
Knowl Inf Syst (2013) 34:335–371
DOI 10.1007/s10115-012-0478-9

REGULAR PAPER

Weight-based consistent query answering over
inconsistent SHIQ knowledge bases

Jianfeng Du · Guilin Qi · Yi-Dong Shen

Received: 9 April 2009 / Revised: 18 October 2011 / Accepted: 27 February 2012 /
Published online: 15 March 2012
© Springer-Verlag London Limited 2012

Abstract Non-standard query mechanisms that work under inconsistency are required
in some important description logic (DL)-based applications, including those involving an
inconsistent DL knowledge base (KB) whose intensional knowledge is consistent but is
violated by its extensional knowledge. This paper proposes a weight-based semantics for
querying such an inconsistent KB. This semantics defines an answer of a conjunctive query
posed upon an inconsistent KB as a tuple of individuals whose substitution for the vari-
ables in the query head makes the query body entailed by any subbase of the KB consisting
of the intensional knowledge and a weight-maximally consistent subset of the extensional
knowledge. A novel computational method for this semantics is proposed, which works for
extensionally reduced SHIQ KBs and conjunctive queries without non-distinguished vari-
ables. The method first compiles the given KB to a propositional program; then, for any given
conjunctive query, it reduces the problem of computing all answers of the given query to a set
of propositional satisfiability (SAT) problems with PB-constraints, which are then solved by
SAT solvers. A decomposition-based framework for optimizing the method is also proposed.
The feasibility of this method is demonstrated in our experiments.

Keywords Semantic Web · Description logics · Query answering · Inconsistency-tolerant
reasoning · Weight-based semantics

J. Du (B)
Guangdong University of Foreign Studies, Guangzhou 510006, China
e-mail: jfdu@mail.gdufs.edu.cn

J. Du · Y.-D. Shen
State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing 100190, China

G. Qi
School of Computer Science and Engineering, Southeast University, Nanjing 211189, China

G. Qi
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

123

336 J. Du et al.

1 Introduction

Description logics (DLs) [5] are mostly decidable fragments of first-order logic. They pro-
vide logical foundations for the highly evolving Semantic Web. In particular, among the
three species of the standard Web Ontology Language (OWL) [40] for the Semantic Web,
namely OWL Lite, OWL DL and OWL Full, the former two, respectively, correspond to
DLs SHIF(D) and SHOIN (D) [27]. A DL knowledge base (KB) consists of a TBox, an
RBox and an ABox, where the TBox and the RBox store the intensional knowledge, while
the ABox stores the extensional knowledge.

Logical contradictions can easily be introduced in a DL KB and make the KB inconsis-
tent (i.e., have no models). The standard query mechanism in DLs returns anything that is
satisfied by all models of an inconsistent KB, thus is meaningless. To solve this problem, one
may repair the KB to render it consistent whenever some logical contradictions appear. But
this approach is no panacea and some important applications, such as virtual data integration
[45] and ontology population [14], require non-standard query mechanisms that work under
inconsistency.

Data integration has been recognized as a crucial application in the Semantic Web [46]. In
the scenario of virtual data integration [45], data distributed in different sources are mapped
to an integrated view in a mediator. Since the data in different sources may often be hetero-
geneous, they are usually standardized using the terminology in the mediator. From the DL
point of view, the knowledge stored in the mediator can be treated as the union of a TBox and
an RBox, while the data in different sources as a whole can be treated as an ABox. However,
the ABox may violate the constraints specified in the union of the TBox and the RBox, and
it can hardly be repaired because its update reflects updates of the original data distributed in
multiple sources. Hence, in this scenario, non-standard query mechanisms that work under
inconsistency are needed.

In the scenario of ontology population [14], a DL KB is enriched by adding instance
assertions. There are many research results on ontology population. To name a few, KIM [41]
and Text2Onto [15] are frameworks that integrate algorithms for ontology population from
textual data, including information extraction algorithms (e.g., [23]) that assign annotations
carrying some semantics to regions of the data, as well as co-reference algorithms (e.g., [49])
that identify annotated individuals in multiple places. From the DL point of view, the course
of information extraction adds concept or role assertions, whereas the course of co-reference
adds (in)equality assertions. The populated DL KB, however, may become inconsistent due to
potential conflicts between the new data and the original data. Directly repairing a populated
DL KB may not be appropriate since choosing the best repair plan among a set of candidates
may require massive human efforts. We had better use non-standard query mechanisms to
directly work on the populated DL KB.

To provide a reasonable query mechanism that works under inconsistency, we propose a
weight-based semantics for query answering over an inconsistent DL KB. We assume that
the union of the TBox and the RBox of the KB is consistent, and every instance assertion in
the ABox of the KB has a positive weight. We simply call a subset of the ABox consistent if
it is consistent with the union of the TBox and the RBox and further call it weight-maximally
consistent if the total weight of assertions in it is maximal among all consistent subsets of
the ABox. The weight-based semantics defines an answer of a conjunctive query as a tuple
of individuals whose substitution for the variables in the query head makes the query body
entailed by any subbase of the given KB that consists of the TBox, the RBox and a weight-
maximally consistent subset of the ABox. In a number of applications, such as virtual data
integration and ontology population, the TBox and the RBox are fixed and well prepared,

123

Weight-based consistent query answering 337

so the union of the TBox and RBox is consistent. Weights for instance assertions can be
obtained from different sources. For example, in Web-based scenarios, an instance assertion
may redundantly exist in multiple data sources, so the redundancy of an assertion can be
treated as the weight of the assertion.

We consider the problem of computing all answers to a conjunctive query under the weight-
based semantics. We call this problem weight-based consistent query answering (CQA) prob-
lem and focus on an important class of it. For this class, the given KB is an extensionally
reduced SHIQ KB and the given query is a conjunctive query without non-distinguished
variables. SHIQ [28] is an expressive DL corresponding to OWL DL without nominals or
datatypes. Since DL KBs can be easily extensionally reduced (see Sect. 2.1 for details), we
simplify the problem by allowing only extensionally reduced KBs, in which the concepts in
all concept assertions are atomic or negated atomic. Non-distinguished variables in a con-
junctive query are existentially quantified variables. Disallowing these variables is commonly
accepted. Many off-the-shelf DL query engines, such as Racer [26], KAON2 [30,31] and
SHER [17], do not support conjunctive queries with non-distinguished variables.

We prove that the weight-based CQA problem for an atomic query, namely a query with
a single atom and no variables, is �

p
2 [O(log n)]-hard in data complexity, which is the com-

plexity measured by the size of the ABox only. That is, the problem needs at least O(log n)

calls to an NP oracle, where n is the number of instance assertions in the KB (also called the
size of the ABox) and the input size of a call to the NP oracle is polynomial in n. We propose
a two-phase method to solve the problem. The first phase is performed offline. It compiles the
given SHIQ KB to a propositional program in time polynomial in n, the number of instance
assertions in the KB, and then computes the maximum total weight of instance assertions
in a consistent subbase of the KB by O(log n) calls to a SAT solver. The second phase is
performed online. Given a conjunctive query, it reduces the weight-based CQA problem for
this query into a set of weight-based CQA problems for atomic queries by using the output
of the first phase and solves each of them by one call to a SAT solver. Hence, the proposed
method solves the weight-based CQA problem for an atomic query by O(log n) calls to a
SAT solver. Considering that a SAT solver is an NP oracle and that the weight-based CQA
problem for an atomic query is �

p
2 [O(log n)]-hard, the proposed method is actually time

complexity optimal.
Since SAT solvers can hardly handle large propositional programs due to computational

resource (such as memory) limitations, the proposed method may not work with large KBs.
Hence, we also propose a decomposition-based framework to optimize it. The framework
adds extra processes to both phases of the proposed method. In the first phase, the compiled
propositional program is further decomposed into disjoint subsets. In the second phase, the
weight-based CQA problem for an atomic query is solved by reducing to an extended SAT
problem with PB-constraints [19], where the input of the SAT problem is a query-relevant
propositional program extracted from some disjoint subsets obtained in the first phase. Since
a query-relevant propositional program can be by orders of magnitude smaller than the com-
piled propositional program, the optimization can significantly improve the scalability.

We implemented the optimized method and conducted experiments on large KBs. All test
KBs are obtained from publicly available ones by inserting conflicts, where a conflict is a
set of instance assertions violating a functional role restriction or a disjointness constraint.
Experimental results show that the decomposition-based framework is highly effective and
the optimized method is promising in querying large KBs containing hundreds of conflicts
and millions of instance assertions.

The remainder of this paper is organized as follows. After providing preliminaries in the
next section, in Sect. 3, we present the weight-based semantics for consistent query answer-

123

338 J. Du et al.

ing (CQA) and analyze its computational complexity. In Sect. 4, we describe the proposed
method for solving the weight-based CQA problem as well as the decomposition-based
framework. In Sect. 5, we present our experimental evaluation. Before concluding the paper,
we discuss related work in Sect. 6.

2 Preliminaries

In this section, we first introduce the description logic (DL) SHIQ, conjunctive queries
and disjunctive datalog. Afterwards, we introduce the KAON2 transformation method for
reducing SHIQ to disjunctive datalog [30,31] and a well-known method for axiomatizing
equality [24], both of which are fundamental to our proposed method.

2.1 Description logic SHIQ

Thanks to some desirable properties, such as readability and decidability, DLs [5] have
become logical foundations of the Semantic Web [27]. Among all DLs, SHIQ [28] is an
expressive DL underlying the standard language OWL [40] in the Semantic Web. SHIQ has
an expressive power comparable to OWL DL, with the exception that nominals and datatypes
are disallowed and qualifying number restrictions are allowed. We use the same syntax of
SHIQ as given in [30,31].

Let NR be a set of role names. A SHIQ role is either some r ∈ NR (atomic role) or an
inverse role r− for r ∈ NR . Let Inv(r) = r− and Inv(r−) = r for r ∈ NR . A SHIQ RBox
R is a finite set of transitivity axioms Trans(r) and role inclusion axioms r � s, such that
r � s ∈ R implies Inv(r) � Inv(s) ∈ R and Trans(r) ∈ R implies Trans(Inv(r)) ∈ R,
for roles r and s. Let �∗ denote the reflexive-transitive closure of �. A role r is said to be
transitive if Trans(s) ∈ R for some s with s �∗ r and r �∗ s. r is said to be simple if there
is no transitive role s such that s �∗ r . r is said to be complex if it is not simple.

Let NC be a set of concept names. The set of SHIQ concepts is the smallest set recur-
sively defined as follows. Each A ∈ NC (atomic concept) is a SHIQ concept. For SHIQ
concepts C and D, a role r , a simple role s and a non-negative integer n, the following con-
cepts are also SHIQ concepts: � (top concept), ⊥ (bottom concept), ¬C (negation), C � D
(conjunction), C � D (disjunction), ∃r.C (existential restriction), ∀r.C (value restriction),
≤n s.C and ≥n s.C (qualifying number restrictions). A SHIQ TBox T is a finite set of
concept inclusion axioms C � D, where C and D are SHIQ concepts.

Let NI be a set of individual names. A SHIQ ABox A is a finite set of instance assertions,
including concept assertions C(a), role assertions r(a, b) and ¬s(a, b), equality assertions
a ≈ b and inequality assertions a �≈ b, where C is a SHIQ concept, r a role, s a simple
role, and a and b individual names in NI . The sets NR, NC and NI are mutually disjoint.

A SHIQ knowledge base KB is a triple (T , R, A), where T is a TBox, R an RBox and
A an ABox.

An interpretation I = (�I , ·I) consists of a non-empty set �I , called the domain of I,
and a function ·I that maps every concept name A to a set AI ⊆ �I , every role name r
to a binary relation rI ⊆ �I × �I , and every individual name a to aI ∈ �I . The inter-
pretation is extended to roles by defining (r−)I = {(x, y) | (y, x) ∈ rI} and to SHIQ
concepts according to the left part of Table 1, where |S| denotes the cardinality of a set S.
An axiom/assertion α is said to be satisfied by I, denoted by I |� α, if the corresponding
condition given in the right part of Table 1 holds. An interpretation I is called a model of

123

Weight-based consistent query answering 339

Table 1 The syntax and semantics of SHIQ
Constructors Semantics Axioms Conditions

� �I C � D CI ⊆ DI

⊥ ∅ Trans(r) (rI)+ = rI

¬C �I \ CI r � s rI ⊆ sI

C � D CI ∩ DI Assertions Conditions

C � D CI ∪ DI C(a) aI ∈ CI

∃r.C {x ∈ �I | ∃y : (x, y) ∈ rI ∧ y ∈ CI } r(a, b) (aI , bI) ∈ rI

∀r.C {x ∈ �I | ∀y : (x, y) ∈ rI ⇒ y ∈ CI } ¬s(a, b) (aI , bI) �∈ sI

≤n s.C {x ∈ �I | |{y ∈ CI | (x, y) ∈ sI }| ≤ n} a ≈ b aI = bI

≥n s.C {x ∈ �I | |{y ∈ CI | (x, y) ∈ sI }| ≥ n} a �≈ b aI �= bI

a SHIQ knowledge base KB, denoted by I |� KB, if all axioms and assertions in KB are
satisfied by I. KB is said to be consistent if it admits at least one model. The union of the
TBox T and the RBox R of KB is said to be consistent if (T , R,∅) is consistent. A subset
S of the ABox of KB is said to be consistent with the union of T and R if (T , R, S) is
consistent. An axiom/assertion α is said to be entailed by KB, denoted by KB |� α, if I |� α

for all models I of KB.
This work considers extensionally reduced SHIQ KBs only. A KB is said to be exten-

sionally reduced if the concepts in all concept assertions are atomic or negated atomic, that
is, all concept assertions are of the form A(a) or ¬A(a), where A is an atomic concept.
A non-extensionally reduced SHIQ KB can be converted to an extensionally reduced one
by the following steps: for each concept assertion C(a) ∈ A such that C is neither atomic nor
negated atomic, introduce a new atomic concept QC , add QC � C to T and replace C(a)

with QC (a) in A. The models of the original KB coincide with those of the converted one on
all concept names, role names and individual names in the original KB. Most of the publicly
available OWL KBs, including those used in our experiments, are extensionally reduced.

2.2 Conjunctive query in DLs

We use letters (possibly with subscripts) x, y, z for variables and a, b, c for individual names
or constants. Since this work treats a SHIQ KB as a disjunctive datalog program and indi-
vidual names as constants, the terms “individual” and “constant” are used exchangeably in
the remainder of this paper.

A conjunctive query is an expression of the form ∃�y.conj(�x, �y, �c), where �x is a vec-
tor of distinguished variables, �y a vector of non-distinguished variables and �c a vector of
individuals. conj(�x, �y, �c) denotes a conjunction of atoms of the form A(v) or r(v1, v2), where
A is a concept name, r is a role name and v, v1 and v2 are variables in �x and �y or individuals
in �c. A concept name query is a conjunctive query consisting of a single atom A(x), where
A is a concept name and x is a variable. A Boolean conjunctive query is a conjunctive query
without distinguished variables. An atomic query is a conjunctive query with a single atom
and no variables. It is clear that atomic queries are also Boolean conjunctive queries.

Given a consistent SHIQ knowledge base KB and a Boolean conjunctive query Q =
∃�y.conj(�y, �c), an interpretation I of KB is said to satisfy Q if there exists a tuple of elements

123

340 J. Du et al.

in �I whose substitution for the variables in �y makes every atom in conj(�y, �c) satisfied by
I. Q is said to be entailed by KB, denoted by KB |� Q, if every model of KB satisfies Q.
A tuple �t of individuals is called an answer of a conjunctive query Q(�x) = ∃�y.conj(�x, �y, �c)
in KB if KB |� Q(�x)[�x �→ �t], where Q(�x)[�x �→ �t] denotes a Boolean conjunctive query
obtained from Q(�x) by replacing every variable in �x with its corresponding individual in �t .

2.3 Disjunctive datalog

Disjunctive datalog [21] is an extension of Datalog, a query and rule language for deductive
databases, in which disjunctions may appear in rule heads. Atoms and rules are elements of
disjunctive datalog. An atom is of the form T (v1, …, vn), where T is a predicate and the
arguments v1, …, vn are variables or constants. An equational atom is an atom composed of
the equality predicate ≈ and two arguments v1 and v2, written as v1 ≈ v2. A rule is of the
form α1 ∨ . . .∨αn ← β1, . . . , βm , where αi and βi are atoms, possibly equational atoms; α1,
…, αn constitute the head of the rule and they are called head atoms; β1, …, βm constitute
the body of the rule and they are called body atoms. The set of head atoms of a rule R is
denoted by head(R), whereas the set of body atoms of R is denoted by body(R). A rule
R is called a constraint if |head(R)| = 0; called a fact if |body(R)| = 0; called definite if
|head(R)| = 1. A fact α1 ∨ . . . ∨ αn ← is simply written as α1 ∨ . . . ∨ αn . A rule is said to
be safe if every variable occurring in a head atom also occurs in some body atom.

