Because
IT2FS theory is valuable for both modeling imprecision and for its ability to easily reflect
the ambiguous nature of subjective judgments, this paper used IT2FSs to capture imprecise
or uncertain decision information in the fields that require MCDA.

Wang and Li [55] defined the interval-valued fuzzy numbers (i.e., interval type-2 fuzzy
numbers (IT2FNs)) and provided a starting point for real-world applications. Because a deci-
sion-maker’s method of evaluating alternatives and making decisions is guided by his or her
subjective judgments, the decision data used in MCDA can be reasonably considered to be
IT2FNs. Nevertheless, processing sophisticated IT2FN data may be difficult or troublesome.
A simple and effective method for managing complicated data is needed. To date, the study of
decision-making (such as decision-theoretic model and decision-support system) has been,
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and still is, undertaken in various ways and by various scholars and practitioners working in
the area [9,28,35,42]. However, the relevant issues of the MCDA models and methods with
the IT2FN data have not yet been thoroughly explored. Accordingly, we intend to construct
a new group decision-making method based on signed distances to resolve a fuzzy MCDA
problem within the context of IT2FNs. A signed distance (i.e., an oriented distance or directed
distance) has often been used to determine the rankings of fuzzy numbers. Combined with the
axiom of choice, the concept of signed distances can be extended to the IT2FN environment
and helps us develop an interval type-2 fuzzy group decision-making method.

The purpose of this study was to develop a group decision-making method for solving
MCDA problems with both alternative evaluations and criterion importance values expressed
as IT2FNs to be considered via signed distances. In addition, a method for estimating the
criterion weights (non-negative crisp numbers and normalized to sum to one) from the IT2FN
preference information using an integrated programming model was further developed to
make more practical contributions to decision-making reality. This article is organized as
follows. Section 2 briefly reviews the concept of IT2FSs and introduces linguistic variables,
which can be converted to IT2FNs. Section 3 defines the signed distance between IT2FNs and
discusses some properties of the proposed signed distance. The multi-person MCDA prob-
lem with IT2FN data is formulated in Sect. 4. In addition, Sect. 4 establishes an integrated
approach to combine the objective and subjective importance values of criteria and devel-
ops a ranking procedure based on a signed-distance-based method in the decision context
of IT2FNs. If assessing the priority weights of criteria is important to the decision-makers,
another version of the MCDA method is provided in Sect. 5 to estimate criterion weights from
the IT2FN data. Section 6 illustrates and discusses the proposed methods using a practical
clinical medicine problem of patient-centered care, and gives a deep comparative analysis and
discussions. Further discussions on the proposed methodology and conclusions are provided
in Sect. 7.

2 Preliminaries

Based on the IT2FN framework, we used the interval type-2 trapezoidal fuzzy num-
bers (IT2TrFNs) to propound the signed-distance-based group decision-making method
for MCDA. This section reviews a few relevant definitions and operations of IT2FSs and
IT2TrFNs.

Definition 1 Let Int([0, 1]) stand for the set of all closed subintervals of [0, 1]. Let X be an
ordinary finite nonempty set. An IT2FS A in the universe of discourse X is an expression
given by A = {〈x, μA(x)〉 |x ∈ X }, where the function μA : X → Int([0, 1]) defines the
degree of membership of an element x to A, such that x → μA(x) = [

μ−
A(x), μ

+
A(x)

]
.

All IT2FSs on X are denoted by IT2FS(X ).

Definition 2 Let A ∈ IT2FS (X). If A(x) is a convex set and is defined in a closed and
bounded interval, then A is called an IT2FN on X . Let A(x) = [

AL(x), AU (x)
]
, where

0 ≤ AL(x) ≤ AU (x) ≤ 1, x ∈ X, AL : X → [0, 1], and AU : X → [0, 1]. All IT2FNs on
X are denoted by IT2FN(X ).

Definition 3 Let AL and AU be a lower and an upper trapezoidal fuzzy numbers, and let hL
A

and hU
A denote the heights of AL and AU . An IT2TrFN A defined on X is represented by the

following:

A =
[

AL , AU
]

=
[(

aL
1 , aL

2 , aL
3 , aL

4 ; hL
A

)
,
(

aU
1 , aU

2 , aU
3 , aU

4 ; hU
A

)]
, (1)
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where aL
1 ≤ aL

2 ≤ aL
3 ≤ aL

4 , aU
1 ≤ aU

2 ≤ aU
3 ≤ aU

4 , 0 ≤ hL
A ≤ hU

A ≤ 1, aU
1 ≤ aL

1 , and
aL

4 ≤ aU
4 . In addition, AL ⊂ AU (if and only if ∀x ∈ X, μAL (x) ≤ μAU (x)), in which the

membership functions of AL and AU are expressed as the following:

AL(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

hL
A

(
x − aL

1

)
/
(
aL

2 − aL
1

)
for aL

1 ≤ x ≤ aL
2 ,

hL
A for aL

2 ≤ x ≤ aL
3 ,

hL
A

(
aL

4 − x
)
/
(
aL

4 − aL
3

)
for aL

3 ≤ x ≤ aL
4 ,

0 otherwise;

(2)

AU (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

hU
A

(
x − aU

1

)
/
(
aU

2 − aU
1

)
for aU

1 ≤ x ≤ aU
2 ,

hU
A for aU

2 ≤ x ≤ aU
3 ,

hU
A

(
aU

4 − x
)
/
(
aU

4 − aU
3

)
for aU

3 ≤ x ≤ aU
4 ,

0 otherwise.

(3)

Definition 4 The arithmetic operations between the IT2TrFNs A = [(
aL

1 , aL
2 , aL

3 , aL
4 ; hL

A

)
,(

aU
1 , aU

2 , aU
3 , aU

4 ; hU
A

)]
and B = [(

bL
1 , bL

2 , bL
3 , bL

4 ; hL
B

)
,
(
bU

1 , bU
2 , bU

3 , bU
4 ; hU

B

)]
are defined

as:

(1) Addition operation

A ⊕ B =
[(

aL
1 + bL

1 , aL
2 + bL

2 , aL
3 + bL

3 , aL
4 + bL

4 ; min
(

hL
A, hL

B

))
,

(
aU

1 + bU
1 , aU

2 + bU
2 , aU

3 + bU
3 , aU

4 + bU
4 ; min

(
hU

A , hU
B

))]
. (4)

(2) Subtraction operation

A�B =
[(

aL
1 − bL

4 , aL
2 − bL

3 , aL
3 − bL

2 , aL
4 − bL

1 ; min
(

hL
A, hL

B

))
,

(
aU

1 − bU
4 , aU

2 − bU
3 , aU

3 − bU
2 , aU

4 − bU
1 ; min

(
hU

A , hU
B

))]
. (5)

(3) Multiplication operation (aL
1 , aL

2 , aL
3 , aL

4 , aU
1 , aU

2 , aU
3 , aU

4 , bL
1 , bL

2 , bL
3 , bL

4 , bU
1 , bU

2 ,

bU
3 , and bU

4 are positive real numbers)

A ⊗ B =
[(

aL
1 × bL

1 , aL
2 × bL

2 , aL
3 × bL

3 , aL
4 × bL

4 ; min
(

hL
A, hL

B

))
,

(
aU

1 × bU
1 , aU

2 × bU
2 , aU

3 × bU
3 , aU

4 × bU
4 ; min

(
hU

A , hU
B

))]
. (6)

(4) Division operation (aL
1 , aL

2 , aL
3 , aL

4 , aU
1 , aU

2 , aU
3 , aU

4 , bL
1 , bL

2 , bL
3 , bL

4 , bU
1 , bU

2 , bU
3 , and

bU
4 are nonzero positive real numbers)

A∅B =
[(

aL
1 /b

L
4 , aL

2 /b
L
3 , aL

3 /b
L
2 , aL

4 /b
L
1 ; min

(
hL

A, hL
B

))
,

(
aU

1 /b
U
4 , aU

2 /b
U
3 , aU

3 /b
U
2 , aU

4 /b
U
1 ; min

(
hU

A , hU
B

))]
. (7)

(5) Multiplication by an ordinary number

q · A = A · q

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
(q × aL

1 , q × aL
2 , q × aL

3 , q × aL
4 ; hL

A),

(q × aU
1 , q × aU

2 , q × aU
3 , q × aU

4 ; hU
A )

]
if q ≥ 0,

[
(q × aL

4 , q × aL
3 , q × aL

2 , q × aL
1 ; hL

A),

(q × aU
4 , q × aU

3 , q × aU
2 , q × aU

1 ; hU
A )

]
if q ≤ 0.

(8)
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(6) Division by an ordinary number (q is a nonzero number)

A

q
=

⎧
⎪⎪⎨

⎪⎪⎩

[(
aL

1
q ,

aL
2
q ,

aL
3
q ,

aL
4
q ; hL

A

)
,

(
aU

1
q ,

aU
2
q ,

aU
3
q ,

aU
4
q ; hU

A

)]
if q > 0,

[(
aL

4
q ,

aL
3
q ,

aL
2
q ,

aL
1
q ; hL

A

)
,

(
aU

4
q ,

aU
3
q ,

aU
2
q ,

aU
1
q ; hU

A

)]
if q < 0.

(9)

(7) Inverse operation (aL
1 , aL

2 , aL
3 , aL

4 , aU
1 , aU

2 , aU
3 , and aU

4 are nonzero positive real num-
bers)

A−1 =
[(

1/aL
4 , 1/aL

3 , 1/aL
2 , 1/aL

1 ; hL
A

)
,
(

1/aU
4 , 1/aU

3 , 1/aU
2 , 1/aU

1 ; hU
A

)]
.

(10)

(8) ηth power operation (aL
1 , aL

2 , aL
3 , aL

4 , aU
1 , aU

2 , aU
3 , and aU

4 are positive real numbers
and η is a natural number excluding 0)

Aη =
[(
(aL

1 )
η, (aL

2 )
η, (aL

3 )
η, (aL

4 )
η; hL

A

)
,

(
(aU

1 )
η, (aU

2 )
η, (aU

3 )
η, (aU

4 )
η; hU

A

)]
.

(11)

(9) Root of order η (aL
1 , aL

2 , aL
3 , aL

4 , aU
1 , aU

2 , aU
3 , and aU

4 are positive real numbers and η
is a natural number excluding 0)

A
1
η =

[(
η

√
aL

1 ,
η

√
aL

2 ,
η

√
aL

3 ,
η

√
aL

4 ; hL
A

)
,

(
η

√
aU

1 ,
η

√
aU

2 ,
η

√
aU

3 ,
η

√
aU

4 ; hU
A

)]
.

(12)

Note that the operations of multiplication, division, inverse, ηth power, and root of order η
produce approximate IT2TrFNs for simple computations.

3 Linguistic ratings and signed distances for IT2TrFNs

This section introduces the concepts of linguistic variables and signed distances to effectively
construct and handle IT2TrFN data.

3.1 Linguistic variables for IT2TrFN ratings

In the IT2TrFN context, the alternative evaluations and the criterion importance were
expressed as IT2TrFNs. However, it may be difficult to directly collect IT2TrFN data. In
fact, most of the decision-makers are constantly making decisions within linguistic envi-
ronments in practice [45,46,56,60,61]. The fuzzy linguistic approach represents qualitative
aspects as linguistic values by means of linguistic variables [56]. Thus, a direct method of
survey research can be used to collect linguistic information to construct degrees of mem-
bership [31], and these linguistic values are often represented by fuzzy numbers. Thus, the
ratings in this paper were considered to be linguistic variables to overcome the difficulty of
data collection in an IT2TrFN framework.

For better sensitivity, this study adopted a nine-linguistic-term set, which originates from
Chen’s 1996 work, to accurately measure variability in responses. In general, the greater the
number of scale categories, the finer the discrimination among decision outcomes or crite-
rion importance that is possible. Traditional guidelines suggest that the appropriate number
of categories should be seven plus or minus two, that is, between five and nine [23,25,54].
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Table 1 Linguistic variables and their corresponding IT2TrFNs

Linguistic terms Corresponding IT2TrFNs

Absolutely low (AL) [(0.0, 0.0, 0.0, 0.0; 1.0), (0.0, 0.0, 0.0, 0.0; 1.0)]

Very low (VL) [(0.0075, 0.0075, 0.015, 0.0525; 0.8), (0.0, 0.0, 0.02, 0.07; 1.0)]

Low (L) [(0.0875, 0.12, 0.16, 0.1825; 0.8), (0.04, 0.10, 0.18, 0.23; 1.0)]

Medium low (ML) [(0.2325, 0.255, 0.325, 0.3575; 0.8), (0.17, 0.22, 0.36, 0.42; 1.0)]

Medium (M) [(0.4025, 0.4525, 0.5375, 0.5675; 0.8), (0.32, 0.41, 0.58, 0.65; 1.0)]

Medium high (MH) [(0.65, 0.6725, 0.7575, 0.79; 0.8), (0.58, 0.63, 0.80, 0.86; 1.0)]

High (H) [(0.7825, 0.815, 0.885, 0.9075; 0.8), (0.72, 0.78, 0.92, 0.97; 1.0)]

Very high (VH) [(0.9475, 0.985, 0.9925, 0.9925; 0.8), (0.93, 0.98, 1.0, 1.0; 1.0)]

Absolutely high (AH) [(1.0, 1.0, 1.0, 1.0; 1.0), (1.0, 1.0, 1.0, 1.0; 1.0)]

In this paper, sophisticated data of IT2TrFNs were used to develop a group decision-making
method. It follows that the MCDA problem in this study was complicated or large-scaled and
required more sensitive and precise input data for decision aiding.

Several factors were taken into account in deciding on the number of categories for this
study. First, the individual responses of each decision-maker were of interest in group deci-
sion-making. In addition, the investigated data were analyzed by the proposed sophisticated
fuzzy techniques to deal with the complex nature of the MCDA problem. Therefore, a nine-
linguistic-term set was sufficient and necessary in this study. Second, because all decision-
makers were involved in the scaling task in a complex MCDA problem and were moderately
to highly knowledgeable about the alternative evaluations or the criterion importance, it
was appropriate to employ a large number of categories (e.g., nine categories) [38]. Third,
faced with the necessity of choosing among non-inferior/non-dominant alternatives, the deci-
sion-makers evaluated and provided available information on the alternatives and eventually
established a preference order. When a person made a decision based on available alterna-
tives, each of which had certain advantages and disadvantages over the others, varying levels
of post-decision dissonance resulted [41]. Because the decision-maker might have doubts
and anxieties about the choices, a scale of fine discrimination was required to differentiate
the relative attractiveness of the alternatives and to reduce post-decision dissonance further.
Following the discussions above, a nine-linguistic-term set was adopted in this paper.

The linguistic variables can be converted to IT2TrFNs, as depicted in Table 1. There were
nine translations of linguistic terms into IT2TrFNs, and each of nine-point interval linguistic
terms is corresponding to the nine-member linguistic term set developed by [10]. Based on
Table 1, the linguistic terms were easily converted to IT2TrFNs, including lower trapezoidal
fuzzy numbers [17] and upper trapezoidal fuzzy numbers [16,17,57]. The height of the lower
trapezoidal fuzzy numbers was modified to 0.80 according to [57], except for the responses
AL (absolutely low) and AH (absolutely high).

