Knowl Inf Syst (2013) 37:363-387
DOI 10.1007/s10115-012-0483-z

REGULAR PAPER

Efficient algorithms for discovering high utility user
behavior patterns in mobile commerce environments

Bai-En Shie - Hui-Fang Hsiao - Vincent S. Tseng

Received: 31 March 2011 / Revised: 2 December 2011 / Accepted: 4 March 2012 /
Published online: 23 March 2012
© Springer-Verlag London Limited 2012

Abstract Mining user behavior patterns in mobile environments is an emerging topic in
data mining fields with wide applications. By integrating moving paths with purchasing
transactions, one can find the sequential purchasing patterns with the moving paths, which
are called mobile sequential patterns of the mobile users. Mobile sequential patterns can be
applied not only for planning mobile commerce environments but also for analyzing and
managing online shopping websites. However, unit profits and purchased numbers of the
items are not considered in traditional framework of mobile sequential pattern mining. Thus,
the patterns with high utility (i.e., profit here) cannot be found. In view of this, we aim at
integrating mobile data mining with utility mining for finding high-utility mobile sequential
patterns in this study. Two types of algorithms, namely level-wise and tree-based methods,
are proposed for mining high-utility mobile sequential patterns. A series of analyses and
comparisons on the performance of the two different types of algorithms are conducted
through experimental evaluations. The results show that the proposed algorithms outperform
the state-of-the-art mobile sequential pattern algorithms and that the tree-based algorithms
deliver better performance than the level-wise ones under various conditions.

Keywords Utility mining - Mobility pattern mining - Mobile environments - High-utility
mobile sequential pattern

B.-E. Shie - H.-F. Hsiao - V. S. Tseng (X))

Department of Computer Science and Information Engineering, National Cheng Kung University,
Tainan, Taiwan, ROC

e-mail: tsengsm @mail.ncku.edu.tw

URL: http://idb.csie.ncku.edu.tw/tsengsm

B.-E. Shie
e-mail: brianshie @gmail.com

H.-F. Hsiao
e-mail: karolter]1130@gmail.com

@ Springer

364 B.-E. Shie et al.

1 Introduction

Data mining refers to the process of discovering potentially useful information from large
databases. In behavior informatics [5], previous studies have discovered many kinds of user
behavior patterns for different applications, such as cross marketing in business domains
[1-3,19,24], websites design and management [7,18,25], and mobile environments plan-
ning [9-11,14-16,20,21,26]. Among these issues, mining user behavior patterns in mobile
environments plays an emerging role in the past decade since mobile devices and wireless
applications have become one of the most popular communication media in the world. With
a series of users’ moving logs recorded by the mobile devices with GPS services, we can
acquire the moving paths of mobile users. Combining moving logs and payment records,
mobile transaction sequences that are the sequences of moving paths with purchased trans-
actions can be generated. There exists useful information recorded in mobile transaction
sequences. Yun et al. [26] first proposed a framework combining moving paths and sequen-
tial patterns to find mobile sequential patterns, i.e., the sequential patterns with their moving
paths, in mobile transaction sequences. For example, a mobile sequential pattern <{<A;
clothes> <C; lipsticks>}; ABC> means the customers often move through the path <ABC>
and bought clothes and lipsticks in A and C, respectively. If the shopkeepers acquire this
pattern, they can prepare promotions of lipsticks when they meet the customers who had
bought clothes in A to raise the customers’ desires to purchase.

However, mobile sequential patterns cannot reflect the actual profit of items in the
databases. Valuable user behavior patterns, such as the patterns with purchasing dia-
mond rings, may not be discovered since their frequencies are not enough. Utility mining
[4,6,12,13,19,22-24] is proposed for solving this problem in the traditional transaction dat-
abases. Given pre-defined utility values, which may be the importance, interestingness or
profits of the items, utility mining is to find the high-utility patterns, which are the patterns
with high-utility values, from the databases. From this viewpoint, we can realize that pushing
utility mining into the framework of mobility pattern mining is an essential topic. If deci-
sion makers know which patterns are more valuable, they can choose more proper reactions
based on the useful information. For example, assume there exist two user behavior patterns:
UBP;=<{<A; clothes <H; lipsticks >}; ABCDH> and UBP,=<{<A; clothes> <H; diamond
rings>}; AEFGH>. The two patterns show that although these customers moved from A to
H, they may buy different items since they passed through different paths. In general, we
can know the profits of diamond rings are much higher than lipsticks. If the shopkeepers in
H know both the two patterns, they can prepare some promotions or activities for UBP; to
attract the customers who buy clothes in A and go through the path AEFGH, such as to raise
their desires to purchase diamond rings in H.

Although there exists a number of prominent research works about mobility pattern mining
and utility mining, there is no work done on combination of the two topics. In view of this,
we attempt to integrate mobile sequential pattern mining with utility mining for finding
high-utility mobile sequential patterns in this paper. Two different types of methods, namely
level-wise and tree-based ones, are proposed for this problem. For level-wise method, an
algorithm called UMSP (mining high Utility Mobile Sequential Patterns by a Level-wise
method) is proposed. Not only supports but also utilities of patterns are considered in the
level-wise mining processes. For tree-based methods, two algorithms UMSP7(prg) (min-
ing high Utility Mobile Sequential Patterns by a Tree-based method with a Depth First
Generation strategy) and UMSPr(prg) (mining high Utility Mobile Sequential Patterns
by a Tree-based method with a Breadth First Generation strategy) are proposed. Both of
the two tree-based algorithms use a tree structure named MTS-Tree (Mobile Transaction

@ Springer

Efficient algorithms for discovering high utility user behavior patterns 365

Sequence Tree) to summarize the corresponding information, such as locations, items, paths
and utilities, in mobile transaction databases. The experimental results show that in almost all
experiments, tree-based methods have better performance than level-wise ones. Moreover,
it is shown that in all experiments, the three proposed methods outperform the compared
algorithm which is extended from the state-of-the-art mobile sequential pattern algorithm
[26].

Major contributions of this work are described as follows: First, to our best knowl-
edge, this research is the first work that integrates high-utility pattern mining with mobil-
ity pattern mining so as to explore the new problem of mining high-utility mobile
sequential patterns. Second, different methods extended from two different types of
frameworks for frequent pattern mining are proposed for solving this problem. Third,
a series of detailed experiments were conducted to evaluate the performance of the
proposed methods in different conditions. Through the combination of high-utility pat-
terns and moving paths, highly profitable mobile sequential patterns can be found.
High-utility mobile sequential patterns are more crucial in many domains, such as
mobile commerce environments, metropolitan planning and online shopping websites
which sell a wide selection of merchandise in different web pages. We expect that
this useful pattern can deliver novel and insightful information in mobile commerce
environments.

The remaining of this paper is organized as follows: Related work is briefly reviewed in
Sect. 2. Problem definitions of this work are given in Sect. 3. In Sect. 4, the proposed algo-
rithms are addressed in detail. Experimental evaluation is shown in Sect. 5. The conclusions
and future work are given in Sect. 6.

2 Related work

The literature reviews about frequent pattern mining, mobility pattern mining and utility
pattern mining are given in this section.

2.1 Frequent pattern mining

Extensive studies have been proposed for finding frequent patterns in transaction databases
[2,3,8,17]. Frequent itemset mining [2,8] is the most popular topic among them. Apri-
ori [1] is the pioneer for mining frequent itemsets from transaction databases by a level-
wise candidate generation-and-test method. Tree-based frequent itemset mining algorithms
such as FP-Growth [8] were proposed afterward. FP-Growth improves the efficiency of
frequent itemset mining since it does not have to generate candidate itemsets during the
mining process and it only scans the database twice. Afterwards, sequential pattern mining
[3,17] is proposed for finding customer behaviors in transaction databases. As an exten-
sion method of Apriori, AprioriAll [3] also uses a level-wise framework to find sequential
patterns. On the contrary, PrefixSpan [17] finds sequential patterns directly from projected
databases without generating any candidate pattern. Thus, the performance can be more
improved.

2.2 Mobility pattern mining

Mining user behaviors in mobile environments [10,11,14,20,21,26] is an emerging topic
in the frequent pattern mining field. SMAP-Mine [21] was first proposed for finding cus-

@ Springer

366 B.-E. Shie et al.

tomers’ mobile access patterns. However, in different time periods, users’ popular services
may be totally different. Thus, T-Map algorithm [11] was proposed to find temporal mobile
access patterns in different time intervals. Although users’ mobile access patterns are impor-
tant, their moving paths are also essential. Therefore, Yun et al. [26] proposed a framework
which combines moving paths and sequential patterns to find mobile sequential patterns.
By the above researches, although we can know the patterns in different time intervals,
defining time intervals is not an easy work yet. In view of this, Tseng et al. [20] proposed
TMSP-Mine algorithm to automatically find proper time intervals of mobile sequential pat-
terns based on the genetic algorithm. On the other hand, the character of customers is also
important in the mobile environment. Different groups of customers may bring different pat-
terns. Thus, Lu et al. [14] proposed a framework to find the cluster-based mobile sequential
patterns. The customers whose moving paths and transactions are similar will be clustered
into the same cluster. The found patterns may be closer to real customer behaviors by this
method.