A disjunctive datalog program [21] is a finite set of safe rules. A disjunctive datalog pro-
gram with equality is a disjunctive datalog program in which some head atoms are equational
atoms. An atom or a rule is ground if it has no variables. A ground instance of an atom α (resp.
a rule R) is a ground atom (resp. a ground rule) obtained from α (resp. R) by replacing all
variables with constants. Given a disjunctive datalog program with equality P , the set of all
ground instances of atoms in P obtained by replacing all variables with constants occurring
in P is called the Herbrand base of P , denoted by HB(P). The set of all ground instances
of rules in P obtained by replacing all variables with constants occurring in P is called the
primary grounding of P , denoted by Gp(P).

An interpretation M of P is a subset of HB(P). M is called a model of P if (i) body(r) ⊆
M implies head(r)∩ M �= ∅ for every ground rule r ∈ Gp(P), and (ii) the equality predicate
≈ can be interpreted as a congruence relation in M , that is, ≈ is reflexive (i.e., a ≈ a ∈ M for
all constants a occurring in M), symmetric (i.e., a ≈ b ∈ M implies b ≈ a ∈ M) and tran-
sitive (i.e., a ≈ b ∈ M and b ≈ c ∈ M imply a ≈ c ∈ M), and T (a1, . . . , ai , . . . , an) ∈ M
and ai ≈ bi ∈ M imply T (a1, . . . , bi , . . . , an) ∈ M for every predicate T occurring in P .
P is said to be satisfiable if it admits at least one model. A model M of P is called minimal
if none of the proper subsets of M is a model of P . A ground atom α is said to be entailed
by P , denoted by P |� α, if α is in all models of P . Note that α is in all models of P iff it is
in all minimal models of P .

2.4 The KAON2 transformation method

An extensionally reduced SHIQ knowledge base KB = (T , R, A) can be reduced to a
disjunctive datalog problem with equality by applying the KAON2 transformation method
[30,31]. The method consists of six steps.

In step 1, every transitivity axiom Trans(s) ∈ R is removed and concept inclusion axioms
of the form ∀r.C � ∀s.(∀s.C) are added to T , for all roles r such that s �∗ r and all concepts
C appearing in KB. This step is the standard method for eliminating transitivity axioms.

123

Weight-based consistent query answering 341

In step 2, T ∪ R is translated into a set of first-order clauses, using standard transforma-
tion methods from first-order logic. This step involves eliminating existential quantifiers by
Skolemization and may introduce function symbols.

In step 3, the set of clauses obtained in step 2 is saturated by adding non-redundant
logical consequences. This step takes up to exponential time w.r.t. the size of T ∪ R. For an
arbitrary atom in the saturated set of non-redundant clauses, its arguments can be variables
or functional terms of the form f (x), where f is a function symbol introduced in step 2.

In step 4, any functional term f (x) occurring in the resulting set of clauses in step 3
is rewritten to a new variable x f . The resulting set of clauses is then syntactically trans-
formed to a set of disjunctive datalog rules. To make the resulting rules safe, auxiliary
atoms of the form HU (x), HU (x f) or S f (x, x f) are added to rule bodies if necessary. For
example, the rule B(x f) ← A(x), S f (x, x f) is rewritten from B(f (x)) ← A(x), and the
rule A(x) ∨ B(x) ← HU (x) is rewritten from A(x) ∨ B(x). We denote the set of rules
computed in this step by �(T ∪ R), which has no functional terms.

In step 5, a set of ground facts of the form HU (a), HU (a f) or S f (a, a f) is constructed,
which are instantiated for all individual names a occurring in A and all function symbols f
introduced in step 2. We denote this set by �(KB).

In the last step, A is directly translated to a set of ground facts or ground constraints.
More precisely, instance assertions of the form A(a) (resp. r(a, b) or a ≈ b) are translated
to ground facts A(a) (resp. r(a, b) or a ≈ b), while instance assertions of the form ¬A(a)

(resp. ¬s(a, b) or a �≈ b) are translated to ground constraints ← A(a) (resp. ← s(a, b) or
← a ≈ b). We denote this set by �(A).

Let DD(KB) be defined as �(T ∪R)∪�(A)∪�(KB). We have the following theorem.

Theorem 2.1 ([31]) Let KB be an extensionally reduced SHIQ KB, then KB is consistent
iff DD(KB) is satisfiable.

When data complexity is concerned, the size of T ∪ R is fixed and can be treated as a
constant, so the number of rules in DD(KB) is at most polynomial in the size of A, and
DD(KB) is computed in time at most polynomial in the size of A.

Example 2.1 This example is about an inconsistent knowledge base KB = (T , R, A), where
T = {A � ∃r.A � ≤1 r.�}, R = ∅ and A = {A(a), r(a, b),¬A(b), a �≈ b}. By applying
the KAON2 transformation method to KB, �(T ∪ R) consists of non-ground rules R1, R2

and R3, �(A) consists of ground rules R4, …, R7, and �(KB) consists of ground facts R8 and
R9, where R1, …, R9 are given below. We have DD(KB) = �(T ∪ R) ∪ �(A) ∪ �(KB) =
{R1, . . . , R9}.
R1 : r(x, x f) ← A(x), S f (x, x f). R2 : A(x f) ← A(x), S f (x, x f).
R3 : y1 ≈ y2 ← A(x), r(x, y1), r(x, y2). R4 : A(a).
R5 : r(a, b). R6 : ← A(b). R7 : ← a ≈ b. R8 : S f (a, a f). R9 : S f (b, b f).

2.5 Equality axiomatization

A propositional program � is a finite set of ground rules. By atoms(�), we denote the set of
ground atoms occurring in �. A model M of � is a subset of atoms(�) such that for every
rule r ∈ �, body(r) ⊆ M implies head(r) ∩ M �= ∅. This semantics for propositional
programs is widely adopted in existing SAT solvers, but it does not distinguish the equality
predicate ≈ from ordinary predicates. Hence, for a disjunctive datalog program with equality
P , the propositional program Gp(P), namely the primary grounding of P , has not the same
set of models as P has. To remove this semantical difference, we transform P to a disjunctive

123

342 J. Du et al.

datalog program without equality by using the well-known method for axiomatizing equality
[24], described below.

Let π(P) denote the logic program obtained from P by replacing the equality predicate
≈ with a new ordinary predicate eq, and P≈ denote the logic program consisting of the
following rules.

eq(a, a). (for every constant a occurring in P) (1)

eq(y, x) ← eq(x, y). (2)

eq(x, z) ← eq(x, y), eq(y, z). (3)

T (x1, . . . , yi , . . . , xn) ← T (x1, . . . , xi , . . . , xn), eq(xi , yi).

(for every predicate T other than ≈ in P and every position i in T) (4)

The group of rules (1) ensures that eq is reflexive. Rule (2) ensures that eq is symmetric.
Rule (3) ensures that eq is transitive. The group of rules (4) ensures that for every model M
of π(P) and every predicate T other than ≈ occurring in P, T (a1, . . . , ai , . . . , an) ∈ M and
eq(ai , bi) ∈ M imply T (a1, . . . , bi , . . . , an) ∈ M . It is clear that M is a model of P iff M
is an interpretation of π(P) ∪ P≈ such that body(r) ⊆ M implies head(r) ∩ M �= ∅ for all
rules r ∈ Gp(π(P) ∪ P≈). π(P) ∪ P≈ is the disjunctive datalog program without equality
obtained from P by axiomatizing equality.

3 A weight-based semantics for consistent query answering

The standard query mechanism for a SHIQ KB does not give meaningful answers to
conjunctive queries when the KB is inconsistent, because the KB has no models and can
thus entail any axiom. To provide a reasonable query mechanism for inconsistent SHIQ
KBs, we intend to adapt the notion of consistent query answering (CQA) in the database
field, which was first proposed by [1]. A database is consistent if it satisfies all integrity
constraints specified over its schema, or inconsistent otherwise. The original CQA problem
in the database field computes consistent answers of a given query that are satisfied by all
repairs of the original database, where a repair is a consistent database that shares the schema
of the original one, but differs from the latter by a subset-minimal (simply minimal) set of
tuples. Computational methods and complexity results for the original CQA problem have
been extensively studied [9,13]. To provide a less skeptical query mechanism, the cardinal-
ity-based CQA problem was also proposed by [2] , which computes consistent answers of
a given query that are satisfied by all C-repairs of the original database, where a C-repair is
a consistent database that shares the schema of the original one, but differs from the latter by
a cardinality-minimal set of tuples. C-repairs are also repairs because cardinality-minimality
is a special case of subset-minimality. The cardinality-based CQA problem has also been
well studied [3,34].

The notion of repair or C-repair in the database field seems applicable to the DL context
by regarding the schema together with integrity constraints as the union of the TBox and the
RBox, the database as the ABox, and a repair or a C-repair as a model of the union of the
TBox and the RBox that is minimally different from the ABox. However, a direct application
does not work because there is generally not a closed domain for models of the union of
the TBox and the RBox, but repairs or C-repairs in the database field are defined in closed
domains. To adapt the notion of repair or C-repair to DLs, one may consider finite subsets of
models of the union of the TBox and the RBox that are minimally different from the ABox.
Based on this idea, [33] proposed an adaption of repairs to the DL context. They define a

123

Weight-based consistent query answering 343

repair of KB = (T , R, A), where the union of T and R is consistent, as an interpretation
I such that (1) I |� (T , R,∅), and (2) there is not any other interpretation I ′ such that
I ′ |� (T , R,∅) and {α ∈ A | I |� α} ⊂ {α ∈ A | I ′ |� α}. Based on this definition, a tuple
�t of individuals is called a consistent answer of a conjunctive query Q(�x) = ∃�y.conj(�x, �y, �c)
in KB if every repair of KB satisfies Q(�x)[�x �→ �t]. We call this semantics inclusion-based
semantics. Under this semantics, a tuple �t of individuals is a consistent answer of a conjunc-
tive query Q(�x) in KB iff every maximally consistent subbase (simply called MC-subbase)
of KB satisfies Q(�x)[�x �→ �t], where a subbase KB ′ = (T ′, R′, A′) of KB is a SHIQ KB
such that T ′ = T , R′ = R and A′ ⊆ A, and a consistent subbase of KB is a subbase of KB
that is consistent.

Inclusion-based semantics may be too skeptical for Web-based scenarios where there are
often inconsistent data. For example, consider KB = (T , R, A) where T = {Journal �
¬Conference}, R = ∅ and A = {Conference(ISWC), Journal(ISWC)}. There are two
MC-subbases of KB, one does not contain the instance assertion Conference(ISWC), the
other does not contain the instance assertion Journal(ISWC). Hence, neither Conference
(ISWC) nor Journal(ISWC) can be inferred from K B under the inclusion-based
semantics. At the same time, there is a well-known phenomenon in the World Wide Web
called information redundancy, which says that true information is likely to redundantly
exist. By considering information redundancy, we can define an interesting semantics that
allows us to compute relevant answers. Consider the above example again. If we know that
the instance assertion Conference(ISWC) holds in more data sources than the instance
assertion Journal(ISWC), we would like to be able to infer that ISWC is a conference.

In this paper, we will exploit information redundancy to provide instance assertions with
positive weights. One possible way to acquire these weights is to extract them from the output
of an information extraction algorithm proposed, for example, in [37,47]. These algorithms
exploit information redundancy to extract instance assertions and output instance assertions
with weights that are directly proportional to the redundancy of the assertions. We do not focus
on how weights are acquired but on how weights are exploited to deduce information from
an inconsistent SHIQ KB. To this end, we propose the following notion of WOC-subbase
of KBs.

Definition 3.1 (WOC-Subbase) For KB, a possibly inconsistent SHIQ KB where each
instance assertion α ∈ K BA is given a positive weight w(α), a weight-optimal consistent
subbase (WOC-subbase for short) KB ′ of KB is a consistent subbase of KB such that for all
consistent subbases KB ′′ of KB,

∑
α∈KB′′

A
w(α) ≤ ∑

α∈KB′
A

w(α).

A WOC-subbase of an inconsistent SHIQ KB can be viewed as a consistent subbase of
the KB that has the most redundant information. To formalize a query mechanism based on
WOC-subbases, we extend the notion of repair in the DL context [33] and call an interpre-
tation of a WOC-subbase of KB a W-repair of KB, which is formally defined below.

Definition 3.2 (W-Repair) For KB = (T , R, A), a possibly inconsistent SHIQ KB where
T ∪ R is consistent and each instance assertion α ∈ A is given a positive weight w(α), an
interpretation I is called a W-repair of KB if (1) I |� (T , R,∅), and (2)

∑
α∈A,I′|�α w(α) ≤∑

α∈A,I|�α w(α) for all interpretations I ′ such that I ′ |� (T , R,∅).

The weight-based semantics for CQA is defined accordingly. A Boolean conjunctive query

Q = ∃�y.conj(�y, �c) is said to be consistently entailed by KB, denoted by KB |w≈ Q, if every
W-repair of KB satisfies Q. A tuple �t of individuals is called a consistent answer of a con-

junctive query Q(�x) = ∃�y.conj(�x, �y, �c) in KB if KB |w≈ Q(�x)[�x �→ �t]. The problem of

123

344 J. Du et al.

t

v4 a4 :A

e1

e4

b3

r s

r

s

r s

b2e3

v1 v2

e2

v3 a3 :A

a1 :A

r

s

a2 :Ab1

b4

c

Fig. 1 The graph representation of the ABox of KB (right) constructed from a graph G (left) in the proof of

Theorem 3.1, where o is set as 2, ai : A denotes a concept assertion A(ai) and ai
r ′→ a′ denotes a role assertion

r ′(ai , a′) for a′ ∈ {b1, b2, b3, b4, c} and r ′ ∈ {r, s, t}

computing all consistent answers of a conjunctive query Q in KB is called the weight-based
CQA problem for Q. When Q is a Boolean conjunctive query, the weight-based CQA prob-
lem for Q amounts to checking if Q is consistently entailed by KB, so it is also called the
entailment checking problem for Q. The following lemma characterizes the weight-based
semantics for CQA.

Lemma 3.1 For KB, a possibly inconsistent SHIQ KB and Q a Boolean conjunctive query,

KB |w≈ Q iff KB ′ |� Q for all WOC-subbases KB ′ of KB.

Proof This lemma trivially holds since any model of a WOC-subbase of KB is a W-repair
of KB, while any W-repair of KB is a model of some WOC-subbase of KB. ��

In this paper, we assume that all positive weights of instance assertions have been scaled
to positive integers by the same factor. Scaling weights by the same factor does not change
the set of WOC-subbases of KB; thus, it does not change the solutions of weight-based CQA
problems in KB.

Below we prove that under the weight-based semantics, the entailment checking problem
for an atomic query in extensionally reduced SHIQ knowledge bases is �

p
2 [O(log n)]-hard

in data complexity, that is, the problem needs at least O(log n) calls to an NP oracle, where n
is the number of instance assertions in the ABox and the input size of a call to the NP oracle
is polynomial in n.

Theorem 3.1 For KB = (T , R, A), an extensionally reduced SHIQ KB, checking if KB |w≈
A(a), where A is an atomic concept, is �

p
2 [O(log n)]-hard in data complexity.

Proof We show this by a reduction from the following �
p
2 [O(log n)]-hard problem [34]:

given an undirected graph G = (V, E), decide if a vertex v ∈ V belongs to every maximum
independent set of G. An independent set S of G is a set of vertices in V that are not connected
to each other by edges. S is called maximum if there is not an independent set S′ of G such
that |S′| < |S|. For example, a graph G is shown in the left part of Fig. 1; both {v1, v4} and
{v2, v3} are maximum independent sets of G.

Given an undirected graph G = (V, E), where V = {v1, . . . , vn} and E = {e1, . . . , em},
and an integer o ∈ {1, . . . , n}, we construct a SHIQ knowledge base KB = (T , R, A),
where T = {A � ∀r.B, A � ∀s.C, B � C � ⊥, A � ∀t.W }, R = ∅ and A = {A(ai) |
1 ≤ i ≤ n} ∪ {r(ai , bk), s(a j , bk) | 1 ≤ k ≤ m, (vi , v j) = ek ∈ E, i < j} ∪ {t (ao, c)}, and

123

Weight-based consistent query answering 345

where the weights of role assertions are all n + 1 and the weights of concept assertions are
all one. For example, an ABox is shown in the right part of Fig. 1, which is constructed from
the graph G in the left part of Fig. 1 by setting o = 2.