As indicated in Table 1, the uncertain linguistic problems in MCDA were handled using
IT2TrFN values. Although the expression of IT2TrFNs seems very complicated, the mathe-
matical manipulation and the computational process are substantially simple and effective via
the employment of signed distances between IT2TrFNs. In addition, IT2TrFNs are associated
with greater imprecision and more ambiguities than type-1 fuzzy numbers. Decision-mak-
ing information provided by the decision-maker is often imprecise or uncertain, due to lack
of data, time pressure, or the decision-maker’s limited attention and information-processing
capabilities. For these reasons, we can rationally justify that the employment of the predefined
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linguistic set of IT2TrFNs is a flexible method capable of tackling such MCDA problems
and modeling second-order uncertainties [29].

3.2 Signed distance of IT2TrFNs

The concept of signed distances was extended to develop a new method for obtaining objective
criteria importance values and for solving MCDA problems with IT2TrFN data. According
to the axiom of choice, alternatives that were closer to the ideal were preferred to those
that were farther away. The rationale of human choice is to be as close as possible to the
perceived ideal. Thus, the basic principle of the proposed method was that the chosen alter-
native should have the shortest distance to the ideal solution. In the context of IT2TrFNs, this
method employed a signed-distance-based approach to identify the separation measures of
each alternative from the ideal solution. In the literature, the concept of signed distances can
be used to determine rankings of fuzzy numbers. Linear scale normalization was conducted
to transform the various IT2TrFN scales into a single scale between zero and one. Then, the
position of the ideal solution could be defined as [(1,1,1,1;1), (1,1,1,1;1)], which was placed
on the y-axis at x = 1.

Let A and B be two IT2TrFNs defined on the universe of discourse X , where
A = [

AL , AU
] = [(

aL
1 , aL

2 , aL
3 , aL

4 ; hL
A

)
,
(
aU

1 , aU
2 , aU

3 , aU
4 ; hU

A

)]
and B = [

BL , BU
] =[(

bL
1 , bL

2 , bL
3 , bL

4 ; hL
B

)
,
(
bU

1 , bU
2 , bU

3 , bU
4 ; hU

B

)]
. In the following description, which was

motivated by the idea proposed in [22], the signed distance of an IT2TrFN from the
y-axis at x = 1 was determined. The proofs of Propositions 1 and 2 as well as Proper-
ties 1–4 have been provided in the author’s previous researches [14,15].

Proposition 1 Let the level 1 fuzzy number 1̃1 map onto the y-axis at x = 1. The signed
distances from AL and AU to 1̃1 are the following:

d
(

AL , 1̃1

)
= 1

4

(
aL

1 + aL
2 + aL

3 + aL
4 − 4

)
, (13)

d
(

AU , 1̃1

)
= 1

4

(
aU

1 + aU
2 + aU

3 + aU
4 − 4

)
. (14)

Property 1 If both AL = (
aL , aL , aL , aL ; hL

A

)
and AU = (

aU , aU , aU , aU ; hU
A

)
, then the

absolute value of the signed distances in Proposition 1 is identical to the Hamming distance
between the corresponding ordinary number (aL or aU ) and 1̃1.

Property 2 AL is located at 1̃1 if and only if d
(

AL , 1̃1

)
= 0. Both AL andAU are located

at 1̃1 if and only if d
(

AU , 1̃1

)
= 0.

Proposition 2 The signed distance from A to 1̃1 is the following:

d(A, 1̃1) = 1

8

(

aL
1 + aL

2 + aL
3 + aL

4 + 4aU
1 + 2aU

2 + 2aU
3 + 4aU

4

+3
(

aU
2 + aU

3 − aU
1 − aU

4

) hL
A

hU
A

− 16

)

. (15)

when 0 < hL
A = hU

A ≤ 1,

d
(

A, 1̃1

)
= 1

8

(
aL

1 + aL
2 + aL

3 + aL
4 + aU

1 + 5aU
2 + 5aU

3 + aU
4 − 16

)
. (16)
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Property 3 A is located at 1̃1 if and only if d
(

A, 1̃1

)
= 0, where aL

1 = aL
2 = aL

3 = aL
4 =

aU
1 = aU

2 = aU
3 = aU

4 = 1.

Property 4 Let C be an IT2TrFN defined on X , where C = [(1, 1, 1, 1; 1), (1, 1, 1, 1; 1)].
The IT2TrFN A is closer to the IT2TrFN C than the IT2TrFN B if and only if d(A, 1̃1) >

d(B, 1̃1).

Because the signed distances d
(

A, 1̃1

)
and d

(
B, 1̃1

)
are real numbers, they satisfy lin-

ear ordering. Additionally, one of the following three conditions must hold: d
(

A, 1̃1

)
>

d
(

B, 1̃1

)
, d

(
A, 1̃1

)
= d

(
B, 1̃1

)
, or d

(
A, 1̃1

)
< d

(
B, 1̃1

)
. It follows that the signed

distance based on IT2TrFNs satisfies the law of trichotomy as indicated in Definition 5. By
utilizing the signed distances, a new MCDA method was developed to order the priorities of
various alternatives.

Definition 5 According to the principle of “the higher the better”, the ranking of A and B

by the signed distances d
(

A, 1̃1

)
and d

(
B, 1̃1

)
on X can be defined as the following:

(1) d
(

A, 1̃1

)
> d

(
B, 1̃1

)
if and only if A  B;

(2) d
(

A, 1̃1

)
= d

(
B, 1̃1

)
if and only if A ∼ B;

(3) d
(

A, 1̃1

)
< d

(
B, 1̃1

)
if and only if A ≺ B.

4 MCDA method based on IT2TrFNs

This section first describes a decision environment based on IT2TrFNs for MCDA problems
that was constructed by aggregating multiple decision-makers’ opinions. It then presents an
integrated approach to determine criterion importance according to the subjective preference
information and the objective decision-relevant information. A new method suitable for han-
dling IT2TrFN data is also proposed as a method for estimating the objective importance
of criteria. A ranking procedure based on a signed-distance-based method was developed
for group decision-making, and an effective algorithm was developed to solve the MCDA
problem in the context of IT2TrFNs.

4.1 Decision environment defined over IT2TrFNs

For an MCDA problem, the evaluations of each alternative with respect to each criterion and
the grades of importance for decision criteria can be expressed using IT2TrFNs. Suppose
that there is a non-inferior/non-dominant set of alternatives, A = {A1, A2, . . . , Am}, where
m is the number of alternatives. Each alternative is assessed based on n criteria, which are
denoted by X = {x1, x2, . . . , xn}. The criterion set X can be divided into two sets, Xb and
Xc, where Xb denotes a collection of benefit criteria (i.e., larger values of x j indicate a
greater preference), Xc denotes a collection of cost criteria (i.e., smaller values of x j indicate
a greater preference), Xb ∩ Xc = φ, and Xb ∪ Xc = X .

Assume that E = {E1, E2, . . . , EK } is the set of decision-makers involved in the deci-
sion process. Based on the linguistic variables in Table 1, each decision-maker constructs
positive IT2TrFNs using linguistic terms to estimate the subjective importance values of the
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criteria and to evaluate the alternatives for each criterion according to his/her experience

and preference. Let Ak
i j =

[
AkL

i j , AkU
i j

]
be an evaluation value of the alternative Ai ∈ A

with respect to each criterion x j ∈ X ( j = 1, 2, . . . , n) provided by the kth decision-
maker (k = 1, 2, . . . , K ). AkL

i j and AkU
i j denote the lower extreme and the upper extreme

of the IT2TrFN Ak
i j , respectively, where AkL

i j =
(

akL
1i j , akL

2i j , akL
3i j , akL

4i j ; hkL
Ai j

)
, AkU

i j =
(

akU
1i j , akU

2i j , akU
3i j , akU

4i j ; hkU
Ai j

)
, and AkL

i j ⊂ AkU
i j . Note that 0 ≤ akL

1i j ≤ akL
2i j ≤ akL

3i j ≤ akL
4i j ≤ 1

and 0 ≤ akU
1i j ≤ akU

2i j ≤ akU
3i j ≤ akU

4i j ≤ 1. It, therefore, follows that the rating of alternative
Ai with respect to criterion x j can be calculated as the following:

Ai j = 1

K
·
(
[A1L

i j , A1U
i j ] ⊕ [A2L

i j , A2U
i j ] ⊕ · · · ⊕ [AK L

i j , AKU
i j ]

)

=
[(∑K

k=1 akL
1i j

K
,

∑K
k=1 akL

2i j

K
,

∑K
k=1 akL

3i j

K
,

∑K
k=1 akL

4i j

K
; min

k
hkL

Ai j

)

,

(∑K
k=1 akU

1i j

K
,

∑K
k=1 akU

2i j

K
,

∑K
k=1 akU

3i j

K
,

∑K
k=1 akU

4i j

K
; min

k
hkU

Ai j

)]

. (17)

Let us denote aL
1i j = �K

k=1akL
1i j/K , aL

2i j = �K
k=1akL

2i j/K , aL
3i j = �K

k=1akL
3i j/K , aL

4i j =
�K

k=1akL
4i j/K , aU

1i j = �K
k=1akU

1i j /K , aU
2i j = �K

k=1akU
2i j /K , aU

3i j = �K
k=1akU

3i j /K , aU
4i j =

�K
k=1akU

4i j /K , hL
Ai j

= mink hkL
Ai j

, and hU
Ai j

= mink hkU
Ai j

for brevity. The evaluation of alter-
native Ai on criterion x j can then be expressed as the following:

Ai j =
[

AL
i j , AU

i j

]
=

[(
aL

1i j , aL
2i j , aL

3i j , aL
4i j ; hL

Ai j

)
,
(

aU
1i j , aU

2i j , aU
3i j , aU

4i j ; hU
Ai j

)]
, (18)

where 0 ≤ aL
1i j ≤ aL

2i j ≤ aL
3i j ≤ aL

4i j ≤ 1, 0 ≤ aU
1i j ≤ aU

2i j ≤ aU
3i j ≤ aU

4i j ≤ 1, 0 ≤ hL
Ai j

≤
hU

Ai j
≤ 1, aU

1i j ≤ aL
1i j , aL

4i j ≤ aU
4i j , and AL

i j ⊂ AU
i j . It follows that the decision-matrix D is

defined in the following way:

D =

x1 x2 · · · xn

A1

A2
...

Am

⎡

⎢⎢⎢
⎣

A11

A21
...

Am1

A12

A22
...

Am2

· · ·
· · ·
. . .

· · ·

A1n

A2n
...

Amn

⎤

⎥⎥⎥
⎦
.

(19)

The characteristics of the alternative Ai can be represented by the IT2TrFN in the following
way:

Ai =
{〈

x1, [AL
i1, AU

i1]
〉
,
〈
x2, [AL

i2, AU
i2]

〉
, . . . ,

〈
xn, [AL

in, AU
in]

〉}

=
{〈

x j , [AL
i j , AU

i j ]
〉 ∣∣x j ∈ X, j = 1, 2, . . . , n

}
, i = 1, 2, . . . ,m. (20)

In a similar manner, the IT2TrFN can be used to express the subjective importance for vari-
ous decision criteria during the decision-maker’s evaluation process. Based on the linguistic
terms, an IT2TrFN W k , which is provided by the kth decision-maker and is defined on the
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universe of discourse X , is an object of the following form:

W k =
{〈

x1, [W kL
1 ,W kU

1 ]
〉
,
〈
x2, [W kL

2 ,W kU
2 ]

〉
, . . . ,

〈
xn, [W kL

n ,W kU
n ]

〉}

=
{〈

x j , [W kL
j ,W kU

j ]
〉 ∣
∣x j ∈ X, j = 1, 2, . . . , n

}
, k = 1, 2, . . . , K , (21)

where W kL
j =

(
wkL

1 j , w
kL
2 j , w

kL
3 j , w

kL
4 j ; hkL

W j

)
, W kU

j =
(
wkU

1 j , w
kU
2 j , w

kU
3 j , w

kU
4 j ; hkU

W j

)
, and

W kL
j ⊂ W kU

j . Note that 0 ≤ wkL
1 j ≤ wkL

2 j ≤ wkL
3 j ≤ wkL

4 j ≤ 1 and 0 ≤ wkU
1 j ≤ wkU

2 j ≤
wkU

3 j ≤ wkU
4 j ≤ 1. It follows that the average subjective importance grade of criterion x j for

all decision-makers is calculated as follows:

W j = 1

K
·
([

W 1L
j ,W 1U

j

]
⊕

[
W 2L

j ,W 2U
j

]
⊕ · · · ⊕

[
W K L

j ,W KU
j

])

=
[(∑K

k=1w
kL
1 j

K
,

∑K
k=1w

kL
2 j

K
,

∑K
k=1w

kL
3 j

K
,

∑K
k=1w

kL
4 j

K
; min

k
hkL

W j

)

,

(∑K
k=1w

kU
1 j

K
,

∑K
k=1w

kU
2 j

K
,

∑K
k=1w

kU
3 j

K
,

∑K
k=1w

kU
4 j

K
; min

k
hkU

W j

)]

. (22)

Let us denote wL
1 j = �K

k=1w
kL
1 j /K , wL

2 j = �K
k=1w

kL
2 j /K , wL

3 j = �K
k=1w

kL
3 j /K , wL

4 j =
�K

k=1w
kL
4 j /K , wU

1 j = �K
k=1w

kU
1 j /K , wU

2 j = �K
k=1w

kU
2 j /K , wU

3 j = �K
k=1w

kU
3 j /K , wU

4 j =
�K

k=1w
kU
4 j /K , hL

W j
= mink hkL

W j
, and hU

W j
= mink hkU

W j
for brevity. It then follows that the

subjective importance of criterion x j can be expressed as follows:

W j =
[
W L

j ,W U
j

]
=

[(
wL

1 j , w
L
2 j , w

L
3 j , w

L
4 j ; hL

W j

)
,
(
wU

1 j , w
U
2 j , w

U
3 j , w

U
4 j ; hU

W j

)]
, (23)

where 0 ≤ wL
1 j ≤ wL

2 j ≤ wL
3 j ≤ wL

4 j ≤ 1, 0 ≤ wU
1 j ≤ wU

2 j ≤ wU
3 j ≤ wU

4 j ≤ 1, 0 ≤ hL
W j

≤
hU

W j
≤ 1, wU

1 j ≤ wL
1 j , and wL

4 j ≤ wU
4 j .

4.2 The MCDA method using a signed-distance-based approach

Based on the proposed signed distance of IT2TrFNs, a new MCDA method was developed
to handle IT2TrFN data. As stated previously, the linguistic variables can be described by
IT2TrFNs (Table 1), and the MCDA problem can be concisely expressed in a matrix format
(D) after aggregating the decision-makers’ opinions. In addition, linear scale normalization
was used to transform the various criteria values to ensure that the best criterion value was
located in the level 1 fuzzy number 1̃1.