2.3 Utility mining

The profits of items are not considered in the above researches. In frequent pattern mining
fields, anew topic raised for conquering this problem, that is, utility mining [4,6,12,13,19,22—
24]. In utility mining, each item may have different profits. Chan et al. first proposed the
problem of utility mining [6]. Yao et al. proposed UMining algorithm [23] by applying an
estimation method to prune the search space. However, it cannot capture the complete set
of high-utility itemsets since some high-utility patterns may be pruned during the mining
process. There are some researches that integrate other topics with utility mining, such as
streaming environments [19]. In [19], Shie et al. addressed the problem of finding temporal
maximal utility patterns by the TMUI-Tree.

Among these researches, Liu et al. [13] proposed Two-Phase algorithm which uses the
transaction-weighted downward closure property to maintain the downward closure prop-
erty in utility mining. Although Two-Phase algorithm can reduce the search space of utility
mining, it still generates too many candidates. Thus, Li et al. [12] proposed an isolated items
discarding strategy to reduce the number of candidates by pruning isolated items during the
level-wise searches.

Some researches employed other frameworks such as tree-based framework [4,22,24]
to improve the performance of utility mining. In [24], Yen et al. addressed this prob-
lem by AM algorithm which utilizes the AM-Tree to find high-utility itemsets without
an extra scan of database for finding real high-utility itemsets. Ahmed et al. [4] pro-
posed a structure named IHUP-Tree which maintains essential information about utility
mining. It avoids scanning database multiple times and generating candidates in the
mining process. Although IHUP-Tree achieves a better performance than Two-Phase, it
still produces too many HTWUIs. Therefore, Tseng et al. proposed a novel algorithm
named UP-Growth [22], which applies several strategies during the mining processes. By
the proposed strategies, the estimated utilities are effectively decreased in the proposed
tree structure named UP-Tree in the mining processes and the number of HTWUIs is
further reduced. Therefore, the performance of utility mining can be improved signifi-
cantly.

By the above literature reviews, although there are many researches about mobility pattern
mining and utility mining, there is no research on the combination of the two topics. This
paper is the first work which integrates the two topics to find high-utility patterns with frequent
moving paths in mobile environments.

@ Springer

Efficient algorithms for discovering high utility user behavior patterns 367

Table 1 Notations used in this Symbol Semantics

paper
lioe Locationloc
iy Item v
T; Transaction j
djp Purchased quantity of item 7 j, in transaction 7;

w(ijp) Unit profit of item i j,

u(Z, S;) Utility of pattern Z in mobile transaction sequence S ;

u(Z) Utility of pattern Z in mobile transaction sequence database
sup(Z) Support of pattern Z in mobile transaction sequence database
SU(S;) Sequence utility of sequence S;

SWU (Z)Sequence weighted utilization of pattern Z

8 Minimum support threshold
e Minimum utility threshold
;I}'lzilZ)l:aIZ)erAbbreviations used in Abbreviation Semantics
UMSP High-utility mobile sequential pattern
SWU Sequence weighted utilization
WULI High sequence weighted utilization loc-itemset
WULP High sequence weighted utilization loc-pattern
WUMSP High sequence weighted utilization mobile

sequential pattern

SWDC Sequence weighted downward closure property

3 Preliminaries and definitions

In this section, we first define basic notations for mining high-utility mobile sequential
patterns in mobile environments in detail and then address the problem statement of this
work.

LetL ={l1, 1, ...,1,} beasetof locations in the mobile commerce environment and / =
{i1, 12, ..., ig} be a set of items sold in the locations. An itemset is denoted as {i1, i2, .. ., ix},
where each item i, € I,1 < v < k and 1 < k < g. Given a mobile transaction sequence
database D, a mobile transaction sequence S = <Ty, T», ..., T,> is a set of transactions
ordered by time, where a transaction T; = (I;; {[ij1, q;1], [ij2, qj2], - .., lijn, q;jnl}) repre-
sents that a user made T in/;, where 1 < j < n.In T}, the purchased quantity of item i,
is gjp, where 1 < p < h. A path is denoted as [1l;...l,, where [; C Land 1 < j <.
Tables 1 and 2 summarize the notations and abbreviations used throughout the paper with
brief descriptions of semantics.

Definition 1 (Utility of a loc-item in a mobile transaction sequence) A loc-item, denoted
as <ljoc; ije>, stands for the item i, that happened in the location /j,¢, where [;,c € L and
ije C 1. Theutility of a loc-item <lj,¢; i jo> in a mobile transaction sequence S; is denoted
as u(< ljp¢; ije>, Sj), that is defined as g, x w(ij.), where w(ij.) is the unit profit of item
i je, which is recorded in a utility table.

@ Springer

368 B.-E. Shie et al.

Table 3 Mobile transaction sequence database DB

SID Mobile transaction sequence SU

Si <(A;{li1,21), (B; null), (C;{liz, 11D, (D;{[ia, 11}, (E; null), 54
(F; {lis, 21>

S2 <(A; {[i1, 31D, (B; null), (C; {[i2, 21, [i3, 51}, (K; null), (E; {[ie, 101}), 132
(F; {lis, 41D, (G {lig, 21}, (L; null), (H; {[i7, 21})>

S3 <(A; {[i1, 31, (B; null), (C;{lip, 11, i3, 51}), (D {[is, 21}), (E; null), 72
(F; {lis, 11, lie, 21}, (G; null), (H; {[i7, 11H>

S4 <(A; {liy, 11D, W; null), (C; {[i3, 101}), (E; null), 59
(F; {lis, 11D, (Gs {lig, 21}, (L; null), (H; {[i7, 11}), (E; {[ig, 11})>

Ss <(A;{li;, 41, (B: null), (C;{li3, 101}), (D;{[ig, 11}, (E; null), 73
(F; {lis, 11D, (G; null), (H; {[i7, 21>

Se <(C; {[i2, 21D, (D; null), (E; {[ig, 11}, (F; {[is, 11})> 31

Take the mobile transaction sequence database DB in Table 3 and the utility table in
Table 4, for example, (u < A;i; >,S;)) =2 x1=2.

Definition 2 (Utility of a loc-itemset in a mobile transaction sequence database) A
loc-itemset, denoted as <ljc; {i1,i2,...,ig}>, stands for the itemset {iy, i, ..., iz} that
happened in [, where [, € L and {ij,is...,ig} < [I. The utility of a loc-
itemset <ljo¢; {ij1,ij2,...,1jg}> in a mobile transaction sequence S; is denoted as
u(<ljoe; {ij1,1j2, ..., ijg}> S;)and defined as Zle u(< lipe; ijk >, Sj). Moreover, the util-
ity of aloc-itemset Y =<ljo¢; {i 1,12, ..., ijg}>inamobile transaction sequence database D
is denoted as u(Y) or u(<ljoc; {ij1,ij2, ..., ijg}>) and defined as Z(Ygst(SjeD) u(Y, Sj).

For the example in Table 3, the utility of the loc-itemset <C; {iz, i3}> in S; is calculated
as u(<Cslia, i3}>, So)=u(<C; 2>, So)+ u(<C; iz >, Sp) =2 x 545 x 3 = 25. The utility of
<C; {ip, 13}> in the database DB is calculated as u(<C;{io, i3}>)=u(<C; {iz, i3}>, S1) + u(<C;
{ip, i3}>, S4) =25 +20 =45.

Definition 3 (Utility of a loc-pattern in a mobile transaction sequence database) A loc-
pattern X, which is denoted as </;; {ill, 012, ..., ilg}> <ly; {izl, 22, ..., izg}>...<lm; {iml»
im2s - -+ Iimg)>, is a list of loc-itemsets. The utility of a loc-pattern X in §; is denoted as
u(X,S;) and defined as > vy x u(Y, S;). The utility of a loc-pattern X in D is denoted as
u(X) and defined as 3y s,)a(s;ep) (X, S))-

For the example, in Table 3, the utility of the loc-pattern <A;i;> <C; {ip, i3}> in Sy is
calculated as u(<A;11><C;{iz, i3}>, S2)= u(<A; 1>, Sp)+ u(<C; {ip,i3}>, S») =3 + 25 =
28. The utility of <A;i;> <C; {iz, i3}> in DB is calculated as u(<A;i1><C; {ip, i3}>) =
u(<A; i1><C; {ia, i3}>, So)+ u(<A; i1><C; {ip, i3}>, S3) =28 + 23 = 51.

Definition 4 (Support and utility of a moving pattern) Amoving pattern is composed
of a loc-pattern and a path. It is recorded by the form as <{<ly; {ii1,i12,...,714}>
<b:l{iz1, 022, ... i2g} > ... < Ly {im1, im2, ldots, ipg}>}; Lily .. Ly>. Thesupport of a
moving pattern P, denoted as sup(P), is defined as the number of mobile transaction
sequences which contains P in D. On the other hand, the utility of a moving pattern P,
denoted as u(P), is defined as the summation of utilities of the loc-patterns of P in the
mobile transaction sequences which contain the path of P in D.

