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Abstract The continuous development of the Linked Data Web depends on the advance-
ment of the underlying extraction mechanisms. This is of particular interest for the scientific
publishing domain, where currently most of the data sets are being created manually. In
this article, we present a Machine Learning pipeline that enables the automatic extraction
of heading metadata (i.e., title, authors, etc) from scientific publications. The experimental
evaluation shows that our solution handles very well any type of publication format and
improves the average extraction performance of the state of the art with around 4%, in addi-
tion to showing an increased versatility. Finally, we propose a flexible Linked Data-driven
mechanism to be used both for refining and linking the automatically extracted metadata.

Keywords Metadata extraction · Support vector machines · Conditional random fields ·
Linked data

1 Introduction

The progressive adoption of the Semantic Web [3] resulted in the creation and publishing
of an important number of scattered data sets on the Web. The aim of the Linked Data
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initiative [4] is to establish bridges between these silos of semantic data, thus bringing into
existence a Web of Linked Data. In order to foster both the creation and the linking of data,
we need to continuously improve the underlying acquisition and extraction mechanisms, as
well as the means for entity co-reference resolution (with the scope of finding and linking
instances of the same entity on the Web). For example, the scientific publishing domain, a
domain that can generate large amounts of semantic metadata, needs particular attention, as
the acquisition process is still done, to a large extent, manually. At the same time, this meta-
data is required to enable the application of other techniques that bring value to researchers,
such as tracking temporal author-topic evolution [20] or coauthorship graph analysis
[2,15].

Currently, the authors of publications still fill in (manually) submission forms, with
the resulted information being then transformed, via a series of scripts, into semantic
metadata (see, for example, the metadata acquisition process for the Semantic Web Dog
Food Server [16]). The linking part, that is, the creation/generation of owl:sameAs or
rdfs:seeAlso relations between the data set-local URIs and existing Web URIs of the
instances of the same entity, is realized in two ways: (i) either at transformation time, when
the data set creator manually picks already existing URIs for the instances present in the data
set, or (ii) after the publication of the data set, via different algorithmic approaches.

Our goal is to provide a two-step, complete solution that enables both the automatic
extraction, as well as the linking of semantic metadata from scientific publications in a
straightforward and transparent manner. Within the context of this article, we focus on the
heading metadata and specifically on six of its fields: Title, Authors, Affiliation, Address,
Email and Abstract.

Extensive research has been performed in the area of metadata extraction, with a number of
solutions both heuristic and machine learning (ML)-powered being proposed. Our contribu-
tion, discussed in this article, is twofold. Firstly, we propose a novel Machine Learning-based
extraction pipeline that uses: (i) a combination of a cascade of standard (dual-class) support
vector machines (SVM) [29] classifiers, (ii) a rule-based convergence procedure and (iii) two
conditional random fields (CRF) [14] chunkers for extracting the heading metadata. The pipe-
line is agnostic of the document format (i.e., PDF, DOC or Web pages) and document purpose
(i.e., conference/Journal publications or technical reports) as it works directly on the raw text
and thus ignoring the underlying representation or style. Secondly, we devise a flexible entity
co-reference resolution mechanism, using dynamic SPARQL queries generation and execu-
tion, that can be applied for refining and linking the automatically extracted metadata, for
example, with the goal of generating linked publication data sets.

The evaluation results, focused only on the extraction step, show that our pipeline performs
as good as the state of the art solutions (when compared via tenfold cross-validation on the
gold standard data set) and improves the average extraction effectiveness, in addition to
showing an increased versatility, when trained and applied in setting similar to a real-world
scenario. The versatility is shown by testing the pipeline on three data sets comprising a
mixture of types of scientific publications (i.e., conference/workshop/journal publications
or technical reports), resulted from different document formats, for example, PDF or Web
pages.

The remainder of the article is structured as follows: we start in Sect. 2 by briefly describ-
ing the two Machine Learning paradigms used to develop our solution. Section 3 details the
metadata extraction pipeline, while Sect. 4 presents the refinement and linking approach.
In Sect. 5, we discuss an extensive evaluation of the metadata extraction. Finally, before
concluding in Sect. 7, in Sect. 6, we present a comprehensive overview of the related
approaches.
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Fig. 1 Example linear CRF—showing dependencies between features X and classes Y

2 Used machine learning techniques

We start by providing a brief description of the two ML techniques used to achieve the
automatic metadata extraction: conditional random fields (CRF) and support vector machines
(SVM).

2.1 Conditional random fields

Conditional random fields (CRF) [14] are a discriminative probabilistic graphical model for
classification. CRF, in general, can represent many different types of graphical models; how-
ever, in the scope of this article, we use the so-called linear-chain CRFs. A simple example of
a linear dependency graph is shown in Fig. 1, here only the features (X ) of the previous items
influence the class of the current item (Y ). The conditional probability of a label sequence
y (of Y ) given an observation of a feature x (of X ) is defined as:

p(y|x, λ) = 1

Z(x)
exp

⎛
⎝∑

j

λ j Fj (x, y)

⎞
⎠ (1)

where Fj (y, x) = ∑n
i=1 f j (yi−1, yi , x, i), λ j is a parameter to be estimated from training

data, and Z(x) is a normalization factor. The model is usually trained by maximizing the
log-likelihood of the training data by gradient methods.

In contrast to traditional classification algorithms in Machine Learning, CRF not only
considers the attributes of the current element when determining the class, but also attri-
butes of preceding and succeeding items. This makes it ideal for tagging sequences, such as
chunking of parts of speech, parts of references or a generic string which is what we require
for our classification and chunking tasks.

2.2 Support vector machines

The support vector machine [29] is a method used for finding the optimal separating hyper-
plane between sets of points in some N-dimensional space. A set of data points close to the
decision boundary is chosen (the support-vectors in the name), and the optimal hyperplane is
calculated from these. The true power of SVMs comes from the so-called kernel trick, where
a transformation function is used to transform the data to higher dimension when a linear
separation of the classes is not possible.

