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Abstract In this paper, we develop a new method for multiple attributes group decision-
making problems under uncertain environment, in which the information about attribute
weights is incompletely known or completely unknown, and each maker’s decision informa-
tion is expressed by an interval-valued fuzzy soft set. Moreover, this paper takes account of
the decision makers’ attitude toward risk. In order to get the weight vector of the attributes,
we construct the score matrix of the final fuzzy soft set. From the score matrix and the given
attribute weights information, we establish an optimization model to determine the weights
of attributes. For the special situations where the information about attribute weights is com-
pletely unknown, we establish another optimization model. By solving this model, we get a
simple and exact formula, which can be used to determine the attribute weights. According to
these models, a method based on interval-valued fuzzy soft set, which considers the decision
makers’ risk attitude under uncertain environment, is given to rank the alternatives. Finally,
a numerical example is used to illustrate the applicability of the proposed approach.

Keywords Multi-attribute group decision making (MAGDM) · Fuzzy soft set ·
Interval-valued fuzzy soft set · Incomplete weight information

1 Introduction

The objective of MADM is to find the most desirable alternatives from a set of available
alternatives versus the selected criteria [25]. The key information required in a multi-attri-
bute decision model includes attribute values, attribute weights and a mechanism to synthesize
this information into an aggregated value or assessment for each alternative [17]. However,
an engineering or management decision information is often vague, imprecise and uncertain,
by nature. Moreover, due to the increasing complexity of the socioeconomic environment
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and the lack of knowledge or data about the problem domain, a single expert or decision
maker often cannot comprehensively consider the whole aspect of decision problem. There-
fore, a general trend in the literature is to investigate group decision models with incomplete
information.

On the one hand, the decision makers cannot provide deterministic alternative values
but fuzzy numbers instead. For example, literature [3,5,8,15,23,27], respectively, does the
research about the decision problems with the attribute values as triangular fuzzy number,
interval number, fuzzy set, rough set, intuitionistic fuzzy set and vague set etc. However, these
theories are associated with an inherent limitation, which is inadequacy of the parameteriza-
tion tool associated with these theories. For example, the methods of interval mathematics are
not sufficiently adaptable for problems with different uncertainties, and they cannot appro-
priately describe a smooth changing of information, unreliable, not adequate and defective
information, partially contradicting aims, and so on. Fuzzy set is progressing rapidly, but
there exists a difficulty: how to set the membership function in each particular case [10]. Yet,
the soft set that was initiated by Molodtsov [10], as a new mathematical tool, can deal with
uncertainties, which is free from the above limitations. In our study, we will first apply the
interval-valued fuzzy soft set theory to multi-attribute group decision-making problems.

In recent years, research on soft set theory has become active and great progress has been
achieved in the theoretical aspect. At the same time, there has been some progress concerning
practical applications of soft set theory, especially the use of soft sets in decision making.
Maji et al. [9] introduced the definition of reduct-soft-set and described the application of soft
set theory to a decision-making problem. Mushrif et al. [11] proposed a new classification
algorithm of the natural textures, which was based on the notions of soft set theory. Zou
and Xiao [28] presented data analysis approaches of soft set under incomplete information.
Roy and Maji [14] proposed a novel method of object recognition from an imprecise multi-
observer data and a decision-making application of fuzzy soft sets. Although the algorithm
was proved incorrect by Kong and Gao et al. [7], the fuzzy soft sets and multi-observer con-
cepts are valuable to successive researchers. Feng et al. [2] presented an adjustable approach
to fuzzy soft set-based decision making and gave some illustration.

On the other hand, the estimation of the attribute weights plays an important role in
multiple attributes decision making. Due to the complexity and uncertainty of the real-world
decision-making problems and the inherent subjective nature of human thinking, the infor-
mation about attribute weights is usually incomplete. Therefore, the decision makers only
can give incomplete information about attribute weights. The incomplete attribute weight
information has also been extensively investigated from different perspectives. Kim et al.
[6] presented an interactive procedure for multiple attribute group decision making with
incomplete information and described some theoretical models to establish group’s pairwise
dominance relations with group’s utility ranges by using a separable linear programming
technique. Park et al. [12] fused all individual interval-valued intuitionistic fuzzy decision
matrices into the collective interval-valued intuitionistic fuzzy decision matrix by using the
IIFHG operator and constructed the score matrix of the collective interval-valued intuition-
istic fuzzy decision matrix and established an optimization model to determine the weights
of attributes. Park [13] had provided characterization of dominance and PO for decision
alternatives and discovered the fact that the set of NDA implied the set of potentially opti-
mal acts when weights were incomplete. This was done via developing a zero-one mixed
integer program for establishing dominance. Wei [19] established an optimization model
based on the basic ideal of traditional technique for order performance by similarity to ideal
solution, by which the attribute weights could be determined. Wei et al. [18] established an
optimization model based on the negative ideal solution and max- min operator, by which
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the attribute weights could be determined. Xu and Chen [21] had developed an interactive
method to solve fuzzy multiple group decision-making problems. The method transformed
the fuzzy decision matrices into their expected decision matrices and constructed the normal-
ized expected decision matrices. In our article, we will first study interval-valued fuzzy soft
set decision-making problem with incomplete attribute weight information. To determine the
attribute weights, we have constructed the score matrix of the collective interval-valued fuzzy
soft matrix. From the score matrix and the given attribute weights information, we establish
an optimization model to determine the weights of attributes. Especially, for the situation
where the information about the attribute weights is completely unknown, we have provided
a simple and exact formula for obtaining the attribute weights.

In this paper, we shall focus on MAGMD problems considering the decision makers’ risk
attitude under uncertain environment, in which attribute values’ information is expressed as
interval-valued fuzzy soft set and incomplete attribute weights are identified as a set of linear
constrains that may take any form as those in [6,21].