4.3 Normalization of the decision matrix and subjective importance

The initial data with respect to each criterion can be normalized to the maximum criterion val-
ues for benefit criteria and the minimum criterion values for cost criteria. Let a+

j = maxi1 aU
4i1 j

(for x j ∈ Xb) and a−
j = mini1 aU

1i1 j (for x j ∈ Xc). The transformed outcome of Ai j is denoted
by the following:

Āi j =
[

ĀL
i j , ĀU

i j

]
=

[(
āL

1i j , āL
2i j , āL

3i j , āL
4i j ; h̄L

Ai j

)
,
(

āU
1i j , āU

2i j , āU
3i j , āU

4i j ; h̄U
Ai j

)]
, (24)
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where
[(

āL
1i j , āL

2i j , āL
3i j , āL

4i j ; h̄L
Ai j

)
,
(

āU
1i j , āU

2i j , āU
3i j , āU

4i j ; h̄U
Ai j

)]

=

⎧
⎪⎪⎨

⎪⎪⎩

[(
aL

1i j

a+
j
,

aL
2i j

a+
j
,

aL
3i j

a+
j
,

aL
4i j

a+
j

; hL
Ai j

)
,

(
aU

1i j

a+
j
,

aU
2i j

a+
j
,

aU
3i j

a+
j
,

aU
4i j

a+
j

; hU
Ai j

)]
if x j ∈ Xb,

[(
a−

j

aL
4i j
,

a−
j

aL
3i j
,

a−
j

aL
2i j
,

a−
j

aL
1i j

; hL
Ai j

)
,

(
a−

j

aU
4i j
,

a−
j

aU
3i j
,

a−
j

aU
2i j
,

a−
j

aU
1i j

; hU
Ai j

)]
if x j ∈ Xc.

(25)

Then, the normalized decision matrix, DN , is constructed as follows:

DN =

x1 x2 · · · xn

A1

A2
...

Am

⎡

⎢
⎢
⎢
⎣

[
ĀL

11, ĀU
11

]
[
ĀL

21, ĀU
21

]

...[
ĀL

m1, ĀU
m1

]

[
ĀL

12, ĀU
12

]
[
ĀL

22, ĀU
22

]

...[
ĀL

m2, ĀU
m2

]

· · ·
· · ·
. . .

· · ·

[
ĀL

1n, ĀU
1n

]
[
ĀL

2n, ĀU
2n

]

...[
ĀL

mn, ĀU
mn

]

⎤

⎥
⎥
⎥
⎦
.

(26)

The subjective importance of the decision criteria can be normalized using a similar pro-
cedure. Let w+ = max j w

U
4 j . It then follows that the normalized subjective importance of

criterion x j is denoted by the following:

W j =
[
W

L
j ,W

U
j

]
=

[(
w̄L

1 j , w̄
L
2 j , w̄

L
3 j , w̄

L
4 j ; h̄L

W j

)
,
(
w̄U

1 j , w̄
U
2 j , w̄

U
3 j , w̄

U
4 j ; h̄U

W j

)]
, (27)

where
[(
w̄L

1 j , w̄
L
2 j , w̄

L
3 j , w̄

L
4 j ; h̄L

W j

)
,
(
w̄U

1 j , w̄
U
2 j , w̄

U
3 j , w̄

U
4 j ; h̄U

W j

)]

=
[(

wL
1 j

w+ ,
wL

2 j

w+ ,
wL

3 j

w+ ,
wL

4 j

w+ ; hL
W j

)

,

(
wU

1 j

w+ ,
wU

2 j

w+ ,
wU

3 j

w+ ,
wU

4 j

w+ ; hU
W j

)]

. (28)

4.3.1 Objective approach to criterion importance

When multiple criteria are considered, it is essential to appropriately measure the criterion
importance grades. In this paper, both the subjective and the objective assessments of crite-
rion importance were involved in the proposed MCDA method. The subjective assessment
of criterion importance reflects the decision-maker’s cultural, psychological, societal, and
environmental backgrounds. Thus, a direct explication through interviews or questionnaire
surveys (e.g., the linguistic variables in Table 1) can articulate the decision-maker’s prefer-
ences based on the subjective importance of the criteria. The objective assessment of criterion
importance depends on the actual decision situation. If more decision-relevant messages are
emitted by a criterion, then the criterion is more salient in the decision-making process.
In other words, if the alternative ratings are more distinct and differentiated with respect
to a given criterion, then the contrast intensity of this criterion is larger, and the amount of
decision information transmitted by this criterion is greater (and vice versa). In this respect,
the objective importance of each criterion was measured with the deviation defined in the
STEP method (STEM) [5] described in this study.

The STEM is a progressive method for multi-objective decision problems, and its prop-
erties include a displaced ideal and preference dependency. To determine relative devia-
tions, the maximal IT2TrFN value and minimal IT2TrFN value of each column in DN

must be identified and regarded as positive- and negative-ideal anchor values, respectively.
Because the signed distance based on IT2TrFNs as defined in Definition 5 satisfies the law
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of trichotomy, a comparison of the IT2TrFN values can be drawn via the signed distance to
1̃1. According to Proposition 2, the signed distance from the normalized outcome Āi j to 1̃1

is calculated as follows:

d
(

Āi j , 1̃1

)
= 1

8

(
āL

1i j + āL
2i j + āL

3i j + āL
4i j + 4āU

1i j + 2āU
2i j + 2āU

3i j + 4āU
4i j

+ 3
(

āU
2i j + āU

3i j − āU
1i j − āU

4i j

) h̄L
Ai j

h̄U
Ai j

− 16

)

. (29)

The positive-ideal anchor value Ā+ j and the negative-ideal anchor value Ā− j of each criterion
x j ∈ X can be computed from the following expressions:

Ā+ j =
{

Āi j |maxi d
(

Āi j , 1̃1

)}
, (30)

Ā− j =
{

Āi j

∣
∣
∣
∣min

i
d

(
Āi j , 1̃1

)}
. (31)

According to the definition in the STEM, the relative objective importance � ′
j of criterion

x j is placed into the deviations in the following way:

� ′
j = � ′

j ∅
(
� ′

1 ⊕� ′
2 ⊕ · · · ⊕� ′

n

)
, (32)

where

� ′
j = [(

Ā+ j� Ā− j
)

∅ Ā+ j
] ⊗

(
Ā2

1 j ⊕ Ā2
2 j ⊕ · · · ⊕ Ā2

mj

)− 1
2
. (33)

However, two problems follow from the above definitions. First, when the normalized out-
comes Āi j are the same for all Ai ∈ A with respect to a specific criterion x j , the variation of
the IT2TrFN values in x j should be equal to zero, and criterion x j does not transmit any useful

information. Thus, Ā+ j� Ā− j = 0̃h̄(=
[(

0, 0, 0, 0; h̄L
A+

j

)
,

(
0, 0, 0, 0; h̄U

A+
j

)]
),� ′

j = 0̃h̄ ,

and the criterion x j can be removed from further decision consideration at that time. Nev-
ertheless, Ā+ j� Ā− j �= 0̃h̄ in the context of IT2TrFNs. If it is assumed that Ā+ j = Ā− j =[(

āL
1i j , āL

2i j , āL
3i j , āL

4i j ; h̄L
Ai j

)
,

(
āU

1i j , āU
2i j , āU

3i j , āU
4i j ; h̄U

Ai j

)]
, then the following can be writ-

ten:

Ā+ j� Ā− j =
[(

āL
1i j − āL

4i j , āL
2i j − āL

3i j , āL
3i j − āL

2i j , āL
4i j − āL

1i j ; h̄L
Ai j

)
,

(
āU

1i j − āU
4i j , āU

2i j − āU
3i j , āU

3i j − āU
2i j , āU

4i j − āU
1i j ; h̄U

Ai j

)]
�= 0̃h̄ . (34)

The second problem is the consistency of the normalization procedures used in this study.
The IT2TrFN values of alternatives for each criterion and the subjective importance of crite-
ria use a linear scale normalization procedure to transform all values in a proportional way.
If a different way of normalizing the � ′

j values in (32) is adopted, there are computational
problems inherent to the presence of different scales within the decision environment. For
sensibility in our amalgamation methods, the same linear scale normalization was consis-
tently used in the STEM.

The signed distances were used to solve the first problem mentioned above. Let∣∣∣d
(

Ā+ j , 1̃1

)∣∣∣ =
∣∣∣maxi d

(
Āi j , 1̃1

)∣∣∣ be the lower anchor value, and let
∣∣∣d

(
Ā− j , 1̃1

)∣∣∣ =
∣∣∣mini d

(
Āi j , 1̃1

)∣∣∣ be the upper anchor value. It follows that Ā+ j and Ā− j in the first term of
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(33) were replaced by
∣
∣
∣d

(
Ā− j , 1̃1

)∣
∣
∣ and

∣
∣
∣d

(
Ā+ j , 1̃1

)∣
∣
∣, respectively. For consistency in the

amalgamation method and to overcome the second problem, the linear scale transformation
was used to compute the objective importance of the criteria. Thus, the formula in (33) was
modified to the following:

� j =
⎛

⎝

∣
∣
∣d

(
Ā− j , 1̃1

)∣
∣
∣ −

∣
∣
∣d

(
Ā+ j , 1̃1

)∣
∣
∣

∣
∣
∣d

(
Ā− j , 1̃1

)∣
∣
∣

⎞

⎠ ·
(

Ā2
1 j ⊕ Ā2

2 j ⊕ · · · ⊕ Ā2
mj

)− 1
2
, (35)

where
(

Ā2
1 j ⊕ Ā2

2 j ⊕ · · · ⊕ Ā2
mj

)− 1
2

=
[(

1

/√
∑m

i=1

(
āL

4i j

)2
, 1

/√
∑m

i=1

(
āL

3i j

)2
, 1

/√
∑m

i=1

(
āL

2i j

)2
,

1

/√
∑m

i=1

(
āL

1i j

)2; min
i

h̄L
Ai j

)

,

(

1

/√
∑m

i=1

(
āU

4i j

)2
, 1

/√
∑m

i=1

(
āU

3i j

)2
, 1

/√
∑m

i=1

(
āU

2i j

)2
,

1

/√
∑m

i=1

(
āU

1i j

)2; min
i

h̄U
Ai j

)]

. (36)

For brevity,� j is defined as
[(
ψ L

1 j , ψ
L
2 j , ψ

L
3 j , ψ

L
4 j ; hL

� j

)
,
(
ψU

1 j , ψ
U
2 j , ψ

U
3 j , ψ

U
4 j ; hU

� j

)]
. Let

ψ+ = max j ψ
U
4 j . By modifying (32) in the STEM, the relative objective importance � j =

[
� L

j ,�
U
j

]
of criterion x j can be defined as follows:

� j = 1

ψ+ ·� j =
[(

ψ L
1 j

ψ+ ,
ψ L

2 j

ψ+ ,
ψ L

3 j

ψ+ ,
ψ L

4 j

ψ+ , hL
� j

)

,

(
ψU

1 j

ψ+ ,
ψU

2 j

ψ+ ,
ψU

3 j

ψ+ ,
ψU

4 j

ψ+ , hU
� j

)]

.

(37)

In (35) and (37),� j is the normalized objective importance of criterion x j , and the IT2TrFN
value of � j is dependent on the variation of criterion x j from its anchor values. As the
variation becomes larger, the emphasis on that particular criterion increases (and vice versa).
This relationship demonstrates the criterion dependency and anchor dependency.

4.3.2 Integrated approach to subjective and objective importances

The objective importance of a criterion is arbitrary in the sense that it may bear little resem-
blance to the decision-maker’s subjective importance. Because the subjective evaluation of
criterion importance assigned by the decision-makers exhibits preference dependency, an
integrated approach is needed to combine the subjective and objective importances of a
criterion into a single value so that the synthetic evaluation of alternatives can effectively
proceed.

A linear combination of the subjective and objective importances was employed to pro-
duce an overall importance of the decision criterion that reflected both the subjective and the
objective factors. Recall that the objective importance of criterion x j is given by � j =
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[
� L

j ,�
U
j

]
=

[(
� L

1 j ,�
L
2 j ,�

L
3 j ,�

L
4 j ; hL

� j

)
,
(
�U

1 j ,�
U
2 j ,�

U
3 j ,�

U
4 j ; hU

� j

)]
and that the

subjective importance of criterion x j is W j =
[
W

L
j ,W

U
j

]
=

[(
w̄L

1 j , w̄
L
2 j , w̄

L
3 j , w̄

L
4 j ; h̄L

W j

)
,

(
w̄U

1 j , w̄
U
2 j , w̄

U
3 j , w̄

U
4 j ; h̄U

W j

)]
. Let τ be a coefficient that reflects the decision-makers’ pref-

erences concerning the relative worth of the subjective criterion importance to the objective
criterion importance, where τ ∈ [0, 1]. The overall importance of criterion x j is defined by
the following linear combination:

W j = τ · W j ⊕ (1 − τ) ·� j . (38)

For brevity, the overall importance W j is defined as follows:

W j =
[

W
L

j ,W
U

j

]
=

[(
w

L
1 j , w

L
2 j , w

L
3 j , w

L
4 j ; h

L

W j

)
,

(
w

U
1 j , w

U
2 j , w

U
3 j , w

U
4 j ; h

U

W j

)]
,

(39)

wherew
L
l j = τ ·w̄L

l j +(1−τ)·� L
l j andw

U
l j = τ ·w̄U

l j +(1−τ)·�U
l j for l ∈ {1, 2, 3, 4} , h

L

W j
=

min
(

h̄L
W j
, hL
� j

)
, and h

U

W j
= min

(
h̄U

W j
, hU
� j

)
.

When τ = 1, the overall importance W j = W j for all x j ∈ X . In addition, when τ = 0,

the overall importance W j = � j for all x j ∈ X . If the decision-maker difficultly artic-
ulated the preference structure directly affecting the τ value, we assumed that τ =0.5 for
convenience. Furthermore, the determination of parameter τ can be offered as an adaptation
mechanism for future empirical applications. Thus, accounting for what values of parame-
ter τ are suitable for integrating subjective and objective importances in empirical studies
remains a topic for future research.

4.3.3 Ranking procedure with signed distances

Considering the differences in the importance values of various criteria, the weighted nor-
malized criterion value of Ai j is computed as follows:

Ai j = W j ⊗ Āi j =
[

W
L

j ,W
U

j

]
⊗

[
ĀL

i j , ĀU
i j

]

=
[(
w

L
1 j × āL

1i j , w
L
2 j × āL

2i j , w
L
3 j × āL

3i j , w
L
4 j × āL

4i j ; min

(
h

L

W j
, h̄L

Ai j

))
,

(
w

U
1 j × āU

1i j , w
U
2 j × āU

2i j , w
U
3 j × āU

3i j , w
U
4 j × āU

4i j ; min

(
h

U

W j
, h̄U

Ai j

))]
. (40)

For brevity, we denote the following:

Ai j =
[

A
L

i j , A
U

i j

]
=

[(
a

L
1i j , a

L
2i j , a

L
3i j , a

L
4i j ; h

L

Ai j

)
,

(
a

U
1i j , a

U
2i j , a

U
3i j , a

U
4i j ; h

U

Ai j

)]
.