Figure 2 shows on the left how some data are not linearly separable in 2D space, but
it is easily achieved when transformed to a 3D space. The trick refers to the fact that the
exact locations in the higher dimensional space (kernel-space) do not have to be computed,
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Fig. 2 Example of SVM transformation allowing linear separation in higher dimension space

the algorithm only makes use of the dot product between vectors, which are created in the
transformed space by the kernel function. This means that a very high or even an infinite
dimensional spaces may be used. Various well-known kernels for SVMs are known, for
instance, the Gaussian RBF (radial basis function) kernel (for elliptical decision bound-
aries of the linear space) or the polynomial kernel. These are also used by our line-oriented
classification mechanism (detailed in Sect. 3).

The polynomial kernel function of degree d has an output dependent on the direction of
the two vectors in lower dimensional space, due to the dot product in the kernel (Eq. 2). All
vectors with the same direction will have a high output from the kernel, with the magnitude
of the output being dependent on the magnitude of the vector. As a result, polynomial kernels
are suited for problems where all the training data are normalized.

K (xi , x j ) = (xi · x j + 1)d (2)

K (xi , x j ) = exp

(
−‖xi − x j‖2

2σ 2

)
(3)

In the case of the Gaussian RBF (Eq. 3), the output is dependent on the Euclidean distance
of x j from xi (one of these will be the support vector and the other will be the testing data
point). The support vector will be the center of the RBF and σ will determine the area of
influence this support vector has over the data space. A larger value of σ will give a smoother
decision surface and more regular decision boundary. This is because an RBF with large σ

will allow a support vector to have a strong influence over a larger area.

3 Metadata extraction pipeline

This section presents the metadata extraction pipeline we have developed. We start by having
a look at the extraction task (or the problem we try to solve) and then introduce the pipe-
line structure, in addition to detailing the preprocessing stage, the classifiers, the rule-based
convergence and finally the disambiguation chunkers.

3.1 Metadata extraction task

To have a better understanding of the problem we address, Fig. 3 depicts an example of a raw
textual counterpart of a publication heading. The actual structure of the heading depends on
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1      J. Doe et al. (Eds.): ABET 2005, LNCS 3729, pp. 959-973, 2005.
2      circlecopyrt Springer-Verlag Heidelberg 2005

3 cations

4      Gary T. Leavens   Dept. of Computer Science, Iowa State University,   Ames, IA 50011, USA
5      Jeannette M. Wing
6      Computer Science Department
7      Carnegie Mellon University
8      Pittsburgh, PA 15213, USA
9 Abstract. cation of a procedure describes the procedure's

10    behaviour using pre- and post-conditions ...

Title

Author liation Address

Author
liation
liation

Address

Abstract

Fig. 3 Example of a raw textual counterpart of a publication heading, tagged with metadata fields

a series of factors, such as (i) the formatting style of the publication, (ii) the output of the
text extractor from the original document, or (iii) the presence of certain characters that may
influence the extractor’s output. Thus, this example shows merely one of the many possible
heading structures.

Our goal is to extract the bibliographic metadata fields (as shown in Fig. 3), initially
by classifying each line of the heading into one of the corresponding classes: Title, Authors,
Affiliation, Address and Email, and then by chunking the lines with multiple classes assigned,
into the corresponding fields. All lines outside these categories should be discarded. There is
also a sixth class, the Abstract class; however, the extraction of the abstract is performed as
a preprocessing step before the actual classification. Based on Fig. 3, both the classification
and final extraction processes, respectively, are not straightforward, due to the absence of
patterns, specifically:

– the heading does not start directly with the title (in Fig. 3 it starts with proceedings
information on lines 1 and 2, i.e., J. Doe et al. (Eds.). . .),

– the line containing the first author also contains his affiliation and address (see Line 4),
and

– the information about the second author is spread over four lines (Lines 5–8).

The solution we propose and detail in the following sections, in the form of an extraction
pipeline, is designed specifically to handle such ambiguous cases.

A typical real-world scenario in which the pipeline can be used is for the genera-
tion/production of linked metadata from conference proceedings. Similarly, it can also be
used for compiling personal digital libraries of publications coming from heterogeneous
sources, such as journal, conference proceedings, or Web pages. In practice, we have already
deployed and tested successfully our approach to produce the Linked Data data set from
the ISWC 2010 conference proceedings, following a process similar to the metadata creation
process of the Semantic Web Dog Food Server, but executed automatically. The pipeline takes
as input the raw textual content of scientific publications (being document format agnostic)
and outputs the corresponding metadata. To achieve an increased accuracy and to focus on
the actual extraction, we restrict the input to those parts of the publication that have the high-
est chances of containing valuable information. Therefore, instead of considering the entire
publication content, we focus only on its first page for extracting the heading metadata. The
way in which the content of the pages is being delimited, is out of our scope, and thus, we
are shifting this responsibility to the specific text extractor used for the different document
formats. Nevertheless, to enable a direct comparison between our approach and the relevant
related ones, we have also performed tenfold cross-validation on a gold standard data set,
although this is not aligned entirely to the application scenarios we have envisioned.
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Fig. 4 Heading metadata extraction component structure

3.2 Heading metadata extraction

Figure 4 presents the configuration of the heading metadata extraction component. The raw
textual input, that is, the first page of the publication (see the observation mentioned above),
goes through a list of preprocessing steps (phase I) and is split into two parts: the first com-
prising the complete, cleaned and preprocessed input and a second part containing strictly the
heading structure (cleaned as well). This second segment is delimited based on the Abstract
block that is extracted in a specific preprocessing step before the line-oriented classification,
as described in the following section. The two resulting segments are then used as input
for the cascade of dedicated SVM classifiers (phase II). The merged line-oriented classi-
fication results create an enriched heading structure that for each line, has one of our five
classes attached (i.e., Title, Authors, Affiliation, Address and Email). Subject to the classi-
fication, some lines will have multiple classes assigned, while others may have none. The
final extraction result is decided in the last phase of the pipeline, where: (i) we apply a rule-
based convergence procedure that takes into account classes assigned to the neighboring
lines (phase III), and then (ii) we finalize the results by disambiguating the lines that have
multiple classes assigned via a set of CRF chunkers (phase IV). The following sections detail
each phase of the extraction, in the aforementioned order.