The remainder of this paper is organized as follows: in Sect. 2, we review some basic
concepts of soft set, fuzzy soft set, interval-valued fuzzy soft set, similarity between fuzzy
sets and point out the difference between fuzzy set and fuzzy soft set. Section 3 develops
a novel approach to MAGDM problems considering the decision makers’ attitude toward
risk under uncertain environment, in which attribute values are expressed as interval-valued
fuzzy soft set and incomplete attribute weights are identified as a set of linear constrains. For
the special situation where the information about attribute weights is completely unknown,
we established another optimization model. By solving this model, we get a simple and exact
formula, which can be used to determine the attribute weights. Section 4 gives an illustrative
example. Finally, conclusions are discussed in Sect. 5.

2 Preliminaries

2.1 Soft set and fuzzy soft set

Definition 1 (see [10]): A pair (F, E) is called a soft set (over U ) if and only if F is a
mapping of E into the set of all subsets of the set U .

In other words, the soft set is a parameterized family of subsets of the set U . Every set
F(ε), ε ∈ E , from this family may be considered as the set of ε-elements of the soft set
(F, E), or as the set of ε—approximate elements of the soft set.

Example 1 A soft set (F, E) describes the attractiveness of the houses which Mr. X is going
to buy. U = {h1, h2, h3, h4} is the set of houses under consideration. E = {e1, e2, e3, e4} is
the set of parameters. Each parameter is a word or a sentence, which stand for the parameters
“expensive,” “beautiful,” “in the green surroundings” and “in good repair.”

Consider the mapping F be a mapping of E into the set of all subsets of the set U .
Now consider a soft set (F, E) that describes the “attractiveness of houses for purchase”.
According to the data collected, the soft set (F, E) is given by

(F, E) = {(e1, {h1, h3, h4}) , (e2, {h1, h2}) , (e3, {h1, h3}) , (e4, {h2, h3, h4})} ,

where F (e1) = {h1, h3, h4} , F (e2) = {h1, h2} , F (e3) = {h1, h3} and F (e4) =
{h2, h3, h4}. In order to store a soft set in computer, a 2-D table is used to represent the
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Table 1 The tabular
representation of (F, E)

U e1 e2 e3 e4

h1 1 1 1 0

h2 0 1 0 1

h3 1 0 1 1

h4 1 0 0 1

soft set (F, E). Table 1 is the tabular form of the soft set (F, E). If hi ∈ F
(
e j

)
, then hi j = 1,

otherwise hi j = 0, where hi j are the entries (see Table 1).

Definition 2 (see [26]): A fuzzy set Ã in the universe of discourse U can be represented by a
membership function μA shown as follows: μA : U → [0, 1], where μA denotes the degree
of membership of x belonging to the fuzzy set Ã and μA ∈ [0, 1].

Let us consider the family of α−level sets for function μA, F(α) = {x ∈ U |μA(x) ≥ α} ,

α ∈ [0, 1].
If we know the family F , we can find the functions μA(x) by means of the following

formula:

μA(x) = sup
α∈[0,1]
x∈F(α)

α.

Thus, every Zadeh’s fuzzy set A may be considered as the soft set (F, [0, 1]). In soft set
theory, membership is decided by adequate parameters, whereas fuzzy set theory depends
upon grade of membership.

Because the classical mathematics model usually is too complicated, we cannot find the
exact solution. So we introduce the notion of approximate solution and calculate that solu-
tion. While in soft set theory, we have the opposite approach to this problem. The initial
description of the object has an approximate nature, and we do not need to introduce the
notion of exact solution [10].

Definition 3 (see [14] ) Let P(U ) be the set of all fuzzy subsets in a universe U . Let E be
a set of parameters and A ⊆ E . A pair ( f, A) is called a fuzzy soft set over U , where f is a
mapping given by

f : A → P(U ). (1)

Similar to the viewing a soft set, a fuzzy soft set ( f, A) can be viewed ( f, A) ={
a = {

u fa(U )|u ∈ U
} |a ∈ A

}
where the symbol “a = {

u fa(u)|u ∈ U
}
” indicates that the

membership degree of the element u ∈ U is fa(u) where fa : U → [0, 1] is the membership
function of the fuzzy set f (a) [1]. We can see that fuzzy soft set studies the fuzzy power set
of universe.

Example 2 Suppose that there are five cars in the universe U = {h1, h2, h3, h4, h5} and
the set of parameters is given by E = {e1, e2, e3, e4, e5}, where ei stand for “dynamic,”
“economy,” “brake,” “steering stability” and “smooth-going running,” respectively. Let A =
{e1, e2, e3} ⊂ E be consisting of the parameters that Mr. X is interested in buying a car. Now
all the available information on cars under consideration can be formulated as a fuzzy soft
set (F̃, A) describing “attractiveness of cars” that Mr. X is going to buy.
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Table 2 Tabular representation
of the fuzzy soft set (F̃, A)

U e1 = ‘dynamic’ e2 = ‘economy’ e3 = ‘brake’

h1 0.4 1.0 0.5

h2 0.6 0.6 0.6

h3 0.5 0.8 0.8

h4 0.9 0.5 0.2

h5 0.3 0.9 0.9

(F, A) = {e1 = {(h1, 0.4), (h2, 0.6) , (h3, 0.5), (h4, 0.9), (h5, 0.3)} ,

e2 = {(h1, 1.0), (h2, 0.6), (h3, 0.8), (h4, 0.5), (h5, 0.9)},
e3 = {(h1, 0.5), (h2, 0.6), (h3, 0.8), (h4, 0.2), (h5, 0.9)}

is a fuzzy soft set over U . Table 2 gives the tabular representation of the fuzzy soft set (F̃, A).

Definition 4 (see [2] ) Let S = (F̃, A) be a fuzzy soft set over U , where A ⊆ E and E is
the parameter set. Let λ : A → [0, 1] be a fuzzy set in A which is called a threshold fuzzy
set. The level soft set of the fuzzy soft set S with respect to the fuzzy set λ is a crisp soft set
L(S; λ) = (Fλ, A) defined by

Fλ(a) = L(F̃(a); λ(a)) =
{

x ∈ U : F̃(a)(x) ≥ λ(a)
}

, (2)

For all a ∈ A.