It can be seen that KB is inconsistent, but it becomes consistent after all concept assertions
A(ai) are removed from A. This implies that every W-repair of KB satisfies all role assertions
in A. It can be seen that, if I is W-repair of KB, then {vi ∈ V | I |� A(ai)} is a maximum inde-
pendent set of G; if SV is a maximum independent set of G, then the interpretation I, such that
aI

i = ai for all 1 ≤ i ≤ n, bI
k = bk for all 1 ≤ k ≤ m, cI = c, AI = {ai | vi ∈ SV }, BI =

{bk | vi ∈ SV , r(ai , bk) ∈ A}, CI = {bk | vi ∈ SV , s(ai , bk) ∈ A}, rI = {(ai , bk) | 1 ≤
k ≤ m, (vi , v j) = ek ∈ E, i < j}, sI = {(a j , bk) | 1 ≤ k ≤ m, (vi , v j) = ek ∈ E, i <

j}, tI = {(ao, c)}, and W I = {c} if vo ∈ SV or W I = ∅ otherwise, is a W-repair of KB. For
example, in Fig. 1, {v2, v3} is a maximum independent set of G; correspondingly, the inter-
pretation I such that aI

i = ai for all 1 ≤ i ≤ 4, bI
k = bk for all 1 ≤ k ≤ 4, cI = c, AI =

{a2, a3}, BI = {b3, b4}, CI = {b1, b2}, rI = {(a1, b1), (a1, b2), (a2, b3), (a3, b4)}, sI =
{(a2, b1), (a3, b2), (a4, b3), (a4, b4)}, tI = {(a2, c)} and W I = {c} is a W-repair of KB.

We show that vo belongs to every maximum independent set of G iff KB |w≈ W (c).
(⇒) For every W-repair I of KB, let SV = {vi | I |� A(ai)}, then SV is a maximum
independent set of G. Since vo belongs to every maximum independent set of G, we have
vo ∈ SV . It follows that I |� A(ao). Since I |� t (ao, c) and I |� A � ∀t.W , we have

I |� W (c). It follows that KB |w≈ W (c). (⇐) For every maximum independent set SV

of G, let I be an interpretation such that aI
i = ai for all 1 ≤ i ≤ n, bI

k = bk for all
1 ≤ k ≤ m, cI = c, AI = {ai | vi ∈ SV }, BI = {bk | vi ∈ SV , r(ai , bk) ∈ A}, CI =
{bk | vi ∈ SV , s(ai , bk) ∈ A}, rI = {(ai , bk) | 1 ≤ k ≤ m, (vi , v j) = ek ∈ E, i < j}, sI =
{(a j , bk) | 1 ≤ k ≤ m, (vi , v j) = ek ∈ E, i < j}, tI = {(ao, c)}, and W I = {c} if vo ∈ SV

or W I = ∅ otherwise, then I is a W-repair of KB. Since KB |w≈ W (c), we have I |� W (c).
It follows that vo ∈ SV , that is, vo belongs to every maximum independent set of G.

Based on the above conclusion and the facts that KB is constructible from G in polynomial
time and T has a constant size, the theorem follows. ��

4 Computational methods for the weight-based semantics

Lemma 3.1 shows that the problem of computing all consistent answers of a conjunctive query
in KB can be solved by considering all WOC-subbases of KB. A straightforward method
for computing all consistent answers of a conjunctive query in KB is to first compute all
WOC-subbases of KB, then compute the set of answers of the query in each WOC-subbase
of KB, and finally return the intersection of these sets of answers. However, this method is
hard to be applied in practice because computing a WOC-subbase of KB is already NP-hard
in data complexity for many DLs, which are less expressive than SHIQ [18]; moreover, there
can be exponentially many WOC-subbases of KB w.r.t. the number of instance assertions,
as shown in the following example.

Example 4.1 Let KB = (T , R, A), where T = {A � B � ⊥}, R = ∅, A = {A(ai), B(ai) |
1 ≤ i ≤ n}, and every instance assertion in A is given the same positive weight. We can easily
check that a subbase of KB is a WOC-subbase of KB iff it is of the form {Ci (ai) | 1 ≤ i ≤ n},
where Ci is either A or B. Hence, the number of WOC-subbases of KB is 2n .

In order to evaluate a conjunctive query in a practical way, we propose a novel method
that need not compute any WOC-subbase of KB beforehand. The method works under the

123

346 J. Du et al.

restrictions that the given KB is an extensionally reduced SHIQ KB and the given conjunc-
tive query has no non-distinguished variables. As mentioned in Sect. 1, these restrictions are
not severe in practice.

The basic idea of the proposed method for evaluating a conjunctive query is to reduce the
original problem to multiple entailment checking problems for Boolean conjunctive queries
without variables, then further reduce latter problems to multiple entailment checking prob-
lems for atomic queries, and finally solve the reduced problems by applying SAT solvers.
Given a conjunctive query without non-distinguished variables Q(�x) = conj(�x, �c), all con-

sistent answers of Q(�x) in KB can be computed by checking if KB |w≈ Q(�x)[�x �→ �t] for all
possible tuples �t of individuals, so the weight-based CQA problem for Q(�x) can be reduced
to multiple entailment checking problems for Boolean conjunctive queries without variables.
On the other hand, the entailment checking problem for a Boolean conjunctive query without
variables can be reduced to multiple entailment checking problems for atomic queries, as
shown in the following lemma.

Lemma 4.1 For KB, a possibly inconsistent SHIQ KB and Q = α1 ∧ . . . ∧ αn a Boolean

conjunctive query without variables, KB |w≈ Q iff KB |w≈ αi for all 1 ≤ i ≤ n.

Proof (⇒) When KB |w≈ Q, I |� α1 ∧ . . . ∧ αn for all W-repairs I of KB. Thus, for any

1 ≤ i ≤ n, I |� αi for all W-repairs I of KB, that is, KB |w≈ αi . (⇐) When KB |w≈ αi for all
1 ≤ i ≤ n, I |� αi for all W-repairs I of KB. Thus, I |� α1 ∧ . . . ∧ αn for all W-repairs I
of KB, that is, KB |w≈ Q. ��

In the following Sects. 4.1 and 4.2, we address the entailment checking problem for an
atomic query. Then, in Sect. 4.3, we address the problem of computing all consistent answers
of a conjunctive query.

4.1 Entailment checking of atomic queries

The key idea for solving the entailment checking problem for an atomic query is to reduce
the problem to an extended SAT problem with pseudo-Boolean constraint (PB-constraint).
A PB-constraint [19] is a non-standard rule of the form

∑
i ci xi ≤ d with integer constants

ci , d and variables xi ∈ {0, 1}. An extended SAT problem with PB-constraints can be either
solved by standard SAT solvers after translating PB-constraints to standard SAT clauses
[6,19] or solved by special SAT solvers, such as GALENA [12] and PUEBLO [48], which
support PB-constraints natively.

The basic method without optimizations works in two phases.
The first phase (see Fig. 2a) is performed offline. In this phase, KB = (T , R, A) is first

transformed to a disjunctive datalog program DD(KB) using the KAON2 transformation
method [30,31] (see Sect. 2.4), then to a repair program RP(KB) by adding a decision atom
h̄α to the rule head of every ground rule translated from an instance assertion α in A (see
Definition 4.1). There is a main result about the relationship between KB and RP(KB).
That is, given an atomic query q whose only atom is not on complex roles, the problem

of checking if KB |w≈ q can be reduced to an extended SAT problem with PB-constraints,
namely RP(KB) ∪ {∑α∈A w(α) · assign(h̄α) ≤ wmin} ∪ {← q} (see Corollary 4.1), where
assign(h̄α) denotes the 0–1 truth value of the decision atom h̄α (0 for false and 1 for true)
and wmin is the minimum value v such that RP(KB) ∪ {∑α∈A w(α) · assign(h̄α) ≤ v} is
satisfiable.

123

Weight-based consistent query answering 347

(a)

(b)

Fig. 2 The basic method for entailment checking of atomic queries. a The offline phase, b the online phase

Existing SAT solvers that support PB-constraints only work on propositional programs. In
order to apply these solvers to tackle the extended SAT problem reduced from the entailment
checking problem, we first transform RP(KB) to a disjunctive datalog program without
equality RPe(KB) by axiomatizing equality (see Sect. 2.5), then compile RPe(KB) to a
propositional program using the intelligent grounding technique [22]). Then, wmin is equal
to the minimum value v such that GIG(RPe(KB)) ∪ {∑α∈A w(α) · assign(h̄α) ≤ v} is
satisfiable (see Theorem 4.2 (1)).

The second phase (see Fig. 2b) is performed online, that is, the computations are done for
every given atomic query q . In this phase, the satisfiability of GIG(RPe(KB))∪{∑α∈A w(α)·
assign(h̄α) ≤ wmin} ∪ {← q} is checked by applying a SAT solver that supports PB-

constraints. The unsatisfiability of the above SAT problem implies KB |w≈ q , when the only
atom in q is not on complex roles (see Theorem 4.2 (2)).

In the following, more details of the basic method are provided. The notion of repair
program is given below, and an example for repair programs is shown in Example 4.2.

Definition 4.1 (Repair Program) The repair program of KB, written as RP(KB), is a
disjunctive datalog program with equality, obtained from DD(KB) as follows: for every
instance assertion α ∈ A, introduce a corresponding nullary decision atom h̄α and add it as
a head atom to the rule translated from α in DD(KB).

Example 4.2 (Example 2.1 continued) Consider KB given in Example 2.1, suppose the
weights of instance assertions in A are, respectively, w(A(a)) = 2, w(r(a, b)) =
1, w(¬A(b)) = 1 and w(a �≈ b) = 1. By adding decision atoms to rule heads of ground
rules translated from instance assertions in A, we obtain the repair program of KB, namely
RP(KB) = {R1, …, R3, R′

4, …, R′
7, R8, R9}, where R1, R2, R3, R8 and R9 are given in

Example 2.1 and R′
4, …, R′

7 are given below.
R′

4 : h̄ A(a) ∨ A(a). R′
5 : h̄r(a,b) ∨ r(a, b).

R′
6 : h̄¬A(b) ← A(b). R′

7 : h̄a �≈b ← a ≈ b.

The following lemma shows a relationship between consistent subsets of KB and the
repair program RP(KB).

Lemma 4.2 Let X = {h̄α | α ∈ A} be the set of decision atoms occurring in RP(KB). For
any subset S of A, (T , R, S) is a consistent subbase of KB iff RP(KB) has a model M such
that M ∩ X = {h̄α | α ∈ A \ S}.

123

348 J. Du et al.

Proof Let KB ′ = (T , R, S), then KB ′ is obviously a subbase of KB. Let φX denote an
assignment on X and RP(KB) ↓ φX denote the disjunctive datalog program obtained from
RP(KB) by deleting all rules that have decision atoms h̄α such that φX (h̄α) = true and by
removing all decision atoms from remaining rules.

(⇒) When KB ′ is consistent, by Theorem 2.1, DD(KB ′) is satisfiable. For the assignment
φX on X such that φX (h̄α) = false for all α ∈ S and φX (h̄α) = true for all α ∈ A\ S, clearly
RP(KB) ↓ φX is a superset of DD(KB ′) and the difference set between RP(KB) ↓ φX and
DD(KB ′) consists of only ground facts of the form HU (a), HU (a f) or S f (a, a f), where
a occurs in KB but not in KB ′. Hence, RP(KB) ↓ φX is satisfiable and admits a model
M . It follows that M ′ = M ∪ {h̄α ∈ X | φX (h̄α) = true} is a model of RP(KB) such that
M ′ ∩ X = {h̄α | α ∈ A \ S}.

(⇐) When RP(KB) has a model M such that M ∩ X = {h̄α | α ∈ A \ S}, RP(KB)

is satisfiable under the assignment φX on X such that φX (h̄α) = false for all α ∈ S and
φX (h̄α) = true for all α ∈ A \ S, that is, RP(KB) ↓ φX is satisfiable. Since RP(KB) ↓ φX

is a superset of DD(KB ′), DD(KB ′) is also satisfiable. By Theorem 2.1, KB ′ is consistent.
��

Lemma 4.2 implies that there should be some correspondence between WOC-subbases
of KB and models of RP(KB). Before presenting this correspondence, we introduce the
following definition.

Definition 4.2 ((X, w)-Minimal Model) For P , a disjunctive datalog program with equality,
X a set of ground atoms occurring in P and w : X → R a weight function, where R is the
domain of real numbers. A (X, w)-minimal model M of P is a model of P such that for all
models M ′ of P,

∑
β∈M∩X w(β) ≤ ∑

β∈M ′∩X w(β).

In the remainder of this section, by X , we denote the set of decision atoms occurring in
RP(KB) and by w′ we denote a weight function defined over X such that w′(h̄α) = w(α)

for all α ∈ A. Lemma 4.2 actually implies a correspondence between WOC-subbases of KB
and (X, w′)-minimal models of RP(KB), as shown in the following lemma.

Lemma 4.3 (1) For M, a (X, w′)-minimal model of RP(KB), (T , R, {α | h̄α ∈ X \ M})
is a WOC-subbase of KB. (2) For (T , R, S), a WOC-subbase of KB, there exists a (X, w′)-
minimal model M of RP(KB) such that M ∩ X = {h̄α | α ∈ A \ S}.

Proof (1) Since M is a (X, w′)-minimal model of RP(KB), by Lemma 4.2, (T , R, S) is
consistent where S = {α | h̄α ∈ X \ M}. Suppose (T , R, S) is not a WOC-subbase of
KB, then there exists a consistent subbase (T , R, S′) of KB such that

∑
α∈S′ w(α) >∑

α∈S w(α). By Lemma 4.2, RP(KB) has a model M ′ such that M ′∩X = {h̄α | α ∈ A\
S′}. But

∑
h̄α∈M ′∩X w′(h̄α) = ∑

α∈A\S′ w(α) <
∑

α∈A\S w(α) = ∑
h̄α∈M∩X w′(h̄α),

contradicting that M is a (X, w′)-minimal model of RP(KB). Hence, (T , R, S) is a
WOC-subbase of KB.

(2) Since (T , R, S) is a WOC-subbase of KB, by Lemma 4.2, RP(KB) has a model M
such that M ∩ X = {h̄α | α ∈ K BA \ S}. Suppose M is not a (X, w′)-minimal model
of RP(KB), then there exists a model M ′ of RP(KB) such that

∑
β∈M ′∩X w′(β) <∑

β∈M∩X w′(β). Let S′ = {α | h̄α ∈ X\M ′}, then by Lemma 4.2, (T , R, S′) is a consis-
tent subbase of KB. But

∑
α∈S w(α) = ∑

h̄α∈X\M w′hbarα) <
∑

h̄α∈X\M ′ w′(h̄α) =
∑

α∈S′ w(α), contradicting that (T , R, S) is a WOC-subbase. Hence, M is a (X, w′)-
minimal model of RP(KB). ��

123

Weight-based consistent query answering 349

The following theorem shows that, by considering all (X, w′)-minimal models of
RP(KB), we can solve the entailment checking problem for an atomic query.

Theorem 4.1 For q, an atomic query whose only atom is not on complex roles, KB |w≈ q iff
q is in all (X, w′)-minimal models of RP(KB).

Proof Let KB ′ = (T , R, A ∪ {¬q}), X ′ = X ∪ {h̄¬q}, and w′′ be a weight function defined
over X ′ such that w′′(h̄α) = w′(h̄α) for all h̄α ∈ X and w′′(h̄¬q) = 1.

(⇒) Suppose KB |w≈ q but q �∈ M for some (X, w′)-minimal model M of RP(KB). Note
that RP(KB) ⊆ RP(KB ′) and RP(K B ′) \ RP(KB) only consists of a ground rule
h̄¬q ← q and ground facts of the form HU (a), HU (a f) or S f (a, a f) where a occurs
in q but not in KB, so there exists a (X ′, w′′)-minimal model M ′ of RP(KB ′) such
that M ′ \ M consists of only ground facts of the form HU (a), HU (a f) or S f (a, a f)

where a occurs in q but not in KB. Let S = {α | h̄α ∈ X ′ \ M ′}. By Lemma 4.3,
(T , R, S) is a WOC-subbase of KB ′. Since q �∈ M , we have q �∈ M ′. It follows that
h̄¬q �∈ M ′ and thus ¬q ∈ S. Therefore, (T , R, S \ {¬q}) is a WOC-subbase of KB.