3.2.1 Preprocessing (I)

The preprocessing phase has two goals: (i) it aims to clean the raw textual input of unwanted
spacing characters, while at the same time ensuring proper spacing where necessary, and
(ii) it extracts the abstract of the publication, thus delimiting the two segments required by
the actual pipeline execution.

Since the source of the textual input is unknown to the extraction pipeline, we make no
assumptions with regard to its structure or content. Thus, in order to avoid inherent errors that
might appear as a result of extracting the raw text from the original document, we perform
the following cleaning steps:

– we compress the text by eliminating unnecessary carriage returns, such that the lines that
contain less than 15 characters are merged with previous ones,

– we introduce spaces after some punctuation characters, such as “,”, “.” or “-”, and finally,
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From raw publications to Linked Data 7

– we split into two camel-cased strings, such as JohnDoe.

As a note, for the first step, we chose the length of 15 characters empirically, based on the
assumption that one cannot really express a real sentence in such a short text span.

In addition, as most of the features used throughout by the pipeline require some forms
of vocabulary entries, we have compiled a list of gazetteers, explained as follows:

– FirstName—25,155 entries gazetteer of the most common first names (independent of
the gender);

– LastName—48,378 entries list of the most common surnames;
– Location—places/cities/countries gazetteer comprising 17,336 entries;
– Organization—150 entries gazetteer listing organization prefixes and suffixes (e.g., e.V.

or KGaA);
– Address—list of 98 tokens that signal an address (e.g., street);
– Publisher—564 entries gazetteer comprising publisher unigrams (produced from around

150 publisher names);
– PubVenue—structured gazetteer consisting of different variations for conference, journals

and workshop terms (the actual terms, not instances of conference or workshop names);
– some auxiliary gazetteers: Connection—stop-word gazetteer; Pages and Editors—differ-

ent variations of the tokens pages, and respectively, editors.

The second role of this phase is to extract the abstract of the publication (see Fig. 3, line
9–10). This is done using a series of regular expressions (e.g., searching for the Abstract
token), combined with the placement of the abstract beginning in the page. If the abstract
block is found, the step is repeated (using different regular expressions) to find the end of
it or the beginning of the actual publication content. However, there are cases in which the
beginning of the abstract block cannot be found via regular expressions. In such cases, we
also apply jointly two of the features used by the SVM classifiers, detailed later in this
section: the average inverse line frequency (ILF) and the average term frequency (TF). As we
will show in the evaluation, this approach is enough to ensure high extraction performance,
that is, 99.74% F1, where F1 [27] is the harmonic mean of precision and recall defined
as:

F1 = 2 ∗ precision * recall

precision + recall
(4)

3.2.2 Line-oriented classification (II)

The line-oriented classification is realized via the cascade of five dedicated SVM classifiers,
one for each of the target classes: Title, Author, Affiliation, Address and Email. More con-
cretely, there is a standard (dual-class) Title classifier that classifies a line into Title or NoTitle,
an Author classifier that performs the same task but focuses on authors, and so forth. The
feature vector values are built from the two segments of cleaned initial input: the short seg-
ment comprising only the heading structure and the long segment comprising the entire input.
We used two types of features for classification: (i) classifier-agnostic features—their val-
ues are computed using the same formula for all classifiers—and (ii) classifier-dependent
features—discriminating features that take different values for different classifiers.

The use of an actual full page of the publication’s content enables the derivation of a set
of seven features, listed in Table 1 which guide (in particular with regard to Title) the classi-
fication. At the same time, we emulate sequencing to improve the overall accuracy, although
the actual classification task is performed per line basis and considers only the small set of
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8 Groza et al.

Table 1 Classifier-agnostic “special” features

Feature Value

Line pos. (short)
iS

TS
, TS—total number of lines in the short segment, and iS – line number

in the short segment

Line pos. (long)
iL

TL
, TL —total number of lines in the long segment, and iL – line number

in the long segment

Norm. line length (short)
n

NS
, n—number of tokens in the line, and NS – total number of tokens in

the short segment

Norm. line length (long)
n

NL
, NL —total number of tokens in the long segment

Average TF (long)
1

n

n∑
i=1

TF(tokeni )

NL
, TF(tokeni )—term frequency of tokeni

Average BF (long)
1

n

n−1∑
i=1

BF(bigrami )

NL − 1
, BF(bigrami )—bigram frequency of bigrami

Average ILF (long)
1

n

n∑
i=1

1 − ILFi

maxILF
, where ILFi = Log10

TL

TF(tokeni )

features used. This means that some of the dimensions of the feature vector of a certain line
will contain dimensions inherited from a previous or succeeding line, thus, providing the
above-mentioned features with an increased weight.

The set of 14 classifier-agnostic features (including the seven “special” ones) are listed
in Tables 1 and 2. Each feature value is line-oriented and is calculated based on different
aspects of the individual tokens present in the line. The list of tokens is obtained by splitting
the line based on space characters, with n representing the length of the token list. This set is
enriched with three additional classifier-dependent features (all listed in Table 3), bringing
the feature vectors dimensions to a total of only 17 per line (under scrutiny).