Generally, there are two kinds of attributes: the benefit type and the cost type. The higher
the benefit-type value is, the better it will be. While for the cost type, it is opposite. According
to the characteristics of the fuzzy soft set, we propose an ideal solution of interval-valued
fuzzy soft set as follows:

ideal
(F̃,A)

= {(e1, 1) , . . . , (ei , 1) , (ei+1, 0) , . . . (en, 0)}
where e1, . . . , ei denote benefit-type indices and ei+1, . . . , en denote cost-type indices.

2.2 Interval-valued fuzzy soft set

Definition 5 (see [22]) Let U be an initial universe and E be a set of parameters, a pair
(F̃, E) is called an interval-valued fuzzy soft set over P̃(U ), where F̃ is a mapping given by

F̃ : E → P̃(U ). (3)

∀e ∈ E, F̃(e) is referred as the interval fuzzy value set of parameter e, it is actually an
interval-valued fuzzy set of U , where x ∈ U and e ∈ E , it can be written as: F̃(e) ={
< x, μF̃(e)(x) >: x ∈ U

}
, here F̃(e) is the interval-valued fuzzy degree of membership

that object x holds on parameter e. If ∀e ∈ E,∀x ∈ U, μ−
F̃(e)

(x) = μ+
F̃(e)

(x), then F̃(e) will

degenerate to be a standard fuzzy set and then (F̃, E) will be degenerated to be a traditional
fuzzy soft set.

Example 3 Following Example 2, Table 3 gives the tabular representation of the interval-
valued fuzzy soft set (F̃, A). We can view the interval-valued fuzzy soft set (F̃, A) as the
collection of the following fuzzy approximations:
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Table 3 Tabular representation
of the interval-valued fuzzy soft
set (F̃, A)

U e1 e2 e3

h1 [0.7, 0.9] [0.6, 0.7] [0.3, 0.5]

h2 [0.6, 0.8] [0.8, 1.0] [0.8, 0.9]

h3 [0.5, 0.6] [0.2, 0.4] [0.5, 0.7]

h4 [0.6, 0.8] [0.0, 0.1] [0.7, 1.0]

h5 [0.8, 0.9] [0.1, 0.3] [0.9, 1.0]

F̃ (e1) = {< h1, [0.7, 0.9] >,< h2, [0.6, 0.8] >,< h3, [0.5, 0.6] >,< h4, [0.6, 0.8] >,

< h5, [0.8, 0.9] >}
F̃ (e2) = {< h1, [0.6, 0.7] >,< h2, [0.8, 1.0] >,< h3, [0.2, 0.4] >,< h4, [0.0, 0.1] >,

< h5, [0.1, 0.3] >}
F̃ (e3) = {< h1, [0.3, 0.5] >,< h2, [0.8, 0.9] >,< h3, [0.5, 0.7] >,< h4, [0.7, 1.0] >,

< h5, [0.9, 1.0] >}

The major difference between interval-valued fuzzy set and interval-valued fuzzy soft set
is the same as the difference between fuzzy set and fuzzy soft set. Moreover, the interval-
valued fuzzy set operations based on the arithmetic operations with membership functions do
not look natural. It may occur that these operations are similar to the addition of weights and
lengths [10]. The reason for the difficulties is possibly the inadequacy of the parameterization
tool of the theory, while the interval-valued fuzzy soft set is free of the difficulties mentioned
above.

2.3 Similarity between fuzzy sets

Definition 6 (see [16]): R+ = [0,∞); X = {x1, x2, . . . , xn} is the universal set; F(X) is the
class of all fuzzy sets of X ; μA(xi ) : X → [0, 1] is the membership function of A ∈ F(X);
Ac ∈ F is the complement of A ∈ F . S : F2 → R+, the similarity between fuzzy sets A
and B as follows:

S(A, B) =
∑n

i=1 [1 − |μA(xi ) − μB(xi )|]
n

, (4)

3 A model based on interval-valued fuzzy soft set for group decision-making problems
considering risk attitude under uncertain environment

In order to get the weight vector of the attributes, we construct the score matrix of the final
fuzzy soft set in this section. From the score matrix and the given attribute weights infor-
mation, we establish an optimization model to determine the weights of attributes. For the
special situations where the information about attribute weights is completely unknown, we
establish another optimization model. By solving this model, we get a simple and exact for-
mula, which can be used to determine the attribute weights. This method is different from
the interval-valued intuitionistic fuzzy method proposed by [12]. There exist two mainly
different aspects between interval-valued intuitionistic fuzzy set and interval-valued fuzzy
soft set to deal with this problem.
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(a) Score function:

Definition 7 (see [12]) Let R=(ri j )m×n be the collective interval-valued intuitionistic fuzzy
decision matrix. ri j =<

[
ai j , bi j

]
,
[
ci j , di j

]
> is an IVIFN,

[
ai j , bi j

]
indicates the degree

that the alternative for the alternative O j ∈ O satisfy the attribute ui , while [ci j , di j ] indi-
cates the degree that the alternative O j ∈ O does not satisfy the attribute ui .

[
ai j , bi j

] ⊂
[0, 1], [ci j , di j

] ⊂ [0, 1], bi j + di j ≤ 1, i = 1, 2, . . . , m, j = 1, 2, . . . , n.

Then we call S = (si j )m×n the score matrix of R = (ri j )m×n , and si is score for each
alternative Oi , such that

si =
m∑

i=1

s
(
ri j

) =
m∑

i=1

1

2

(
ai j − ci j + bi j − di j

)
, i = 1, 2, . . . , m, j = 1, 2, . . . n, (5)

Definition 8 (see [7]): Let fi j (i = 1, 2, . . . n; j = 1, 2, . . . , m) be the element of resultant
fuzzy soft set. Then we call C = (ci j )n×m the score matrix of the resultant fuzzy soft set and
ci is choice value for each alternative hi , such that

ci j =
m∑

k=1

(
fik − f jk

)
,

ci =
m∑

j=1

ci j

Based on the choice value formula, we present the overall choice value of each alternative
hi (i = 1, 2, . . . , n):

ci (w) =
m∑

j=1

w j ci j , i = 1, 2, . . . , n (6)

(b) Parameter form:

The interval-valued intuitionistic fuzzy set is inadequacy of the parameterization tool, while
the interval-valued fuzzy soft set is adequacy of the parameterization tool. In the interval-val-
ued intuitionistic fuzzy soft set theory, the initial description of the object has an approximate
nature. The absence of any restrictions on the approximate description in fuzzy soft set the-
ory makes this theory very convenient and easily applicable in practice. We can use any
parameterization we prefer: with the help of words and sentences, real numbers, functions,
mappings, and so on. For example, the “environment” is a parameter in interval-valued intui-
tionistic fuzzy set, while the “in good environment” or “in bad environment” is a parameter
in interval-valued fuzzy soft set.