Definition 5 (High-utility mobile sequential pattern) Given a minimum support threshold §
and a minimum utility threshold €, a moving pattern P is called a mobile sequential pattern if

@ Springer

Efficient algorithms for discovering high utility user behavior patterns 369

sup (P) > 4. Further, P is called a high-utility mobile sequential pattern, which is abbrevi-
ated as UMSP, if sup(P) > § and u(P) > &. Moreover, the length of a pattern is the number
of loc-itemsets in this pattern. A pattern with length k is denoted as k-pattern.

For the example in Table 3, the support of the moving pattern <{<A; i1><C; {iz, i3}>};
ABC>, which is denoted as sup(<{<A;i;><C; {iz, 3}>}; ABC>), is 2. The utility of
<{<A;1;><C; {ip,i3}>}; ABC > in DB is calculated as u(<{<A; i1><C; {ip,i3}>};
ABC>)=u(<A; 11><C; {iz, i3}>, S2) + u(<A; 1;><C; {iz, i3}>, S3) = 51. If minimum sup-
port threshold § is 2 and minimum utility threshold ¢ is 50, the moving pattern <{<A;i;>
<C; {ip, i3}>}; ABC > is a 2-high utility mobile sequential pattern (2-UMSP).

After addressing the problem definition of mining high-utility mobile sequential pat-
terns in mobile environments, we introduce the sequence weighted utilization and sequence
weighted downward closure property in mobile transaction sequence databases, which are
extended from [13].

Definition 6 (Sequence utility of a mobile transaction sequence) Thesequence utility of
mobile transaction sequence S;, which is the sum of the utilities of all items in S}, is defined
as SU(S;)) = Z<l,(,v;i,-e>gsj u(<liges ije >, Sj).

For the example, in Table 3, the sequence utility of the mobile transaction sequence Sg
is computed as SU(S¢) = u(< C;ip >,S¢) + u(< E;ig >,S¢) + u(< F;is >,S¢) =
1043+ 18 =31.

Definition 7 (Sequence weighted utilization of patterns) The sequence weighted utiliza-
tion, abbreviated as SWU, of a loc-itemset Y is defined as (SWUY) = Z(YQS,-)/\(S,-ED)
SU(S;). Moreover, the sequence weighted utilization of a loc-pattern X is defined as
SWU(X) = Z(Xg S)IA(S;€D) SU(S;). In addition, the sequence weighted utilization of
a moving pattern P is defined as the summation of SWUs of the loc-patterns of P in the
mobile transaction sequences which contain the path of P in D.

Definition 8 (High sequence weighted utilization pattern) A pattern Z is called a high
sequence weighted utilization pattern, abbreviated as WUP, if sup(Z) > dand SWU(Z) > «.
Similarly, in the following paragraphs, high sequence weighted utilization loc-itemset, high
sequence weighted utilization loc-pattern and high sequence weighted utilization mobile
sequential pattern are abbreviated as WULIL, WULP and WUMSP, respectively.

For the example, in Table 3, the sequence weighted utilization of the loc-itemset <D; i4>
is computed as (SWU<D; i4>) = SU(S1) + SU(S3) + SU(Ss) =54 + 72 + 73 = 199.
The sequence weighted utilization of the loc-pattern <A; i;><C; {i2, i3} > is computed as
(SWU<A;11><C; {iz, i3}>)=SU(S1) + SU (S4) =69 + 60 = 129. The sequence weighted uti-
lization of the moving pattern <{<A; i;> <C; {iz, i3}>}; ABC> is computed as SWU (<{<A;
11><C;{in,i3}>}; ABC>)=SWU(<A; 11><C; {i2, i3} >, Sp) + SWU(<A; 11> <C; {iz, i3}>,
S3)=132+72=204.1f § = 2 and £= 50, the loc-itemset <D; ig>is a 1-WULLI, the loc-pattern
<A;11><C; {ip, i3}> is a 2-WULP, and the moving pattern <{<A; i;><C; {iz, i3}>}; ABC>
is a 2-WUMSP.

Theorem 1 (Sequence weighted downward closure property, SWDC). For any pattern P, if
P is not a WUP, any superset of P is not a WUP.

Proof By the definition about SWU, for a pattern P, SWU(P) is larger than or equal to
SWU (P'), where P’ is a superset of P. If SWU(P) is less than &, SWU (P’) is also less than .

@ Springer

370 B.-E. Shie et al.

Input ... Process . Output
S~ —— >\ /7 PhaseI: Mining WOMSPs ™. /"~
Utility (Step 1: Generating WULIs Ji L\ Hlﬂ;gﬂ:ty i
sequence table [Step 2: Transforming database] sequential i
database)/t patterns !
Step 3: Generating WUMSPs N /!

[Minimum utility

threshold € | by a level-wise method_“ E

Phase II: Finding UMSPs
Step 4: Finding UMSPs within
WUMSPs J

[Minimum support |
threshold & |

Fig. 1 Framework of the proposed algorithm UMSP

Similarly, by the definition about support, sup(P) is larger than or equal to sup (P’). If sup (P)
is less than 8, sup(P’) is also less than §. By the above two conditions, if SWU(P) < ¢
or sup(P) < 8, SWU (P') or sup(P’) must be less than ¢ or §, respectively.

[m}

Problem Statement. Given a mobile transaction sequence database D, a pre-defined util-
ity table, a user-specified minimum utility threshold ¢ and a user-specified minimum support
threshold &, the problem of mining high-utility mobile sequential patterns from D is to dis-
cover all high-utility mobile sequential patterns whose supports and utilities are larger than
or equal to the two thresholds € and §, respectively.

4 Proposed method

In this section, level-wise and tree-based methods are proposed for mining high-utility
mobile sequential patterns in mobile commerce environments. General process of this work is
described as follows: First, a mobile transaction sequence database, a utility table, a minimum
utility threshold and a minimum support threshold are input into the proposed algorithms.
After the mining processes, high-utility mobile sequential patterns are generated. In the fol-
lowing, we describe in details the processes of the proposed three algorithms using two
different frameworks.

4.1 Level-wise algorithm: UMSPL,

The workflow of the proposed method is shown in Fig. 1. The proposed algorithm U M S Py,
(mining high Utility Mobile Sequential Pattern by a Level-wised method) consists of four
steps. The first three steps are to find WUMSPs based on the SWDC property. In step 1, the
original database is scanned several times to find all WULIs and each WULI is mapped to
a specific identity in a mapping table. Note that the mapped WULIs are 1-WULPs. Then in
step 2, the original database is transformed into a trimmed database by mapping the WULIs
to their new identities. After this step, the loc-items which are impossible to be the elements
of high-utility mobile sequential patterns are removed from the database. Subsequently, the

@ Springer

Efficient algorithms for discovering high utility user behavior patterns 371

Subroutine: Generate WUMSP (Step 3 of algorithm UMSP))

Input: All 1-WULPs, a trimmed database D,, a minimum support threshold &
and a minimum utility threshold €

Output: WUMSPs

1. Join the 1-WULPs to form candidate 2-WULPs and then store them into
2-candidate trees.

2. Perform an additional scan of D, to check the supports, SWUs and paths
of all candidate 2-WULPs, and then generate 2-WULPs. Assume there is

a candidate 2-WULP X, if sup (X) 28 and SWU (X) 2¢, X is a 2-WULP. Generate
2-WUMSPs by joining the 2-WULPs with their corresponding paths in the
2-candidate trees.

3. Generate candidate 3-WULPs by combining the 2-WULPs of two 2-WUMSPs
if the path of one 2-WUMSP contains another. Store the candidate 3-WULPs
into 3-candidate trees.

4. Perform the same process as 2 to find 3-WUMSPs.

5. Generate candidate k-WULPs, where k > 3, by combining the (k-1)-WULPs
of the two (k-1)-WUMSPs whose paths are equal to each other. Store
the generated candidate k-WULPs into k-candidate trees.

6. Recursively perform the processes 4 and 5 until no candidate WULP is
generated.

Fig. 2 The framework of the proposed algorithm UMSP},

Table 4 Utility table

Item i iy i3 ig i ig i7 ig ig

Utility 1 5 3 11 18 2 5 1 3

Table 5 Mapping table

1-WULP Asig Ciip Csis Diiy Fiis Giig Hiy Csfin.iz}

After mapping Asty Citr City Dty Fits G:tg H;t; Citg

trimmed database is utilized to find the WUMSPs by the proposed level-wised method in the
third step. This step is the key step to the mining performance and its procedure is shown
in Fig. 2. Finally in the fourth step, the WUMSPs are checked to find high-utility mobile
sequential patterns by an additional scan of the original database.