The actual configuration of each classifier is listed below, including their specific features
according to Table 3. We chose the type of kernel for the individual classifiers in an experi-
mental manner (i.e., by running tests and tuning the different parameters until we achieved
a satisfactory result). We were biased toward kernels that provided a higher recall. Details
about the training and testing data sets are presented in Sect. 5, while background information
about the two types of kernels we have used can be found in Sect. 2.

Title classifier: Polynomial kernel, 68 features per line (17 × 4 lines ) includ-
ing the current line (l), the previous line (l −1) and the following
succeeding lines (l + 1 and l + 2), using the Address prob. (v1), Email
prob. (v1) and Org. prob. (v1), in addition to Name prob. (v2) from
Table 3.

Author classifier: RBF kernel, 68 features values per line (17 × 4 lines) including the
current line (l), the previous line (l − 1) and the following succeed-
ing lines (l + 1 and l + 2), using the Address prob. (v1), Email prob.
(v1) and Org. prob. (v1).

Affiliation classifier: RBF kernel, 51 features per line (17 × 3 lines) including the current
line (l), the previous line (l − 1) and the succeeding line (l + 1),
using the Address prob. (v2), Email prob. (v1) and Org. prob. (v2).
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Table 2 Classifier-agnostic features

Feature Value

Date prob.
1

n

n∑
i=1

dateT okeni , where dateT okeni = 1 if tokeni is a month, ordinal, or an year.

Editors prob.
1

n

n∑
i=1

editT okeni , where editT okeni = 1 if tokeni in Editors, FirstName or LastName gaz.

Number prob.
1

n

n∑
i=1

numT okeni , where numT okeni = 1 if tokeni is a number.

Pages prob.
1

n

n∑
i=1

pagT okeni , where pagT okeni = 1 if tokeni in Pages gaz.

Venue prob.
1

n

n∑
i=1

pvT okeni , where pvT okeni = 1 if tokeni in Publisher, Location or PubVenue gaz.

Web site prob.
1

n

n∑
i=1

webT okeni , where webT okeni = 1 if tokeni is a web site.

Name prob.

n∑
i=1

( f T okeni + lT okeni )

2n2 − 1

n

n∑
i=1

addT okeni , where f T okeni = 1

if tokeni in FirstName, lT okeni = 1 if tokeni in LastName. and
addT okeni = 1 if tokeni in Address and Location gaz.,

Table 3 Classifier-dependent features

Feature Value

Org. prob. (v1)
1

n

n∑
i=1

(orgT okeni +locT okeni ), where orgT okeni = 1 if tokeni in Orga-

nization and locT okeni = 1 if tokeni in Location gazetteers.

Org. prob. (v2) 1.25 ∗ 1

n

n∑
i=1

(orgT okeni + locT okeni ), if
n∑
i

orgT okeni >

0,
1

2.5n

n∑
i=1

locT okeni , otherwise

Address. prob. (v1)
1

n

n∑
i=1

(addT okeni + locT okeni ), where addT okeni = 1 if tokeni in Address

Address prob. (v2) 1.5 ∗

n∑
i=1

(addT okeni + locT okeni + numT okeni )

n∑
i=1

orgT okeni

, if
n∑

i=1
orgT okeni >

0, 1.5 ∗ 1

n

n∑
i=1

(addT okeni + locT okeni + numT okeni ), otherwise

Email. prob. (v1)
1

n

n∑
i=1

emailT okeni , emailT okeni = 1 if it contains an “@”

Email prob. (v2) 0.5 if the count of emailT oken is 1, otherwise, Email prob. (v1)

Name prob. (v2)
1

2n

n∑
i=1

( f T okeni + lT okeni ), with f T okeni and lT okeni as in Tab. 2.
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10 Groza et al.

Address classifier: Polynomial kernel, 51 features per line (17 × 3 lines) including the
current line (l), the previous line (l − 1) and the succeeding line
(l + 1), using the Address prob. (v2), Email prob. (v1) and Org.
prob. (v2).

Email classifier: Polynomial kernel, 68 features per line (17 × 4 lines) including the
current line (l), the previous line (l − 1) and the following succeed-
ing lines (l + 1 and l + 2), using the Address prob. (v2), Email prob.
(v2) and Org. prob. (v2).

As a final remark, in the cases in which the previous (l −1) or the succeeding lines (l +
1 and l + 2) did not exist (e.g., first or last lines of the heading), we used an empty features
line, having −1 as value on all vector dimensions.

Returning to our example depicted in Fig. 3, the result of performing the line-oriented
classification is the following: (i) Line 3 will be assigned the Title tag, (ii) Line 4 will be
assigned the Author, Affiliation and Address tags, (iii) Line 5 will be assigned the Author tag,
(iv) Lines 6 and 7 will be assigned the Affiliation tag, and (v) Line 8 will be assigned the
Address tag.

3.2.3 Rule-based convergence (III)

The individual testing of the SVM classifiers led us to a series of observations. For exam-
ple, in some cases, for example, the Authors, Address or Email classifiers, we observed that
we could have achieved a better individual performance (in terms of precision). However,
we intentionally considered the configurations that provided a higher recall, at the expense
of the precision, for the sake of obtaining better overall results. In order to achieve these
results, we have introduced a rule-based convergence procedure and a disambiguation phase.
More concretely, we first detect structural patterns in the heading (i.e., repeated sequences
author—affiliation—address) and then apply iteratively to each detected block the following
rules and actions:

– Email lines were rechecked for the presence of actual emails. If the lines are assigned
multiple classes (e.g., Authors and Email, which is a quite common case), the email is
the first of all extracted, and then the class is subsequently removed from the line. The
line is then used in the other convergence steps.

– adjacent lines classified as Authors and Affiliation are merged and the authors vs. affilia-
tion CRF is applied. For lines that were classified with both classes, the CRF chunker is
applied, the Authors class is removed, and the line is processed further.