3.1 Problem formulations

Let U = {h1, h2, . . . , hn} be a discrete set of alternatives, consisting of n non-inferior alter-
natives, and E = {e1, e2, . . . , em} be the set of attributes. Each alternative is assessed on the
m attributes. Let D = {d1, d2, . . . , dk} be the set of k decision makers. The decision problem
is to select a most preferred alternative from set U based on the overall assessments of all
alternatives on the m attributes. Because the information about the candidates is incompletely
known or completely unknown in the partner selection process, the decision maker k cannot
easily express a crisp value to candidate hi with respect to attribute e j . But the decision
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maker k can utilize an interval value ak̃
i j to candidate hi with respect to attribute e j , where

ak̃
i j = [akL

i j , akU

i j ].
By introducing the risk attitude factor of decision makers, we can transfer an interval value

into an exact value. The exact value ak
i j is given as [24].

ak
i j = ak

i ( j) + εkak
i ( j) (7)

where ak
i ( j) represents the middle value of interval value ak̃

i j = [akL

i j , akU

i j ], and ak
i ( j) is com-

puted as ak
i ( j) = akL

i j +akU
i j

2 , ak
i ( j) represents the width of interval value ak̃

i j ( j) = [akL

i j , akU

i j ],
and ak

i ( j) = (akL

i j − akU

i j ).
The risk factor εk represents the risk attitude of the kth decision maker, and |εk | ≤ 0.5. If

the decision maker k is risk averse, then the range of risk factor will be −0.5 ≤ εk < 0. If
then decision maker k is risk neutral, then the risk factor εk = 0. While the decision maker
k is risk preference, then the range of risk factor will be 0 ≤ εk < 0.5.

3.2 A model for determining attribute weights

In a multiple attributes decision-making problem, different weights on attributes reflect their
varying importance in choosing the optimal alternative. Let w = (w1, w2, . . . , wm)T be
the attribute weight vector, where w j ≥ 0, j = 1, 2, . . . , m and the weights vector is often
normalized to one, that is

∑m
j=1 w j = 1.

Generally speaking, the incomplete attribute weight information can be expressed as the
following forms [6,21]:

(1) A weak ranking:
{
w j1 ≥ w j2

}
, j1 
= j2;

(2) A strict ranking:
{
w j1 − w j2 ≥ ε j1 j2

}
, j1 
= j2, ε j1 j2 > 0;

(3) A ranking with multiples:
{
w j1 ≥ α j1 j2w j2

}
, 0 ≤ α j1 j2 ≤ 1, j1 
= j2;

(4) A interval form:
{
β j ≤ w j ≤ β j + ε j

}
, 0 ≤ β j < β j + ε j ≤ 1;

(5) A ranking of differences:
{
w j1 − w j2 ≥ w j3 − w j4

}
, for j1 
= j2 
= j3 
= j4.

Due to the complexity and uncertainty of decision situation, the information about attri-
bute weights provided by the decision makers is usually incompletely known. Under Xu [20]
and Park [12] inspiration, we present an approach to determine the weight of attributes. In
the following, we present an approach to determine the weight of attributes.

Minimize: ci (w) =
m∑

j=1

w j ci j

Subject to: w = (w1, w2, . . . , wm)T ∈ H, w j ≥ 0, i = 1, 2, . . . , m,

m∑

j=1

w j = 1.

(M-1)

By solving the (M-1) model, we obtain the optimal solution w(i) = (
wi

1, w
i
2, . . . , w

i
m

)T

corresponding to the alternative hi . However, in the process of determining the weight vec-
tor w = (w1, w2, . . . , wm)T , we need to consider all the alternatives hi (i = 1, 2, . . . , n)

as a whole. Thus, we construct weight W = (w
(i)
j )m×n of the optimal solutions w(i) =

(
w

(i)
1 , w

(i)
2 , . . . , w

(i)
m

)T
(i = 1, 2, . . . , n) as:
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W =

⎛

⎜
⎜
⎜
⎜
⎝

w
(1)
1 w

(2)
1 · · · w

(n)
1

w
(1)
2 w

(2)
2 · · · w

(n)
2

...
...

. . .
...

w
(1)
m w

(2)
m · · · w

(n)
m

⎞

⎟
⎟
⎟
⎟
⎠

and we calculate the normalized eigenvector ω = (ω1, ω2, . . . , ωn)T of the matrix
(CW )T (CW ). Then we can construct a combined weight vector as follows:

w = Wω =

⎛

⎜
⎜
⎜
⎜
⎝

w
(1)
1 w

(2)
1 · · · w

(n)
1

w
(1)
2 w

(2)
2 · · · w

(n)
2

...
...

...
...

w
(1)
m w

(2)
m · · · w

(n)
m

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

ω1

ω2
...

ωn

⎞

⎟
⎟
⎟
⎠

= ω1w
(1) + ω2w

(2) + · · · + ωnw(n) (8)

and thus we derive the weight vector w = (w1, w2, . . . , wm)T of the attribute e j ( j =
1, 2, . . . , m).