Next, we use an example to describe the process of the proposed algorithm UMSPy, in
detail. Take the mobile transaction sequence database and the utility table in Tables 3 and 4
for example. Assume the minimum support threshold § is 2 and the minimum utility threshold
¢ 1s 100. In the first step, WULIs whose support and SWU are larger than or equal to § and &
are generated by the processes similar to [13]. In this example, 8 WULISs are generated and
mapped into the mapping table as shown in Table 5.

In the second step, using the mapping table, the original database DB is mapped into
the trimmed database D Br as shown in Table 6. In D By, the original mobile transaction
sequences are parsed into the sequences of loc-itemsets and paths. Note that if there is no item
in the start or end location of a path, the location will be trimmed. In other words, the paths
in DBy must start and end with loc-itemsets. In Table 6, the last number in a loc-itemset
stands for the position of the loc-itemset in the path. Take S;’ for example, <F; t5; 6> means
that t5 has happened in F, and F is in the sixth position of the path.

@ Springer

372 B.-E. Shie et al.

Table 6 Transformed Database D By

SID Sequence of WULIs Path

S/l <A; t1; 1> <Citp; 3> <D; tyg; 4> <F; t5; 6> ABCDEF

S/2 <A;ty; 1> <City, t3, tg; 3> <F; ts; 6> <G; tg; 7> <H; t7; 9> ABCKEFGLH
Sé <A;ty; 1> <City, t3, tg; 3> <D; t4; 4> <F; ts; 6> <H; t7; 8> ABCDEFGH
Si‘ <A;t1; 1> <C; t3; 3> <F; ts; 5> <G; tg; 7> <H; t7; 8> AWCEFGLH
S/5 <A; t1; 1> <C; t3; 3> <D; tg; 4> <F; t5; 6> <H; t7; 8> ABCDEFGH
S/6 <C; to; 1> <F; t5; 4> CDEF

In step 3, the candidate 2-WULPs are generated by joining the 1-WULPs in the map-
ping table. At the same time, they are stored into k-candidate trees (k is the length of the
patterns) which are shown in Fig. 3. Each k-candidate tree stores the candidate k-WULPs
whose last loc-itemsets are the same. When inserting a candidate WULP into a candidate
tree, the last loc-itemsets of the WULP will be recorded in the root node of the candidate tree,
and the other loc-itemsets are then stored into the tree in their original order sequentially.
After constructing 2-candidate trees, an additional scan of DBy is performed to check the
path support and SWU of each candidate 2-WULP and to form the paths in moving patterns.
In this example, six 2-WUMSPs whose nodes are marked with solid lines in Fig. 3a are
generated.

After generating 2-WUMSPs, candidate 3-WULPs are generated. For two 2-WUMSPs
X and Y, they can generate a candidate 3-WULP if the path of X contains that of
Y, and vise versa. For example, since the path ABCDEFGH contains CDEFGH, the
candidate 3-WULP <{<A; t;><C; t3><H;t;>}> is generated by the two 2-WUMSPs
<{<A; t;><H; t; >}; ABCDEFGH> and <{<C;t3><H;t;>}; CDEFGH> and it is inserted
into the 3-candidate tree in Fig. 3b. After constructing the trees, an additional database
scan of DBt is performed to generate 3-WUMSPs. Finally, candidate k<-WULPs (where
k > 4) are generated by combining two (k-1)-WUMSPs whose paths are equal to each
other. For example, since the paths of the two 3-WUMSPs <{<A;t;><C;t3><H;t7>}; AB-
CDEFGH> and <{<A;t;><F;ts><H;t;>}; ABCDEFGH> are the same, a new candidate
4-WULP <{<A;t;><C;t3><F;ts> <H;t;>}> is generated and inserted into the 4-candidate
tree. The processes will be recursively executed until no candidate moving pattern is
generated.

After all WUMSP are generated, an additional scan of database will be performed to check
real high-utility mobile sequential patterns in step 4. The WUMSPs whose utilities are larger
than or equal to the minimum utility threshold are regarded as high-utility mobile sequential
patterns and then output.

4.2 Tree-based algorithm: UMSPr(prg)

The workflow of the proposed algorithm UMSPt(prG) (mining high Utility Mobile Sequen-
tial Pattern by a tree-based method with Depth First Generation strategy) is shown in Fig. 4.
In step 1, WULISs and a mapping table are generated. Then a MTS-Tree (Mobile Transaction
Sequence Tree) is constructed in step 2. In step 3, WUMSPs are generated by mining the
MTS-Tree with the depth first generation strategy. Finally, in step 4, UMSPs are generated
by checking the actual utility of WUMSPs. In this section, we describe the construction of
MTS-tree first and then address the generation of WUMSP.

@ Springer

Efficient algorithms for discovering high utility user behavior patterns 373

Candidate
WULP
: ': [e] o T :
sliabiariciicr|cliCiici iCiict D
‘é 'W! 'gi D! iK!|[D| {El ki Do E
iclict 'EVIE}|E| {Fi lEY VB F
Path D EE::K::F::F: F| 1Gi /! |Fi | G
EliFLipiicliGi|G| iLi Gt Gl Gl |H
FliG! tpi tHD Ly [H PHY tLy pHY |
GliLi g F=iim!— F-1 i\ Lo 2
MG igd bk i S]
NI IR = RN LS —
Support | 2 | 1t b tgph oee [145) 1590 Loy 172 be-y L
I T T 7 T & S VY
SWUg 55 L] Japgat I o
‘; ‘g A c c g F||F A Al |a c
c ps B D D F G||G B B B D
c E E L||H c C C
D D G E
D F F H D
E E H — D D F
F F E G G L 1l2 E E E G
F H H| —|2|H F F F
G G 2 H
o o G| L L |2|l]|a4s G G G
H 2 2 L 1
O E P el ECIRLINE
21 [2] | 2| |as| fias 2 2 2 I
145) [145] Juas 145 145| |145 o
(b) (c)

Fig. 3 Candidate-trees of <H : t7>. a 2-candidate-tree. b 3-candidate-tree (after pruning). ¢ 4-candidate-tree
(after pruning)

We describe the process of generating WULIs by an example. Consider the mobile trans-
action sequence database in Table 3 and the utility table in Table 4. Assume the minimum
support threshold is 2 and the minimum utility threshold is 100. In the first step, WULIs
whose supports and SWUs are larger than or equal to the two thresholds are generated by the
processes similar to the first step in Sect. 4.1. In this case, eight WULIs shown in Table 5 are
generated. Note that they are also 1-WULPs. Then the 1-WULPs are mapped sequentially
into a mapping table as shown in Table 5.

@ Springer

374 B.-E. Shie et al.

Process

1 r"'"""""""""""".""':"""""."f """"" |
: i Phase I: Mlllll'lg WUMSPs H Phase 1I: Flndmg UMS
| :[Step 1: Generating WULIs] Step 4: Finding UMSPs

i [¥] within WUMSPs !

i| Step 2: MTS-Tree construction o SR L

A] : : Output
Bt Step 3: Generating WUMSPs | I e
! il I i i High utlhty mobile !

1 |

by mining MTS-Tree |}

Fig. 4 The framework of the proposed algorithm UMSPT(ng)

Algorithm (Step 2 of UMSPq(pre): MTS-Tree construction)
Input: Mobile transaction sequence database DB, mapping table MT
Output: MTS-Tree
1. create a header table H
2. create a root R for an MTS-Tree T
3. foreach mobile transaction sequence S; in DB do
4 let path_start = false
5 call InsertMTS_Tree(S;, R, MT, sid)
Procedure InsertMTS_Tree(S;, R, MT, sid)
1. if S; is not NULL then
2. divide S; into [x]|X]
/* x: the first loc-itemset of S;. X: the remaining list of S; */
3. let temppath = NULL
4. if there is a combination y' of x exists in MT then
5. convert x to the HTWULI y in MT
6. if R has a child node C where C.location = y.location then
7. if y.item exists in C.items then
8. insert sid into C.[y.item].sid
9. else
10. create a new item y.item to C.items
11. insert sid to C.[y.item].sid
12. else
13. create a new node C as a child node of R
14. let C.location = y.location
15. let C.item = y.item
16. append sid to C.[y.item].sid
17. update y’s WULI, sup, TWU in H
18. if temppath = NULL then
19. append temppath and sid to C.pathtable
20. let temppath = NULL
21. else
22. append x.location to temppath
23. if X is not NULL then
24. call InsertMTS_Tree(X, C, MT, sid)

Fig. 5 The procedure of MTS-Tree construction

4.2.1 The construction of MTS-Tree

The procedures of MTS-Tree construction are shown in Fig. 5. It can be completed after
one scan of the original database. Without loss of generality, we give a formal definition for
MTS-Tree first.