– adjacent lines classified as Affiliation and Address are merged and the affiliation vs.
address CRF is applied. The same rule applies also for lines classified with both classes.

– lines that are classified both as Title and Address are considered only as Title.

In the case of a multiple class assignment involving the Title class, this last rule is in fact
applied in a more general way, as we always give credit to the Title class over all the other
classes (except for the Email class, covered by the first rule). This can, however, harm the
classification results by affecting negatively the precision of Title classifier and the recall of
classifiers associated with the rest of the assigned classes. The above procedure ends when
all the detected blocks were analyzed.
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3.2.4 Disambiguation chunkers (IV)

As mentioned earlier, there are cases in which some of the lines of the heading structure may
be ambiguous—they may contain multiple metadata fields. Line 4 of the example presented
in Fig. 3 represents such a case. To solve this issue, we trained two CRF chunkers, one for
disambiguating names from affiliations (with or without addresses) and one for disambig-
uating affiliations from addresses. Applying the two chunkers, in serial, on Line 4 of the
example (previously tagged with the Author, Affiliation and Address tags during the line-
oriented classification), would result, first in splitting the name (Gary T. Leavens) from the
rest of the text, and then in splitting the affiliation, Department of Computer Science, Iowa
State University from the address Ames, IA 50011 USA.

Both chunkers were trained using the same set of features, but on different data sets. The
authors-affiliation chunker was trained on 500 manually labeled, randomly gathered samples,
while the affiliation-address chunker was trained on a data set consisting of 650 manually
labeled, randomly chosen samples, both compiled from the generic classification training
corpus (see Sect. 5). To test their efficiency, we ran an experimental evaluation, using a 200
sample and, respectively, a 400 sample data sets. These data sets are different from the ones
used in training, but are derived from the same training corpus. Considering that the chunking
task was simple, revolving only around finding the borderline between the two targeted cat-
egories, we achieved a 100% F1 score for both chunkers. To clarify, as opposed to [19], we
apply the two chunkers for disambiguation purposes only (i.e., as integrated components
of the extraction pipeline). Therefore, their individual (stand-alone) value is irrelevant and
consequently, presents no importance for specific evaluation.

Below, we list the features used for the CRF chunkers and exemplify them using the first
token of Line 4 from Fig. 3. As a remark, a set of feature values is used to characterize each
token present in a string (in this case the entire line), where the token list is obtained by
dividing the string into space-separated pieces.

Original Token: Gary
Stripped Token: the original token, stripped of any punctuation and lower cased: gary
Punctuation: trailing punctuation character (values: cont / stop/other): other
Postfix (last character type): (possible values: lower cap—c, upper cap—C, digit—0 or an

actual punctuation character): c
Orthographic case: (values: initialCap/singleCap / lowercase/mixedCaps/allCaps): single-

Cap
Token description: 10 individual values, 5 corresponding to the first 5 characters of the token

and 5 to the last 5 characters: G Ga Gar Gary Gary y ry ary Gary Gary
Number: (possible values: year, ordinal, 1dig, 2dig, 3dig, 4dig, 4dig+, noNumber): noNum-

ber
Gazetteer entries: 6 flags marking the presence of the token in 6 different gazetteers (listed in

Sect. 3.2.1): the FirstName, LastName, Location, Organization, Address and Connection
gazetteers. In the case of our example, the value of this feature would be: FirstName no
Location no no no.

Position: token position in the string, with the string divided into 9 equal parts. This division
into 9 equal parts is the result of a series of trials that had the goal of clustering as close as
possible together the tokens that have the same type, for example, title or authors: 0

This last phase completes the pipeline and produces the final metadata fields.
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Listing 1 Mappings from reference fields to classes and properties

4 Metadata refinement and linking

The result of the extraction process is a set of metadata that may contain errors, such as
missing parts of title or incomplete author names. However, as a possible application sce-
nario would be the automatic creation of linked publication data sets, we require an additional
step that aims to clean (or refine) the extracted metadata and link it as part of the Linked Data
Web.

The Linked Data Web contains a large number of data sets, accessible via different
methods. Some are exposed via SPARQL endpoints, and others provide specific RESTful
APIs. In order to cater for this variety of methods, we designed a flexible entity co-reference
resolution and linking process. Using a simple JSON-formatted configuration file, one can
“plug-in” different query modules that will act as access points to the different data sets. For
each component, one needs to specify its type and its voiD [1] description. The type signals
a specific way of handling the Linked Data, while the voiD description provides information
about the actual entry point to the data set, in addition to the classes and properties exposed
by the respective data set. As we will see, this information is particularly important when
mapping the extracted metadata fields to the queried linked resources.

The entity resolution and linking process uses an arbitrary number of SPARQL query
modules. These enable dynamic querying of any data set exposed as a SPARQL endpoint
that has an associated voiD description. The challenge here is to bridge the gap between the
raw text resulted from the metadata extraction process and the SPARQL queries required
for accessing the SPARQL endpoint. We have addressed this challenge by using a series of
mappings and a transformation stage.

The mappings from the metadata fields to ontological resources (classes or properties) are
done based on a JSON-formatted description. At this point, the process supports three types
of mappings:

– author-related mappings—with the name and type properties
– publication-related mappings—with the title, type, authors and pubVenue properties, and
– publication venue-related mappings—with the title and pubList properties.

Listing 1 presents an example of a set of mappings that can be used as input for the process.
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Listing 2 SPARQL query generated from the given example

The transformation stage takes as input a string (metadata field) produced by the extrac-
tion pipeline and, subject to its field type, transforms it into a SPARQL query, for a specific
SPARQL endpoint (identified via the voiD description). Consequently, if we aim at query-
ing for publications, by using the publication title, the result will be a SPARQL publication
query. Similarly, if we query for authors, we use the author names present in the reference
and construct a SPARQL author query.