If the information about attribute weights is completely unknown, we can establish another
programming model:

Minimize c(w) = (c1(w), c2(w), . . . , cn(w))

Subject to:
m∑

j=1

w j = 1, w j ≥ 0, j = 1, 2, . . . , m (M-2)

where ci (w) = ∑m
j=1 w3

j c
3
i j

By linear equal weighted summation method [4,19], the model (M-2) can be transformed
into a single-objective programming model:

Minimized c(w) =
n∑

i=1

ci (w)

Subject to:
m∑

j=1

w j = 1, w j ≥ 0, j = 1, 2, . . . , m (M-3)

To solve this model, we construct the Lagrange function:

L(w, λ) = c(w) + 3λ

⎛

⎝
m∑

j=1

w j − 1

⎞

⎠ (9)

where λ is the Lagrange multiplier.
Differentiating Eq. (9) with respect to w j ( j = 1, 2, . . . , m) and λ, and setting these partial

derivatives equal to zero, the following set of equations is obtained:

{
∂L(w,λ)

∂w j
= 3

∑n
i=1 c3

i jw
2
j + 3λ = 0

∂L(w,λ)
∂λ

= ∑m
j=1 w j − 1 = 0

(10)
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Table 4 The interval-valued
fuzzy soft set (G̃, E)(k) U e1 e2 . . . em

h1 ak̃
11 ak̃

12 . . . ak̃
1m

… ak̃
21 ak̃

22 . . . ak̃
2m

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

hn ak̃
n1 ak̃

n2 . . . ak̃
nm

By solving Eq. (10), we get a simple and exact formula for determining the attribute weights
as follows:

w∗
j = 1

∑m
j=1

1∣
∣∣
∑n

i=1 c3
i j

∣
∣∣
1/2

/

∣
∣
∣
∑n

i=1
c3

i j

∣
∣
∣
1/2

, j = 1, 2, . . . , m (11)

which can be used as the weight vector of attributes. Obviously, w∗
j ≥ 0, for all j .

3.3 Decision algorithm based on risk factor in uncertain environment

Based on above model, we develop a new and practical method considering the risk attitude of
decision makers for solving multiple attribute group decision-making problems. The method
involves the following steps:

Step 1 For a group decision-making problem, let U = {h1, h2, . . . , hn} be a finite set of
alternatives, and D = {d1, d2, . . . , dk} be the set of decision makers. The decision makers
dk(k = 1, 2, . . . , k) provide their interval-valued fuzzy preferences for each pair of alter-
natives and construct the interval-valued fuzzy soft sets. The interval-valued fuzzy soft set

given by kth decision maker is shown in Table 4: where ak̃
i j =

[
akL

i j , akU

i j

]
.

Step 2 Transfer an interval-valued fuzzy soft set into a fuzzy soft set for each decision maker
by using the Eq. (7).

Step 3 Calculate the similarity coefficients Ri j of fuzzy soft sets and form similar matrix R.

According to Definition 6, calculate the similarity between the pth decision maker and
qth decision maker as follows:

Rpq = R
(
M p, Mq) = 1

m

m∑

i=1

R
(
M p

i , Mq
i

)
(12)

Thus, we can get the preference accordance matrix of all decision makers:

R =

⎡

⎢⎢
⎣

R11 R12 · · · R1n

R21 R22 · · · R2n

· · · · · · · · · · · ·
Rn1 Rn2 · · · Rnn

⎤

⎥⎥
⎦

where Ri j denotes similarity degree between the two fuzzy soft sets. Let bi denote the
row vector sum of similar matrix R, which reflects the deviation of the comments between
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i th expert and expert group (including himself). The smaller bi is, then the higher is the
deviation degree between i th decision maker and group.

bi =
n∑

j=1

Ri j (13)

According to the proportion of 15 to 30 %, eliminate an expert from experts group, namely
the least row vector sum of similar coefficient matrix, and calculate the arithmetic average
for the rest. So we can obtain the final evaluate fuzzy soft set (G̃, E).

Step 4 Calculate the deviation di j of corresponding elements between final evaluate fuzzy soft
set (G̃, E) and ideal solution ideal

(G̃,E)
of (G̃, E) and generate the fuzzy soft set (D̃, E).

Step 5 Calculate the score matrix C of the fuzzy soft set (D̃, E). If the information about the
attribute weights is partly known, then utilize the model (M-1) to obtain the optimal weight

vectors w(i) =
(
w

(i)
1 , w

(i)
2 , . . . , w

(i)
m

)T
(i = 1, 2, . . . , n) corresponding to the alterna-

tive hi (i = 1, 2, . . . , n), and then construct the weight matrix W . Calculate the normalized
eigenvector ω = (ω1, ω2, . . . , ωn)T of the matrix (CW )T (CW ) and utilize Eq. (8) to derive
the weight vector w = (w1, w2, . . . , wm)T . If the information about the attribute weights is
completely unknown, then we solve the Eq. (11) to determine the attribute weights.

Step 6 Construct the resultant weighted fuzzy soft set (D̃, (wE)) according to fuzzy soft set
(D̃, E).

Step 7 According to the Eq. (6), we can get the relative score of hi . Then decision is hk , if
ck(w) = min ci (w).

4 Numerical example

In order to demonstrate application of the new method for group decision-making prob-
lem, let us suppose there is a core enterprise which wants to select a partner for a sub-
ject. The partner selection decision is made on the basis of five main attributes includ-
ing e1 = Cheap, e2 = Delay Delivery, e3 = Good Reputation, e4 = LowRisk and
e5 = Good Quali t y.

There are four partners have been identified as candidates, and four decision makers are
responsible for the partner selection problem. The objective here is to select a partner, which
can satisfy all attributes in the best way.

Step 1 The evaluation data and the risk attitude of each decision maker are given in Table 5.

Step 2 By introducing the risk attitude factor of decision makers, we can transfer the inter-
val-valued fuzzy soft set into a fuzzy soft set, which is given in Table 6.

Step 3 Calculate the similarity coefficients Ri j of fuzzy soft sets and form the similar
matrix R.