Since KB |w≈ q , by Lemma 3.1, (T , R, S \ {¬q}) |� q . But then (T , R, S) is inconsis-
tent, contradicting that it is a WOC-subbase of KB ′. Hence, q is in all (X, w′)-minimal

models of RP(KB) when KB |w≈ q .

(⇐) Suppose q is in all (X, w′)-minimal models of RP(KB) but KB �|w≈ q . By Lemma
3.1, there exists a subset S of A such that (T , R, S) is a WOC-subbase of KB but
(T , R, S) �|� q . Let S′ = S ∪ {¬q}, then (T , R, S′) is consistent. It follows that
(T , R, S′) is a WOC-subbase of KB ′. By Lemma 4.3, there exists a (X ′, w′′)-min-
imal model M of RP(KB ′) such that M ∩ X ′ = {h̄α | α ∈ (A ∪ {¬q}) \ S′} =
{h̄α | α ∈ A \ S}. Thus, h̄¬q �∈ M and q �∈ M . Note that RP(KB) ⊆ RP(KB ′)
and RP(KB ′) \ RP(KB) only consists of a ground rule h̄¬q ← q and ground facts
of the form HU (a), HU (a f) or S f (a, a f) where a occurs in q but not in KB, so
M ′ = M ∩ HB(RP(KB)) is a (X, w′)-minimal model of RP(KB). But then q �∈ M ′,
contradicting that q is in all (X, w′)-minimal models of RP(KB). Hence, KB |w≈ q
when q is in all (X, w′)-minimal models of RP(KB). ��

The above theorem may not hold for an atomic query r(a, b) where r is a complex role,
because KB ′ = (T , R, A ∪ {¬r(a, b)}) is not a SHIQ KB defined in Sect. 2.1 and KB ′
may not be equisatisfiable with DD(KB ′) [31].

We can see that for all (X, w′)-minimal models M of RP(KB), the sum of weights∑
h̄α∈M∩X w′(h̄α) is the same and is equal to the minimum value v such that RP(KB) ∪

{∑α∈A w(α) ·assign(h̄α) ≤ v} is satisfiable. In the remainder of this section, we denote this
minimum value by wmin. We can see that a (X, w′)-minimal model of RP(KB) is a model
of RP(KB) ∪ {∑α∈A w(α) · assign(h̄α) ≤ wmin}, and vice versa. It follows that q is in
all (X, w′)-minimal models of RP(KB) iff q is in all models of RP(KB) ∪ {∑α∈A w(α) ·
assign(h̄α) ≤ wmin}. Hence, we have the following corollary from Theorem 4.1.

Corollary 4.1 For q an atomic query whose only atom is not on complex roles, KB |w≈ q iff
RP(KB) ∪ {∑α∈A w(α) · assign(h̄α) ≤ wmin} ∪ {← q} is unsatisfiable.

We intend to use SAT solvers that support PB-constraints to solve the extended SAT
problem given in Corollary 4.1. Although most of these SAT solvers are highly optimized,
they only work on propositional programs, so we need to ground RP(KB), that is, compile

123

350 J. Du et al.

RP(KB) to a semantically equivalent propositional program, before checking if KB |w≈ q .
In propositional programs, the equality predicate ≈ is not distinguished from ordinary pred-
icates, so we axiomatize equality in RP(KB) before grounding RP(KB). By RPe(K B),
we denote the disjunctive datalog program without equality obtained from RP(KB) by
axiomatizing equality, that is, if the equality predicate ≈ occurs in some rule heads in
RP(KB), RPe(KB) is defined as π(RP(KB)) ∪ RP≈(KB) (see Sect. 2.5), or defined as
RP(KB) otherwise.

The primary grounding of RPe(KB), namely Gp(RPe(KB)) (see Sect. 2.4), may be too
large to be handled by SAT solvers. Hence, we apply the well-known intelligent grounding
(IG) technique [22] to ground RPe(KB), which only yields a subset of Gp(RPe(KB)). Given
a disjunctive datalog program without equality P , the IG technique essentially computes the
least fixpoint of �(n) such that �(0) = ∅ and for n ≥ 1,�(n) = {Rσ | R ∈ P, σ is a ground
substitution such that body(Rσ) ⊆ atoms(�(n−1))}. The resulting least fixpoint, denoted by
GIG(P), consists of all relevant rules for preserving the semantics of P . That is, GIG(P) has
the same set of minimal models as P has [22]. Based on this semantic equivalence between
RPe(KB) and GIG(RPe(KB)), we have the following theorem.

Theorem 4.2 (1) wmin is equal to the minimum value v such that GIG(RPe(KB)) ∪
{∑α∈A w(α) ·assign(h̄α) ≤ v} is satisfiable. (2) For q, an atomic query whose only atom is

not on complex roles, KB |w≈ q iff GIG(RPe(KB))∪{∑α∈A w(α)·assign(h̄α) ≤ wmin}∪{←
q} is unsatisfiable.

Proof (1) It suffices to show that for any v, GIG(RPe(KB))∪{∑α∈A w(α)·assign(h̄α) ≤ v}
is satisfiable iff RP(KB) ∪ {∑α∈A w(α) · assign(h̄α) ≤ v} is satisfiable.

(⇒) WhenGIG(RPe(KB))∪{∑α∈A w(α)·assign(h̄α) ≤ v} is satisfiable,GIG(RPe(KB))

has a minimal model M such that
∑

h̄α∈M∩X w′(h̄α) ≤ v holds. Since RPe(KB) and
GIG(RPe(KB)) have the same set of minimal models, M is also a minimal model of RPe(KB)

such that
∑

h̄α∈M∩X w′(h̄α) ≤ v holds. Hence, RP(KB) ∪ {∑α∈A w(α) · assign(h̄α) ≤ v}
is satisfiable.

(⇐) When RP(KB)∪{∑α∈A w(α) ·assign(h̄α) ≤ v} is satisfiable, RPe(KB) has a min-
imal model M such that

∑
h̄α∈M∩X w′(h̄α) ≤ v holds. Since RPe(KB) and GIG(RPe(KB))

have the same set of minimal models, M is also a minimal model of GIG(RPe(KB)) such
that

∑
h̄α∈M∩X w′(h̄α) ≤ v holds. Hence, GIG(RPe(KB))∪{∑α∈A w(α) ·assign(h̄α) ≤ v}

is satisfiable.
(2) It can be proved analogously as (1) that GIG(RPe(KB))∪{∑α∈A w(α)·assign(h̄α) ≤

wmin}∪{← q} is satisfiable iff RP(KB)∪{∑α∈A w(α)·assign(h̄α) ≤ wmin}∪{← q} is sat-

isfiable. By Corollary 4.1, we have KB |w≈ q iff GIG(RPe(KB))∪{∑α∈A w(α)·assign(h̄α) ≤
wmin} ∪ {← q} is unsatisfiable. ��

Example 4.3 (Example 4.2 continued) Since the equality predicate ≈ occurs in some rule
heads in RP(KB), we have RPe(KB) = π(RP(KB)) ∪ RP≈(KB), where π(RP(KB)) =
{R1, …, R9} and RP≈(KB) = {R10, …, R20}. The rules R1, …, R20 are given below.
R1 : r(x, x f) ← A(x), S f (x, x f). R2 : A(x f) ← A(x), S f (x, x f).
R3 : eq(y1, y2) ← A(x), r(x, y1), r(x, y2). R4 : h̄ A(a) ∨ A(a).
R5 : h̄r(a,b) ∨ r(a, b). R6 : h̄¬A(b) ← A(b). R7 : h̄a �≈b ← eq(a, b).
R8 : S f (a, a f). R9 : S f (b, b f). R10 : eq(a, a). R11 : eq(b, b).
R12 : eq(a f , a f). R13 : eq(b f , b f). R14 : eq(y, x) ← eq(x, y).

123

Weight-based consistent query answering 351

R15 : eq(x, z) ← eq(x, y), eq(y, z). R16 : A(y) ← A(x), eq(x, y).
R17 : r(z, y) ← r(x, y), eq(x, z). R18 : r(x, z) ← r(x, y), eq(y, z).
R19 : S f (z, y) ← S f (x, y), eq(x, z). R20 : S f (x, z) ← S f (x, y), eq(y, z).

By applying the IG technique and deleting instantiated rules that have body atoms
of the form eq(c, c) or eq(c f , c f), we have �(0) = ∅,�(1) = {r1, . . . , r10},�(2) =
{r1, . . . , r12},�(3) = {r1, . . . , r14},�(4) = {r1, . . . , r20},�(5) = {r1, . . . , r22}, and �(6) =
�(5), so GIG(RPe(KB)) = �(5) = {r1, . . . , r22}, where r1, . . . , r22 are given below.
r1 : h̄ A(a) ∨ A(a). r2 : h̄r(a,b) ∨ r(a, b). r3 : h̄¬A(b) ← A(b).
r4 : h̄a �≈b ← eq(a, b). r5 : S f (a, a f). r6 : S f (b, b f). r7 : eq(a, a).
r8 : eq(b, b). r9 : eq(a f , a f). r10 : eq(b f , b f).
r11 : r(a, a f) ← A(a), S f (a, a f). r12 : A(a f) ← A(a), S f (a, a f).
r13 : eq(b, a f) ← A(a), r(a, b), r(a, a f). r14 : eq(a f , b) ← A(a), r(a, a f), r(a, b).
r15 : eq(b, a f) ← eq(a f , b). r16 : eq(a f , b) ← eq(b, a f).
r17 : A(b) ← A(a f), eq(a f , b). r18 : r(a, b) ← r(a, a f), eq(a f , b).
r19 : r(a, a f) ← r(a, b), eq(b, a f). r20 : S f (a, b) ← S f (a, a f), eq(a f , b).
r21 : A(a f) ← A(b), eq(b, a f). r22 : S f (a, a f) ← S f (a, b), eq(b, a f).

According to Theorem 4.2, we have wmin = 1 and, for example, KB |w≈ A(a), KB �|w≈ A(b)

and KB �|w≈ r(a, b).

Consider the time complexity of the basic method for entailment checking of atomic
queries in terms of data complexity. Let n be the number of instance assertions in A. As
analyzed in Sect. 2.4, the number of rules in DD(KB) is at most polynomial in n, and the
number of variables occurring in any rule in DD(KB) is bounded by some constant. Hence,
the number of rules in RPe(KB) is also polynomial in n, and the number of variables occur-
ring in any rule in RPe(KB) is also bounded by some constant. It follows that the number of
ground rules in GIG(RPe(KB)) is polynomial in n. Under the assumption that every instance
assertion in A has a positive weight polynomial in n, by Theorem 4.2 (1), wmin can be
computed by binary search for the minimum value v between 1 and

∑
α∈A w(α), making

O(log n) calls to a SAT solver that supports PB-constraints. In addition, to check whether

KB |w≈ q for an atomic query q , a further call to the SAT solver is needed. Since the input size

of each call to the SAT solver is polynomial in n, checking if KB |w≈ q is in �
p
2 [O(log n)] in

data complexity. This time complexity is guaranteed to be optimal by Theorem 3.1, which

says that the problem of checking if KB |w≈ q is �
p
2 [O(log n)]-hard in data complexity.

4.2 Optimizations in a decomposition-based framework

Although the basic method for entailment checking of atomic queries is time complexity
optimal, it is still hard to work with large SHIQ KBs. This is because the method transforms
KB to a propositional program GIG(RPe(KB)), which is probably large and can hardly be
handled by SAT solvers. To address this issue, we propose a decomposition-based framework
to make easier the satisfiability tests required in Theorem 4.2.

The decomposition-based framework adds extra processes to both phases of the basic
method. In the first phase, GIG(RPe(KB)) is decomposed into a set of disjoint subsets, and
then a set of weights whose sum is wmin is separately computed from these subsets. In the
second phase, for every given atomic query q , a query-relevant extended SAT problem with
PB-constraints is constructed from some disjoint subsets computed in the first phase. When

the only atom in q is not on complex roles, this SAT problem is unsatisfiable iff KB |w≈ q .

123

352 J. Du et al.

The rationality of the framework is that if we can compute many small disjoint subsets of
GIG(RPe(KB)) and can construct a query-relevant SAT problem from a small number of
these disjoint subsets, then we may efficiently solve the entailment checking problem for an
atomic query no matter how large GIG(RPe(KB)) is.

4.2.1 The key optimization in the first phase: decomposition

The aim of decomposing GIG(RPe(KB)) is to compute a set of disjoint subsets of
GIG(RPe(KB)) such that wmin can be separately computed from these subsets. In order
to compute small disjoint subsets of GIG(RPe(KB)), we propose an optimized method that
first removes some rules from GIG(RPe(KB)) which are irrelevant to computing wmin, then
computes maximal connected components of the set of remaining rules in GIG(RPe(KB)).
The notion of connected component, formally defined in Definition 4.3, has been widely used
in solving SAT problems since some seminal work such as [4]. Simply speaking, a connected
component of a propositional program � is a subset of � such that any two clauses in it
are connected via common ground atoms; a connected component is maximal if it has no
proper subsets that are also connected components. Maximal connected components of � are
disjoint subsets of � that preserve unsatisfiability since some maximal connected component
of � must be unsatisfiable when � is unsatisfiable.

Definition 4.3 (Connected Component) Two ground rules r and r ′ are called connected in a
propositional program � if there exists a sequence of rules r0 = r, r1, …, rn = r ′ in � such
that ri−1 and ri have common ground atoms for any 1 ≤ i ≤ n. A connected component �c

of � is a subset of � such that any two rules r and r ′ in �c are connected in �c. �c is called
maximal if there is no connected component �′

c of � such that �c ⊂ �′
c.

The first step in the proposed method for decomposing GIG(RPe(KB)) is to find a subset
�0 of GIG(RPe(KB)) such that wmin can still be computed in GIG(RPe(KB)) \�0. We call
a subset �0 of GIG(RPe(KB)) an X-irrelevant subset of GIG(RPe(KB)) if wmin is equal to
the minimum value v such that (GIG(RPe(KB)) \ �0) ∪ {∑β∈X ′ w′(β) · assign(β) ≤ v}
is satisfiable, where X ′ is the set of decision atoms occurring in GIG(RPe(KB)) \ �0. It is
clear that when �0 is an X -irrelevant subset of GIG(RPe(KB)), wmin can be computed in
GIG(RPe(KB)) \ �0. The notion of X -irrelevance is independent of any weight function
w′ : X → R.

In the following, an example is provided to motivate our proposed method for computing
an X -irrelevant subset of GIG(RPe(KB)).

Example 4.4 This example is about an inconsistent knowledge base KB = (T , R, A), where
T = {A � ∃r.� � C,� � ∀s.A,� � ∀t.B, ∃r.C � ⊥}, R = {s � r, t � r}, and
A = {A(a), C(b), C(c), s(a, b), t (a, c)}. We have GIG(RPe(KB)) = {r1, …, r13} shown
below.
r1 : A(a) ∨ h̄ A(a). r2 : C(b) ∨ h̄C(b). r3 : C(c) ∨ h̄C(c).
r4 : s(a, b) ∨ h̄s(a,b). r5 : t (a, c) ∨ h̄t (a,c). r6 : C(a) ← A(a), r(a, b).
r7 : C(a) ← A(a), r(a, c). r8 : A(b) ← s(a, b). r9 : B(c) ← t (a, c).
r10 : ← C(b), r(a, b). r11 : ← C(c), r(a, c). r12 : r(a, b) ← s(a, b).
r13 : r(a, c) ← t (a, c).

Consider Example 4.4 for computing an X -irrelevant subset of GIG(RPe(KB)). It can be
seen that A(a), C(a), A(b) and B(c) occur in the heads of r1, r6, …, r9, but do not occur
anywhere in rules r2, …, r5, r10, …, r13. Let w′

min be the minimum value v such that {r2, …,

123

Weight-based consistent query answering 353

r5, r10, …, r13}∪{∑β∈X ′ w′(β)·assign(β) ≤ v} is satisfiable, where X ′ is the set of decision
atoms occurring in {r2, …, r5, r10, …, r13}. Let M ′ be a model of {r2, …, r5, r10, …, r13}
such that

∑
β∈M ′∩X ′ w′(β) ≤ w′

min holds, then M ′ ∪ {A(a), C(a), A(b), B(c)} is a model
of GIG(RPe(KB)) such that

∑
β∈M ′∩X w′(β) ≤ w′

min holds. By the minimality of wmin, it
follows that w′

min = wmin. Thus, {r1, r6, …, r9} is an X -irrelevant subset of GIG(RPe(KB)).
By generalizing this example, we conclude that a subset S of GIG(RPe(KB)), such that
every rule in S has at least one head atom not in X nor occurring in GIG(RPe(KB)) \ S, is an
X -irrelevant subset of GIG(RPe(KB)). This conclusion is formally shown in the following
lemma.