(41)
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The weighted normalized decision matrix DW can then be defined as the following:

DW =

x1 x2 · · · xn

A1

A2
...

Am

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[
A

L

11, A
U

11

]

[
A

L

21, A
U

21

]

...[
A

L

m1, A
U

m1

]

[
A

L

12, A
U

12

]

[
A

L

22, A
U

22

]

...[
A

L

m2, A
U

m2

]

· · ·
· · ·
. . .

· · ·

[
A

L

1n, A
U

1n

]

[
A

L

2n, A
U

2n

]

...[
A

L

mn, A
U

mn

]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(42)

The specification of the ideal solution in this paper was predetermined. All of the values
based on IT2TrFNs were between zero and one. The criterion values of the ideal solution
can therefore be reasonably defined as [(1,1,1,1;1), (1,1,1,1;1)]. The ideal solution, denoted
as A∗, is defined as follows:

A∗ = {〈
x j , [(1, 1, 1, 1; 1), (1, 1, 1, 1; 1)]

〉 ∣∣x j ∈ X
}
. (43)

The signed distance from each alternative to A∗ can be calculated by applying Proposition
2, as in the following expression:

d∗
i =

n∑

j=1

d
(

Ai j , 1̃1

)

=
n∑

j=1

1

8

⎡

⎢
⎣a

L
1i j + a

L
2i j + a

L
3i j + a

L
4i j + 4a

U
1i j + 2a

U
2i j + 2a

U
3i j + 4a

U
4i j

+ 3
(

a
U
2i j + a

U
3i j − a

U
1i j − a

U
4i j

)
· h

L

Ai j

h
U

Ai j

− 16

⎤

⎥
⎦ , (44)

where i = 1, 2, . . . ,m. In addition, the normalized signed distance from each alternative to
A∗ was computed as follows:

d̄∗
i = 1

2n

n∑

j=1

d
(

Ai j , 1̃1

)

= 1

16n

n∑

j=1

⎡

⎢
⎣a

L
1i j + a

L
2i j + a

L
3i j + a

L
4i j + 4a

U
1i j + 2a

U
2i j + 2a

U
3i j + 4a

U
4i j

+ 3
(

a
U
2i j + a

U
3i j − a

U
1i j − a

U
4i j

)
· h

L

Ai j

h
U

Ai j

− 16

⎤

⎥
⎦ , (45)

where i = 1, 2, . . . ,m. According to Property 4, the signed distance d̄∗
i represents the

relative nearness from an alternative Ai to the ideal solution for i = 1, 2, . . . ,m. By apply-
ing Definition 5, the alternatives can be ranked by their corresponding signed distances to
the ideal solution. Let us denote

∣∣d̄∗
i

∣∣ as the closeness coefficient of Ai to the ideal solution
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(0 ≤ ∣
∣d̄∗

i

∣
∣ ≤ 1). It follows that the preference order of the alternatives is ranked in ascending

order of
∣
∣d̄∗

i

∣
∣, and the alternative with the smallest

∣
∣d̄∗

i

∣
∣ value is the best choice.

The algorithm of the proposed MCDA method with IT2TrFN data is summarized in the
following series of successive steps:

Step 1: Form a committee of decision-makers, and identify the evaluation criteria and
generate feasible alternatives.

Step 2: Select appropriate linguistic variables to grade each criterion’s importance and
establish linguistic ratings for the alternatives with respect to each criterion.

Step 3: Ask the decision-makers to use the linguistic weighting variables and the linguistic
rating variables (Table 1) to assess the subjective importance of the criteria and eval-
uate the alternatives using each criterion. Then, convert the linguistic evaluations
into IT2TrFNs.

Step 4: Pool the decision-makers’ opinions to obtain the aggregate rating Ai j of alterna-
tive Ai on criterion x j and the aggregate subjective importance W j of criterion
x j . Then, construct the decision matrix D and the subjective importance W of all
criteria.

Step 5: Establish the normalized decision matrix DN and the normalized subjective impor-
tance W of the criteria.

Step 6: Conduct the objective approach to criterion importance.

Step 6-1: Calculate the signed distance from normalized outcomes to 1̃1.
Step 6-2: Identify the positive- and negative-ideal anchor values of each crite-

rion. Then, the lower and upper anchor values can be obtained.
Step 6-3: Compute the variation of each criterion from its anchor values.
Step 6-4: Determine the normalized objective importance � of each criterion.

Step 7: Set the value of the parameter τ to determine the overall importance W j of the
criteria using the integrated approach.

Step 8: Construct the weighted normalized decision matrix DW .
Step 9: Derive the normalized signed distances from each alternative to the ideal solution

A∗ and determine the closeness coefficient
∣∣d̄∗

i

∣∣ of each alternative.
Step 10: Rank the priority of all alternatives in order of ascending

∣∣d̄∗
i

∣∣.

5 Estimating criterion weights in the MCDA with IT2TrFNs

An IT2TrFN is a powerful means for expressing information regarding the decision-makers’
preferences for criteria. As stated in Sect. 4, the subjective importance, objective importance,
and overall importance of each criterion were expressed as IT2TrFNs. However, if assess-
ing the criteria priority weights (non-negative crisp numbers and normalized to sum to one)
derived from the IT2TrFN preference information is an important issue for the decision-mak-
ers, another version of the MCDA method should be developed to estimate criterion weights
from the IT2TrFN data. In this section, a useful method with integrated programming models,
motivated by the treatments given by [62], to estimate the importance weights of criteria in
the proposed MCDA method is presented.

The distribution of the weights plays a crucial role in most MCDA problems. The weights
are non-negative numbers and are independent from the measurement units of the criteria.
There is no objection to considering normalized weights, so the criterion weights should be
normalized to sum to one. Leaving the sum of the criterion weights unconstrained leads to
unequal scales of aggregated weights. Moreover, it is difficult to facilitate a straightforward
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comparison of alternatives. Considering that it is generally accepted to consider non-nega-
tive normalized weights, the sum of the criterion weights would be restricted to unity in the
following proposed MCDA method.

Recall that an IT2TrFN W j defined on X denotes the overall importance grade of the crite-

rion x j . W j =
[

W
L

j ,W
U

j

]
=

[(
w

L
1 j , w

L
2 j , w

L
3 j , w

L
4 j ; h

L

W j

)
,

(
w

U
1 j , w

U
2 j , w

U
3 j , w

U
4 j ; h

U

W j

)]
,

where W
L

j and W
U

j are the lower trapezoidal fuzzy number and the upper trapezoidal fuzzy

number, respectively, about W j . Note that 0 ≤ w
L
1 j ≤ w

L
2 j ≤ w

L
3 j ≤ w

L
4 j ≤ 1, 0 ≤

w
U
1 j ≤ w

U
2 j ≤ w

U
3 j ≤ w

U
4 j ≤ 1, w

U
1 j ≤ w

L
1 j , and w

L
4 j ≤ w

U
4 j . Because w

U
1 j ≤ w

L
1 j and

w
U
4 j ≥ w

L
4 j , it is reasonable to assume that the decision-makers’ weight ω j of each criterion

x j ∈ X lies in the closed interval
[
w

U
1 j , w

U
4 j

]
. Let ωL

j = w
U
1 j and ωU

j = w
U
4 j ; in addition,

let 0 ≤ ωL
j ≤ ω j ≤ ωU

j ≤ 1. It then follows that the interval
[
w

U
1 j , w

U
4 j

]
is denoted by

[
ωL

j , ω
U
j

]
.

Because the criterion weights must be normalized to sum to one, the conditions of∑n
j=1 ω

L
j ≤ 1 and

∑n
j=1 ω

U
j ≥ 1 are required to determine the weights, ω j ∈

[0, 1] ( j = 1, 2, . . . , n) , that satisfy
∑n

j=1 ω j = 1. However, it is possible that
∑n

j=1 ω
L
j >

1 or
∑n

j=1 ω
U
j < 1, neither of which is permitted by the constraint

∑n
j=1 ω j = 1. In this

case, it follows that there are no feasible solutions for the criterion weights. To overcome this
difficulty, the condition ωL

j ≤ ω j ≤ ωU
j is relaxed by introducing the deviation variables e−

j

and e+
j , which are defined as follows:

ωL
j − e−

j ≤ ω j ≤ ωU
j + e+

j , for j = 1, 2, . . . , n, (46)

where e−
j and e+

j are both non-negative real numbers. If both e−
j and e+

j are equal to zero,

then (46) reduces to ωL
j ≤ ω j ≤ ωU

j . These deviation variables can be useful buffers in the

case that
∑n

j=1 ω
L
j ≤ 1 or

∑n
j=1 ω

U
j ≥ 1 does not hold.

For smaller values of the deviation variables e−
j and e+

j , the criterion weights ω j are

closer to the interval value
[
ωL

j , ω
U
j

]
. Furthermore, if the deviation variables are close to

zero, then there is no gross violation of the necessary conditions. Therefore, the multiple
objective optimization model is established as the following:

[M1]

min
{
e−

1 , e−
2 , · · · , e−

n , e+
1 , e+

2 , . . . , e+
n

}

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ω j + e−
j ≥ ωL

j ( j = 1, 2, . . . , n),

ω j − e+
j ≤ ωU

j ( j = 1, 2, . . . , n),

e−
j , e+

j , ω j ≥ 0 ( j = 1, 2, . . . , n),
∑n

j=1 ω j = 1.

(47)

These different e−
j and e+

j ( j = 1, 2, . . . , n) values can be integrated in the minimax sense.
Thus, the model in [M1] can be transformed into a single-objective programming model:
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[M2]

min {λ1}

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

e−
j ≤ λ1 ( j = 1, 2, . . . , n),

e+
j ≤ λ1 ( j = 1, 2, . . . , n),
ω j + e−

j ≥ ωL
j ( j = 1, 2, . . . , n),

ω j − e+
j ≤ ωU

j ( j = 1, 2, . . . , n),
e−

j , e+
j , ω j ≥ 0 ( j = 1, 2, . . . , n),∑n

j=1 ω j = 1.

(48)

The optimal deviation values

e

−
j and


e

+
j for each criterion can then be determined by solving

the programming problem of (48). If both

e

−
j and


e

+
j are equal to zero, then the correspond-

ing weight of criterion x j is consistent with the interval values. Otherwise, the weight is
inconsistent with the interval values. The criterion weights are within the range of ωL

j ≤
ω j ≤ ωU

j ( j = 1, 2, . . . , n) in the consistent case and are within the range of ωL
j − 

e
−
j ≤

ω j ≤ ωU
j + 

e
+
j ( j = 1, 2, . . . , n) in the inconsistent case.

If the criterion weightsω j ( j = 1, 2, . . . , n) are used in the MCDA method using a signed-
distance-based approach, then the weighted normalized criterion value of Ai j is given by the
following:

A
′
i j = ω j · Āi j =

[(
ω j × āL

1i j , ω j × āL
2i j , ω j × āL

3i j , ω j × āL
4i j ; hL

Ai j

)
,

(
ω j × āU

1i j , ω j × āU
2i j , ω j × āU

3i j , ω j × āU
4i j ; hU

Ai j

)]
. (49)

For brevity, let us denote the following:

A
′
i j =

[
A

′L
i j , A

′U
i j

]
=

[(
a

′L
1i j , a

′L
2i j , a

′L
3i j , a

′L
4i j ; hL

Ai j

)
,
(

a
′U
1i j , a

′U
2i j , a

′U
3i j , a

′U
4i j ; hU

Ai j

)]
. s(50)

Next, the weighted normalized decision matrix D′W is constructed as follows:

DW =

x1 x2 · · · xn

A1

A2
...

Am

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

[
A

′L
11, A

′U
11

]

[
A

′L
21, A

′U
21

]

...[
A

′L
m1, A

′U
m1

]

[
A

L

12, A
U

12

]

[
A

′L
22, A

′U
22

]

...[
A

′L
m2, A

′U
m2

]

· · ·
· · ·
. . .

· · ·

[
A

′L
1n, A

′U
1n

]

[
A

′L
2n, A

′U
2n

]

...[
A

′L
mn, A

′U
mn

]

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(51)

The normalized signed distance from each alternative to A∗ is computed as follows:

d̄ ′∗
i = 1

2n

n∑

j=1

d
(

A
′
i j , 1̃1

)

= 1

16n

n∑

j=1

[

a
′L
1i j + a

′L
2i j + a

′L
3i j + a

′L
4i j + 4a

′U
1i j + 2a

′U
2i j + 2a

′U
3i j + 4a

′U
4i j

+3
(

a
′U
2i j + a

′U
3i j − a

′U
1i j − a

′U
4i j

)
·

hL
Ai j

hU
Ai j

− 16

]

123



A signed-distance-based approach 211

= 1

16n

⎡

⎣
n∑

j=1

(

āL
1i j + āL

2i j + āL
3i j + āL

4i j +
(

4 − 3 ·
hL

Ai j

hU
Ai j

)

āU
1i j +

(

2 + 3 ·
hL

Ai j

hU
Ai j

)

āU
2i j

+
(

2 + 3 ·
hL

Ai j

hU
Ai j

)

āU
3i j +

(

4 − 3 ·
hL

Ai j

hU
Ai j

)

āU
4i j

)

· ω j − 16n

]

. (52)

where i = 1, 2, . . . ,m. The closeness coefficient of alternative Ai is given by
∣
∣d̄ ′∗

i

∣
∣.

The best choice is the one that is the closest to the ideal solution determined by min
∣
∣d̄ ′∗

i

∣
∣,

for which the criterion importance weights are not precisely known. Considering the criterion
weights without exact values but with interval numbers, the optimal value of the closeness
coefficient for alternative Ai with respect to the ideal solution can be measured by a linear
programming model with normalized signed distances. Because there are m alternatives in
the set A, a total of m linear programming models must be solved to provide m optimal close-
ness coefficients. Although the optimal weight vector for each alternative can be computed,
these optimal weights may be different in general. Thus, the corresponding optimal values
of the closeness coefficients for all m alternatives cannot be compared. Considering that the
decision-makers cannot easily or evidently judge the preference relations among all of the
non-dominant alternatives, it is reasonable to assume that all non-dominant alternatives are
of equal importance. Thus, the m linear programming models can be aggregated with one
programming model. A multiple objective optimization model is constructed as follows:

[M3]

min
{∣∣d̄ ′∗

1

∣∣ ,
∣∣d̄ ′∗

2

∣∣ , . . . ,
∣∣d̄ ′∗

m

∣∣} = min
{−d̄ ′∗

1 ,−d̄ ′∗
2 , . . . ,−d̄ ′∗

m

}

s.t.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ω j + e−
j ≥ ωL

j ( j = 1, 2, . . . , n),
ω j − e+

j ≤ ωU
j ( j = 1, 2, . . . , n),

e−
j , e+

j , ω j ≥ 0 ( j = 1, 2, . . . , n),∑n
j=1 ω j = 1.