R =

⎛

⎜⎜
⎝

1 0.9745 0.9476 0.9584
0.9745 1 0.9621 0.9659
0.9476 0.9621 1 0.9767
0.9584 0.9659 0.9767 1

⎞

⎟⎟
⎠
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Table 5 The decision interval-valued fuzzy soft sets for each decision maker

Decision maker U e1 e2 e3 e4 e5

DM#1 ε1 = −0.35 h1 [0.48, 0.69] [0.32, 0.46] [0.80, 0.84] [0.02, 0.05] [0.94, 0.96]

h2 [0.38, 0.62] [0.34, 0.38] [0.84, 0.85] [0.06, 0.08] [0.95, 0.97]

h3 [0.44, 0.57] [0.38, 0.43] [0.87, 0.89] [0.09, 0.12] [0.95, 0.97]

h4 [0.36, 0.49] [0.48, 0.54] [0.91, 0.93] [0.08, 0.11] [0.98, 1.00]

DM#2 ε2 = 0.00 h1 [0.41, 0.72] [0.33, 0.37] [0.79, 0.83] [0.05, 0.07] [0.95, 0.98]

h2 [0.45, 0.59] [0.36, 0.44] [0.82, 0.84] [0.06, 0.08] [0.96, 0.98]

h3 [0.46, 0.65] [0.36, 0.41] [0.87, 0.89] [0.09, 0.11] [0.97, 0.99]

h4 [0.33, 0.43] [0.41, 0.50] [0.89, 0.92] [0.08, 0.10] [0.98, 1.00]

DM#3 ε3 = 0.25 h1 [0.46, 0.66] [0.33.0.50] [0.74, 0.78] [0.03, 0.05] [0.92, 0.96]

h2 [0.43, 0.61] [0.28, 0.54] [0.76, 0.80] [0.04, 0.07] [0.93, 0.96]

h3 [0.39, 0.61] [0.33, 0.44] [0.82, 0.85] [0.08, 0.10] [0.94, 0.96]

h4 [0.35, 0.56] [0.30, 0.41] [0.85, 0.88] [0.06, 0.09] [0.96, 0.98]

DM#4 ε4 = 0.30 h1 [0.50, 0.60] [0.32, 0.40] [0.76, 0.80] [0.04, 0.05] [0.93, 0.95]

h2 [0.47, 0.61] [0.33, 0.48] [0.79, 0.82] [0.04, 0.06] [0.92, 0.94]

h3 [0.39, 0.50] [0.35, 0.45] [0.83, 0.86] [0.08, 0.11] [0.93, 0.95]

h4 [0.41, 0.53] [0.37, 0.47] [0.84, 0.88] [0.09, 0.12] [0.94, 0.96]

Table 6 A fuzzy soft set by transferring for each DM

Decision maker U e1 e2 e3 e4 e5

DM#1 h1 0.5115 0.3410 0.8060 0.0245 0.9430

h2 0.4160 0.3460 0.8415 0.0630 0.9530

h3 0.4595 0.3875 0.8730 0.0945 0.9530

h4 0.3795 0.4890 0.9130 0.0845 0.9830

DM#2 h1 0.5650 0.3500 0.8100 0.0600 0.9650

h2 0.5200 0.4000 0.8300 0.0700 0.9700

h3 0.5550 0.3850 0.8800 0.1000 0.9800

h4 0.3800 0.4550 0.9050 0.0900 0.9900

DM#3 h1 0.6100 0.4575 0.7700 0.0450 0.9500

h2 0.5650 0.4750 0.7900 0.0625 0.9525

h3 0.5550 0.4125 0.8425 0.0950 0.9550

h4 0.5075 0.3825 0.8725 0.0825 0.9750

DM#4 h1 0.5800 0.3840 0.7920 0.0480 0.9460

h2 0.5820 0.4500 0.8140 0.0560 0.9360

h3 0.4780 0.4300 0.8540 0.1040 0.9460

h4 0.5060 0.4500 0.8720 0.1140 0.9560

Then we can obtain

b1 = 3.8805; b2 = 3.9025; b3 = 3.8864; b4 = 3.9010

According to the proportion of 15 to 30 %, eliminate an expert from experts group, namely
the least row vector sum b1 of similar coefficient matrix, and calculate the arithme-
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Table 7 Tabular representation
of the final evaluate fuzzy soft set
(G̃, E)

U e1 e2 e3 e4 e5

h1 0.5850 0.3972 0.7907 0.0510 0.9537

h2 0.5557 0.4417 0.8113 0.0628 0.9528

h3 0.5293 0.4092 0.8588 0.0997 0.9603

h4 0.4645 0.4292 0.8832 0.0955 0.9737

Table 8 Tabular representation
of the fuzzy soft set (D̃, E)

U e1 e2 e3 e4 e5

h1 0.5850 0.3972 0.2093 0.0510 0.0463

h2 0.5557 0.4417 0.1887 0.0628 0.0472

h3 0.5293 0.4092 0.1412 0.0997 0.0397

h4 0.4645 0.4292 0.1168 0.0955 0.0263

tic average for the rest. So we can obtain the final evaluate fuzzy soft set (G̃, E) (see
Table 7).

Step 4: Calculate the deviation di j of corresponding elements between final evaluate fuzzy
soft set (G̃, E) and ideal solution ideal

(G̃,E)
= (0, 0, 1, 0, 1) and generate the fuzzy soft set

(D̃, E) (see Table 8).
Step 5: Calculate the score matrix C of the fuzzy soft set (D̃, E).

C =

⎛

⎜⎜
⎝

0.2055 −0.0885 0.1812 −0.1050 0.0257
0.0883 0.0895 0.0988 −0.0578 0.0293
−0.0173 −0.0405 −0.0912 0.0898 −0.0007
−0.2765 0.0395 −0.1888 0.0730 −0.0543

⎞

⎟⎟
⎠

Case 1

If the information about attribute weights is incomplete known, assume that the information
about attribute weights, given by decision makers, is shown as follows, respectively:

d1 : w1 ≤ 0.3, 0.2 ≤ w3 ≤ 0.5;
d2 : 0.1 ≤ w2 ≤ 0.2, w5 ≤ 0.4;
d3 : w3 − w2 ≥ w5 − w4, w4 ≥ w1;
d4 : w3 − w1 ≤ 0.1, 0.1 ≤ w4 ≤ 0.3.