To have a better understanding of this transformation phase, we provide the follow-
ing example: (i) we want to execute a publication query; (ii) on the Semantic Web Dog
Food Server (SWDFS) using our SPARQL query component; (iii) considering an incorrectly
extracted publication title, for example, Recipes for Semantic Web Dog Food—The ESWC.
The correct and complete title of the publication is: Recipes for Semantic Web Dog Food—
The ESWC and ISWC Metadata Projects. An error such as this one could appear due to an
unidentified Title line.

This particular instance of the SPARQL query component has in its associated voiD
description, corresponding to the SWDFS, among other properties, also:

sparqlEndpoint: http://data.semanticweb.org/sparql
hasInstancesOf:

– http://swrc.ontoware.org/ontology#InProceedings
– http://xmlns.com/foaf/0.1/Person

hasProperty:

– http://swrc.ontoware.org/ontology#title
– http://purl.org/dc/elements/1.1/creator

Taking into account all of the above, the transformation step will use the provided pub-
lication mappings and will construct and execute (using the given SPARQL endpoint) the
SPARQL query presented in Listing 2. Querying for authors works in exactly the same
manner, but this the corresponding author mappings in place.

The actual Linked Data-based entity resolution and linking mechanism is straightforward.
For each metadata entry resulted from the previous step, one can use this linking process
to query for the extracted publication title. Where possible, prior to querying, the title is
transformed into a regular expression, to avoid fixed queries that might give empty results
due to the errors of the extraction process. The query result will be a list of linked resources
that may contain also the desired publication.

To mask possibly existing discrepancies in the title, we use string similarity measures. An
empirical analysis led us to using a combination of the Monge–Elkan [17] and Soundex [18]
algorithms, with fixed thresholds. The first one analyzes fine-grained sub-string details, while
the second looks at coarse-grained phonetic aspects. The titles that pass the imposed thresh-
olds (0.75 and 0.9, respectively) advance to the next step. Subsequently, we consider the
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initially extracted author names and compare them with the ones associated with the publica-
tions that pass over the above mentioned thresholds. The comparison is done using the same
similarity measures, but with different thresholds (0.85 and 0.95). The linked publication
satisfying both conditions can be used as candidate to clean the originally extracted metadata
fields. Subject to the amount of information existent in the publication’s graph, one can do
more than just correcting the title and authors, it can also enrich the extracted metadata with,
for example, the publication venue.

In the case in which the title-based querying fails, the linking step can be repeated by
querying for the extracted author names. The filtering process is the same, the difference
being in the result, as eventually one might correct only the individual author names and not
the entire publication.

5 Evaluation

As mentioned in Sect. 1, we aim at deploying (and using) the extraction pipeline in real-
world settings. Therefore, in addition to a high accuracy, the pipeline should also exhibit an
increased versatility. This, unfortunately, cannot be achieved by performing data set-based
cross-validation, as the result will always be a data set-tailored model that encapsulates strictly
the characteristics of the data set under scrutiny. Consequently, the resulting model will not
have a uniform accuracy if applied on a data set with slightly different characteristics. In
order to deal with these aspects, we followed a less common approach to training the extrac-
tion pipeline (or more specifically the SVM classifiers), by using two exclusive data sets for
training and testing. However, for correctness purposes, and to create the proper environment
for comparing our approach to the already existing ones, we have also performed tenfold
cross-validation [13] on a gold standard data set. As a note, tenfold cross-validation repre-
sents the iterative evaluation process of randomly splitting a data set into ten equal disjoint
parts, and using nine parts for training and one part for validation. Each iteration captures
the local validation results, with the final validation result representing an average of the
intermediary ones.

Before detailing the actual experimental results, we describe the generic training data set
used to achieve an increased versatility and an uniform effectiveness over multiple test data
sets. This comprised 650 publications, randomly chosen from different conferences and from
different publication repositories (e.g., Springer Link or IEEE Explorer). As mentioned, this
training corpus was used exclusively for training the SVM classifiers that, at a later stage,
were tested based on the test corpora described in the rest of this section. To provide the
training examples, we labeled the heading structure of each publication manually. More
specifically, the labeling process was performed by a single person (one of the authors), by
going manually through each training entry. In a typical ambiguous setting (e.g., word sense
disambiguation), the labeling should have been done by multiple participants and the data
reliability should have been shown via inter-annotator agreements. However, the heading
metadata use-case has no real ambiguity attached, and consequently we did not see the need
for multiple labeling. At the same time, the evaluation results on the CORA data set [26]
(available as an already tagged data set) prove to some extent the reliability of our labeled
training data.

We tested the extraction pipeline in a series of experiments on three different data sets:

– the CORA data set, both via a tenfold cross-validation on a 53–47% split (500–435) as
in the case of the other approaches, and by using the generic training corpus,

123



From raw publications to Linked Data 15

Listing 3 Evaluation results on the CORA data set—other approaches

Field Peng (CRF) Peng (HMM) Han (clusters) Han (SVM)

F1 F1 F1 P R F1

Title 97.10 82.20 92.20 93.90 95.00 94.50

Authors 97.50 81.00 92.30 97.30 91.40 94.20

Affiliation 97.00 85.10 91.60 96.40 90.30 93.30

Address 95.80 84.80 92.30 93.60 86.70 90.00

Email 95.30 92.50 98.10 98.90 94.00 96.40

Abstract 99.70 98.00 97.5 98.50 99.20 98.80

Listing 4 Evaluation results on the CORA data set—our approach

Field Our approach (generic training) Our approach (tenfold x-validation)

P R F1 P R F1

Title 97.77 98.42 98.09 97.91 98.94 98.42

Authors 97.78 97.15 97.46 97.92 91.31 94.50

Affiliation 99.36 98.10 98.72 99.02 96.99 97.99

Address 98.67 98.12 98.39 97.55 96.37 96.96

Email 98.96 99.30 99.13 100 97.51 98.74

Abstract 100 99.5 99.74 100 99.5 99.74

– a data set containing 201 randomly selected publications from the ACM Portal, IEEE
Explorer and Springer Link, and

– a data set comprising 200 PUBMED [21] publications.