(53)

By utilizing the minimax operator, the model in [M3] can be integrated into the following
single-objective programming model:

[M4]

min {λ2}

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−d̄ ′∗
i ≤ λ2 (i = 1, 2, . . . ,m),

ω j + e−
j ≥ ωL

j ( j = 1, 2, . . . , n),

ω j − e+
j ≤ ωU

j ( j = 1, 2, . . . , n),

e−
j , e+

j , ω j ≥ 0 ( j = 1, 2, . . . , n),
∑n

j=1 ω j = 1.

(54)

In general, the optimal solutions of the criterion weights in [M1] and [M3] are different.
Thus, it is not possible to derive a unique criterion weight vector to compute the optimal
closeness coefficient of each alternative. To determine a consistent weight vector based on
the models in [M1] and [M3], the following integrated multi-objective programming model
is constructed:
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[M5]

min
{
e−

1 , e−
2 , . . . , e−

n , e+
1 , e+

2 , . . . , e+
n

}

min
{−d̄ ′∗

1 ,−d̄ ′∗
2 , . . . ,−d̄ ′∗

m

}

s.t.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ω j + e−
j ≥ ωL

j ( j = 1, 2, . . . , n),
ω j − e+

j ≤ ωU
j ( j = 1, 2, . . . , n),

e−
j , e+

j , ω j ≥ 0 ( j = 1, 2, . . . , n),∑n
j=1 ω j = 1.

(55)

In a similar manner to that presented in [M2] and [M4], the model in [M5] can be trans-
formed into the following single-objective optimization model by the linear equal-weighted
summation method:

[M6]

min {λ1 + λ2}

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−d̄ ′∗
i ≤ λ2 (i = 1, 2, . . . ,m),

e−
j ≤ λ1 ( j = 1, 2, . . . , n),

e+
j ≤ λ1 ( j = 1, 2, . . . , n),
ω j + e−

j ≥ ωL
j ( j = 1, 2, . . . , n),

ω j − e+
j ≤ ωU

j ( j = 1, 2, . . . , n),
e−

j , e+
j , ω j ≥ 0 ( j = 1, 2, . . . , n),∑n

j=1 ω j = 1.

(56)

The minimization model in [M6] has m variables corresponding to the signed distances
of the alternatives, n weight variables, 2n deviation variables, 1 linear equality constraint,
m + 7n linear inequality constraints, and a linear objective function. By solving [M6], it

is possible to obtain the optimal values of the signed distances


d̄
′∗
i (i = 1, 2, . . . ,m) , the

optimal weight vector, 
ω =

(

ω1,


ω2, . . . ,


ωn

)
, and the optimal deviation values


e

−
j and


e

+
j ( j = 1, 2, . . . , n) . Then, the optimal closeness coefficient of alternative Ai is derived

from

∣∣∣∣


d̄
′∗
i

∣∣∣∣. The ranking of all alternatives is presented along with the optimal values of the

closeness coefficients for individual alternatives to clarify the best alternative. A smaller

value of

∣∣∣∣


d̄
′∗
i

∣∣∣∣ indicates a better alternativeAi . Thus, the m alternatives can be ranked by

increasing

∣∣∣∣


d̄
′∗
i

∣∣∣∣ for all Ai ∈ A.

The MCDA method using IT2TrFNs to estimate criterion weights is summarized in the
following series of successive steps:

Steps 1′–7′: See Steps 1–7 of the algorithm in Sect. 4.2.
Step 8′: Establish the weighted normalized decision matrix D′W .
Step 9′: Determine the normalized signed distances d̄ ′∗

i from each alternative to the ideal
solution A∗.
Step 10′: Construct the integrated single-objective optimization model in [M6] and solve
for the optimal values of the signed distances and the optimal criterion weights.

Step 11′: Calculate the closeness coefficient

∣∣∣∣


d̄
′∗
i

∣∣∣∣ of each alternative. Then, rank the priority

order of all alternatives by increasing

∣∣∣∣


d̄
′∗
i

∣∣∣∣.
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In the following, a real-world case study, exploring medical decision-making at Chang
Gung Memorial Hospital in Taiwan, is analyzed to demonstrate the feasibility of the proposed
methods.

6 Applications to patient-centered medicine

Patient-centered care, which is a fundamental component of practicing integrative medicine,
places the patient at the center of the delivery of care, improves the continuity of care, and
enhances the integration of health professionals and patients [44]. The purpose of the empir-
ical study was to develop a multi-person, multi-criteria model for patient-centered decision-
making within interval type-2 fuzzy environment. In addition, the studied case was from the
Division of Cerebrovascular Disease of Department of Neurology at Linkou Medical Center
of Chang Gung Memorial Hospital in Taiwan.

6.1 Problem background

Patient-centered care is health care that meets and responds to patients’ wants, needs, and
preferences and where patients are autonomous and able to decide treatment and care for
themselves [4,24,30]. Patient-centered care treats the patient as a unique individual [47]. As
[49] indicated, patient-centered care means putting the patient in the center, not in the mid-
dle, of care services. Because patient-centered care considers the patient as a whole person
with physical, psychological, and social needs, an increasing number of modern healthcare
systems are rapidly adopting a patient-centered approach to care [44]. Till now, patient-cen-
tered care has now made it to center stage in discussions of quality [27]. Patient-centered
care provides patients and relatives (family and friends) with abundant opportunities to be
informed and involved in medical decision-making processes [40,44]. Patient- and family-
centered care has developed along with the realization that psychosocial factors and health
beliefs have an impact on well-being. Moreover, families and affected persons will be able
to articulate medical treatment preferences as they relate to personal definitions of quality of
life [30].

Patient-centered care assumes that the patients and relatives are qualified to decide their
own needs and expectations and that they are able to make decisions and choices about what
they need and want [37]. However, collaborative decision information provided by patients,
relatives, and healthcare providers is inherently imprecise and involves many uncertain-
ties. IT2FSs have a greater ability than type-1 fuzzy sets to handle imprecision and imperfect
information in real-world therapeutic applications. In light of patient-centeredness, this paper
applied the proposed signed-distance-based method for handling a collaborative decision-
making problem in which individual assessments are provided as IT2TrFNs.

The case is from Chang Gung Memorial Hospital in Taiwan. The patient, Mr. Peng, was
an 82-year-old widowed male with a history of hypertension. Mr. Peng was a retired govern-
ment employee with two sons and one daughter, who were all married with children. Due to
complaints of physical discomfort, Mr. Peng was brought to the hospital by his eldest son and
daughter-in-law, who live in the same residence. While waiting for his examination results
and diagnosis, his condition deteriorated and he fell into a coma when the definitive diagnosis
was made. His younger son and daughter rushed to the hospital upon being informed by their
older brother.

Because Mr. Peng was unconscious, the attending physician explained the diagnosis
of basilar artery occlusion to his family members. Basilar artery occlusion is an acute
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cerebrovascular disease caused by a complete or partial occlusion of the basilar artery.
Basilar artery occlusion is characterized by a gradual disturbance in consciousness, rapid
progression, and a critical and poor prognosis. The attending physician assessed the patient’s
medical history and current physical conditions and provided the four treatment options:
intravenous thrombolysis (A1), intra-arterial thrombolysis (A2), antiplatelet treatment (A3),
and heparinization (A4).

To have the patient’s family members fully understand the advantages and disadvantages
of each treatment, the physician provided additional information based on several criteria,
including survival rate (x1), severity of the complications (x2), probability of a cure (x3),
expense (x4), and self-care capacity (x5). The survival rate is the probability of survival
between the start of the surgery and the postoperative period. The complications involved
mostly intra-operative or postoperative complications. Given all of the possible complica-
tions, the severity of the most serious complication was considered. The probability of a
cure is the probability of both symptom alleviation and the cure of the disease. The expense
includes the expenditure associated with the treatment and hospitalizations. Self-care capac-
ity indicates the prognosis of the patient’s self-care capacity (i.e., eating, bathing, and using
the toilet without assistance).

The physician described the four treatment methods using the five criteria, as summarized
in the following:

About intravenous thrombolysis (A1):

(1) A very high survival rate.
(2) The possibility of an intracerebral hemorrhage as a complication.
(3) A 60 % probability of a cure if recanalization is achieved.
(4) A greater out-of-pocket expense, even though the procedure is covered by the patient’s

health benefits.
(5) The prognosis for the patient’s self-care capacity is less than average.

About intra-arterial thrombolysis (A2):

(1) A very high survival rate.
(2) The possibility of an intracerebral hemorrhage as a complication. The probability is a

little higher than that of A1.
(3) A very high probability of a cure.
(4) The procedure is not covered by health insurance and is expensive (about NT$200K)

compared with the out-of-pocket expenses under health benefits.
(5) A moderate prognosis for the patient’s self-care capacity.

About antiplatelet treatment (A3):

(1) A moderate survival rate.
(2) The possibility of progressive stroke as a complication, which may aggravate and pro-

long the disease course.
(3) A very low or near-zero probability of a cure.
(4) Health insurance covers most of the expenses, with a very low out-of-pocket expense.
(5) The worst prognosis for the patient’s self-care capacity.

About heparinization (A4):

(1) A high survival rate.
(2) The possibility of an intracerebral hemorrhage as a complication, but with a lower

severity compared with A1 and A2.
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Table 2 The therapeutic ratings and criterion importance values evaluated by the decision-makers

Criteria Treatment
options

Decision makers

E1 (eldest son) E2 (younger son) E3 (daughter)

x1 (survival rate) A1 AH VH H
A2 VH VH AH
A3 MH M MH
A4 MH H H
Importance H VH AH

x2 (severity of the complications) A1 ML M L
A2 MH H MH
A3 ML ML M
A4 L ML ML
Importance ML M MH

x3 (probability of a cure) A1 MH MH H
A2 AH VH VH
A3 AL VL VL
A4 ML M L
Importance H H VH

x4 (expense) A1 ML ML L
A2 AH AH H
A3 L VL VL
A4 M MH ML
Importance AH M H

x5 (self-care capacity) A1 L ML ML
A2 MH ML M
A3 AL VL VL
A4 VL ML L
Importance AH H H

(3) A relatively low probability of a cure.
(4) Low coverage by the patient’s health insurance and moderately higher out-of-pocket

expenses.
(5) A poor prognosis for the patient’s self-care ability.

6.2 Illustrative application of the proposed methods

This section illustrates the implementation of our proposed methods using the medical deci-
sion-making problem. Mr. Peng’s three children, eldest son, younger son, and daughter, are
the three decision-makers E1, E2, and E3, respectively. There are four treatment options
available, including intravenous thrombolysis (A1), intra-arterial thrombolysis (A2), anti-
platelet treatment (A3), and heparinization (A4). The set of all alternatives is denoted by
A = {A1, A2, A3, A4}. The three decision-makers considered the five criteria, including
survival rate (x1), severity of the complications (x2), probability of a cure (x3), expense (x4),
and self-care capacity (x5). Here, x2 and x4 are cost criteria, whereas the remaining criteria
are benefit ones. The set of evaluative criteria is denoted by X = {x1, x2, . . . , x5}, with
Xb = {x1, x3, x5} and Xc = {x2, x4}. (Note that Step 1 had been completed.)

According to Step 2, the three decision-makers used the linguistic rating variables (Table 1)
to evaluate the four alternatives and to identify the subjective importance values for the five
criteria. The results are presented in Table 2. Then, these linguistic evaluations were converted
into IT2TrFNs by applying Step 3.
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Table 3 The results of the aggregated ratings of alternatives and subjective importance values of criteria
in D

AL
i j AU

i j

aL
1i j aL

2i j aL
3i j aL

4i j hL
Ai j

aU
1i j aU

2i j aU
3i j aU

4i j hU
Ai j

A11 0.9100 0.9333 0.9592 0.9667 0.8000 0.8833 0.9200 0.9733 0.9900 1.0000

A12 0.2408 0.2758 0.3408 0.3692 0.8000 0.1767 0.2433 0.3733 0.4333 1.0000

A13 0.6942 0.7200 0.8000 0.8292 0.8000 0.6267 0.6800 0.8400 0.8967 1.0000

A14 0.1842 0.2100 0.2700 0.2992 0.8000 0.1267 0.1800 0.3000 0.3567 1.0000

A15 0.1842 0.2100 0.2700 0.2992 0.8000 0.1267 0.1800 0.3000 0.3567 1.0000

A21 0.9650 0.9900 0.9950 0.9950 0.8000 0.9533 0.9867 1.0000 1.0000 1.0000

A22 0.6942 0.7200 0.8000 0.8292 0.8000 0.6267 0.6800 0.8400 0.8967 1.0000

A23 0.9650 0.9900 0.9950 0.9950 0.8000 0.9533 0.9867 1.0000 1.0000 1.0000

A24 0.9275 0.9383 0.9617 0.9692 0.8000 0.9067 0.9267 0.9733 0.9900 1.0000

A25 0.4283 0.4600 0.5400 0.5717 0.8000 0.3567 0.4200 0.5800 0.6433 1.0000

A31 0.5675 0.5992 0.6842 0.7158 0.8000 0.4933 0.5567 0.7267 0.7900 1.0000

A32 0.2892 0.3208 0.3958 0.4275 0.8000 0.2200 0.2833 0.4333 0.4967 1.0000

A33 0.0050 0.0050 0.0100 0.0350 0.8000 0.0000 0.0000 0.0133 0.0467 1.0000

A34 0.0342 0.0450 0.0633 0.0958 0.8000 0.0133 0.0333 0.0733 0.1233 1.0000

A35 0.0050 0.0050 0.0100 0.0350 0.8000 0.0000 0.0000 0.0133 0.0467 1.0000

A41 0.7383 0.7675 0.8425 0.8683 0.8000 0.6733 0.7300 0.8800 0.9333 1.0000

A42 0.1842 0.2100 0.2700 0.2992 0.8000 0.1267 0.1800 0.3000 0.3567 1.0000

A43 0.2408 0.2758 0.3408 0.3692 0.8000 0.1767 0.2433 0.3733 0.4333 1.0000

A44 0.4283 0.4600 0.5400 0.5717 0.8000 0.3567 0.4200 0.5800 0.6433 1.0000

A45 0.1092 0.1275 0.1667 0.1975 0.8000 0.0700 0.1067 0.1867 0.2400 1.0000

W L
j WU

j

wL
1 j wL

2 j wL
3 j wL

4 j hL
W j

wU
1 j wU

2 j wU
3 j wU

4 j hU
W j

W1 0.9100 0.9333 0.9592 0.9667 0.8000 0.8833 0.9200 0.9733 0.9900 1.0000

W2 0.4283 0.4600 0.5400 0.5717 0.8000 0.3567 0.4200 0.5800 0.6433 1.0000

W3 0.8375 0.8717 0.9208 0.9358 0.8000 0.7900 0.8467 0.9467 0.9800 1.0000

W4 0.7283 0.7558 0.8075 0.8250 0.8000 0.6800 0.7300 0.8333 0.8733 1.0000

W5 0.8550 0.8767 0.9233 0.9383 0.8000 0.8133 0.8533 0.9467 0.9800 1.0000

In Step 4, the ratings of the alternatives with respect to each criterion and the subjective
importance values of the criteria were obtained with (17) and (22), respectively. Table 3 shows
the aggregated rating Ai j of alternative Ai on criterion x j and summarizes the aggregated
subjective importance W j of criterion x j . With these, it was possible to establish the decision
matrix D and the subjective importance W of the criteria.