Definition 8. (MTS-Tree): In MTS-Tree, each node N includes N.jocations N .itemset»
N.srp and a path table. N is represented by the form <N.jocarion[N-itemser1] : N.sID1;

@ Springer

Efficient algorithms for discovering high utility user behavior patterns 375

Header table
1-WULP | SWU | Sup
<Ait> | 390 | 5 |- Path | SID > Path table
B $,S,5:8
<C; t,> 289 4 |- 1929395 Path | SID
w S
<C;ty> | 336 | 4 - DE | S,
<C; tg> 204 2 ‘ SID
<D; t,> 199 3 || Path | SID S,
<F; ts> 421 6 E S;S;S5 S,
<G; tg> 191 2 | ——
Path | SID SID
<H; t,> 336 4
G S5S5 S,S,

Fig. 6 An example of MTS-Tree

[N.itemser2] © N.sip2; ...>.N.jocarion records the node’s location. Each node has several
itemsets N.;;emser Which represent the itemsets that happened in the same location. For each
itemset in a node, it has a string of sequence identifiers, N.g;p, which records the mobile
transaction sequences including the itemset. A path table records the paths, which are a series
of locations without purchasing item from N’s parent node to N, and the SIDs of the paths.
Moreover, a header table is applied to efficiently traverse the nodes of a MTS-Tree. In a
header table, each entry is composed of a 1-WULP, the SWU and support of the 1-WULP
and a link which points to its first occurrence in MTS-Tree.

Now we introduce the processes of the MTS-Tree construction, i.e., the second step of
UMSPT(DFG), by continuing the example. At the beginning, the first mobile transaction
sequence S is read. The first transaction in St is (A; {[i1, 2]}), so we find the corresponding
loc-itemset of <A;i;> in the mapping table in Table 5. Thus, <A;i;> is converted into <A;
t;>. Then itis inserted into MTS-Tree. Since there is no corresponding node in the MTS-Tree,
anew node <A[ty] : S; > is created. The loc-itemset <A; t;> is also inserted as an entry into
the header table.

Subsequently, the second transaction (B; null) is evaluated. Since it has no purchased item,
the location B is kept. Then the third transaction (C; {[i2, 1]}) is checked in the mapping table
and converted into <C; t;>. Then the node <C [tp] : S;> is created and inserted as a child
node of <A[ty] : S;>. Since there is a current kept path B, B and its SID S; are put into the
path table of the node <C [tp] : S1>. The loc-itemset <C; t,> and its relevant information
are also inserted into the header table. The remaining transactions in S; are inserted into the
MTS-Tree sequentially by the same way.

Subsequently, the second mobile transaction sequence S, is read. For the first transaction
(A; {[i1, 31}), it is converted into <A; t;>. Since there is already a node <A[t;] : S1> with the
same location A in MTS-Tree, the SID S, SWU and support of the node are updated. Then
the location B of the second transaction (B; null) is kept, since it has no purchased item. Next,
the third transaction (C; {[iz, 2], [i3, 5]}) is evaluated. By the mapping table, it is converted
into <C; tp>, <C; t3> and <C; tg>. Since there is a node <C[t2] : S;> with location C and
item t, the SWU and support of the node are updated. On the other hand, for <C; t3> and
<C; tg>, they are stored as new itemsets in the same node <C>. After processing this transac-
tion, the node becomes <C [t2] : S1S2; [t3]: So; [tg] : S»>. The remaining transactions in Sy
are inserted into the MTS-Tree sequentially by the same way. After all sequences in D are
inserted, we can get the MTS-Tree as shown in Fig. 6. By converting the original loc-itemsets

@ Springer

376 B.-E. Shie et al.

Algorithm (Step 3 of UMSP;(pre): Generating WUMSPs)
Input: A MTS-Tree T, a header table H, a minimum utility threshold ¢, and
a minimum support threshold &
Output: A WUMSP-Tree T’
Let T’ be an WUMSP-Tree
foreach WULI « in the bottom entry of H do
trace the link of WULI o in H to get 1-WULP
add 1-WULP o and sid to T’
create a conditional MTS-Tree CT, and a header table H,
call WUMSP-Mine (CT,, H,, «)

o Ul WN

Procedure WUMSP-Mine(CT,, H,, «)

1 foreach WULI 3 in H, do

2 if sup(B)< & or SWU(B)< & then

3 delete [from CT, and H,

4 if there exists an empty node X in CT,

5 delete X

6. append the X’s children nodes to X's parent node
7 foreach WULI B of HT, do

8 add WULP Bo and its sids to T~

9 trace the paths of Ba in T

10. calculate the corresponding supports and SWUs

11. add the paths to the path table of Bo in the node of B in T~
/* line 12-14: Path pre-checking technique*/

12. if there exists a path in Bo to form a WUMSP Y, such that sup(Y)Z2
5 and SWU(Y)2 ¢ then

13. create a conditional MTS-Tree CTg, and a header table Hg,
14. call WUMSP-Mine(CTgy, Hpar B)

Fig. 7 The procedure of generating WULPs

in the database to the ones in the mapping table, we do not need to store all combinations
of the original loc-itemsets into the MTS-Tree. It can save much computational cost and
memory space.

4.2.2 Generating WUMSPs from MTS-Tree

After constructing MTS-Tree, now we describe the step 3 of UMSPr(prg). The purpose of
this step is generating WUMSPs from MTS-Tree by the depth first generation strategy. The
procedures are shown in Fig. 7. First, WULPs and their conditional MTS-Trees are generated
by tracing the links from the entries in the header table of the MTS-Tree. After generating
the WUMSPs in a conditional MTS-Tree, to efficiently trace the WUMSPs and save the
memory space of storing them, the WULPs are stored into a WUMSP-Tree (high sequence
Weighted Utilization Mobile Sequential Pattern Tree) in a compact form. The definition of
WUMSP-Tree is given as follows:

Definition 9 (WUMSP-Tree:) In a WUMSP-Tree, each node is a WULIL. For a node
N, N.s;p and its path table are recorded. N is represented by the form <N.wyrs : N.sip>.
For the WULI in a node, it has a string of sequence identifiers, N.s;p, which records the
mobile ransaction sequences that the WULI occurs. A path table which records the paths
from the node N to root and the SIDs of the paths is also kept.

Each node of the WUMSP-Tree represents a WUMSP. By tracing from a node to root of
a WUMSP-Tree, a WULP can be derived. Take the WUMSP-Tree in Fig. 8 for example; we

@ Springer

Efficient algorithms for discovering high utility user behavior patterns 371

Header table

1-WULP | SWU | Sup Root
<Ajt;> 336 4
1 <H; t,>:
; 204 | 2
<G> | 20 CisS S,S,8,S
<Gt | 336 | 4 [[2]] S s Path table
t]: . A
<Cite | 204 | 2 P <G: >\ | parh | s
S,S
<Dit> | 145 | 2 2 GLH | S,S,
<Fit> | 336 | 4 Sup=2, SWU=191
<G;t6> 191 2
(@ (b)

Fig. 8 Conditional MTS-Tree of <H; t7> and the corresponding WUMSP-Tree. a Conditional MTS-Tree of
<H; t7>. b WUMSP-Tree

can get a WULP <G; te> <H; t7> by tracing from the node to root. Moreover, we can get a
WUMSP <{<G; ts><H; t;>}; GLH > by combining the path GLH in the node <G; tg> with
the WULP. After tracing all nodes in WUMSP-Tree, all WUMSPs can be obtained.

During the processes of generating WULDPs, if the length of the WULPs is larger than 1,
besides the processes of tracing path, a path pre-check technique will be performed to prune
the moving patterns which cannot fit the user-specified thresholds.

Definition 10 (Path pre-check): If there exists no path for a WULP X to form a WUMP Y
such that sup(Y) > § and SWU(Y) > ¢, X is pruned.

Path pre-check technique is used for trimming the search space. By using this technique,
the number of conditional MTS-Tree can be reduced effectively and the mining performance
can be improved more.

Now we introduce the processes of the step 3, i.e., generating WUMSPs from MTS-Tree,
by continuing the example in the previous section. First, the bottom entry <H; t7> in the
header table of the MTS-Tree shown in Fig. 6 is checked and a WULP <H; t7> is generated.
Then <H; t7> and its SIDs are inserted as the first child node of the root of the WUMSP-Tree.
Since <H; t7>is a I-WULP, its path is not traced. Then the conditional MTS-Tree of <H; t;>
shown in Fig. 8a is constructed by tracing all nodes labeled <H; t7> to the root of the MTS-
Tree. The nodes labeled <H; t7> are acquired by tracing the links from the entry of <H; t7>
in header table. Note that the conditional MTS-Trees do not need any path table.

Subsequently, in the header table of the conditional MTS-Tree of <H; t7>, the last entry
<G; tg>is checked and a WULP <G; tg><H; t7> is generated and inserted into the WUMSP-
Tree. Since there is already a node <H; t;> in the WUMSP-Tree, we just insert <G; t¢> as a
child node of <H; t;>. At the same time, the path of the WULP <G; t¢><H; t7> is traced in
the original MTS-Tree. By the links from the entry <H; t7> in header table, we can get the
node <H[t7]> with the SIDs S, and S4. The node <H[t7]> is traced up until the node <G; tg>
is reached to obtain the paths between the nodes. Then a path GLH is found. After tracing the
path, a WUMSP <{<G; t¢><H; t;>}; GLH> whose support is 2 and SWU is 191 is found.
By the path pre-checking technique, since its support and SWU are both no less than the two
thresholds, it is kept, and the path is added into the node <G; t¢> of the WUMSP-Tree. The
WUMSP-Tree now is shown in Fig. 8b. Generating the patterns from the MTS-Tree by the
above processes recursively, all WUMSPs can be generated.