As evaluation metric, we used the F1 score, as defined in Eq. (4) on p 8. Below, we present
the evaluation results, in the data set order listed above.

5.1 Data set: CORA

The CORA data set is the first gold standard created for the evaluation of heading metadata
extraction. It comprises 935 publication headers and focuses on the Computer Science area.
The headers were compiled from different types of publications, that is, conference/work-
shop/journal publications and technical reports. Each entry is chunked into thirteen fields:
Title, Author, Affiliation, Address, Note, Email, Date, Abstract, Phone, Keyword, Web, Degree
and Pubnum.

Table 3 presents the extraction performance achieved by the relevant related approaches
(on the fields we have focused on), while Table 4 shows the results we have achieved, both via
tenfold cross-validation and by using the generic training corpus. The results in both tables
are represented according to the precision (P), recall (R) and F1. The best results, according
to the F1 score, are presented in bold.

The cross-validation test shows similar results to Peng (CRF), being slightly better on all
fields, except for the Authors field where the performance decrease is of 3%. This decrease is,
in principle, due to the combination of features used in the author extraction, which was built
to handle as many cases as possible, as shown also by the second test where the approaches
achieve almost the same performance. On the other hand, we can observe a consistently better
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Listing 5 Evaluation results on the Random and PUBMED data sets

Field Random data set PUBMED data set

P R F1 P R F1

Title 99.30 99.30 99.30 99.50 100 99.74

Authors 99.66 99.34 99.49 99.00 100 99.49

Affiliation 99.35 98.08 98.71 100 97.97 98.97

Address 99.05 98.12 98.58 99.00 100 99.49

Email 99.23 99.61 99.41 100 95.23 97.55

Abstract 98.75 98.75 98.75 100 100 100

performance on all fields when compared to Han’s approach (which is, from the technical
perspective, the closest to ours). However, our results were achieved using a set of features
vectors with dimensions lower with two orders of magnitude than the SVM approach of [11].

The second test, using the generic training corpus, shows an even better, yet consistent,
performance. While on the Title, Affiliation and Abstract fields, the performance increase is
of around 1%, the Address and Email fields bring an improvement of around 4%. However,
on the Authors field, the pipeline is still outperformed, this time by only 0.04%. Subject to
the considered fields (and related approach), instead of the improvement in percentage, we
can look at the decrease in the remaining error. Consequently, an effectiveness increase from
95 to 99% can be seen as a 80% decrease in remaining error from 5 to 1%.

5.2 Data set: random & PubMed

To show the versatility of the extraction pipeline, we compiled two other data sets with slightly
different characteristics: (i) a data set comprising 201 PDF publications randomly selected
from the ACM Portal, IEEE Explorer and Springer Link (not restricted to the Computer
Science field), and (ii) a data set consisting of 200 PUBMED publication abstracts. Both data
sets are available at http://resources.smile.deri.ie/corpora.

The publications in the first data set have different formatting styles, dictated by the corre-
sponding publishing conferences (or journals). To keep the experiments as close as possible
to a real-world scenario, the extraction pipeline was applied on the raw textual counterpart of
the first page of each publication, as extracted by PDFBox [22]. Consequently, we maintain
any extraction errors that appear as a result of applying our solution on any random PDF
publication. The same experiment can also be performed on publications written in MS Word,
since the extraction is independent of the underlying document format.

The PUBMED data set, on the other hand, contains the information provided openly by
the PubMed repository. Each publication is presented in a simple textual format and contains
the heading metadata and the abstract. We chose to experiment of such a data set to show that
our approach is indeed document format agnostic, and the minimum information required to
achieve the best results is the presence of the publication’s abstract.

The evaluation results for both data sets, using the generic training corpus, are presented
in Table 5. It can be observed that the extraction pipeline performs consistently, as on the
CORA data set, in some cases achieving an improved performance (e.g., the Authors field,
with an F1 score of 99.49% on both data sets). At the same time, the extraction has very good
results when applied both on full publications (i.e., on the first page) and on publications
where only the abstract is present.
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6 Related work

The work described in this paper has relevance, in principle, in two complementing research
areas: (i) bibliographic metadata extraction and (ii) entity co-reference resolution. In the
following, we detail and analyze the related work in both topics.

Several methods exist for automatic extraction of heading (bibliographic) metadata from
scientific publications, such as regular expressions, rule-based parsers or Machine Learning.
With respect to the two trends, regular expressions and rule-based systems have the advan-
tage that they do not require any training. However, they depend on the application domain
and require the presence of an expert to manually craft the rules or regular expressions. On
the other hand, ML methods are robust and adaptable and, theoretically, can be used on
any document format. Their main disadvantage is the rather expensive price to be paid for
labeling or annotating training data. ML techniques used, so far, for bibliographic metadata
extraction have included hidden Markov models (HMM), support vector machines (SVM)
and conditional random fields (CRF).

One of the first approaches to perform automatic metadata extraction from scientific
publications was the one of [26]. They explored the use of HMMs for the extraction task,
specifically focusing on learning the model structure from data and maximizing the use of
labeled and unlabeled data. A side result of their pioneering work was the creation of the first
gold standard data set for bibliographic metadata, the CORA data set. At a later stage, the same
group employed CRFs for the extraction task. In [19], they perform an empirical exploration
of several CRF factors, such as variations on Gaussian or exponential and hyperbolic-L1

priors for improved regularization. As opposed to their approach, we use CRF strictly for
disambiguation and chunking purposes, in two particular cases: authors vs. affiliation and
affiliation vs. address, and not with the goal of chunking the entire heading metadata.