6.2.1 Illustration of the MCDA method with signed distances

Let us recall that Xb = {x1, x3, x5} and Xc = {x2, x4}. From the data in Table 3, it was
known that a+

1 = 1.0000, a−
2 = 0.1267, a+

3 = 1.0000, a−
4 = 0.0133, a+

5 = 0.6433, and
w+ = 0.9900. Based on Table 3, (25), and (28), the normalized decision matrix DN and the
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Table 4 The results of the normalized decision matrix DN , the normalized subjective importance W , and the

signed distance d
(

Ai j , 1̃1

)

A
L
i j A

U
i j d

(
Ai j , 1̃1

)

aL
1i j aL

2i j aL
3i j aL

4i j h
L
Ai j

aU
1i j aU

2i j aU
3i j aU

4i j h
U
Ai j

A11 0.9100 0.9333 0.9592 0.9667 0.8000 0.8833 0.9200 0.9733 0.9900 1.0000 −0.1129

A12 0.3432 0.3718 0.4594 0.5262 0.8000 0.2924 0.3394 0.5208 0.7170 1.0000 −1.1124

A13 0.6942 0.7200 0.8000 0.8292 0.8000 0.6267 0.6800 0.8400 0.8967 1.0000 −0.4789

A14 0.0445 0.0493 0.0633 0.0722 0.8000 0.0373 0.0443 0.0739 0.1050 1.0000 −1.8779

A15 0.2863 0.3264 0.4197 0.4651 0.8000 0.1970 0.2798 0.4663 0.5545 1.0000 −1.2522

A21 0.9650 0.9900 0.9950 0.9950 0.8000 0.9533 0.9867 1.0000 1.0000 1.0000 −0.0235

A22 0.1528 0.1584 0.1760 0.1825 0.8000 0.1413 0.1508 0.1863 0.2022 1.0000 −1.6622

A23 0.9650 0.9900 0.9950 0.9950 0.8000 0.9533 0.9867 1.0000 1.0000 1.0000 −0.0235

A24 0.0137 0.0138 0.0142 0.0143 0.8000 0.0134 0.0137 0.0144 0.0147 1.0000 −1.9719

A25 0.6658 0.7151 0.8394 0.8887 0.8000 0.5545 0.6529 0.9016 1.0000 1.0000 −0.4455

A31 0.5675 0.5992 0.6842 0.7158 0.8000 0.4933 0.5567 0.7267 0.7900 1.0000 −0.7166

A32 0.2964 0.3201 0.3950 0.4381 0.8000 0.2551 0.2924 0.4472 0.5759 1.0000 −1.2458

A33 0.0050 0.0050 0.0100 0.0350 0.8000 0.0000 0.0000 0.0133 0.0467 1.0000 −1.9765

A34 0.1388 0.2101 0.2956 0.3889 0.8000 0.1079 0.1814 0.3994 1.0000 1.0000 −1.3298

A35 0.0078 0.0078 0.0155 0.0544 0.8000 0.0000 0.0000 0.0207 0.0726 1.0000 −1.9634

A41 0.7383 0.7675 0.8425 0.8683 0.8000 0.6733 0.7300 0.8800 0.9333 1.0000 −0.3911

A42 0.4235 0.4693 0.6033 0.6878 0.8000 0.3552 0.4223 0.7039 1.0000 1.0000 −0.8366

A43 0.2408 0.2758 0.3408 0.3692 0.8000 0.1767 0.2433 0.3733 0.4333 1.0000 −1.3855

A44 0.0233 0.0246 0.0289 0.0311 0.8000 0.0207 0.0229 0.0317 0.0373 1.0000 −1.9449

A45 0.1697 0.1982 0.2591 0.3070 0.8000 0.1088 0.1659 0.2902 0.3731 1.0000 −1.5360

W
L
j W

U
j

wL
1 j wL

2 j wL
3 j wL

4 j h
L
W j

wU
1 j wU

2 j wU
3 j wU

4 j h
U
W j

W 1 0.9192 0.9427 0.9689 0.9765 0.8000 0.8922 0.9293 0.9831 1.0000 1.0000

W 2 0.4326 0.4646 0.5455 0.5775 0.8000 0.3603 0.4242 0.5859 0.6498 1.0000

W 3 0.8460 0.8805 0.9301 0.9453 0.8000 0.7980 0.8553 0.9563 0.9899 1.0000

W 4 0.7357 0.7634 0.8157 0.8333 0.8000 0.6869 0.7374 0.8417 0.8821 1.0000

W 5 0.8636 0.8856 0.9326 0.9478 0.8000 0.8215 0.8619 0.9563 0.9899 1.0000

normalized subjective importance W of the criteria can be constructed according to Step 5.
Table 4 shows the normalized rating Āi j of alternative Ai on criterion x j and summarizes
the normalized importance W j of criterion x j .

Next, Step 6 was applied to acquire the objective importance values of the criteria.
Based on Step 6-1, the signed distances from the normalized outcomes Āi j to 1̃1

for all Ai ∈ A and x j ∈ X were obtained, as shown in Table 4. In Step 6-2,
the positive- and negative-ideal anchor values of each criterion were found by eval-

uating maxi d
(

Āi j , 1̃1

)
and mini d

(
Āi j , 1̃1

)
, respectively. It followed that the lower
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anchor values
∣
∣
∣d

(
Ā+ j , 1̃1

)∣
∣
∣ and the upper anchor values

∣
∣
∣d

(
Ā− j , 1̃1

)∣
∣
∣ for Ai ∈ A

were given by
∣
∣
∣d

(
Ā+1, 1̃1

)∣
∣
∣ = 0.0235,

∣
∣
∣d

(
Ā+2, 1̃1

)∣
∣
∣ = 0.8366,

∣
∣
∣d

(
Ā+3, 1̃1

)∣
∣
∣ =

0.0235,
∣
∣
∣d

(
Ā+4, 1̃1

)∣
∣
∣ = 1.3298,

∣
∣
∣d

(
Ā+5, 1̃1

)∣
∣
∣ = 0.4455,

∣
∣
∣d

(
Ā−1, 1̃1

)∣
∣
∣ = 0.7166,

∣
∣
∣d

(
Ā−2, 1̃1

)∣
∣
∣ = 1.6622,

∣
∣
∣d

(
Ā−3, 1̃1

)∣
∣
∣ = 1.9765,

∣
∣
∣d

(
Ā−4, 1̃1

)∣
∣
∣ = 1.9719, and

∣
∣
∣d

(
Ā−5, 1̃1

)∣
∣
∣ = 1.9634.

The relative variation of each criterion from its anchor values was computed in Step 6-3.
Let us take �1 as an example:

�1 =
⎛

⎝

∣
∣
∣d

(
Ā−1, 1̃1

)∣
∣
∣ −

∣
∣
∣d

(
Ā+1, 1̃1

)∣
∣
∣

∣
∣
∣d

(
Ā−1, 1̃1

)∣
∣
∣

⎞

⎠ ·
[(

1

/√
∑4

i=1

(
āL

4i1

)2
,

1

/√
∑4

i=1

(
āL

3i1

)2
, 1

/√
∑4

i=1

(
āL

2i1

)2
, 1

/√
∑4

i=1

(
āL

1i1

)2 ; min
i

h̄L
Ai1

)

,

(

1

/√
∑4

i=1

(
āU

4i1

)2
, 1

/√
∑4

i=1

(
āU

3i1

)2
, 1

/√
∑4

i=1

(
āU

2i1

)2
,

1

/√
∑4

i=1

(
āU

1i1

)2; min
i

h̄U
Ai1

)]

= [(0.5414, 0.5504, 0.5781, 0.5968; 0.8) , (0.5188, 0.5365, 0.5927, 0.6262; 1)] ,

where, for instance,

ψ L
1 j =

(
0.7166 − 0.0235

0.7166

)
·
(

1√
0.96672 + 0.99502 + 0.71582 + 0.86832

)
= 0.5415.

The relative variations of the other criteria were the following:

�2 = [(0.5030, 0.5690, 0.7125, 0.7773; 0.8) , (0.3616, 0.4964, 0.7836, 0.9118; 1)] ,

�3 = [(0.7334, 0.7477, 0.7874, 0.8147; 0.8) , (0.6998, 0.7274, 0.8081, 0.8559; 1)] ,

�4 = [(0.8201, 1.0710, 1.4960, 2.1964; 0.8) , (0.3235, 0.7987, 1.7261, 2.7877; 1)] ,

�5 = [(0.7360, 0.7940, 0.9536, 1.0386; 0.8) , (0.6416, 0.7321, 1.0598, 1.2919; 1)] .

Let ψ+ = max (0.6262, 0.9118, 0.8559, 2.7877, 1.2919) = 2.7877. According to Step 6-4,
the normalized objective importance � of the criteria was obtained as follows:

�1 =
[(

0.5414

2.7877
,

0.5504

2.7877
,

0.5781

2.7877
,

0.5968

2.7877
, 0.8

)
,

(
0.5188

2.7877
,

0.5365

2.7877
,

0.5927

2.7877
,

0.6262

2.7877
, 1

)]

= [(0.1942, 0.1974, 0.2074, 0.2141; 0.8) , (0.1861, 0.1925, 0.2126, 0.2246; 1)] ,

�2 = [(0.1804, 0.2041, 0.2556, 0.2788; 0.8) , (0.1297, 0.1781, 0.2811, 0.3271; 1)] ,

�3 = [(0.2631, 0.2682, 0.2825, 0.2922; 0.8) , (0.2510, 0.2609, 0.2899, 0.3070; 1)] ,

�4 = [(0.2942, 0.3842, 0.5366, 0.7879; 0.8) , (0.1160, 0.2865, 0.6192, 1.0000; 1)] ,

�5 = [(0.2640, 0.2848, 0.3421, 0.3726; 0.8) , (0.2302, 0.2626, 0.3802, 0.4634; 1)] .

The priority order (�4 > �5 > �3 > �2 > �1 because d
(
�4, 1̃1

)
> d

(
�5, 1̃1

)
>

d
(
�3, 1̃1

)
> d

(
�2, 1̃1

)
> d

(
�1, 1̃1

)
) via the normalized objective importance values of
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Table 5 The results of the overall importance W for each criterion

W
L
j W

U
j

w
L
1 j w

L
2 j w

L
3 j w

L
4 j h

L
W j

w
U
1 j w

U
2 j w

U
3 j w

U
4 j h

U
W j

(1) τ = 0.75

W 1 0.7380 0.7564 0.7785 0.7859 0.8000 0.7157 0.7451 0.7905 0.8062 1.0000

W 2 0.3696 0.3995 0.4730 0.5028 0.8000 0.3027 0.3627 0.5097 0.5691 1.0000

W 3 0.7003 0.7274 0.7682 0.7820 0.8000 0.6613 0.7067 0.7897 0.8192 1.0000

W 4 0.6253 0.6686 0.7459 0.8220 0.8000 0.5442 0.6247 0.7861 0.9116 1.0000

W 5 0.7137 0.7354 0.7850 0.8040 0.8000 0.6737 0.7121 0.8123 0.8583 1.0000

(2) τ = 0.5

W 1 0.5567 0.5701 0.5882 0.5953 0.8000 0.5392 0.5609 0.5979 0.6123 1.0000

W 2 0.3065 0.3344 0.4006 0.4282 0.8000 0.2450 0.3012 0.4335 0.4885 1.0000

W 3 0.5546 0.5744 0.6063 0.6188 0.8000 0.5245 0.5581 0.6231 0.6485 1.0000

W 4 0.5150 0.5738 0.6762 0.8106 0.8000 0.4015 0.5120 0.7305 0.9411 1.0000

W 5 0.5638 0.5852 0.6374 0.6602 0.8000 0.5259 0.5623 0.6683 0.7267 1.0000

(3) τ = 0.25

W 1 0.3755 0.3837 0.3978 0.4047 0.8000 0.3626 0.3767 0.4052 0.4185 1.0000

W 2 0.2435 0.2692 0.3281 0.3535 0.8000 0.1874 0.2396 0.3573 0.4078 1.0000

W 3 0.4088 0.4213 0.4444 0.4555 0.8000 0.3878 0.4095 0.4565 0.4777 1.0000

W 4 0.4046 0.4790 0.6064 0.7993 0.8000 0.2587 0.3992 0.6748 0.9705 1.0000

W 5 0.4139 0.4350 0.4897 0.5164 0.8000 0.3780 0.4124 0.5242 0.5950 1.0000

the criteria was obviously different from the priority order (W 1 > W 5 > W 3 > W 4 > W 2

because d
(

W 1, 1̃1

)
> d

(
W 5, 1̃1

)
> d

(
W 3, 1̃1

)
> d

(
W 4, 1̃1

)
> d

(
W 2, 1̃1

)
) via the

normalized subjective importance. Although the criterion x1 (survival rate) possessed the
highest subjective importance, its objective importance was the lowest because it did not
provide much information in the given decision situation.

In Step 7, the overall importance W j of the criteria was determined based on both the
subjective and the objective importance values. In this example, τ was set to 1, 0.75, 0.5, 0.25,

and 0 for comparison. Recall that W j = W j when τ = 1 and W j = � j when τ = 0. The
computation results in the cases of τ = 0.75, 0.5, and 0.25 are listed in Table 5. Comparing

the values of W and W , we can see that the largest, W 1, was offset by the lowest �1. The

criterion x1 did not have the highest overall importance; moreover, the value of W 1 fell as
the τ value decreased.