After generating all WUMSPs, an additional database scan will be performed to find
UMSPs from the set of WUMSPs. The WUMSPs whose utilities are larger than or equal to
the minimum utility threshold will be regarded as UMSPs. Moreover, since the WUMSPs in

@ Springer

378 B.-E. Shie et al.

WUMSP-Tree include SIDs, instead of checking all mobile transaction sequences, they will
just check the specified sequences. By applying this process, the performance will be more
improved.

4.3 Improved method: UMSPr(EG)

In UMSPr(pFG), since the number of combinations of 2-WULPs is quite large, many
conditional MTS-Trees will be generated. Dealing with these conditional MTS-Trees is
time-consuming in the mining processes. Moreover, tracing the paths of WULPs in the pro-
cesses of generating WUMSPs also spends much time. If we can decrease the number of
WULPs requiring verification, especially the large number of 2-WULPs, the performance
can be improved more. Therefore, how to speed up the processes about 2-WUMSPs is a
crucial problem.

To conquer this problem, we propose an improved tree-based algorithm named
UM S Pr(prg) (mining high Utility Mobile Sequential Pattern by a tree-based method with
a Breadth First Generation strategy). The difference between the two algorithms is that
UMSP1BFG) uses a breadth first generation strategy for generating 2-WUMSPs. Within the
strategy, a possible succeeding node check technique is applied. By this technique, the size
of the conditional MTS-Trees will be smaller, and the 2-moving patterns which cannot be
2-WUMSPs will be pruned in advance.

Instead of generating a 2-WULP by combining the last entry with the 1-WULP of a
conditional MTS-Tree, in the breadth first generation strategy, 2-WULPs are generated by
combining all 1-WULPs in the header table with the 1-WULP of the conditional MTS-Tree.
After generating the 2-WULPs, their paths, supports and SWUs are checked in advance. The
valid paths will be stored in the corresponding nodes of WUMSP-Tree. While generating
2-WULPs, UMSPrgFG) applies a possible succeeding node check technique for pruning
useless 2-WULPs, which is addressed as follows:

Definition 11 (Possible succeeding node check) While generating 2-WULPs of a 1-WULP
X in X’s conditional MTS-Tree, all 1-WULPs in the header table are inserted as children
nodes of X in the WUMSP-Tree in advance. If there exists no path in a WULP Y to form a
WUMSP Z such that sup(Z) > § and SWU(Z) > ¢, Y is pruned.

Furthermore, only the nodes kept in the WUMSP-Tree are able to be succeeding nodes of
the WUMSP-Tree in the later mining processes.

In the following paragraphs, we use the same example as the previous section. The MTS-
Tree shown in Fig. 6 and the conditional MTS-Tree of <H; t;> shown in Fig. 8 are constructed
by the same processes in previous section. <H; t;> is inserted into the WUMSP-Tree as
the first node. Different from UMSPt(pFG), in the processes of generating 2-WULPs of
UMSPTBFG), all 1-WULPs in the header table of the conditional MTS-Tree of <H; t7> are
inserted as children nodes of the node <H; t7> in the WUMSP-Tree, that is, all 2-WULPs of
the conditional MTS-Tree of <H; t;> are generated in advance. The paths of the 2-WULPs
are then generated by tracing the original MTS-Tree. Combining the 2-WULPs and the paths,
2-moving patterns are generated. Also, their supports and SWUs are obtained. The results
are shown in Fig. 9.

By Fig. 9, since the supports or SWUs of the 2-moving patterns <{<C; tg><H; t7>};
CFGLH>, <{<C;tg><H; t7>};CDFGH>, <{<C; t3><H; t;>};CKEFGLH>, <{<C; t3><H;
t7>};CEFGLH>, <{<C; t;><H; t7>};CKEFGLH>, <{<C; t><H; t7>};CDEFGH>,
<{<A; t;><H; t7>};ABCKEFGLH> and <{<A; t;><H; t;>};AWCEFGLH are less than the
thresholds, their relevant paths are pruned from the path tables of the WUMSP-Tree.

@ Springer

Efficient algorithms for discovering high utility user behavior patterns 379

Path SID [}| Path SID
CFGLH | S, ABCKEFGLH | S, | Sup=1,SWU=132
CDFGH | S, AWCEFGLH |'S, | Sup=1,SWU=59

ABCDEFGH | S,S, | Sup=2, sSwu=145

Sup=2, SWU=191 | GLH

Path

Sup=2, SWU=145 | FGH

Path it
/Sup=1, swuU=132 | CKEFGLH |s, || Path SID
Path | SID | g1, swu=s9 | CEFGLH | S, CKEFGLH | S, | Sup=l,SWU=132
Sup=2, SWU=145 | DFGH | S8 | g\ o swu=145 | CDEFGH | S,S; [| CDEFGH | S; | Sup=1, SWU=72

Sup=2, SWU=191 | FGLH | S,S,

Fig. 9 An example of WUMSP-Tree generated by UMSPT(BFG)

Table 7 Parameter settings

Parameter descriptions Default
D: Number of mobile transaction sequences 50k

P: Average length of mobile transaction sequences 20

T: Average number of items per transaction 2

N: Size of mesh network 8

n;: The range of the number of items sold in each location 200

Pj,: The probability that user makes 0.5

the transaction in the location
w: Unit profit of each item 1-1,000
q: Number of purchased items in transactions 1-5

Moreover, since there is no valid path in the nodes <C; tg> and <C; tp>, the two nodes
are also pruned. In Fig. 9, the pruned nodes and paths in the WUMSP-Tree are labeled
with grey. By the WUMSP-Tree, we can know the possible succeeding nodes of <G; t¢> are
<F; t5>,<D; t4>, <C; t3> and <A; t;>.

After ascertaining which 2-moving patterns need to be pruned, the relevant nodes and
entries in the conditional MTS-Tree of <H; t7> are also pruned. After this step, the mining
processes proceed without the pruned nodes in both the WUMSP-Tree and the conditional
MTS-Tree of <H; t7>. The remaining conditional MTS-Tree is much smaller than the original
one. Moreover, since the useless entries are pruned in the header table, they will never be
checked in the following processes. Therefore, the search space can be further reduced and
the mining performance is further improved.

5 Experimental evaluations

In this section, we evaluate the performance of the proposed algorithms. The experiments
were performed on a 2.4 GHz Processor with 1.6 gigabyte memory, and the operating system
is Microsoft Windows Server 2003. The algorithms are implemented in Java language. The
default settings of the parameters are listed in Table 7. The settings of parameters related to
mobile commerce environment and utility mining are similar to [13,26], respectively.

@ Springer

380 B.-E. Shie et al.

D50k P20 T2 N8, Pb=0.5, u=1% D50k P20 T2 N8, Pb=0.5, u=1%
0 4000
g 1200 E 3000
° \ 2 2000
©
E 600 £
= 1000
O‘V—v—v'—v'—§=‘= 0 5 R Q & | FFPH
02 05 08 11 14 17 2 02 05 08 11 14 17 2
Minimum support (%) Minimum support (%)
—e— UMSP-T(BFG) UMSP-T(DFG) UMSP-T(BFG) E UMSP-T(DFG)
—A— UMSP-L —<— MSP UMSP-L MSP
(a) (b)

Fig. 10 The performance under varied minimum support thresholds. a Execution time. b Number of patterns
after phase I

For comparing the performance of the proposed algorithms, we extend the algorithm
TJpr in [26] to form a basic algorithm for mining high-utility mobile sequential patterns,
called MSP. The processes of MSP are as follows: first, the mobile sequential patterns whose
supports are no less than the minimum support threshold are generated by TJpg. Then an
additional check of the actual utilities of the mobile sequential patterns is performed for
finding high-utility mobile sequential patterns. Note that the main difference of MSP and
UMSPy is that MSP does not consider utility in phase I. In the following experiments, the
performance of MSP is compared with that of the three proposed algorithms.

5.1 Performance under varied thresholds

The first part of the experiments is the performance under various minimum support
thresholds. In the experiments, the minimum utility threshold is set to 1 %. The results
for the execution time and the number of patterns after phase I under varied minimum sup-
port thresholds are shown in Fig. 10. For the three proposed algorithms, the patterns after
phase I are WUMSPs, on the other hand, for MSP, the patterns are mobile sequential pat-
terns. In Fig. 10a, it can be seen that MSP requires much more execution time than the other
algorithms. The reason is that since MSP does not consider utility in phase I, the number
of generated patterns is much larger than that of other algorithms as shown in Fig. 10b.
MSP spends much time on processing redundant patterns, so its performance is the worst.
Besides, although the number of WUMSPs generated by the proposed three algorithms is
the same, their execution time is different. Overall, the tree-based algorithms are better than
the level-wise ones especially when the minimum support threshold is low.