Lemma 4.4 Let�0 be a subset of GIG(RPe(KB)) such that head(r) �⊆ X∪atoms(GIG(RPe

(KB)) \ �0) for all rules r ∈ �0. Let � = GIG(RPe(KB)) \ �0 and X ′ = atoms(�) ∩ X,
then wmin is equal to the minimum value v such that � ∪ {∑β∈X ′ w′(β) · assign(β) ≤ v}
is satisfiable.

Proof Let M0 = ⋃
r∈�0

head(r) \ (X ∪ atoms(�)), then M0 ∩ head(r) �= ∅ for all
rules r ∈ �0. Hence, M0 is a model of �0. Let w′

min be the minimum value v such that
�∪{∑β∈X ′ w′(β) ·assign(β) ≤ v} is satisfiable, and M ′ be a model of �∪{∑β∈X ′ w′(β) ·
assign(β) ≤ w′

min}. Since M0 ∩ atoms(�) = ∅ and M ′ ⊆ atoms(�), M0 ∪ M ′ is a model
of � ∪ {∑β∈X w′(β) · assign(β) ≤ w′

min}. By the minimality of wmin, that is, wmin is
the minimum value v such that � ∪ {∑β∈X w′(β) · assign(β) ≤ v} is satisfiable, we have
wmin ≤ w′

min. Suppose wmin < w′
min, then for M a model of �∪{∑β∈X w′(β)·assign(β) ≤

wmin}, M ∩ atoms(�) is a model of � and
∑

β∈M∩X ′ w′(β) < w′
min holds, contradicting

the minimality of w′
min. Hence, wmin = w′

min. ��
The last step of the proposed method for decomposing GIG(RPe(KB)) is to compute the set

of maximal connected components of GIG(RPe(KB))\�0. The following lemma shows that
wmin can be separately computed from maximal connected components of GIG(RPe(KB)) \
�0.

Lemma 4.5 Let�0 be a subset of GIG(RPe(KB)) such that head(r) �⊆ X∪atoms(GIG(RPe

(KB))\�0) for all rules r ∈ �0, {�1, . . . ,�m} be the set of maximal connected components
of GIG(RPe(KB))\�0, and for 1 ≤ i ≤ m, Xi = X ∩atoms(�i), wi be the minimum value
v such that �i ∪ {∑β∈Xi

w′(β) · assign(β) ≤ v} is satisfiable. Then, wmin = ∑m
i=1 wi .

Proof Let � = GIG(RPe(KB))\�0 and Mi be a model of �i ∪{∑β∈Xi
w′(β)·assign(β) ≤

wi } for 1 ≤ i ≤ m. For any 1 ≤ j < k ≤ m, since atoms(� j) ∩ atoms(�k) = ∅, we have
M j ∩ Mk = ∅. Thus,

⋃m
i=1 Mi is a model of � ∪ {∑β∈X w′(β) · assign(β) ≤ ∑m

i=1 wi }.
By Lemma 4.4 and the minimality of wmin, that is, wmin is the minimum value v such that
� ∪ {∑β∈X w′(β) · assign(β) ≤ v} is satisfiable, we have wmin ≤ ∑m

i=1 wi . Suppose
wmin <

∑m
i=1 wi , then for M a model of � ∪ {∑β∈X w′(β) · assign(β) ≤ wmin}, there

exists k ∈ {1, . . . , m} such that M ∩atoms(�k) is a model of �k and
∑

β∈M∩Xk
w′(β) < wk

holds, contradicting the minimality of wk . Hence, wmin = ∑m
i=1 wi . ��

The maximal connected components of GIG(RPe(KB)) \�0 are usually smaller than the
maximal connected components of GIG(RPe(KB)). Consider Example 4.4, �0 = {r1, r6, …,
r9} is an X -irrelevant subset of GIG(RPe(KB)), and GIG(RPe(KB)) \ �0 has two maximal
connected components, namely {r2, r4, r10, r12} and {r3, r5, r11, r13}. But GIG(RPe(KB))

has only one maximal connected component, namely itself.

123

354 J. Du et al.

Fig. 3 An algorithm for decomposing � into disjoint subsets based on X

We develop an efficient algorithm, shown in Fig. 3, for computing an X -irrelevant sub-
set �0 of GIG(RPe(KB)) and the set of maximal connected components {�i }1≤i≤m of
GIG(RPe(KB)) \ �0 at the same time. The basic idea is as follows. Initially, the algorithm
sets �0 as � and connected components of �\�0 as empty. Then, it shrinks �0 and expands
connected components of � \ �0 in an iterative manner until a fixpoint is reached.

To efficiently manipulate �0 and connected components of � \ �0, the algorithm intro-
duces a component identifier cid(α) for every ground atom α occurring in �. In the algorithm,
cid(r) simply denotes the set {cid(α) | α ∈ head(r) ∪ body(r)} for a ground rule r . The
set of rules r ∈ � such that 0 ∈ {cid(α) | α ∈ head(r) \ X} is treated as �0. The algorithm
always guarantees that, for any two rules r1 and r2 in � \ �0, cid(r1) ∩ cid(r2) �= ∅ iff r1

and r2 are connected in � \ �0.
Details are given as follows. Initially, the algorithm sets cid(α) as 0 for all ground atoms

α occurring � (line 1). Intuitively, this line sets �0 as �. Then the algorithm enters a loop
(lines 3–10). Intuitively, this loop iteratively shrinks �0 and expands connected components
of �\�0. In each iteration (lines 5–10), each rule r ∈ �\�0, which is a rule in � such that
head(r) = ∅ or 0 �∈ {cid(α) | α ∈ head(r)\ X}, is processed as follows: first, for all ground
atoms α occurring in r, cid(α) is set as the incremental value k if cid(α) = 0 (lines 6–7);
then, for every ground atom α occurring in r, cid(α) is set as the minimum cid(α) among all
ground atoms α occurring in r (lines 8–10). Lines 6–7 give every ground atom α occurring
in � \ �0 a unique positive cid(α), ensuring that cid(r1) ∩ cid(r2) = ∅ for any two rules
r1 and r2 that are unconnected in � \ �0. Lines 8–10 ensure that cid(r1) ∩ cid(r2) �= ∅
for any two rules r1 and r2 that are connected in � \ �0, and also ensure that cid(α) does
not increase after being changed from 0 to a positive integer for any ground atom α occur-
ring in �. Since there must be some cid(α) decreasing to another positive integer in every
iteration except the last one, the set {cid(r) | r ∈ �} will be stable after a finite number
of iterations. When {cid(r) | r ∈ �} is stable, �0 consists of all rules r ∈ � such that
head(r) �⊆ X ∪ atoms(� \ �0) and becomes an X -irrelevant subset of �, and meanwhile,
all rules r in � \ �0 having the same cid(r) constitute a maximal connected component
of � \ �0. Hence, the algorithm puts together all rules r having the same singleton set
cid(r) �= {0} to form a subset �i (1 ≤ i ≤ m) of � (line 11) and sets �0 as � \ ⋃m

i=1 �i

(line 12).

Example 4.5 (Example 4.4 continued) We demonstrate how the algorithm Decom-
pose(GIG(RPe(KB)), X) works for GIG(RPe(KB)) given in Example 4.4, where X is the

123

Weight-based consistent query answering 355

set of decision atoms in GIG(RPe(KB)), that is, X = {h̄ A(a), h̄C(b), h̄C(c), h̄s(a,b), h̄t (a,c)}.
We assume that all rules in GIG(RPe(KB)) are processed in turn in each iteration (lines 3–10)
of the algorithm.

k A(a) h̄ A(a) C(b) h̄C(b) C(c) h̄C(c) s(a, b) h̄s(a,b) t (a, c) h̄t (a,c) C(a) r(a, b) r(a, c) A(b) B(c)
r10 2 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
r11 4 0 0 1 0 3 0 0 0 0 0 0 1 3 0 0
r2 5 0 0 1 1 3 0 0 0 0 0 0 1 3 0 0
r3 6 0 0 1 1 3 3 0 0 0 0 0 1 3 0 0
r12 7 0 0 1 1 3 3 1 0 0 0 0 1 3 0 0
r13 8 0 0 1 1 3 3 1 0 3 0 0 1 3 0 0
r4 9 0 0 1 1 3 3 1 1 3 0 0 1 3 0 0
r5 10 0 0 1 1 3 3 1 1 3 3 0 1 3 0 0

The above table shows the result of the first three iterations, where the first column shows
which rule r is processed in lines 6–10, the second column shows the incremental value k
after r is processed, and the other columns show the component identifiers of all ground
atoms occurring in GIG(RPe(KB)) after r is processed. It can be seen that in the fourth
iteration the set {cid(r) | r ∈ GIG(RPe(KB))} becomes stable and is not changed anymore.
Thus, the algorithm returns (�0, {�1,�2}), where �1 = {r ∈ GIG(RPe(KB)) | cid(r) =
{1}} = {r2, r4, r10, r12},�2 = {r ∈ GIG(RPe(KB)) | cid(r) = {3}} = {r3, r5, r11, r13}, and
�0 = � \ {�1,�2} = {r1, r6, . . . , r9}.

The following lemma shows the computational complexity and correctness of
Decompose(�, X).

Lemma 4.6 Let (�0, {�i }1≤i≤m) be returned from Decompose(�, X), and Nat be the
number of ground atoms occurring in �. (1) Decompose(�, X) works in time polynomial
in Nat. (2) �0 is the largest subset of � such that head(r) �⊆ X ∪ atoms(� \ �0) for all
rules r ∈ �0. (3) {�i }1≤i≤m is the set of maximal connected components of � \ �0.

Proof (1) For every ground atom α occurring in �, if cid(α) is changed during the
execution of Decompose(�, X), then it is first changed from 0 to a positive inte-
ger not greater than Nat and continuously decreases to other positive integers in the
subsequent iterations. Hence, cid(α) can be changed at most Nat times for all ground
atoms α occurring in �. Since in all iterations (lines 3–10) except the last one some
cid(α) must decrease, there are at most N 2

at + 1 iterations. Since each iteration works
in time polynomial in Nat, Decompose(�, X) also works in time polynomial in Nat.

(2) Suppose �0 is not the largest subset of � such that head(r) �⊆ X ∪ atoms(� \ �0)

for all rules r ∈ �0, then there exists a subset �′
0 of � such that �′

0 �⊆ �0 and
head(r) �⊆ X ∪ atoms(� \ �′

0) for all rules r ∈ �′
0. Let �0 = �′

0 \ �0 and
�+

0 = �0 ∪ �′
0, then �0 �= ∅ and atoms(� \ �+

0) ⊆ atoms(� \ �′
0). For all rules

r ∈ �′
0, since head(r) �⊆ X∪atoms(�\�′

0), we have head(r) �⊆ X∪atoms(�\�+
0).

Since �0 ⊆ �′
0, we have head(r) �⊆ X ∪ atoms(� \ �+

0) for all rules r ∈ �0. On
the other hand, since �0 ∩ �0 = ∅, all rules r ∈ �0 must be processed at lines 6–10
during Decompose(�, X) is executed. Let r f be the first rule in �0 that is processed
at lines 6–10 during Decompose(�, X) is executed. Consider the moment just before
r f is processed at line 6 for the first time. Since cid(α) > 0 for all ground atoms
α ∈ head(r f) \ X , and since all ground atoms α such that cid(α) > 0 occur in
rules in � \ �+

0 , head(r f) ⊆ X ∪ atoms(� \ �+
0), contradicting that head(r) �⊆

X ∪ atoms(� \ �+
0) for all rules r ∈ �0.

(3) Note that after the loop (lines 3–10) ends, for any rule r ∈ � \ �0, cid(r) = {c}
for some c > 0, and for any two rules r1 and r2 in � \ �0, if r1 and r2 are con-
nected in � \ �0, cid(r1) and cid(r2) are the same singleton set, otherwise cid(r1)

and cid(r2) are two different singleton sets. Hence, all rules r in � \ �0 that have

123

356 J. Du et al.

the same cid(r) constitute a maximal connected component of � \ �0. Since every
�i (1 ≤ i ≤ m) is formed by putting together all rules having the same cid(r) with
cid(r) = {c} for some c > 0,�i is a maximal connected component of � \ �0. Since⋃m

i=1 �i = � \�0, {�}1≤i≤m is the set of maximal connected components of � \�0.
��

It follows from the above lemma that, Decompose(GIG(RPe(KB)), X) works in polyno-
mial time in data complexity, since the number of ground atoms occurring in GIG(RPe(KB))

is at most polynomial in the number of instance assertions in KB. In our experiments,Decom-
pose(GIG(RPe(KB)), X) is always finished in a few iterations and shows a high efficiency.

In the remainder of this section, let (�0, {�i }1≤i≤m) be the result returned from Decom-
pose(GIG(RPe(KB)), X), and Xi = X ∩ atoms(�i) for all 0 ≤ i ≤ m; moreover, for all
1 ≤ i ≤ m, let wi be the minimum value v such that �i ∪ {∑β∈Xi

w′(β) · assign(β) ≤ v}
is satisfiable.

4.2.2 The key optimization in the second phase: query-relevant SAT problem construction

We now propose an optimized method for constructing a query-relevant SAT problem, which

is an extended SAT problem with PB-constraints, to check whether KB |w≈ q for an atomic
query q . In this method, we assume that the given atomic query q is a ground atom occurring

in GIG(RPe(KB)). When q does not occur in GIG(RPe(KB)), it is trivial that KB �|w≈ q by
Theorem 4.2.

By considering that GIG(RPe(KB)) ∪ {∑h̄α∈X w(α) · assign(h̄α) ≤ wmin} ∪ {← q} is

unsatisfiable iff KB |w≈ q (see Theorem 4.2), we simply call GIG(RPe(KB))∪{∑h̄α∈X w(α)·
assign(h̄α) ≤ wmin}∪ {← q} the checking program of q . Let S be an X -irrelevant subset of
GIG(RPe(KB)) ∪ {← q}. Since GIG(RPe(KB)) ∪ {∑h̄α∈X w(α) · assign(h̄α) ≤ wmin} is
satisfiable, the maximal connected component of GIG(RPe(KB)) ∪ {← q} \ S that contains
the constraint ← q must be unsatisfiable with some PB-constraints, iff the checking program
of q is unsatisfiable. Based on this observation, we develop a method to compute an query-

relevant SAT problem for checking if KB |w≈ q . It first identifies an X -irrelevant subset S of
GIG(RPe(KB)) ∪ {← q} in �0, then extracts from {�i }1≤i≤m the maximal connected com-
ponent � of GIG(RPe(KB)) ∪ {← q} \ S that contains the constraint ← q , and meanwhile

adds PB-constraints to � to yield an query-relevant SAT problem for checking if KB |w≈ q .
The algorithm Construct-SAT-Problem(q), given in Fig. 4, shows more details of

this method. In the case where the given atomic query q occurs in �k for some 1 ≤ k ≤
m,�0 is an X -irrelevant subset of GIG(RPe(KB)) ∪ {← q}, and �k ∪ {← q} is the max-
imal connected component of GIG(RPe(KB)) ∪ {← q} \ �0 that contains ← q . Hence,
�k ∪ {∑h̄α∈Xk

w(α) · assign(h̄α) ≤ wk} ∪ {← q} preserves the unsatisfiability of the
checking program of q and is returned (line 2). In other cases, q must occur in �0, and �0

may not be an X -irrelevant subset of GIG(RPe(KB)) ∪ {← q}. We use the following steps

to compute a query-relevant SAT problem � for checking if KB |w≈ q . Since the decision
atoms in �0 should be assigned the truth value 0 in any model of the checking program
of q (by Lemma 4.5) and they occur only in rule heads, �0 can be simplified by removing
all decision atoms without impacting the unsatisfiability of the checking program of q . We
first simplify �0 to �′

0 by removing all decision atoms (line 3). Then, we initialize � as the
singleton set {← q} (line 4) and iteratively add to � all rules in �′

0 whose head atoms all
occur in �∪⋃m

i=1 �i (lines 5–6). After � becomes stable, �′
0 \� is an X -irrelevant subset

123

Weight-based consistent query answering 357

Fig. 4 The algorithm for constructing an extended SAT problem for entailment checking of an atomic query

of �′
0 ∪ {← q} ∪ ⋃m

i=1 �i . Finally, we append �i ∪ {∑h̄α∈Xi
w(α) · assign(h̄α) ≤ wi }

to � for every �i (1 ≤ i ≤ m) that has ground atoms occurring in � (lines 7–8). At this
moment, the set of rules in � excluding PB-constraints is the maximal connected component
of (�′

0 ∪{← q}∪⋃m
i=1 �i) \�′′

0 that contains ← q , where �′′
0 = �′

0 \� is an X -irrelevant
subset of �′

0 ∪ {← q} ∪ ⋃m
i=1 �i . Hence, � preserves the unsatisfiability of the checking

program of q and is returned (line 9). The correctness of the algorithm is formally shown by
the following lemma.