Then the set H of the known information about attribute weights provided by the decision
makers is

H = {w1 ≤ 0.3, 0.2 ≤ w3 ≤ 0.5, 0.1 ≤ w2 ≤ 0.2, w5 ≤ 0.4,

w3 − w2 ≥ w5 − w4, w4 ≥ w1, w3 − w1 ≤ 0.1, 0.1 ≤ w4 ≤ 0.3}
Because the first decision maker is eliminated, then the set H of the known information about
attribute weights becomes

{
H ′ = 0.1 ≤ w2 ≤ 0.2, w5 ≤ 0.4, w3 − w2 ≥ w5 − w4, w4 ≥

w1, w3 − w1 ≤ 0.1, 0.1 ≤ w4 ≤ 0.3}.
Use the method (M-1) to obtain the optimal weight vectors w( j) =

(
w

( j)
1 , w

( j)
2 , w

( j)
3 ,

w
( j)
4

)T
( j = 1, 2, 3, 4) corresponding to the alternative h j ( j = 1, 2, 3, 4):
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Table 9 Tabular representation
of the resultant weighted fuzzy
soft set (D̃, (wE))

U e1w1 e2w2 e3w3 e4w4 e5w5

h1 0.1219 0.0580 0.0645 0.0134 0.0035

h2 0.1158 0.0645 0.0582 0.0165 0.0035

h3 0.1103 0.0598 0.0435 0.0262 0.0030

h4 0.0968 0.0627 0.0360 0.0251 0.0020

w(1) = (0.066667, 0.2, 0.166667, 0.3, 0.266667)T

w(2) = (0.066667, 0.1, 0.166667, 0.3, 0366667)T

w(3) = (0.233333, 0.2, 0.333333, 0.233333, 0)T

w(4) = (0.266667, 0.1, 0.366667, 0.266667, 0)T

and construct the weight matrix

W =

⎛

⎜⎜⎜⎜
⎝

0.066667 0.066667 0.233333 0.266667
0.2 0.1 0.2 0.1
0.166667 0.166667 0.333333 0.366667
0.3 0.3 0.233333 0.266667
0.266667 0.366667 0 0

⎞

⎟⎟⎟⎟
⎠

then

(CW )T (CW ) =

⎛

⎜⎜
⎝

0.0021 0.0023 0.0054 0.0059
0.0023 0.0028 0.0067 0.0076
0.0054 0.0067 0.0187 0.0213
0.0059 0.0076 0.0213 0.0246

⎞

⎟⎟
⎠

Calculate the normalized eigenvectors ω of the matrix (CW )T (CW ):

ω = (0.1030, 0.1291, 0.3581, 0.4099)T

Use Eq. (8) and derive the weight vector w:

w = Wω =

⎛

⎜⎜⎜⎜
⎝

0.0667 0.0667 0.2333 0.2667
0.2000 0.1000 0.2000 0.1000
0.1667 0.1667 0.3333 0.3667
0.3000 0.3000 0.2333 0.2667
0.2667 0.3667 0.0000 0.0000

⎞

⎟⎟⎟⎟
⎠

⎛

⎜⎜
⎝

0.1030
0.1291
0.3581
0.4099

⎞

⎟⎟
⎠

= (0.2083, 0.1461, 0.3083, 0.2625, 0.0748)T

Step 6: Construct the resultant weighted fuzzy soft set (D̃, (wE)) according to fuzzy soft set
(D̃, E), which is shown in Table 9.
Step 7: According to Eq. (6), we can obtain

c1(w) = 0.0600; c2(w) = 0.0488; c3(w) = −0.0140; c4(w) = −0.0948.

Rank all the alternatives hi (i = 1, 2, 3, 4) in accordance with the scores ci (w) : h4  h3 
h2  h1, and thus, the most desirable alternative is h4.
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Table 10 Tabular representation
of the resultant weighted fuzzy
soft set (D̃, (wE))

U e1w1 e2w2 e3w3 e4w4 e5w5

h1 0.0125 0.2059 0.0202 0.0077 0.0099

h2 0.0119 0.2289 0.0182 0.0094 0.0101

h3 0.0113 0.2121 0.0136 0.0150 0.0085

h4 0.0099 0.2225 0.0113 0.0144 0.0056

Case 2

If the information about the attribute weights is completely unknown, we utilize Eq. (11) and
get the attribute weights.

w∗ = [0.0214, 0.5183, 0.0966, 0.1503, 0.2134]
Construct the resultant weighted fuzzy soft set (D̃, (wE)) according to fuzzy soft set (D̃, E),
which is shown in Table 10.

According to Eq. (6), we can obtain

c1(w) = −0.0343, c2(w) = 0.0554, c3(w) = −0.0168, c4(w) = −0.0043

Then, we rank all the alternatives hi (i = 1, 2, 3, 4) by using the overall values ci (w)(i =
1, 2, 3, 4): h1  h3  h4  h2, and thus, the most desirable alternative is h1.

5 Conclusion

This article puts forward a framework to tackle multi-attribute decision-making problems
under uncertain environment using the interval-valued fuzzy soft set. We have investigated
MAGDM problems that take account of decision makers’ attitude toward risk under uncer-
tain environment. The proposed model aims at handing the situations where the attribute
parameter information is expressed by interval-valued fuzzy soft set, and the information
about attribute weights is incompletely known or completely unknown.

To determine the attribute weights, an optimization model is established which the attri-
bute weights can be determined. Especially, for the situations where the information about
the attribute weights is completely unknown, we establish another optimization model. By
solving the model, we get a simple and exact formula, which can be used to determine the
attribute weights. According to these models, a method based on interval-valued fuzzy soft
set, which considers the decision makers’ risk attitude under uncertain environment, is given
to rank the alternatives. An illustrative example is developed to demonstrate how to apply
the proposed procedure. Numerical example illustrates the benefit of this proposed frame-
work: it is capable for handling incomplete weights. Moreover, this approach is not without
limitations as parameterization. In future research, our work will focus on the application
of multiple attribute group decision making based on interval-valued fuzzy soft set to other
domains.

Acknowledgments Our work is sponsored by National Science Foundation of China (71171209/G011203)
and the Ministry of education, humanities social sciences fund plan projects, China (10XJA630010).
The authors wish to express their appreciation to the Editors of this journal and the three anonymous reviewers
for their constructive comments that significantly improve the quality and presentation of the paper.