In Step 8, the weighted normalized decision matrix DW was established, as shown in
Tables 6, 7, 8, 9, and 10. From the overall importance of each criterion in Table 5, the
weighted normalized criterion value of Ai j was determined using (40). The weighted results
for τ = 1, 0.75, 0.5, 0.25, and 0 are presented in Tables 6, 7, 8, 9, and 10, respectively.
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Table 6 The results of the weighted normalized decision matrix DW (τ = 1)

A
L
i j A

U
i j

a
L
1i j a

L
2i j a

L
3i j a

L
4i j h

L
Ai j

a
U
1i j a

U
2i j a

U
3i j a

U
4i j h

U
Ai j

A11 0.8365 0.8798 0.9294 0.9440 0.8000 0.7881 0.8550 0.9569 0.9900 1.0000

A12 0.1485 0.1727 0.2506 0.3039 0.8000 0.1054 0.1440 0.3051 0.4659 1.0000

A13 0.5873 0.6340 0.7441 0.7838 0.8000 0.5001 0.5816 0.8033 0.8876 1.0000

A14 0.0327 0.0376 0.0516 0.0602 0.8000 0.0256 0.0327 0.0622 0.0926 1.0000

A15 0.2472 0.2891 0.3914 0.4408 0.8000 0.1618 0.2412 0.4459 0.5489 1.0000

A21 0.8870 0.9333 0.9641 0.9716 0.8000 0.8505 0.9169 0.9831 1.0000 1.0000

A22 0.0661 0.0736 0.0960 0.1054 0.8000 0.0509 0.0640 0.1092 0.1314 1.0000

A23 0.8164 0.8717 0.9254 0.9406 0.8000 0.7607 0.8439 0.9563 0.9899 1.0000

A24 0.0101 0.0105 0.0116 0.0119 0.8000 0.0092 0.0101 0.0121 0.0130 1.0000

A25 0.5750 0.6333 0.7828 0.8423 0.8000 0.4555 0.5627 0.8622 0.9899 1.0000

A31 0.5216 0.5649 0.6629 0.6990 0.8000 0.4401 0.5173 0.7144 0.7900 1.0000

A32 0.1282 0.1487 0.2155 0.2530 0.8000 0.0919 0.1240 0.2620 0.3742 1.0000

A33 0.0042 0.0044 0.0093 0.0331 0.8000 0.0000 0.0000 0.0127 0.0462 1.0000

A34 0.1021 0.1604 0.2411 0.3241 0.8000 0.0741 0.1338 0.3362 0.8821 1.0000

A35 0.0067 0.0069 0.0145 0.0516 0.8000 0.0000 0.0000 0.0198 0.0719 1.0000

A41 0.6786 0.7235 0.8163 0.8479 0.8000 0.6007 0.6784 0.8651 0.9333 1.0000

A42 0.1832 0.2180 0.3291 0.3972 0.8000 0.1280 0.1791 0.4124 0.6498 1.0000

A43 0.2037 0.2428 0.3170 0.3490 0.8000 0.1410 0.2081 0.3570 0.4289 1.0000

A44 0.0171 0.0188 0.0236 0.0259 0.8000 0.0142 0.0169 0.0267 0.0329 1.0000

A45 0.1466 0.1755 0.2416 0.2910 0.8000 0.0894 0.1430 0.2775 0.3693 1.0000

In Step 9, the ideal solution A∗ was defined as in (43) because the IT2TrFNs in the
weighted normalized decision matrix DW were positive; their ranges belonged to the closed
interval [0, 1]. Next, the normalized signed distances from each alternative to A∗ were
calculated using (45). Consider the case of τ = 0.25 for example. The closeness coefficient
of alternative Ai from the ideal solution was computed as follows:

∣∣d̄∗
1

∣∣ = 0.7341,
∣∣d̄∗

2

∣∣ =
0.6876,

∣∣d̄∗
3

∣∣ = 0.8447, and
∣∣d̄∗

4

∣∣ = 0.8079. In Step 10, the ranking of the four treatment
options was established from the closeness coefficients: A2  A1  A4  A3. Thus, the
best treatment option was A2. The detailed results for various τ values are summarized in
Table 11. We can observe that the value of τ did not perceptibly influence the ranking of
the alternatives in this practical example. As indicated in Table 11, the most appropriate
treatment option for Mr. Peng was A2 (intra-arterial thrombolysis).

6.2.2 Illustration of the weight-assessing method

If the three decision-makers (E1, E2, and E3) would like to know the estimation of criterion
weights to have more information in decision-making, they could use the weight-assessing
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Table 7 The results of the weighted normalized decision matrix DW (τ = 0.75)

A
L
i j A

U
i j

a
L
1i j a

L
2i j a

L
3i j a

L
4i j h

L
Ai j

a
U
1i j a

U
2i j a

U
3i j a

U
4i j h

U
Ai j

A11 0.6716 0.7059 0.7467 0.7597 0.8000 0.6322 0.6855 0.7694 0.7981 1.0000

A12 0.1268 0.1485 0.2173 0.2646 0.8000 0.0885 0.1231 0.2655 0.4080 1.0000

A13 0.4861 0.5237 0.6146 0.6484 0.8000 0.4144 0.4806 0.6633 0.7346 1.0000

A14 0.0278 0.0330 0.0472 0.0593 0.8000 0.0203 0.0277 0.0581 0.0957 1.0000

A15 0.2043 0.2400 0.3295 0.3739 0.8000 0.1327 0.1992 0.3788 0.4759 1.0000

A21 0.7122 0.7488 0.7746 0.7820 0.8000 0.6823 0.7352 0.7905 0.8062 1.0000

A22 0.0565 0.0633 0.0832 0.0918 0.8000 0.0428 0.0547 0.0950 0.1151 1.0000

A23 0.6758 0.7201 0.7644 0.7781 0.8000 0.6304 0.6973 0.7897 0.8192 1.0000

A24 0.0086 0.0092 0.0106 0.0118 0.8000 0.0073 0.0086 0.0113 0.0134 1.0000

A25 0.4752 0.5259 0.6589 0.7145 0.8000 0.3736 0.4649 0.7324 0.8583 1.0000

A31 0.4188 0.4532 0.5326 0.5625 0.8000 0.3531 0.4148 0.5745 0.6369 1.0000

A32 0.1095 0.1279 0.1868 0.2203 0.8000 0.0772 0.1061 0.2279 0.3277 1.0000

A33 0.0035 0.0036 0.0077 0.0274 0.8000 0.0000 0.0000 0.0105 0.0383 1.0000

A34 0.0868 0.1405 0.2205 0.3197 0.8000 0.0587 0.1133 0.3140 0.9116 1.0000

A35 0.0056 0.0057 0.0122 0.0437 0.8000 0.0000 0.0000 0.0168 0.0623 1.0000

A41 0.5449 0.5805 0.6559 0.6824 0.8000 0.4819 0.5439 0.6956 0.7524 1.0000

A42 0.1565 0.1875 0.2854 0.3458 0.8000 0.1075 0.1532 0.3588 0.5691 1.0000

A43 0.1686 0.2006 0.2618 0.2887 0.8000 0.1169 0.1719 0.2948 0.3550 1.0000

A44 0.0146 0.0164 0.0216 0.0256 0.8000 0.0113 0.0143 0.0249 0.0340 1.0000

A45 0.1211 0.1458 0.2034 0.2468 0.8000 0.0733 0.1181 0.2357 0.3202 1.0000

method in the signed-distance-based approach. Let ω j ( j = 1, 2, . . . , 5) be the weight of

criterion x j and ω j ∈
[
ωL

j , ω
U
j

]
. Let ωL

j = w
U
1 j and ωU

j = w
U
4 j . Take τ = 0.25 as an exam-

ple again. From Table 5, it is known that ωL
1 = 0.3626, ωL

2 = 0.1874, ωL
3 = 0.3878, ωL

4 =
0.2587, ωL

5 = 0.3780, ωU
1 = 0.4185, ωU

2 = 0.4078, ωU
3 = 0.4777, ωU

4 = 0.9705, and

ωU
5 = 0.5950. We noted that

∑5
j=1 ω

L
j = 1.5745 > 1 and

∑5
j=1 ω

U
j = 2.8695 > 1.

The weighted normalized criterion value of Ai j was obtained with (49). Then, the weighted
normalized decision matrix D′W was correspondingly constructed by (51) in Step 8’. In Step
9’, the normalized signed distance from each alternative to A∗ was computed using Table 4
and (52) as follows:

d̄ ′∗
1 = 1

80
(15.0970ω1 + 7.1005ω2 + 12.1688ω3 + 0.9771ω4 + 5.9827ω5 − 80) ,

d̄ ′∗
2 = 1

80
(15.8118ω1 + 2.7025ω2 + 15.8118ω3 + 0.2246ω4 + 12.4360ω5 − 80) ,

d̄ ′∗
3 = 1

80
(10.2669ω1 + 6.0334ω2 + 0.1882ω3 + 5.3616ω4 + 0.2927ω5 − 80) ,
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Table 8 The results of the weighted normalized decision matrix DW (τ = 0.5)

A
L
i j A

U
i j

a
L
1i j a

L
2i j a

L
3i j a

L
4i j h

L
Ai j

a
U
1i j a

U
2i j a

U
3i j a

U
4i j h

U
Ai j

A11 0.5066 0.5321 0.5642 0.5755 0.8000 0.4763 0.5160 0.5819 0.6062 1.0000

A12 0.1052 0.1243 0.1840 0.2253 0.8000 0.0716 0.1022 0.2258 0.3503 1.0000

A13 0.3850 0.4136 0.4850 0.5131 0.8000 0.3287 0.3795 0.5234 0.5815 1.0000

A14 0.0229 0.0283 0.0428 0.0585 0.8000 0.0150 0.0227 0.0540 0.0988 1.0000

A15 0.1614 0.1910 0.2675 0.3071 0.8000 0.1036 0.1573 0.3116 0.4030 1.0000

A21 0.5372 0.5644 0.5853 0.5923 0.8000 0.5140 0.5534 0.5979 0.6123 1.0000

A22 0.0468 0.0530 0.0705 0.0781 0.8000 0.0346 0.0454 0.0808 0.0988 1.0000

A23 0.5352 0.5687 0.6033 0.6157 0.8000 0.5000 0.5507 0.6231 0.6485 1.0000

A24 0.0071 0.0079 0.0096 0.0116 0.8000 0.0054 0.0070 0.0105 0.0138 1.0000

A25 0.3754 0.4185 0.5350 0.5867 0.8000 0.2916 0.3671 0.6025 0.7267 1.0000

A31 0.3159 0.3416 0.4024 0.4261 0.8000 0.2660 0.3123 0.4345 0.4837 1.0000

A32 0.0908 0.1070 0.1582 0.1876 0.8000 0.0625 0.0881 0.1939 0.2813 1.0000

A33 0.0028 0.0029 0.0061 0.0217 0.8000 0.0000 0.0000 0.0083 0.0303 1.0000

A34 0.0715 0.1206 0.1999 0.3152 0.8000 0.0433 0.0929 0.2918 0.9411 1.0000

A35 0.0044 0.0046 0.0099 0.0359 0.8000 0.0000 0.0000 0.0138 0.0528 1.0000

A41 0.4110 0.4376 0.4956 0.5169 0.8000 0.3630 0.4095 0.5262 0.5715 1.0000

A42 0.1298 0.1569 0.2417 0.2945 0.8000 0.0870 0.1272 0.3051 0.4885 1.0000

A43 0.1335 0.1584 0.2066 0.2285 0.8000 0.0927 0.1358 0.2326 0.2810 1.0000

A44 0.0120 0.0141 0.0195 0.0252 0.8000 0.0083 0.0117 0.0232 0.0351 1.0000

A45 0.0957 0.1160 0.1652 0.2027 0.8000 0.0572 0.0933 0.1939 0.2711 1.0000

d̄ ′∗
4 = 1

80
(12.8712ω1 + 9.3075ω2 + 4.9156ω3 + 0.4409ω4 + 3.7119ω5 − 80) .

Consider the case of τ = 0.25 for example. In Step 10’, the single-objective optimization
model in (56) was constructed to estimate the importance weights of the criteria:

min {λ1 + λ2}

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
80 (15.0970ω1 + 7.1005ω2 + 12.1688ω3 + 0.9771ω4 + 5.9827ω5 − 80) ≤ λ2,

− 1
80 (15.8118ω1 + 2.7025ω2 + 15.8118ω3 + 0.2246ω4 + 12.4360ω5 − 80) ≤ λ2,

− 1
80 (10.2669ω1 + 6.0334ω2 + 0.1882ω3 + 5.3616ω4 + 0.2927ω5 − 80) ≤ λ2,

− 1
80 (12.8712ω1 + 9.3075ω2 + 4.9156ω3 + 0.4409ω4 + 3.7119ω5 − 80) ≤ λ2,

e−
1 ≤ λ1, e−

2 ≤λ1, e−
3 ≤λ1, e−

4 ≤ λ1, e−
5 ≤λ1, e+

1 ≤λ1, e+
2 ≤ λ1, e+

3 ≤λ1, e+
4 ≤λ1, e+

5 ≤ λ1,

w1+e−
1 ≥0.3626, w2+e−

2 ≥0.1874, w3+e−
3 ≥0.3878, w4+e−

4 ≥0.2587, w5+e−
5 ≥ 0.3780,

w1−e+
1 ≤0.4185, w2−e+

2 ≤0.4078, w3−e+
3 ≤0.4777, w4−e+

4 ≤0.9705, w5−e+
5 ≤ 0.5950,

e−
1 ≥ 0, e−

2 ≥ 0, e−
3 ≥ 0, e−

4 ≥ 0, e−
5 ≥ 0, e+

1 ≥ 0, e+
2 ≥ 0, e+

3 ≥ 0, e+
4 ≥ 0, e+

5 ≥ 0,

w1 ≥ 0, w2 ≥ 0, w3 ≥ 0, w4 ≥ 0, w5 ≥ 0,

w1 + w2 + w3 + w4 + w5 = 1.
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Table 9 The results of the weighted normalized decision matrix DW (τ = 0.25)

A
L
i j A

U
i j

a
L
1i j a

L
2i j a

L
3i j a

L
4i j h

L
Ai j

a
U
1i j a

U
2i j a

U
3i j a

U
4i j h

U
Ai j

A11 0.3417 0.3581 0.3816 0.3912 0.8000 0.3203 0.3466 0.3944 0.4143 1.0000

A12 0.0836 0.1001 0.1507 0.1860 0.8000 0.0548 0.0813 0.1861 0.2924 1.0000

A13 0.2838 0.3033 0.3555 0.3777 0.8000 0.2430 0.2785 0.3835 0.4284 1.0000

A14 0.0180 0.0236 0.0384 0.0577 0.8000 0.0096 0.0177 0.0499 0.1019 1.0000

A15 0.1185 0.1420 0.2055 0.2402 0.8000 0.0745 0.1154 0.2444 0.3299 1.0000

A21 0.3624 0.3799 0.3958 0.4027 0.8000 0.3457 0.3717 0.4052 0.4185 1.0000

A22 0.0372 0.0426 0.0577 0.0645 0.8000 0.0265 0.0361 0.0666 0.0825 1.0000

A23 0.3945 0.4171 0.4422 0.4532 0.8000 0.3697 0.4041 0.4565 0.4777 1.0000

A24 0.0055 0.0066 0.0086 0.0114 0.8000 0.0035 0.0055 0.0097 0.0143 1.0000

A25 0.2756 0.3111 0.4111 0.4589 0.8000 0.2096 0.2693 0.4726 0.5950 1.0000

A31 0.2131 0.2299 0.2722 0.2897 0.8000 0.1789 0.2097 0.2945 0.3306 1.0000

A32 0.0722 0.0862 0.1296 0.1549 0.8000 0.0478 0.0701 0.1598 0.2349 1.0000

A33 0.0020 0.0021 0.0044 0.0159 0.8000 0.0000 0.0000 0.0061 0.0223 1.0000

A34 0.0562 0.1006 0.1793 0.3108 0.8000 0.0279 0.0724 0.2695 0.9705 1.0000

A35 0.0032 0.0034 0.0076 0.0281 0.8000 0.0000 0.0000 0.0109 0.0432 1.0000

A41 0.2772 0.2945 0.3351 0.3514 0.8000 0.2441 0.2750 0.3566 0.3906 1.0000

A42 0.1031 0.1263 0.1979 0.2431 0.8000 0.0666 0.1012 0.2515 0.4078 1.0000

A43 0.0984 0.1162 0.1515 0.1682 0.8000 0.0685 0.0996 0.1704 0.2070 1.0000

A44 0.0094 0.0118 0.0175 0.0249 0.8000 0.0054 0.0091 0.0214 0.0362 1.0000

A45 0.0702 0.0862 0.1269 0.1585 0.8000 0.0411 0.0684 0.1521 0.2220 1.0000

Next, the integrated programming model was solved to obtain the optimal weight vector,