Next, we show the performance under various minimum utility thresholds. In the exper-
iments, the minimum support threshold is set to 0.5 %. The results are shown in Fig. 11.
Overall, the tree-based algorithms are better than the level-wise ones. Besides, since MSP
does not consider utility in phase I, its execution time and number of generated patterns
remain the same. On the contrary, both of the two results of the proposed three algorithms
decrease with the minimum utility threshold increasing. Besides, when the minimum utility
threshold is lower, the execution time of UMSPy. is closer to that of MSP. The reason is that

@ Springer

Efficient algorithms for discovering high utility user behavior patterns 381

D50k P20 T2 N8, Pb=0.5, s=0.5% D50k P20 T2 N8, Pb=0.5, s=0.5%
500 1200
400 900
(] ()
& 300 \\ £
2 600
g 200 5 \
~ +* 7
F 0o | F \
0]]]] | 0 7 ‘
01 04 07 1 13 16 19 01 04 07 1 13 16 19
Minimum utility (%) Minimum utility (%)
—— UMSP-T(BFG) UMSP-T(DFG) B UMSP-T(BFG) B UMSP-T(DFG)
—&— UMSP-L —>— MSP UMSP-L MSP
(@ (b)

Fig. 11 The performance under varied minimum utility thresholds. a Execution time. b Number of patterns
after phase I

D50k T2 N8, Pb=0.5, s=0.5%, u=1% D50k T2 N8, Pb=0.5, s=0.5%, u=1%
2400

1800

1200

w
8
#patterns

600

10 15 20 25 30
Average path length Average path length
—e— UMSP-T(BFG) UMSP-T(DFG) B umsP-T(BFG) E UMSP-T(DFG)
—A— UMSP-L —>¢ MSP UMSP-L MSP
(a) (b)

Fig. 12 The performance under varied average length of mobile transaction sequences. a Execution time.
b Number of patterns after phase I

when the minimum utility threshold is lower, fewer candidates could be pruned. In Fig. 11a,
when the minimum utility threshold is below 0.4 %, almost no candidate can be pruned by
this threshold. Thus, the performance of the two algorithms is almost the same.

5.2 Performance under varied parameter settings

In this first part of the experiments, we show the performance under varied average length
of mobile transaction sequences. The results are shown in Fig. 12. In the experiments, it
can be seen that the execution time of all the four algorithms increases with the average
length of mobile transaction sequences. The reasons are addressed as follows: When the
mobile transaction sequences are longer, the length of generated patterns will become longer.
To generate longer patterns, the level-wise methods must deal with more passes and the tree-
based methods must generate more conditional MTS-Trees. On the other hand, since the

@ Springer

382 B.-E. Shie et al.

D50k P20 T2, Pb=0.5, 5=0.5%, u=1% D50k P20 T2, Pb=0.5, s=0.5%, u=1%
800 1800

600 \

S g 1200

2 2

i S S
600

= +H*

= 200

<

0
6'6 77 8'8 9*9 1010
Mesh network size Mesh network size

—e— UMSP-T(BFG) UMSP-T(DFG) UMSP-T(BFG) [E UMSP-T(DFG)
—A— UMSP-L —%— MSP UMSP-L MSP
(a) (b)

Fig. 13 The performance under varied mesh network size. a Execution time. b Number of patterns after phase
I

< 3000 o 4000
[0 [
2 5}
® 2000 =i
£ S @
= Q
5 £
= 1000 3 c
3 £
x =]
0.3 0.4 0.5 0.6 0.7 03 04 05 06 07
Purchasing probability Purchasing probability
—— UMSP-T(BFG) UMSP-T(DFG) E UMSP-T(BFG) B UMSP-T(DFG)
—A— UMSP-L —— MSP UMSP-L MSP
(a) (b)

Fig. 14 The performance under varied purchasing probabilities. a Execution time. b Number of patterns after
phase I

longer patterns contain more sub-patterns, more patterns must be generated when the length
of mobile sequential patterns is longer. Thus, the execution time of the four algorithms also
becomes longer. Overall, the tree-based algorithms are still better than the level-wise ones.

Subsequently, we show the performance under varied mesh network size. The results are
shown in Fig. 13. By Fig. 13a, it can be seen that the execution time of all the four algorithms
decreases with the size of mesh network. The reason is that when the size of mesh network is
larger, the database will be sparser; therefore, the patterns generated in phase I will become
fewer and the time cost of mining processes will be reduced.

Third, we show the performance under varied purchasing probabilities (Py,) in each trans-
action. The results are shown in Fig. 14. We can see that in Fig. 14a the best performer is
delivered by UMSPT(gFG), followed by UMSPT(prG), UMSPL, and finally MSP. In Fig. 14b,
it can be observed that with the increasing of purchasing probability, the number of WUMSPs
increases in a slightly rising trend. The reason is the combinations of items rise due to the

@ Springer

Efficient algorithms for discovering high utility user behavior patterns

383

3 2000 @ 3000
3 / 5

o 1500 2—

2 G © 2000
= w3

= 1000 /. 5 £

o —

2 1

£ 500 4 g c 1000
S IS

I} ég{,”,‘/

5 0 : 2 0

Average number of items per transaction

—— UMSP-T(BFG)* UMSP-T(DFG)

Average number of items per transaction

E UMSP-T(BFG) EIUMSP-T(DFG)

—4-UMSP-L >~ MSP Bumsp-L NIV
(a) (b)

Fig. 15 The performance under varied average number of items per transaction. a Execution time. b Number

of patterns after phase I

Number of mobile
transaction sequences

—*— UMSP-T(BFG) UMSP-T(DFG)

—A— UMSP-L —>— MSP

(a)

O 1200
m y
o
§ - / \E./ 1000 K
= ¢ = §
[
S 400 / g s00 -
3 ét/r o =
0] 4 =
>3 0 L L L 0 L L L L
w 25k 50k 75k 100k 125k 150k 25k 50k 75k 100k 125k 150k

Number of mobile
transaction sequences

—*— UMSP-T(BFG) ™ UMSP-T(DFG)
—A— UMSP-L —>X—MSP

(b)

Fig. 16 The performance under varied number of mobile transaction sequences. a Execution time. b Memory
usage

increase of purchased items in the transactions. Hence, the execution time of the compared
algorithms increases with the same trend.

In the last of this sub-session, we show the performance under varied average number
of items per transaction (T). The results are shown in Fig. 15. When T is larger than 3, the
runtime of MSP and UMSP;, is too long to be executed. In Fig. 15b, we can know that the
combination of itemsets increases exponentially with the increasing number of items per
transaction. Thus, the execution time of compared algorithms in Fig. 15a also increases in an
exponential trend. In this figure, it can also be observed that the performance of tree-based
algorithms outperforms the level-wise ones.

5.3 Scalability of the compared algorithms

The last part of the experiments is the scalability of the compared algorithms. The experimen-
tal results about execution time and memory usage are shown in Fig. 16a, b, respectively.
Due to the constraint of main memory, we can only show the results with the maximum
sequence size of 150 k. In Fig. 16a, we can see that when the number of mobile transac-

@ Springer

384 B.-E. Shie et al.

tion sequences is larger, the execution time of UMSPtgrG), UMSP. and MSP increases
linearly. When the number of mobile transaction sequences of UMSPT(pEg) is larger than
125k, its performance becomes worse than that of UMSPy . This is because that there are
more combinations of length 2 patterns with the increase of mobile transaction sequences.
For UMSPT(pFG), it needs to generate more local MTS-Trees without skipping infrequent
paths. However, UMSPr(gFG) keeps a better scalability than UMSPr(prg) since the former
deals with not only smaller but also fewer conditional MTS-Trees than the latter. Figure 16b
shows that all the compared algorithms have good scalability in memory usage. Besides, we
can observe that the tree-based algorithms take more memory space because many kinds
of information need to be recorded in the proposed MSP-Trees. The two figures mentioned
above show the trade-off between runtime and memory for the tree-based and level-wise
algorithms.

5.4 Discussions

Further discussions about the experiments are addressed as follows: First, the results about the
number of patterns after phase I show that many mobile sequential patterns can be pruned
by the minimum utility threshold during the mining processes. The performance of MSP
is the worst among the four algorithms since MSP considers only support in phase I. Second,
the experimental results show that the tree-based algorithms outperform the level-wise ones.
The reasons are as follows: (1) In the processes of phase I, the tree-based algorithms do
not need to generate candidate patterns and perform an additional database scan to check
them. (2) While tracing path, the level-wise methods need to find the sub-paths by scanning
all complete paths in Dt. On the contrary, the tree-based algorithms just need to trace the
corresponding nodes in the MTS-Tree directly. (3) While generating the UMSPs in phase
II, tree-based methods only check the mobile transaction sequences with the specified SIDs
which are recorded in the WUMSPs. Third, the experimental results show that UMSPr(gFG)
outperforms UMSPt(pFg). It is because that UMSPtgrg) checks the 2-WUMSPs by the
breadth first strategy. The strategy effectively reduces much search space in the mining pro-
cesses. Thus, the performance of UMSPr(ggg) is better than that of UMSPr(prG).