The most closely related approach is the one of [11]. The authors trained a line-oriented
multi-class SVM and then performed an iterative convergence procedure to improve the line
classification by using the predicted class labels of the neighboring lines. There are two
similarities between our approach and the one of Han: (i) we, as well, use line-oriented SVM
classification, and (ii) we also perform an iterative convergence procedure, by discriminating
the final line class based on the neighboring lines classes and a set of rules. However, our
approach is novel with respect to the structure of the extraction pipeline, where we opted to
cascade a set of line-specific, class focused, standard (dual-class) SVM classifiers, as opposed
to a single multi-class classifier. More concretely, instead of one classifier, we connect five
specific classifiers, each focused on a particular metadata field. This enable us to reduce
the feature vector dimensions to a handful, thus making the overall model much easier to
grasp and manage. Finally, the novelty of our solution comes also from improving the overall
extraction performance by mixing the SVM classification with CRF chunking (strictly as a
disambiguation mechanism) and a simple set of rules that guide the final classification results
subject to particular cases.

Similar to [19], the authors attempted a different learning scheme. In [12], they propose
an effective word clustering approach with the goal of reducing feature dimensionality and
sparseness, while at the same time improving the overall classification performance. The
resulted domain rule-based word clustering method for cluster feature representation used
clusters formed from various domain databases and word orthographic properties. The exper-
iments results were, however, less satisfactory than in the SVM case.

If the above mentioned methods consider only the textual content of the publication for
processing, the non-ML approaches take into account also the content’s environment, that is,
the document format properties. Successful work has been reported in automatic metadata
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extraction from HTML documents using natural language processing methods in [32], from
Postscript documents using rules in [8] or from PDF documents via a visual/spatial approach
in [9]. Unfortunately, they are restricted to the specific document format they are built for.
Thus, they are not directly comparable to the ML-powered approaches, since they are docu-
ment format agnostic.

In addition to the previously described works, which were specifically tailored for biblio-
graphic metadata extraction, there are a series of other possibly relevant approaches, devel-
oped in different areas, that could be used for the same purpose. For example, [6] propose a
innovative “recursive boosting” strategy, with progressive classification, to reconcile textual
elements to an existing attribute schema. In the case of bibliographic metadata segmentation,
the metadata fields would correspond to the textual elements, while an ontology describing
them (e.g., DublinCore or SWRC [28]) would have the schema role. The authors even describe
an evaluation of the method using the DBLP citation data set, however, without giving pre-
cise details on the fields considered for segmentation. Some other approaches include, in
general, any sequence labeling techniques, for example, SLF [23], named entity recognition
techniques, for example, [24], or even the newly emerging area of field association (FA)
terms extraction [7], the latter working on bibliographic metadata fields in a quasi-similar
manner as the “recursive boosting” strategy.

The second relevant area for our research is entity co-reference resolution. As described in
Sect. 4, the mechanism we propose with respect to this topic is straightforward. It considers
the mapping between the corresponding metadata field and the Linked Data resource, by
following a strictly localized (micro-perspective) direction (i.e., it takes into account only the
information attached to that particular field). This is, naturally, less expressive than most of
the existing approaches which look at the entity resolution mechanism from a macro perspec-
tive, that is, by considering the entire information space available for analysis. For example,
[10] follow a generative model-based approach which considers the syntactic, semantic and
discourse constraints, attached to this process, as modules learned in an unsupervised manner.
A different direction is proposed by [25] which takes into account also the possible relations
between the entities to be consolidated via random walks models. Wick et al. [31] focused
on entities, rather than their mentions in the textual input, and developed a discriminatively
trained model to perform co-reference resolution, jointly with canonicalization (i.e., inclu-
sion of explicit canonical values for the entities attributes, such as name, venue, title). Such an
approach could be used as a foundational building block in the vision of the OKKAM project
that aims at supporting the reuse of existing URIs for any type of entity [5], by providing a
centralized Entity Name System (ENS).

Finally, an approach that does not fall into any of the previously described areas, however,
which is worth mentioning, is Silk [30]. Silk is a framework for discovering and maintaining
links between various data sets on the Web. The discovery step described by the Silk Link
Specification Language (Silk LSL) requires that the datasources are accessible via SPAR-
QL endpoints. The actual linking is done using a manually tailored specification file, which
contains the mapping between different types of entities present in the data sets under scru-
tiny and the values to be used as thresholds for matching. To a certain extent, Silk can be
seen as a more generic version of our linking method and applied at data set level, rather than
metadata field level.

7 Conclusions

In this article, we presented a comprehensive approach for extracting metadata from scientific
publications. Our metadata extraction pipeline consists of: (i) a cascade of dedicated SVM
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classifiers, (ii) an iterative rule-based convergence procedure and (iii) two CRF disambig-
uation chunkers, for extracting the heading metadata. As shown, this structure enables the
use of a very small set of features for classification, while at the same time, improving the
current state of the art extraction effectiveness. The good results achieved in the evaluation,
in addition to the flexibility of the linking approach, enables a straightforward adoption and
reuse of our solution in any digital library or publication repository.

For future developments, we plan to release openly the flexible Linked data set generator
we have implemented, using the extraction mechanisms described so far, that supports our
goals of enhancing the extraction and acquisition processes with the scope of producing
Linked Data. Also, to bring the Linked Data “feeling” into repositories that currently do not
expose their data in a semantic manner, we plan to develop a Linked Data-powered overlay
interface. The interface will be applicable on the ACM Portal or IEEE Explorer and will use
the extraction pipeline and the linking process from the data set generator to enable a rich
browsing experience for all users.
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