Lemma 4.7 Let q be an atomic query whose only atom occurs in GIG(RPe(KB)) and is not

on complex roles, and � be returned by Construct-SAT-Problem(q), then KB |w≈ q
iff � is unsatisfiable.

Proof Let �′
0 = {∨(head(r) \ X0) ← ∧

body(r) | r ∈ �0}, and �′ = �′
0 ∪ {←

q} ∪ ⋃m
i=1(�i ∪ {∑h̄α∈Xi

w(α) · assign(h̄α) ≤ wi }). We first show that the checking pro-
gram of q is unsatisfiable ⇐⇒ �′ is unsatisfiable. For the (⇒) direction, suppose the
checking program of q is unsatisfiable but �′ has a model M , then

∑
h̄α∈M∩Xi

w(α) ≤ wi

for all 1 ≤ i ≤ m. By Lemma 4.5,
∑

h̄α∈M∩X w(α) ≤ ∑m
i=1 wi = wmin. For any rule r

in �0 such that body(r) ⊆ M , there exists a rule r ′ in �′
0 such that body(r ′) = body(r)

and head(r ′) = head(r) \ X0. Since M is a model of �′, head(r ′) ∩ M �= ∅ and thus
head(r)∩ M �= ∅ too. For any rule r in {← q}∪⋃m

i=1 �i such that body(r) ⊆ M , since M
is a model of�′, head(r)∩M �= ∅. Hence, M is also a model of {∑h̄α∈X w(α)·assign(h̄α) ≤
wmin} ∪ �0 ∪ {← q} ∪ ⋃m

i=1 �i , that is, a model of the checking program of q , contradic-
tion. For the (⇐) direction, suppose �′ is unsatisfiable but the checking program of q has
a model M , then for any 1 ≤ i ≤ m, M ∩ atoms(�i) is a model of �i . By the minimality
of wi , we have

∑
h̄α∈M∩Xi

w(α) ≥ wi . Thus,
∑

h̄α∈M∩X w(α) ≥ ∑m
i=1 wi . By Lemma

4.5,
∑

h̄α∈M∩X w(α) ≥ wmin and the equality relation holds only when M ∩ X0 = ∅ and∑
h̄α∈M∩Xi

w(α) = wi for all 1 ≤ i ≤ m. Since M is a model of the checking program of
q,

∑
h̄α∈M∩X w(α) ≤ wmin. Hence,

∑
h̄α∈M∩X w(α) = wmin. It follows that M ∩ X0 = ∅

and
∑

h̄α∈M∩Xi
w(α) = wi for all 1 ≤ i ≤ m. For any rule r in �′

0 such that body(r) ⊆ M ,
there exists a rule r ′ in �0 such that body(r ′) = body(r) and head(r ′) \ X0 = head(r).
Since M is a model of the checking program of q and M ∩ X0 = ∅, head(r ′) ∩ M �= ∅ and
thus head(r) ∩ M �= ∅. For any rule r in {← q} ∪ ⋃m

i=1 �i such that body(r) ⊆ M , since
M is a model of the checking program of q, head(r) ∩ M �= ∅. Hence, M is a model of
�′

0 ∪ {← q} ∪ ⋃m
i=1(�i ∪ {∑h̄α∈Xi

w(α) · assign(h̄α) ≤ wi }) = �′, contradiction.

123

358 J. Du et al.

We then show that �′ is unsatisfiable ⇐⇒ � is unsatisfiable. The (⇐) direction is
trivial because � is just a subset of �′. For the (⇒) direction, suppose �′ is unsatisfiable but
� has a model M . Let �′′

0 = �′
0 \ � and M0 = ⋃

r∈�′′
0

head(r) \ atoms(� ∪ ⋃m
i=1 �i).

For any rule r in �′′, we have M0 ∩ head(r) �= ∅, otherwise r will be added to � in Con-
struct-SAT-Problem(q). Hence, M0 is a model of �′′

0. Let {�ci }1≤i≤k be the subset
of {�i }1≤i≤m such that atoms(�ci) ∩ atoms(�) = ∅, where 1 ≤ c1 ≤ . . . ≤ ck ≤ m.
Let Mci be a model of �ci ∪ {∑h̄α∈Xci

w(α) · assign(h̄α) ≤ wci } for 1 ≤ i ≤ k. Let

M ′ = M0 ∪ M ∪ ⋃k
i=1 Mci . Since M does not contain any decision atom occurring in

⋃k
i=1 �ci and Mci does not contain any decision atom occurring in � ∪ ⋃k

j=1, j �=i �c j for
all 1 ≤ i ≤ k, we have

∑
h̄α∈M ′∩Xi

w(α) ≤ wi for all 1 ≤ i ≤ m. For any rule r in �′′
0,

since head(r) ∩ M0 �= ∅, head(r) ∩ M ′ �= ∅. For any rule r in � which is not a PB-
constraint, such that body(r) ⊆ M ′, since M0 ∪⋃k

i=1 Mci has no ground atoms occurring in
�, body(r) ⊆ M . Since M is a model of �, head(r)∩ M �= ∅ and thus head(r)∩ M ′ �= ∅.
For any rule r in �ci , where i is some integer between 1 and k, such that body(r) ⊆ M ′,
since M0 ∪ M ∪⋃k

j=1, j �=i Mc j has no ground atoms occurring in �ci , body(r) ⊆ Mci . Since
Mci is a model of �ci , head(r) ∩ Mci �= ∅ and thus head(r) ∩ M ′ �= ∅. Hence, M ′ is a
model of �′′

0 ∪ � ∪ ⋃k
i=1 �ci ∪ {∑h̄α∈Xci

w(α) · assign(h̄α) ≤ wci } = �′, contradiction.

By Theorem 4.2 (2), we have KB |w≈ q iff the checking program of q is unsatisfiable.

Hence, KB |w≈ q iff �′ is unsatisfiable, that is, � is unsatisfiable. ��

In the following, an example is provided to illustrate the proposed method for entailment
checking of atomic queries.

Example 4.6 (Example 4.5 continued) Recall that�0 ={r1, r6, …, r9},�1 ={r2, r4, r10, r12}
and �2 = {r3, r5, r11, r13}. Suppose w(A(a)) = w(C(b)) = w(C(c)) = w(s(a, b)) =
w(t (a, c)) = 1, then w1 = w2 = 1 because 1 is both the minimum value v1 such that
�1 ∪ {assign(h̄C(b)) + assign(h̄s(a,b)) ≤ v1} is satisfiable and the minimum value v2 such
that �2 ∪ {assign(h̄C(c)) + assign(h̄t (a,c)) ≤ v2} is satisfiable.

Consider the atomic query r(a, b). Since r(a, b) occurs in �1, the algorithm Con-
struct-SAT- Problem(r(a, b)) returns �1 ∪ {assign(h̄C(b)) + assign(h̄s(a,b)) ≤
1} ∪ {← r(a, b)}. It is satisfiable, thus KB �|w≈ r(a, b).

Consider the atomic query A(b). Since A(b) occurs only in �0, the algorithm Con-
struct-SAT- Problem(A(b)) returns {← A(b)} ∪ {r8} ∪ �1 ∪ {assign(h̄C(b)) +
assign(h̄s(a,b)) ≤ 1}. It is satisfiable, thus KB �|w≈ A(b).

Consider the atomic query A(a). Since A(a) occurs only in �0, the algorithm Con-
struct-SAT- Problem(A(a)) returns {← A(a)} ∪ {A(a)}. Note that the ground fact
A(a) is simplified from r1 by removing all decision atoms. Since {← A(a)} ∪ {A(a)} is

unsatisfiable, we have KB |w≈ A(a).

It can be seen from the above example that the entailment checking of some atomic
queries, such as A(a), does not require the computation of any wi beforehand. We can prove

that KB |w≈ q for any atomic query q which is a ground atom in every model of �′
0, where

�′
0 is the propositional program simplified from �0 by removing all decision atoms (see the

proof of Theorem 4.3 (2) for more details). A simple way to compute ground atoms in every
model of �′

0 is to compute the smallest model Mdef
0 of {r ∈ �′

0 | |head(r)| = 1}, the set of
definite rules in �′

0, because any ground atom in Mdef
0 is in every model of �′

0. The smallest

123

Weight-based consistent query answering 359

model of {r ∈ �′
0 | |head(r)| = 1} is unique and can be constructed as the least fixpoint of

M (n) such that M (0) = ∅, and for n > 0, M (n) = ⋃
r∈�′

0,|head(r)|=1,body(r)⊆M(n−1) head(r).
Based on the above ideas, we further optimize the proposed method for entailment check-

ing of an atomic query q: if q does not occur in GIG(RPe(KB)), then KB �|w≈ q; otherwise,

if q is in Mdef
0 , then KB |w≈ q; otherwise, KB |w≈ q iff the propositional program returned

by Construct-SAT-Problem(q) is unsatisfiable. Consider Example 4.6 again, �′
0 is

{A(a)} ∪ {r6, . . . , r9} (note that A(a) is a ground fact here) and Mdef
0 = {A(a)} (note that

A(a) is a ground atom here). Since A(a) ∈ Mdef
0 , we directly obtain KB |w≈ A(a) without

calling Construct-SAT-Problem(A(a)). The correctness of this method is shown in
the following theorem.

Theorem 4.3 Let �′
0 = {∨(head(r) \ X0) ← ∧

body(r) | r ∈ �0} and Mdef
0 be the

unique smallest model of {r ∈ �′
0 | |head(r)| = 1}. For q be an atomic query whose only

atom is not on complex roles, (1) if q does not occur in GIG(RPe(KB)), then KB �|w≈ q, else

(2) if q ∈ Mdef
0 , then KB |w≈ q, else (3) KB |w≈ q iff � is unsatisfiable, where � is returned

by Construct-SAT-Problem(q).

Proof (1) When q does not occur in GIG(RPe(KB)), the checking program of q is obvi-

ously satisfiable. By Theorem 4.2 (2), KB �|w≈ q .
(2) When q ∈ Mdef

0 , since Mdef
0 ⊆ M for all models of �′

0, q is in all models of �′
0. Let

�′ = �′
0 ∪ {← q} ∪ ⋃m

i=1(�i ∪ {∑h̄α∈Xi
w(α) · assign(h̄α) ≤ wi }). Since �′

0 is a
subset of �′, q is in all models of �′ too. Since the constraint ← q is in �′,�′ must

have no models, that is, �′ is unsatisfiable. As was proved in Lemma 4.7, KB |w≈ q iff

�′ is unsatisfiable. Hence, KB |w≈ q .
(3) This result has been proved in Lemma 4.7. ��
4.3 Evaluating queries without non-distinguished variables

In this subsection, we propose a method for computing all consistent answers of a conjunctive
query without non-distinguished variables Q(�x) = conj(�x, �c). The basic idea comes from
the fact that a tuple of individuals �t is a consistent answer of Q(�x), only when all ground
atoms occurring in Q(�x)[�x �→ �t] (which is a conjunction of ground atoms) also occur in
GIG(RPe(KB)). This is a consequence of Theorem 4.3 (1) and Lemma 4.1. Hence, we define
a candidate answer of Q(�x) as a tuple of individuals �t such that all ground atoms occurring in
Q(�x)[�x �→ �t] also occur in GIG(RPe(KB)). The method first retrieves all candidate answers
of Q(�x) from GIG(RPe(KB)), then keeps only candidate answers �t such that all ground
atoms occurring Q(�x)[�x �→ �t] are consistently entailed by KB. In the method, all ground
atoms occurring in Q(�x)[�x �→ �t] are collected and treated as atomic queries. The entailment
checking of these ground atoms is done one by one before filtering any candidate answer.

The algorithm Weight-based-CQA(KB, Q(�x)), given in Fig. 5, shows more details
of the method. First, the set Acand of candidate answers of Q(�x) in KB is computed, where a
candidate answer of Q(�x) in KB is a tuple of individuals in KB such that atoms(Q(�x)[�x �→
�t]) ⊆ atoms(GIG(RPe(KB))) (line 1). Afterwards, all ground atoms occurring in Acand are

collected in a set Satm, then for every ground atom α in Satm, if KB |w≈ α (checked by the
optimized method given above Theorem 4.3), α is added to a set Sent (line 2). Finally, the set
of consistent answers of Q(�x) in KB is retrieved from Acand, where a consistent answer �t of

123

360 J. Du et al.

Fig. 5 The algorithm for evaluating a conjunctive query without non-distinguished variables

Q(�x) in KB is a candidate answer in Acand such that atoms(Q(�x)[�x �→ �t]) ⊆ Sent (line 3),

which means that KB |w≈ α for all α ∈ atoms(Q(�x)[�x �→ �t]).
In the following, an example is provided to illustrate the proposed method.

Example 4.7 (Example 4.6 continued) Given a conjunctive query Q(〈x, y〉) = A(x)∧ A(y),
the algorithm Weight-based-CQA(KB, Q(〈x, y〉)) for KB given in Example 4.4 works
as follows. Since GIG(RPe(KB)) (shown in Example 4.4) contains only two ground atoms on
A, namely A(a) and A(b), the set Acand of candidate answers is {〈a, a〉, 〈a, b〉, 〈b, a〉, 〈b, b〉}.
Thus, Satm is {A(a), A(b)}. As was shown in Example 4.6, KB |w≈ A(a) and KB �|w≈ A(b).
Hence, Sent is {A(a)} and thus the set of consistent answers of Q(〈x, y〉) in KB is {〈s, t〉 ∈
Acand | {A(s), A(t)} ⊆ {A(a)}} = {〈a, a〉}.

It can be seen from the above example that the number of candidate answers can be expo-
nential in the number of variables occurring in the given conjunctive query. However, the
number of reduced atomic queries that need to be checked is bounded by ncni +nr n2

i , where
nc, nr and ni are, respectively, the number of concept names, the number of role names and
the number of individual names in KB. Hence, in order to compute all consistent answers of
a conjunctive query without non-distinguished variables, we only need to solve at most poly-
nomially many entailment checking problems for atomic queries. Solving these entailment
checking problems is the most time-consuming part of the method.

The following theorem shows the correctness of the proposed method.

Theorem 4.4 For Q(�x), a conjunctive query which has no non-distinguished variables or
atoms on complex roles, the algorithm Weight-based-CQA(KB, Q(�x)) returns the set of
consistent answers of Q(�x) in KB.

Proof Let Acons be the set of consistent answers of Q(�x) in KB and Acand be the set of
candidate answers of Q(�x) in KB. For any tuple �t in Acons, Q(�x)[�x �→ �t] is a conjunction of

ground atoms. By Lemma 4.1, KB |w≈ α for all ground atoms α occurring in Q(�x)[�x �→ �t].
By Theorem 4.3 (1), α must occur in GIG(RPe(KB)) for all ground atoms α occurring in
Q(�x)[�x �→ �t]. Hence, Acons ⊆ Acand. Let Sent be the set of ground atoms α occurring in

Acand such that KB |w≈ α. For any tuple �t in Acand, by Lemma 4.1, �t is a consistent answer

of Q(�x) in KB iff KB |w≈ α for all ground atoms α occurring in Q(�x)[�x �→ �t], that is,
atoms(Q(�x)[�x �→ �t]) ⊆ Sent. Hence, Acons = {�t ∈ Acand | atoms(Q(�x)[�x �→ �t]) ⊆ Sent}.

��
The proposed method can be further optimized, for example, by decreasing the number

of candidate answers, which is up to exponential in the number of variables occurring in the
query. However, since we focus on optimizing entailment checking of atomic queries in this
paper, we do not consider these optimizations here and leave optimizing the evaluation of
conjunctive queries as our future work.

123

Weight-based consistent query answering 361

5 Experimental evaluation

We implemented the proposed method with decomposition-based optimizations in GNU C++.
The implemented system works on disjunctive datalog programs output by the KAON2 OWL
reasoner (simply called KAON2) and supports basic datatypes, such as string and integer. In
this system,1 MySQL is used as the back-end SQL engine; all instance assertions in ABoxes
and derived ground atoms in the grounding process are maintained in MySQL databases;
all instantiated rules in the grounding process are retrieved by SQL statements, maintained
on disk and are sequentially accessed during the decomposition process; the SAT solver
MiniSat+ [19], which supports PB-constraints, is applied to perform satisfiability tests in
Theorem 4.3. All our experiments were conducted on a 2.0 GHz Pentium Dual CPU with
2GB RAM PC running Windows XP and Cygwin.