123



668 Z. Xiao et al.

References

1. Ahmad B, Kharal A (2009) On fuzzy soft sets. Adv Fuzzy Syst 2009:1–6
2. Feng F, Jun YB, Liu X et al (2010) An adjustable approach to fuzzy soft set based decision making.

J Comput Appl Math 234(1):10–20
3. Fenton N, Wang W (2006) Risk and confidence analysis for fuzzy multicriteria decision making. Knowl

Based Syst 19(6):430–437
4. French S, Hartley R, Thomas LC et al (1983) Multi-objective decision making. Academic Press, New

York, NY
5. Jahanshahloo GR, Lotfi FH, Davoodi AR (2009) Extension of TOPSIS for decision-making problems

with interval data: interval efficiency. Math Comput Model 49(5–6):1137–1142
6. Kim SH, Choi SH, Kim JK (1999) An interactive procedure for multiple attribute group decision making

with incomplete information: range-based approach. Eur J Oper Res 118(1):139–152
7. Kong Z, Gao LQ, Wang LF (2009) Comment on “A fuzzy soft set theoretic approach to decision making

problems”. J Comput Appl Math 223(2):540–542
8. Ma J, Lu J, Zhang G (2010) Decider: A fuzzy multi-criteria group decision support system. Knowl Based

Syst 23(1):23–31
9. Maji P, Roy A (2002) An application of soft sets in a decision making problem. Comput Math Appl

44(8–9):1077–1083
10. Molodtsov D (1999) Soft set theory-first results. Comput Math Appl 37(4–5):19–31
11. Mushrif MM SSRA (2006) Texture classification using a novel, soft-set theory based classification algo-

rithm. Compu Vis ACCV 2006, PT I 2006:246–254
12. Park DG, Kwun YC, Park JH et al (2009) Correlation coefficient of interval-valued intuitionistic fuzzy

sets and its application to multiple attribute group decision making problems. Math Comput Model
50(9–10):1279–1293

13. Park KS (2004) Mathematical programming models for characterizing dominance and potential optimal-
ity when multicriteria alternative values and weights are simultaneously incomplete. IEEE Trans Syst
Man Cybern Park A Syst Hum 34:601–614

14. Roy AR, Maji PK (2007) A fuzzy soft set theoretic approach to decision making problems. J Comput
Appl Math 203(2):412–418

15. Tao F, Zhao DM, Zhang L (2010) Resource service optimal-selection based on intuitionistic fuzzy set
and non-functionality QoS in manufacturing grid system. Knowl Inf Syst 25(1):185–208

16. Wang W (1997) New similarity measures on fuzzy sets and on elements. Fuzzy Set Syst 85(3):305–309
17. Wang ZJ, Li KW, Wang WZ (2009) An approach to multiattribute decision making with interval-valued

intuitionistic fuzzy assessments and incomplete weights. Inf Sci 179(17):3026–3040
18. Wei GW, Wang HJ, Lin R (2011) Appliaction of correlation coefficient to interval-valued intuitionistic

fuzzy multiple attribute decision-making with incomplete weight information. Knowl Inf Syst 26(2):
337–349

19. Wei GW (2010) Extension of TOPSIS method for 2-tuple linguistic multiple attribute group decision
making with incomplete weight information. Knowl Inf Syst 25(3):623–634

20. Xu ZS (2007) A method for multiple attribute decision making with incomplete weight information in
linguistic setting. Knowl Based Syst 20:719–725

21. Xu ZS, Chen J (2007) An interactive method for fuzzy multiple attribute group decision making. Inf Sci
177(1):248–263

22. Yang X, Lin TY, Yang J et al (2009) Combination of interval-valued fuzzy set and soft set. Comput Math
Appl 58(3):521–527

23. Yao SB, Yue CY (2006) Approach to stochastic multi-attribute decision problems using rough sets theory.
J Syst Eng Electron 17(1):103–108

24. You TF, Fan ZP (2002) A method for multiple attribute decision making with interval numbers based on
risk attitudes of decision makers. Oper Res Manag Sci 11(5):1–4

25. Yue ZL (2011) A method for group decision-making based on determining weights of decision makers
using TOPSIS. Appl Math Model 35(4):1926–1936

26. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353
27. Zhang D, Zhang J, Lai K et al (2009) An novel approach to supplier selection based on vague sets group

decision. Expert Syst Appl Int J 36(5):9557–9563
28. Zou Y, Xiao Z (2008) Data analysis approaches of soft sets under incomplete information. Knowl Based

Syst 21(8):941–945

123



MAGDM problems under uncertain environment 669

Author Biographies

Zhi Xiao is currently a Professor in the School of Economics and Busi-
ness Administration, Chongqing University, China. He is the director
of information management department. He served as vice chairman
of the China Information Economics Society. His research interest
includes data mining, forecast and optimization decision, soft set,
uncertain problems, etc. His articles have published in Knowledge-
based Systems, Expert Systems with Applications, Applied Mathemat-
ical Modeling, Journal of Computational and Applied Mathematics,
Computers and Mathematics with Applications and others.

Weijie Chen is currently a Ph.D. student in the school of Econom-
ics and Management at Chongqing University of China. Her research
interest includes decision-making analysis, soft set, uncertain prob-
lems, etc. Her articles have published in Applied Mathematics Model-
ing and international conferences.

Lingling Li received her B.Sc. and M.Sc. degree from Chongqing
University, China, in 2007 and 2010. She is currently a Ph.D. candi-
date at the School of Economics and Business Administration, Chon-
gqing University. Her research interests lie in economics forecast and
decision, uncertain problem, etc.

123


	A method based on interval-valued fuzzy soft set for multi-attribute group decision-making problems under uncertain environment
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Soft set and fuzzy soft set
	2.2 Interval-valued fuzzy soft set
	2.3 Similarity between fuzzy sets

	3 A model based on interval-valued fuzzy soft set for group decision-making problems considering risk attitude under uncertain environment
	3.1 Problem formulations
	3.2 A model for determining attribute weights
	3.3 Decision algorithm based on risk factor in uncertain environment

	4 Numerical example
	5 Conclusion
	Acknowledgments
	References