By the above experiments, the proposed algorithms are shown to outperform the state-
of-the-art mobile sequential pattern algorithm MSP. Among the three algorithms, the
performance of UMSPt(gFgG) is the best since the MTS-tree is an efficient tree structure and
the breadth first strategy effectively enhances the mining performance. In addition, although
the performance of the tree-based algorithms is better than that of the level-wise ones, the
memory usage of the latter is slightly better. As a consequence, these experiments show a
trade-off between the performance and memory usage for the two frameworks.

6 Conclusions

In this research, we explored a novel data mining issue about mining high-utility mobile
sequential patterns in mobile commerce environments. To our best knowledge, this paper is
the first work on the combination of mobility pattern mining and utility mining. Three algo-
rithms, namely UMSPL, UMSPtprgy) and UMSPr(grG), were developed under different
frameworks, i.e., level-wise and tree-based ones, for efficiently mining high-utility mobile
sequential patterns. The experimental results show that the proposed algorithms outperform
the state-of-the-art mobile sequential pattern algorithm. Moreover, the performance of the

@ Springer

Efficient algorithms for discovering high utility user behavior patterns 385

tree-based algorithms outperforms level-wise ones in most conditions. For future work, new
algorithms which improve the mining performance will also be explored.

Acknowledgments This research was partially supported by National Science Council, Taiwan, under grant
no. NSC100-2631-H-006-002 and NSC100-2218-E-006-001 as well as supported by Top University project
of Ministry of Education, Taiwan.

References

20.

21.

22.

. Achar A, Laxman S, Sastry PS (2011) A unified view of the apriori-based algorithms for frequent episode

discovery. Knowl Inf Syst. doi:10.1007/s10115-011-0408-2

Agrawal R, Srikant R (1994) Fast Algorithms for Mining Association Rules. In: Proceedings of the 20th
interantional conference on very large data bases, pp 487-499

Agrawal R, Srikant R (1995) Mining sequential patterns. In: Proceedings of 11th international conference
on data mining, pp 3-14

Ahmed CF, Tanbeer SK, Jeong B-S, Lee Y-K (2009) Efficient tree structures for high utility pattern
mining in incremental databases. IEEE Trans Knowl Data Eng 21(12):1708-1721

Cao L (2010) In-depth behavior understanding and use: the behavior informatics approach. Inf Sci
180(17):3067-3085

Chan R, Yang Q, Shen Y (2003) Mining high utility itemsets. In: Proceedings of third IEEE international
conference on data mining, pp 19-26

Chen M-S, Park J-S, Yu PS (1998) Efficient data mining for path traversal patterns. IEEE Trans Knowl
Data Eng 10(2):209-221

Han J, PeiJ, Yin Y (2000) Mining frequent patterns without candidate generation. In: Proceedings of the
ACM-SIGMOD international conference on management of data, pp 1-12

Hung C-C, Peng W-C (2011) Clustering fragmented trajectories for mining movement behaviors.
In: Proceedngs of 2011 workshop on behavior informatics

Kim H, Park J-H (2011) Evaluating the regularity of human behavior from mobile phone usage logs.
In: Proceedings of 2011 workshop on behavior informatics

. Lee SC, Paik J, Ok J, Song I, Kim UM (2007) Efficient mining of user behaviors by temporal mobile

access patterns. Int J Comput Sci Secur 7(2):285-291

Li Y-C, YehJ-S, Chang C-C (2008) Isolated items discarding strategy for discovering high utility itemsets.
Data Knowl Eng 64(1):198-217

Liu Y, Liao W-K, Choudhary A (2005) A fast high utility itemsets mining algorithm. In: Proceedings of
utility-based data mining

Lu EH-C, Tseng VS (2009) Mining cluster-based mobile sequential patterns in location-based service
environments. In: Proceedings of IEEE international conference on mobile data management

Lu EH-C, Huang C-W, Tseng VS (2009) Continuous fastest path planning in road networks by mining
real-time traffic event information. In: Proceedings of the 2nd international symposium on intelligent
informatics

Lu EH-C, Lee W-C, Tseng VS (2010) Mining fastest path from trajectories with multiple destinations in
road networks. Knowl Inf Syst 29(1):25-53

Pei J, Han J, Mortazavi-Asl B, Pinto H, Chen Q, Dayal U, Hsu MC (2004) Mining sequential patterns by
pattern-growth: the prefixspan approach. IEEE Trans Knowl Data Eng 16(10):1-17

Senkul P, Salin S (2011) Improving pattern quality in web usage mining by using semantic information.
Knowl Inf Syst 30(3):527-541

Shie B-E, Tseng VS, Yu PS (2010) Online mining of temporal maximal utility itemsets from data streams.
In: Proceedings of the 25th annual ACM symposium on applied computing (SAC 2010), pp 1622-1626
Tseng VS, Lu EH-C, Huang C-H (2007) Mining temporal mobile sequential patterns in location-based
service environments. In: Proceedings of the 13th IEEE international conference on parallel and distrib-
uted systems

Tseng VS, Lin WC (2005) Mining sequential mobile access patterns efficiently in mobile web systems.
In: Proceedings of the 19th international conference on advanced information networking and applica-
tions, pp 867-871

Tseng VS, Wu C-W, Shie B-E, Yu PS (2010) UP-growth: an efficient algorithm for high utility itemsets
mining. In: Proceedings of the 16th ACM SIGKDD conference on knowledge discovery and data mining
(KDD’10), pp 253-262

@ Springer

http://dx.doi.org/10.1007/s10115-011-0408-2

386

B.-E. Shie et al.

23. Yao H, Hamilton HJ (2006) Mining itemset utilities from transaction databases. Data Knowl Eng 59:

603-626

24. Yen S-J, Chen CC, Lee Y-S (2011) A fast algorithm for mining high utility itemsets. In: Proceedings of
2011 workshop on behavior informatics

25. Yun C-H, Chen M-S (2000) Using pattern-join and purchase-combination for mining web transaction
patterns in an electronic commerce environment. In: Proceedings of 24th IEEE annual international
computer software and application conference, pp 99—-104

26. Yun C-H, Chen M-S (2007) Mining mobile sequential patterns in a mobile commerce environment. IEEE
Trans Syst Man Cybern Part C: Appl Rev 37(2):278-295

Author Biographies

@ Springer

Bai-En Shie received his Master’s Degree in Computer Science and
Information Engineering from Ming Chuan University, Taiwan, ROC,
in 2006. He is currently pursuing his PhD Degree in the Department of
Computer Science and Information Engineering, National Cheng Kung
University, Taiwan, ROC. His research interests include data mining
algorithm, utility mining, healthcare system, mobility pattern mining
and temporal data mining.

Hui-Fang Hsiao received his B.S. degree in computer science and
information engineering from National Taiwan Normal University
Taiwan, R.O.C., in 2008 and M.S degree from the Department of
Computer Science and Information Engineering, National Cheng Kung
University, Taiwan, R.O.C., in 2010. Her research interests include data
mining, utility mining, mobility pattern mining, information retrieval
and web mining.

Efficient algorithms for discovering high utility user behavior patterns 387

Vincent S. Tseng is currently a professor at Department of Computer
Science and Information Engineering/Institute of Medical Informatics
at National Cheng Kung University (NCKU), Taiwan. He is also the
president of Taiwanese Association for Artificial Intelligence and had
acted as the director for Institute of Medical Informatics of NCKU
during 2008 and 2011. Dr. Tseng has a wide variety of research
interests covering data mining, biomedical informatics, multimedia
databases and mobile Web technologies. He has published more than
200 research papers in referred journals and international conferences
and has held/filed more than 15 patents in USA and R.O.C. He is on
the editor board of several international journals and has also served as
chair/program committee for a number of premier conferences related
to data mining and database systems.

@ Springer

	Efficient algorithms for discovering high utility user behavior patterns in mobile commerce environments
	Abstract
	1 Introduction
	2 Related work
	2.1 Frequent pattern mining
	2.2 Mobility pattern mining
	2.3 Utility mining

	3 Preliminaries and definitions
	4 Proposed method
	4.1 Level-wise algorithm: UMSPL
	4.2 Tree-based algorithm: UMSPT(DFG)
	4.2.1 The construction of MTS-Tree
	4.2.2 Generating WUMSPs from MTS-Tree

	4.3 Improved method: UMSPT(BFG)

	5 Experimental evaluations
	5.1 Performance under varied thresholds
	5.2 Performance under varied parameter settings
	5.3 Scalability of the compared algorithms
	5.4 Discussions

	6 Conclusions
	Acknowledgments
	References