5.1 Experimental setup

We collected seven publicly available KBs. The first one is Semintec,2 which is about finan-
cial services. The other six are University Benchmark (UOBM) [35] KBs. UOBM enriches
the well-known Lehigh University Benchmark (LUBM) [25] with more OWL constructors
and more links between instance assertions. There are two species of UOBM. One is enriched
from LUBM by adding OWL Lite constructors and is denoted by UOBM-Lite. The other
is enriched from LUBM by adding OWL DL constructors and is denoted by UOBM-DL.
Since the proposed method applies KAON2 and cannot deal with nominals, we removed
all nominals from UOBM-DL. In addition, since KAON2 does not work well for number
restrictions that are not functional,3 we also replaced number restrictions in UOBM-DL
with functional restrictions. We denote the weaken version of UOBM-DL by UOBM-DL−.
We also use UOBM-Liten (resp. UOBM-DL−n) to denote the KB instance of UOBM-Lite
(resp. UOBM-DL−) that contains data from n universities. The collected UOBM KBs are
UOBM-Liten and UOBM-DL−n for n = 1, 5 and 10. They were originally downloaded
from the UOBM Web site.4 Table 2 summarizes the characteristics of each collected KB and
the disjunctive datalog program transformed from its TBox and RBox by applying KAON2.

Since all collected KBs are consistent, we developed a tool, called Injector, to insert
conflicts. A conflict is a set of instance assertions violating a functional role restriction or a
disjointness constraint. Given a consistent knowledge base KB = (T , R, A) and a number
m of conflicts to be inserted, Injector inserts m conflicts to KB one by one by generating
a set Scn of instance assertions. Let SFR denote the set of functional or inverse functional
roles and SDC the set of atomic concepts that have disjoint atomic concepts in KB. To insert
a conflict, Injector randomly selects an entity in SFR ∪ SDC. In case a functional role r
is selected, if there exist role assertions on r that are entailed by KB, Injector randomly
selects one, say r(a, b), and adds r(a, c) and b �≈ c to Scn, where c is a new individual;
otherwise, Injector adds r(a, b), r(a, c) and b �≈ c to Scn, where a, b, c are new indi-
viduals. In case an inverse functional role r is selected, Injector does in the same way
as for r−. In case an atomic concept C is selected, if there exist concept assertions on C
that are entailed by KB, Injector randomly selects one, say C(a), and adds D(a) to Scn

1 The implemented system, accessory tools and test KBs can be downloaded from the Web site http://jfdu.
limewebs.com/wb-cqa/.
2 http://www.cs.put.poznan.pl/alawrynowicz/semintec.htm.
3 See the open issues listed at the KAON2 Web site http://kaon2.semanticweb.org/.
4 http://www.alphaworks.ibm.com/tech/semanticstk/.

123

http://jfdu.limewebs.com/wb-cqa/
http://jfdu.limewebs.com/wb-cqa/
http://www.cs.put.poznan.pl/alawrynowicz/semintec.htm
http://kaon2.semanticweb.org/
http://www.alphaworks.ibm.com/tech/semanticstk/

362 J. Du et al.

Table 2 The characteristics of test KBs and their transformed disjunctive datalog programs

nC nR nax nfr ndc nI nas Ttrans (ms) nrl

Semintec 59 16 219 16 113 17,941 65,240 654 230

UOBM-Lite1 95,010 245,864

UOBM-Lite5 51 43 145 2 0 420,149 1,075,060 510 171

UOBM-Lite10 820,208 2,096,973

UOBM-DL−1 96,081 260,540

UOBM-DL−5 68 44 205 2 1 420,702 1,132,376 567 217

UOBM-DL−10 825,455 2,217,302

nC (resp. nR) is the number of concept (resp. role) names. nax is the number of axioms in the union of the
TBox and the RBox. nfr is the number of (inverse) functional roles. ndc is the number of axioms that declare
disjointness constraints. nI is the number of individual names. nas is the number of instance assertions in the
ABox. Ttrans is the time (in milliseconds) for transforming the union of the TBox and the RBox to a disjunctive
datalog program. nrl is the number of rules in the transformed disjunctive datalog program

for a randomly selected disjoint atomic concept D of C ; otherwise, Injector adds C(a)

and D(a) to Scn, where a is a new individual and D a randomly selected disjoint atomic
concept of C . The Injector tool was implemented in JAVA, using the KAON2 API to find
disjoint concepts and compute entailments. By KB+m , we denote (T , R, A ∪ Scn) in which
m conflicts are inserted.

We generated 42 test KBs from the collected KBs. They are Semintec+m , UOBM-Liteu+m

and UOBM-DL−u+m for u = 1, 5, 10 and m = 50, 100, 150, 200, 250, 300. The expressiv-
ity of all test KBs is up to SHIF with datatypes.

5.2 Experimental results

In our experiments, all instance assertions were given the same weight (one). We performed
two groups of experiments for each test KB. The experiments in the first group compute
consistent answers of all concept name queries. Recall that a concept name query is a query
of the form A(x), where A is a concept name and x is a variable. These experiments can
roughly show the performance of the proposed method in evaluating a conjunctive query in
which every variable occurs in some atoms on concept names. This is because most atomic
queries reduced from this kind of conjunctive queries are about concept names and the exe-
cution time is dominated by the execution time for evaluating all reduced atomic queries. The
experiments in the second group compute consistent answers of benchmark queries. These
experiments can show the performance of the proposed method in evaluating a commonly
used conjunctive query.

We used the following five benchmark queries for Semintec+m KBs. They, respectively,
enquire all clients with different types of loans and all clients with different types of credit
cards. They are common queries about financial services.

QS1(〈x, y, z, w〉)= Client(x), isOwnerOf(x, y), hasLoan(y, z), hasLoanStatusValue(z, w),

OKStatus(w)

QS2(〈x, y, z, w〉)= Client(x), isOwnerOf(x, y), hasLoan(y, z), hasLoanStatusValue(z, w),

ProblemStatus(w)

QS3(〈x, y〉) = Client(x), hasCreditCard(x, y), Classic(y)

123

Weight-based consistent query answering 363

Fig. 6 The execution time of the offline phase

QS4(〈x, y〉) = Client(x), hasCreditCard(x, y), Gold(y)

QS5(〈x, y〉) = Client(x), hasCreditCard(x, y), Junior(y)

We used the following seven benchmark queries for both UOBM-Liteu+m KBs and
UOBM-DL−u+m KBs. They are all the benchmark queries in the UOBM package which are
not atomic queries and have neither non-distinguished variables nor atoms on complex roles.

QU1(〈x〉) = UndergraduateStudent(x),

takesCourse(x, http://www.Department0.University0.edu/Course0)

QU2(〈x〉) = Student(x), isMemberOf(x, http://www.Department0.University0.edu)

QU3(〈x〉) = Person(x), hasAlumnus(http://www.University0.edu, x)

QU4(〈x〉) = Person(x), hasSameHomeTownWith(x,

http://www.Department0.University0.edu/FullProfessor0)

QU5(〈x〉) = SportsLover(x), hasMember(http://www.Department0.University0.edu, x)

QU6(〈x〉) = isFriendOf(x, http://www.Department0.University0.edu/FullProfessor0)

QU7(〈x〉) = PeopleWithHobby(x),

isMemberOf(x, http://www.Department0.University0.edu)

Figure 6 shows the execution time of the offline phase, namely compiling and decom-
posing a test KB to a set of propositional programs {�i }0≤i≤m as well as computing the
minimum total weight wi associated with each �i (where 1 ≤ i ≤ m). It shows that the
offline phase finishes in less than 40 min for each test KB even when the KB has hundreds of
conflicts and millions of instance assertions. The execution time is roughly proportional to the
number of instance assertions and the number of conflicts. To verify the effectiveness of the
decomposition-based optimization in this phase, we also tested whether

∑m
i=1 wi (namely

wmin) can be directly computed from a propositional program which is compiled from a test
KB without being decomposed. For all test KBs, the direct computation of wmin fails because
the applied SAT solver MiniSat+ runs out of memory. It shows that directly computing
wmin from a compiled propositional program is probably infeasible.

Since the evaluation of a test query (i.e., a concept name query or a benchmark query)
is reduced to the evaluation of atomic queries, we collected statistics in the online phase to
show how the method works on atomic queries. We focus on atomic queries that need to
be checked by satisfiability tests, called normal atomic queries, because the percentage of
these queries in all reduced atomic queries determines whether the optimization presented
above Theorem 4.3 is effective. Figure 7 shows that the percentage of normal atomic queries
is less than 45 % for Semintec+m KBs and less than 15 % for other test KBs. This means
that computing some ground atoms consistently entailed by a test KB before evaluating a
conjunctive query can significantly improve the efficiency in evaluating the query. Figure 8
shows that evaluating a normal atomic query is efficient: for Semintec+m KBs, the average

123

http://www.Department0.University0.edu/Course0
http://www.Department0.University0.edu
http://www.University0.edu
http://www.Department0.University0.edu/FullProfessor0
http://www.Department0.University0.edu
http://www.Department0.University0.edu/FullProfessor0
http://www.Department0.University0.edu

364 J. Du et al.

Fig. 7 The percentage of normal atomic queries in all reduced atomic queries

Fig. 8 The average execution time for evaluating a normal atomic query

Fig. 9 The average execution time for evaluating a concept name query in the online phase

execution time is less than half a second; for other KBs, the average execution time is at most
a few dozens of milliseconds. The execution time for evaluating a normal atomic query is
often not proportional to the number of conflicts because conflicts are randomly inserted and
have a random distribution in a test KB. It is also not proportional to the number of instance
assertions because for larger test KBs the decomposition-based optimization tends to yield
more smaller propositional programs.

The statistics for evaluating a test query is not as optimistic as the statistics for evaluating
an atomic query. Figure 9 shows that the average execution time for evaluating a concept
name query is often not proportional to the number of conflicts. This is because the number
of normal atomic queries reduced from a concept name query may not be proportional to the
number of conflicts. The figure also shows that the evaluation of a concept name query is
not always easy. However, by analyzing the execution time for single concept name queries,
we found that most concept name queries are evaluated quickly and the average execution
time is dominated by only a small portion of hard queries. Figure 10 shows that for all test
KBs, at most 30 % (15/51 or 20/68) concept name queries cost more than 1 min in the online
phase. Table 3 shows that the maximum execution time for evaluating a concept name query
in Semintec+m (resp. UOBM-Liteu+m or UOBM-DL−u+m) KBs can be up to 42 h (resp. 8
or 16 h). It also shows that for the hardest concept name query Q, whose evaluation costs the
most execution time, the average execution time for evaluating a normal atomic query reduced
from Q is less than 1 min (resp. less than 6 or 7 s) for Semintec+m (resp. UOBM-Liteu+m or
UOBM-DL−u+m) KBs. This implies that the main reason why evaluating a concept name
query Q is so hard is that there are too many normal atomic queries reduced from Q.

123

Weight-based consistent query answering 365

Fig. 10 The number of concept name queries that cost more than 1 min. Note: the total number of concept
name queries for a Semintec+m KB (resp. a UOBM-Liteu+m KB or a UOBM-DL−u+m KB) is 59 (resp. 51
or 68)

Table 3 The statistics for evaluating the hardest concept name query

KB m = 50 m = 100 m = 150 m = 200 m = 250 m = 300

Semintec+m PO/4.8 PO/11.9 W/18.2 PO/8.0 PO/18.0 M/55.8

24,489 77,321 48,183 40,572 116,788 152,088

UOBM-Lite1+m GS/0.1 GS/0.1 GS/0.1 SL/2.9 SL/5.8 SL/5.5

720 717 721 2,184 7,815 9,233

UOBM-Lite5+m GS/0.1 GS/0.1 GS/0.4 GS/0.1 SL/1.4 GS/0.1

3,083 3,078 18,457 5,263 6,268 5,284

UOBM-Lite10+m GS/0.1 GS/0.2 GS/0.2 GS/0.3 GS/0.1 GS/0.1

10,200 14,873 14,383 27,251 10,674 10,635

UOBM-DL−1+m US/0.7 US/0.8 US/1.8 US/1.3 US/1.9 US/1.9

3,433 6,021 15,417 11,278 15,462 18,418

UOBM-DL−5+m S/0.4 US/0.8 US/0.6 US/0.6 US/0.7 S/1.0

1,878 7,639 7,764 9,026 9,180 24,692

UOBM-DL−10+m S/0.4 S/1.0 S/0.5 SL/1.0 SL/6.9 S/0.5

3,857 6,472 7,576 17,892 57,654 12,240

Q/
t2
t1 means that the hardest concept name query (i.e., the concept name query whose evaluation costs the

most execution time) is Q, the execution time for evaluating Q is t1 seconds, and the average execution
time for evaluating a normal atomic query reduced from Q is t2 seconds. Q is shown as abbreviations: PO
for PermanentOrder, W for Woman, M for Man, GS for GraduateStudent, SL for SportsLover, US for
UndergraduateStudent and S for Student

Fig. 11 The average execution time for evaluating a benchmark query in the online phase

Figure 11 shows that evaluating a benchmark query is not always easy either. Again, by
analyzing the execution time for single benchmark queries, we found that the average exe-
cution time is dominated by a small portion of hard queries. Figure 12 shows that, for 36
test KBs at most two benchmark queries cost more than 1 min, and for other six test KBs
three benchmark queries cost more than 1 min. Table 4 shows that the maximum execution

123

366 J. Du et al.

Fig. 12 The number of benchmark queries that cost more than 1 min

Table 4 The statistics for evaluating the hardest benchmark query

KB m = 50 m = 100 m = 150 m = 200 m = 250 m = 300

Semintec+m QS1/0.5 QS2/0.6 QS2/0.6 QS1/0.8 QS2/22.3 QS2/9.7

331 445 427 590 1,942 7,252

UOBM-Lite1+m QU5/0.2 QU5/1.1 QU5/1.6 QU5/2.8 QU5/5.5 QU2/10.3

5 16 16 117 368 6,861

UOBM-Lite5+m QU2/0.1 QU6/0.1 QU5/0.6 QU5/1.3 QU5/1.3 QU5/1.2

0.1 0.5 14 39 64 62

UOBM-Lite10+m QU2/0.1 QU6/0.1 QU5/0.1 QU2/0.2 QU2/0.1 QU2/0.1

0.1 0.1 0.1 0.2 0.1 0.1

UOBM-DL−1+m QU5/0.5 QU2/0.5 QU2/1.2 QU2/0.5 QU2/1.4 QU2/1.2

19 678 1,571 689 1,816 1,584

UOBM-DL−5+m QU2/0.5 QU5/3.4 QU5/0.6 QU2/0.5 QU2/0.5 QU5/2.5

687 51 17 707 702 33

UOBM-DL−10+m QU1/0.5 QU5/1.0 QU2/0.6 QU5/1.0 QU5/7.0 QU1/0.1

1 23 733 112 314 0.1

Q/
t2
t1 means that the hardest benchmark query (i.e., the benchmark query whose evaluation costs the most

execution time) is Q, the execution time for evaluating Q is t1 seconds, and the average execution time for
evaluating a normal atomic query reduced from Q is t2 seconds

time for evaluating a benchmark query is up to 2 h for all test KBs. It also shows that, for the
hardest benchmark query Q, whose evaluation costs the most execution time, the average
execution time for evaluating a normal atomic query reduced from Q is <2 s for 81 % (34/42)
test KBs. This also implies that the main reason why evaluating a benchmark query Q is so
hard is that there are too many normal atomic queries reduced from Q.

6 Related work

As the Semantic Web era is coming, there are more and more proposals about providing
non-standard reasoning mechanisms for inconsistent DL KBs.

Most of the existing proposals [29,33,38,42,43], like ours, follow an approach based on
syntactically weakening a DL KB. This approach defines reasoning over an inconsistent KB
as reasoning over all its preferred consistent subbases. [29] proposed a method which first
selects a consistent subbase based on a selection function defined on the syntactic or seman-
tic relevance, then reasons over the selected one using standard methods. This method does
not adhere to the principle of minimal change, which is widely adopted in belief revision
[44], because the selected subbase may not be minimally different from the original KB.