ω = (0.2477, 0.0725, 0.2729, 0.1438, 0.2631); the optimal deviation values,


e

−
1 = 

e
−
2 =


e

−
3 = 

e
−
4 = 

e
−
5 =0.1149,


e

+
1 = 

e
+
2 = 

e
+
3 = 

e
+
4 = 

e
+
5 = 0; the optimal signed distances,



d̄
′∗
1 = −0.8839,



d̄
′∗
2 = −0.8534,



d̄
′∗
3 = −0.9515,



d̄
′∗
4 = −0.9219; and the optimal objective

value, 1.0664. In Step 11’, the optimal ranking of the four treatment options was determined

by the values of
∣∣


d̄
′∗
i

∣∣ : A2  A1  A4  A3. The detailed results for various τ values
are summarized in Table 12. As indicated in this table, the criterion weights are moder-
ately different in the cases of various τ values. The rankings of the weights were given by

ω1 >


ω5 >


ω3 >


ω4 >


ω2,


ω1 >


ω5 >


ω3 >


ω4 >


ω2,


ω1 >


ω5 >


ω3 >


ω4 >


ω2,


ω3 >


ω5 >


ω1 >


ω4 >


ω2, and 

ω3 >

ω5 >


ω1 >


ω2 >


ω4 for τ = 1, 0.75, 0.5, 0.25, and 0,

respectively. Although the distributions of importance weights of the criteria showed differ-
ent patterns in various settings of the τ values, the obtained rankings of the four treatment
options were the same (A2  A1  A4  A3). Therefore, A2 was the best choice.
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Table 10 The results of the weighted normalized decision matrix DW (τ = 0)

A
L
i j A

U
i j

a
L
1i j a

L
2i j a

L
3i j a

L
4i j h

L
Ai j

a
U
1i j a

U
2i j a

U
3i j a

U
4i j h

U
Ai j

A11 0.1767 0.1842 0.1989 0.2070 0.8000 0.1644 0.1771 0.2069 0.2224 1.0000

A12 0.0619 0.0759 0.1174 0.1467 0.8000 0.0379 0.0604 0.1464 0.2345 1.0000

A13 0.1826 0.1931 0.2260 0.2423 0.8000 0.1573 0.1774 0.2435 0.2753 1.0000

A14 0.0131 0.0189 0.0340 0.0569 0.8000 0.0043 0.0127 0.0458 0.1050 1.0000

A15 0.0756 0.0930 0.1436 0.1733 0.8000 0.0453 0.0735 0.1773 0.2570 1.0000

A21 0.1874 0.1954 0.2064 0.2130 0.8000 0.1774 0.1899 0.2126 0.2246 1.0000

A22 0.0276 0.0323 0.0450 0.0509 0.8000 0.0183 0.0269 0.0524 0.0661 1.0000

A23 0.2539 0.2655 0.2811 0.2907 0.8000 0.2393 0.2574 0.2899 0.3070 1.0000

A24 0.0040 0.0053 0.0076 0.0113 0.8000 0.0016 0.0039 0.0089 0.0147 1.0000

A25 0.1758 0.2037 0.2872 0.3311 0.8000 0.1276 0.1715 0.3428 0.4634 1.0000

A31 0.1102 0.1183 0.1419 0.1533 0.8000 0.0918 0.1072 0.1545 0.1774 1.0000

A32 0.0535 0.0653 0.1010 0.1221 0.8000 0.0331 0.0521 0.1257 0.1884 1.0000

A33 0.0013 0.0013 0.0028 0.0102 0.8000 0.0000 0.0000 0.0039 0.0143 1.0000

A34 0.0408 0.0807 0.1586 0.3064 0.8000 0.0125 0.0520 0.2473 1.0000 1.0000

A35 0.0021 0.0022 0.0053 0.0203 0.8000 0.0000 0.0000 0.0079 0.0336 1.0000

A41 0.1434 0.1515 0.1747 0.1859 0.8000 0.1253 0.1405 0.1871 0.2096 1.0000

A42 0.0764 0.0958 0.1542 0.1918 0.8000 0.0461 0.0752 0.1979 0.3271 1.0000

A43 0.0634 0.0740 0.0963 0.1079 0.8000 0.0444 0.0635 0.1082 0.1330 1.0000

A44 0.0069 0.0095 0.0155 0.0245 0.8000 0.0024 0.0066 0.0196 0.0373 1.0000

A45 0.0448 0.0564 0.0886 0.1144 0.8000 0.0250 0.0436 0.1103 0.1729 1.0000

Finally, the patient’s family decided to adopt intra-arterial thrombolysis (A2) as the treat-
ment. Via surgery, a catheter was inserted into the femoral artery in the thigh and placed
at the thrombus that had caused the thrombolytic occlusion. A direct and rapid therapeutic
effect was achieved through this approach, and the dose of thrombolytic agents was lower
than that of intravenous thrombolysis. Mr. Peng became conscious after the treatment and is
still undergoing rehabilitation.

6.3 Comparative analysis and discussions

Most of the present research concerning MCDA with IT2FSs has only considered the sub-
jective importance values of the criteria. Based on the subjective importance values W of
the criteria, the solution results by using the signed-distance-based MCDA method can be
found in the case of τ = 1 in Table 11, where

∣∣d̄∗
1

∣∣ = 0.4445,
∣∣d̄∗

2

∣∣ = 0.3384,
∣∣d̄∗

3

∣∣ =
0.7201,

∣∣d̄∗
4

∣∣ = 0.6002, and A2  A1  A4  A3. Although the subjective importance
values of criteria assigned by the decision-makers can exhibit preference dependence, the
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Table 12 The comparative results yielded by the weight-assessing method

τ = 1 (subjective
weights only)

τ = 0.75 τ = 0.5 τ = 0.25 τ = 0 (objective
weights only)


ω1 0.3426 0.3170 0.2915 0.2477 0.2246

ω2 0.0000 0.0000 0.0000 0.0725 0.1782

ω3 0.2483 0.2626 0.2767 0.2729 0.2510

ω4 0.1373 0.1455 0.1537 0.1438 0.1160

ω5 0.2718 0.2749 0.2781 0.2631 0.2302

e

−
1 0.5497 0.3987 0.2478 0.1149 0.0000


e

−
2 0.3603 0.3027 0.2450 0.1149 0.0000


e

−
3 0.5497 0.3987 0.2478 0.1149 0.0000


e

−
4 0.5497 0.3987 0.2478 0.1149 0.0000


e

−
5 0.5497 0.3987 0.2478 0.1149 0.0000


e

+
1 0.0000 0.0000 0.0000 0.0000 0.0000


e

+
2 0.0000 0.0000 0.0000 0.0000 0.0000


e

+
3 0.0000 0.0000 0.0000 0.0000 0.0000


e

+
4 0.0000 0.0000 0.0000 0.0000 0.0000


e

+
5 0.0000 0.0000 0.0000 0.0000 0.0000

∣
∣∣∣
∣



d
′∗
1

∣
∣∣∣
∣

0.8756 0.8779 0.8802 0.8839 0.8850

∣
∣∣∣
∣



d
′∗
2

∣
∣∣∣
∣

0.8406 0.8423 0.8440 0.8534 0.8639

∣∣
∣∣∣



d
′∗
3

∣∣
∣∣∣

0.9453 0.9479 0.9506 0.9515 0.9485

∣∣∣
∣∣



d
′∗
4

∣∣∣
∣∣

0.9163 0.9193 0.9224 0.9219 0.9164

Objective value 1.4949 1.3467 1.1984 1.0664 0.9485
Priority order A2  A1  A2  A1  A2  A1  A2  A1  A2  A1 

A4  A3 A4  A3 A4  A3 A4  A3 A4  A3

intrinsic information generated by a given decision situation is not involved in assessing
subjective criterion importance, and the criterion dependence in the given situation is thus
ignored. This study modified the STEM to develop a signed-distance-based method to deter-
mine objective importance values of the criteria.

In this study, the approach to estimate objective criterion importance is measured with the
deviation defined in the STEM approach. However, in comparison with the traditional STEM
[5], several problems follow from the STEM definitions in the context of IT2TrFNs. The
signed distances and linear scale transformation were used to solve the problems and to mod-
ify the STEM method in this paper. Based on the objective importance� j of each criterion, the
solution results by using the signed-distance-based MCDA method can be found in the case
of τ = 0 in Table 11, where

∣∣d̄∗
1

∣∣ = 0.8306,
∣∣d̄∗

2

∣∣ = 0.8040,
∣∣d̄∗

3

∣∣ = 0.8862,
∣∣d̄∗

4

∣∣ = 0.8771,
and A2  A1  A4  A3. Furthermore, an approach was proposed to identify the overall
importance by combining the subjective and objective information in this paper. Note that
the subjective and objective importance values of the criteria are the special cases of our
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proposed overall importance measures. In addition to the ranking results computed from the
subjective and objective importance values, we could incorporate the overall importance of
each criterion into the proposed MCDA methods for comprehensive decision aiding.

On the other hand, it is important to know how to measure the criterion importance
weights correctly when multiple criteria are simultaneously considered in a decision prob-
lem. This paper presented a useful method for estimating the importance weights of criteria
with IT2TrFN data. Considering that the criteria may be assigned unduly high or low rat-
ings, some deviation variables were introduced to mitigate the effects that overestimated and
underestimated ratings have on criterion importance. Given the two objectives of maximal
closeness coefficients and minimal deviation values, an integrated programming model was
proposed to estimate the optimal weights for the criteria and the corresponding closeness
coefficient values for alternative rankings.

In regard to the proposed integrated programming model for estimating the importance
weights, the solution results on the basis of subjective weights can be found in the case of
τ = 1 in Table 12, where 

ω1 = 0.3426, ω2 = 0.0000, ω3 = 0.2483, ω4 = 0.1373, ω5 =
0.2718,

∣
∣
∣
∣


d̄
′∗
1

∣
∣
∣
∣ = 0.8756,

∣
∣
∣
∣


d̄
′∗
2

∣
∣
∣
∣ = 0.8406,

∣
∣
∣
∣


d̄
′∗
3

∣
∣
∣
∣ = 0.9453,

∣
∣
∣
∣


d̄
′∗
4

∣
∣
∣
∣ = 0.9163, and A2  A1 

A4  A3. In contrast, the solution results on the basis of objective weights can be found
in the case of τ = 0 in Table 12, where 

ω1 = 0.2246, ω2 = 0.1782, ω3 = 0.2510, ω4 =
0.1160, ω5 = 0.2302,

∣∣∣∣


d̄
′∗
1

∣∣∣∣ = 0.8850,

∣∣∣∣


d̄
′∗
2

∣∣∣∣ = 0.8639,

∣∣∣∣


d̄
′∗
3

∣∣∣∣ = 0.9485,

∣∣∣∣


d̄
′∗
4

∣∣∣∣ = 0.9164,

and A2  A1  A4  A3. More specifically, it is significant that the overall importance
of each criterion can be replaced by the subjective or objective importance in the presented
weight-assessment method. If the decision-makers are only seeking the subjective criterion

weights, then let the overall weight ω′
j of each x j ∈ X lie in the closed interval

[
ω′L

j , ω
′U
j

]
,

where ω′L
j = W

U
1 j and ω′U

j = W
U
4 j . If the decision-makers merely want to obtain the objec-

tive criterion weights, then let the objective weight ω′′
j of each criterion x j ∈ X lie in the

closed interval
[
ω′′L

j , ω
′′U
j

]
, where ω′′L

j = �U
1 j and ω′′U

j = �U
4 j . As a word, in addition to

the overall weights, our proposed weight-assessment method can be applied to the subjective
weights and to the objective weights. Moreover, the approaches to estimating subjective or
objective weights of the criteria are the special cases in our proposed method for assessing
the overall criterion weights.

7 Conclusions

This paper established an MCDA method for handling subjective and objective information
and for estimating criterion weights via signed distances in the context of an interval-val-
ued fuzzy framework. When subjective human judgments are involved, a two-valued logic
approach is rarely employed to assess each criterion. On the contrary, a multi-valued logic
approach for the expression of fuzzy linguistic variables more closely resembles the uncer-
tainty of human thinking. If traditional binary numerals are used to explain psychological
uncertainty and ambiguity, there is tendency for this method to be mistakenly over-applied.
The utilization of fuzzy linguistic variables during the assessment of group decision-making
reduces the pressure felt by the decision-makers during the assessment and closely resembles
the value judgment perceived by the decision-makers. Via the presentation of fuzzy linguis-
tic variables, decision-makers have the flexibility to provide appropriate assessment values
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for each criterion. This study used IT2TrFNs as the performance assessment values used by
the decision-makers. Compared to type-1 trapezoidal fuzzy numbers, the IT2TrFNs within
a value range can further represent the deep-seated uncertainty manifested by the decision-
makers. As the assessment criteria become more complex and abstract, IT2TrFNs become
more suitable as objective and quantitative tools.

This research has made important contributions to the current literature in a number of
significant aspects. First, instead of a complicated computational process for coping with
IT2TrFN data, a useful decision analysis method was developed based on the concept of
signed distances. Second, our approach determined the objective importance of criteria by
using the signed-distance-based deviations within the IT2TrFN decision environment. Third,
based on the subjective preference information provided by the decision-makers and the
objective information emitted by the decision matrix, an integrated approach was established
to determine the overall importance of criteria and to then incorporate it in the MCDA. Fourth,
an integrated programming model was constructed to solve for the optimal criteria impor-
tance weights and to replace the IT2TrFN format of criteria importance because non-negative
normalized weights are generally accepted and widely used. Finally, through a real-world
medical decision-making problem, we demonstrated that the proposed MCDA method with
the signed-distance-based approach was easy to employ and produced actionable results for
decision analysis. In summary, this paper has charted the landscape of IT2TrFNs within
multiple criteria, decision-making environments. More specifically, a method was developed
for generating a signed-distance-based approach for decision analysis and weight assessment.
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