123

Weight-based consistent query answering 367

[38] adapted lexicographic inference in propositional logic [7] to DLs, which adheres to the
principle of minimal change. Their proposed method first compiles a disjunctive DL knowl-
edge base (DKB for short) in which every disjunct is a DL KB, then checks the consistent
answers in all disjuncts of the DKB. However, the method is computationally hard because
the compilation of a DKB usually needs exponentially many calls to a DL reasoner and the
compiled DKB may have exponentially many disjuncts. Moreover, the method has not been
empirically verified. [43] also proposed two adaptations of lexicographic inference to DLs.
Their proposed method also needs to compile a DKB and has not been empirically verified. In
another work, [42] adapted possibilistic inference and linear order inference in propositional
logic [8] to DLs. However, possibilistic inference and linear order inference do not adhere to
the principle of minimal change. [33] proposed an inclusion-based semantics for querying
about inconsistent DL KBs as mentioned in Sect. 3. They provided a special method for
DL-Lite [10,11] KBs. The method has not been empirically verified and cannot be extended
to more expressive DLs such as SHIQ. In contrast to all the above methods, our proposed
method is the first one that works for the expressive DL SHIQ, adheres to the principle of
minimal change, and has been empirically verified on large SHIF KBs.

There is another approach to reasoning over inconsistent DL KBs, which is based on the
four-valued semantics [36,39]. The basic idea is to weaken an interpretation from two truth
values to four truth values so as to treat the traditional inconsistency as consistency. It results
in a different reasoning mechanism for a DL KB even when the KB is traditionally consistent.
Therefore, the methods following this approach are incomparable with ours.

As mentioned in Sect. 3, our proposed weight-based semantics originates from the data-
base field. The computational methods for CQA in the database field are also based on the
notion of repair program [1,2,9,13,34]. But this notion of repair program is different from
ours: it is used to compute variants of a database, where these variants are models of the
given integrity constants; in contrast, our notion of repair program is used to compute subsets
of the ABox, where these subsets are consistent with, and may not be models of, the union
of the TBox and the RBox. This means that our proposed method is not a simple adaptation
of existing methods for CQA in the database field.

This work is also related to penalty logic [16], which extends propositional logic by attach-
ing every formula with a penalty. The cautious inference problem in penalty logic can be
regarded as the weight-based CQA problem studied in this paper by treating an axiom/asser-
tion as a formula and a weight as a penalty. Although this correspondence shows possibility
to apply computational methods in penalty logic to solve the weight-based CQA problem,
we do not apply those methods because the computational complexity for the cautious infer-
ence problem in penalty logic is up to �

p
3 [20], while those methods work for propositional

KBs but a SHIQ KB cannot be directly translated to a finite and semantically equivalent
propositional KB. In other words, we propose a tailored method for a variant of the cautious
inference problem in penalty logic, which has a lower computational complexity.

7 Conclusions and future work

To provide a query mechanism for DL KBs that works under inconsistency, we have
proposed a weight-based semantics for conjunctive query answering. This semantics works
for an inconsistent SHIQ KB in which the union of the TBox and the RBox is consistent.
We showed that the computational complexity of the proposed semantics is �

p
2 [O(log n)]-

complete in data complexity for extensionally reduced SHIQ KBs and atomic queries. We
proposed a novel method for evaluating atomic queries in extensionally reduced SHIQ KBs,
which is time complexity optimal and can be applied to evaluate conjunctive queries without

123

368 J. Du et al.

non-distinguished variables. We also integrated a novel decomposition-based framework into
the method to make the method more scalable.

We conducted experiments on a number of inconsistent KBs. The experimental results
have two implications. On the one hand, the decomposition-based framework is crucial in
solving large-scale weight-based CQA problems. With this framework, the weight-based
CQA problem for an atomic query can be efficiently solved in a large SHIF KB with hun-
dreds of conflicts and millions of instance assertions. On the other hand, the weight-based
CQA problem for a conjunctive query can still be efficiently solved for most test queries.
The main reason why evaluating a small portion of test queries is so hard is that there are too
many atomic queries reduced from some of the test queries.

To further improve the current method, in future work, we will investigate the possibility
for adapting optimization techniques used in conjunctive query answering, such as those ones
for fast identification of answers and non-answers, to decrease the number of atomic que-
ries reduced from a given conjunctive query. Furthermore, the current method only supports
SHIQ and cannot deal with nominals. We will also study the adaptation of the resolution-
based decision procedure for SHOIQ [32] to solve weight-based CQA problems for DL
KBs that contain nominals.

Acknowledgments We thank anonymous reviewers for their very useful comments and suggestions.
Jianfeng Du is partially supported by the National Natural Science Foundation of China (NSFC) grant
61005043. Guilin Qi is partially supported by Excellent Youth Scholars Program of Southeast University
under grant 4009001011, Doctoral Discipline Foundation for Young Teachers in the Higher Education Insti-
tutions of Ministry of Education (No. 20100092120029), NSFC (61003157), and the Key Laboratory of
Computer Network and Information Integration (Southeast University). Yi-Dong Shen is partially supported
by the National Natural Science Foundation of China (NSFC) grant 60970045.

References

1. Arenas M, Bertossi LE Chomicki J (1999) Consistent query answers in inconsistent databases. In:
Proceedings of the 18th ACM symposium on principles of database systems (PODS), pp 68–79

2. Arenas M, Bertossi LE, Chomicki J (2003) Answer sets for consistent query answering in inconsistent
databases. Theory Pract Logic Program 3(4–5):393–424

3. Arieli O, Denecker M, NuffelenBV Bruynooghe M (2004) Coherent integration of databases by abductive
logic programming. J Artif Intell Res 21:245–286

4. Aspvall B, Plass MF, Tarjan RE (1979) A linear-time algorithm for testing the truth of certain quantified
Boolean formulas. Inf Process Lett 8(3):121–123

5. Baader F, Calvanese D, McGuinness DL, Nardi D, Patel-Schneider PF (eds) (2003) The description logic
handbook: theory, implementation, and applications. Cambridge University Press, Cambridge

6. Bailleux O, Boufkhad Y, Roussel O (2006) A translation of pseudo boolean constraints to SAT. J Satisf
Boolean Model Comput 2:191–200

7. Benferhat S, Cayrol C, Dubois D, Lang J, Prade H (1993) Inconsistency management and prioritized
syntax-based entailment. In: Bajcsy R (eds) Proceedings of the 13th international joint conference on
artificial intelligence (IJCAI), pp 640–647

8. Benferhat S, Dubois D, Prade H (1995) How to infer from inconsisent beliefs without revising?
In: Proceedings of the 14th international joint conference on artificial intelligence (IJCAI), pp 1449–
1457

9. Bertossi LE, Chomicki J (2003) Query answering in inconsistent databases. In: Chomicki J, Meyden R,
Saake G (eds) Logics for emerging applications of databases. Springer, pp 43–83

10. Calvanese D, Giacomo G, Lembo D, Lenzerini M, Rosati R (2005) DL-Lite: tractable description
logics for ontologies. In: Veloso M, Kambhampati S (eds) Proceedings of the 20th national conference
on artificial intelligence (AAAI), pp 602–607

11. Calvanese D, Giacomo G, Lembo D, Lenzerini M, Rosati R (2007) Tractable reasoning and efficient
query answering in description logics: the DL-Lite family. J Autom Reason 39(3):385–429

12. Chai D, Kuehlmann A (2003) A fast pseudo-boolean constraint solver. In: Proceedings of the 40th design
automation conference (DAC), pp 830–835

123

Weight-based consistent query answering 369

13. Chomicki J (2007) Consistent query answering: five easy pieces. In: Schwentick T, Suciu D (eds) Pro-
ceedings of the 11th international conference on database theory (ICDT), pp 1–17

14. Cimiano P (2006) Ontology learning and population from text algorithms evaluation and applications.
Springer, Berlin

15. Cimiano P, Völker J (2005) Text2onto—a framework for ontology learning and data-driven change dis-
covery. In: Montoyo A, Muñoz R, Métais E (eds) Proceedings of the 10th international conference on
applications of natural language to information systems (NLDB), pp 227–238

16. de Saint-Cyr F, Lang J, Schiex T (1994) Penalty logic and its link with dempster-shafer theory. In:
Mántaras R, Poole D (eds) Proceedings of the 10th annual conference on uncertainty in artificial intelli-
gence (UAI), pp 204–211

17. Dolby J, Fokoue A, Kalyanpur A, Ma L, Schonberg E, Srinivas K, Sun X (2008) Scalable grounded
conjunctive query evaluation over large and expressive knowledge bases. In: Sheth AP, Staab S, Dean M,
Paolucci M, Maynard D, Finin TW, Thirunarayan K (eds) Proceedings of the 7th international semantic
web conference (ISWC), pp 403–418

18. Du J, Shen Y (2008) Computing minimum cost diagnoses to repair populated DL-based ontologies. In:
Huai J, Chen R, Hon H, Liu Y, Ma W, Tomkins A, Zhang X (eds) Proceedings of the 17th international
world wide web conference (WWW), pp 575–584

19. Eén N, Sörensson N (2006) Translating pseudo-boolean constraints into SAT. J Satisf Boolean Model
Comput 2:1–26

20. Eiter T, Gottlob G (1995) The complexity of logic-based abduction. J ACM 42(1):3–42
21. Eiter T, Gottlob G, Mannila H (1997) Disjunctive datalog. ACM Trans Database Syst 22(3):364–418
22. Eiter T, Leone N, Mateis C, Pfeifer G, Scarcello F (1997) A deductive system for non-monotonic reasoning.

In: Dix J, Furbach U, Nerode A (eds) Proceedings of the 4th international conference on logic program-
ming and nonmonotonic reasoning (LPNMR), pp 364–375

23. Feldman R, Rosenfeld B, Fresko M (2006) TEG—a hybrid approach to information extraction. Knowl
Inf Syst 9(1):1–18

24. Fitting M (1996) First-order logic and automated theorem proving. 2. Springer, Secaucus
25. Guo Y, Pan Z, Heflin J (2005) LUBM: a benchmark for OWL knowledge base systems. J Web Semant

3(2–3):158–182
26. Haarslev V, Möller R (2001) Racer system description. In: Goré R, Leitsch A, Nipkow T (eds) Proceedings

of the 1st international joint conference on automated reasoning (IJCAR), pp 701–706
27. Horrocks I, Patel-Schneider PF, van Harmelen F (2003) From SHIQ and RDF to OWL: the making of

a web ontology language. J Web Semant 1(1):7–26
28. Horrocks I, Sattler U, Tobies S (2000) Practical reasoning for very expressive description logics. Logic J

IGPL 8(3):239–263
29. Huang Z, van Harmelen F, ten Teije A (2005) Reasoning with inconsistent ontologies. In: Kaelbling LP,

Saffiotti A (eds) Proceedings of the 19th international joint conference on artificial intelligence (IJCAI),
pp 454–459

30. Hustadt U, Motik B, Sattler U (2004) Reducing SHIQ− description logic to disjunctive datalog pro-
grams. In: Proceedings of the 9th international conference on principles of knowledge representation and
reasoning (KR), pp 152–162

31. Hustadt U, Motik B, Sattler U (2007) Reasoning in description logics by a reduction to disjunctive datalog.
J Autom Reason 39(3):351–384

32. Kazakov Y, Motik B (2008) A resolution-based decision procedure for SHOIQ. J Autom Reason 40(2–
3):89–116

33. Lembo D, Ruzzi M (2007) Consistent query answering over description logic ontologies. In: Marchiori
M, Pan JZ, Marie C (eds) Proceedings of the 1st international conference on web reasoning and rule
systems (RR), pp 194–208

34. Lopatenko A, Bertossi LE (2007) Complexity of consistent query answering in databases under cardi-
nality-based and incremental repair semantics. In: Schwentick T, Suciu D (eds) Proceedings of the 11th
international conference on database theory (ICDT), pp 179–193

35. Ma L, Yang Y, Qiu Z, Xie G, Pan Y, Liu S (2006) Towards a complete OWL ontology benchmark. In: Sure
Y, Domingue J (eds) Proceedings of the 3rd European semantic web conference (ESWC), pp 125–139

36. Ma Y, Hitzler P, Lin Z (2007) Algorithms for paraconsistent reasoning with OWL. In: Franconi E, Kifer
M, May W (eds) Proceedings of the 4th European semantic web conference (ESWC), pp 399–413

37. McDowell L, Cafarella MJ (2008) Ontology-driven, unsupervised instance population. J Web Semant
6(3):218–236

38. Meyer T, Lee K, Booth R (2005) Knowledge integration for description logics. In: Veloso M, Kambham-
pati S (eds) Proceedings of the 20th national conference on artificial intelligence (AAAI), pp 645–650

39. Odintsov SP, Wansing H (2003) Inconsistency-tolerant description logic: motivation and basic systems.
Kluwer, Dordrecht 301–335

123

370 J. Du et al.

40. Patel-Schneider PF, Hayes P, Horrocks I (eds) (2004) OWL web ontology language semantics and abstract
syntax. W3C recommendation. http://www.w3.org/TR/owl-semantics/

41. Popov B, Kiryakov A, Kirilov A, Manov D, Ognyanoff D, Goranov M (2003) Kim—semantic annotation
platform. In: Fensel D, Sycara KP, Mylopoulos J (eds) Proceedings of the 2nd international semantic web
conference (ISWC), pp 834–849

42. Qi G, Ji Q, Pan JZ, Du J (2011) Extending description logics with uncertainty reasoning in possibilistic
logic. Int J Intell Syst 26(4):353–381

43. Qi G, Liu W, Bell D (2006) A revision-based approach to handling inconsistency in description logics.
Artif Intell Rev 26(1–2):115–128

44. Rao AS, Foo NY (1989) Minimal change and maximal coherence: a basis for belief revision and reasoning
about actions. In: Sridharan NS (eds) Proceedings of the 11th international joint conference on artificial
intelligence (IJCAI), pp 966–971

45. Sattler K, Geist I, Schallehn E (2005) Concept-based querying in mediator systems. VLDB J 14(1):
97–111

46. Shadbolt N, Berners-Lee T, Hall W (2006) The semantic web revisited. IEEE Intell Syst 21(3):96–101
47. Shchekotykhin K, Jannach D, Friedrich G (2010) xCrawl: a high-recall crawling method for web mining.

Knowl Inf Syst 25(2):303–326
48. Sheini HM, Sakallah KA (2006) Pueblo: a hybrid pseudo-boolean SAT solver. J Satisf Boolean Model

Comput 2:157–181
49. Song M, Rudniy A (2010) Detecting duplicate biological entities using Markov random field-based edit

distance. Knowl Inf Syst 25(2):371–387

Author Biographies

Jianfeng Du is currently an Associate Professor in Guangdong Univer-
sity of Foreign Studies. He received the PhD degree from the State Key
Laboratory of computer science, Institute of Software, Chinese Acad-
emy of Sciences, and both the Master degree and the Bachelor degree
from Sun Yet-Sen University in P.R. China. His main research interests
include data mining, Semantic Web and business intelligence.

Guilin Qi is currently a full Professor in the School of Computer
Science and Engineering at Southeast University. His research
interests include knowledge representation and reasoning, uncertainty
reasoning and Semantic Web. He got his PhD degree from Queen’s
University Belfast and was a postdoctoral researcher working at Uni-
versity of Karlsruhe. He is on the editorial board of Journal of Web
Semantics and Journal of Advances in Artificial Intelligence. He has
organized special issues in Annals of Mathematics and Artificial Intel-
ligence and Web Intelligence and Agent Systems. He has involved in
organization of many international conferences and workshops.

123

http://www.w3.org/TR/owl-semantics/

Weight-based consistent query answering 371

Yi-Dong Shen is a Professor of Computer Science in the State Key
Laboratory of Computer Science at Institute of Software, the Chinese
Academy of Sciences, China. Prior to joining this laboratory, he was
a Professor at Chongqing University, China. His main research inter-
ests include knowledge representation and reasoning, Semantic Web,
and data mining.

123

	Weight-based consistent query answering over inconsistent SHIQ knowledge bases
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Description logic SHIQ
	2.2 Conjunctive query in DLs
	2.3 Disjunctive datalog
	2.4 The KAON2 transformation method
	2.5 Equality axiomatization

	3 A weight-based semantics for consistent query answering
	4 Computational methods for the weight-based semantics
	4.1 Entailment checking of atomic queries
	4.2 Optimizations in a decomposition-based framework
	4.2.1 The key optimization in the first phase: decomposition
	4.2.2 The key optimization in the second phase: query-relevant SAT problem construction

	4.3 Evaluating queries without non-distinguished variables

	5 Experimental evaluation
	5.1 Experimental setup
	5.2 Experimental results

	6 Related work
	7 Conclusions and future work
	Acknowledgments
	References

