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Abstract Non-negative matrix factorization (NMF) mainly focuses on the hidden pattern
discovery behind a series of vectors for two-way data. Here, we propose a tensor decompo-
sition model Tri-ONTD to analyze three-way data. The model aims to discover the common
characteristics of a series of matrices and at the same time identify the peculiarity of each
matrix, thus enabling the discovery of the cluster structure in the data. In particular, the
Tri-ONTD model performs adaptive dimension reduction for tensors as it integrates the sub-
space identification (i.e., the low-dimensional representation with a common basis for a set
of matrices) and the clustering process into a single process. The Tri-ONTD model can also
be regarded as an extension of the Tri-factor NMF model. We present the detailed optimiza-
tion algorithm and also provide the convergence proof. Experimental results on real-world
datasets demonstrate the effectiveness of our proposed method in author clustering, image
clustering, and image reconstruction. In addition, the results of our proposed model have
sparse and localized structures.

Keywords Non-negative tensor decomposition · Non-negative matrix factorization

Z.-Y. Zhang
School of Statistics, Central University of Finance and Economics,
Beijing, People’s Republic of China

T. Li (B)
School of Computing and Information Sciences,
Florida International University,
11200 SW 8th Street, Miami, FL 33199, USA
e-mail: taoli@cs.fiu.edu

C. Ding
Computer Science and Engineering Department,
University of Texas at Arlington, Arlington, TX, USA

123



244 Z.-Y. Zhang et al.

1 Introduction

1.1 Tensor data and tensor decomposition

Recently, analyzing three-way data (or three-way tensor) has attracted a lot of attention due
to the intrinsic rich structures in real-world datasets [1,22,28,38,41,51]. Three-way data
are generalizations of matrices and they appear in many applications. One typical type of
three-way data is multiple two-way data/matrices with different time periods, for example, a
series of 2-D images, 2-D text data (documents vs. terms), or 2-D microarray data (genes vs.
conditions) are naturally represented as three-way data. In particular, in document clustering,
the data over different time periods can be represented as a three-way dataset as author ×
terms × time; in email communications, the data can be represented as sender × receiver ×
time; in web page personalization, the data can be represented as user × query word × web-
page; in high-order web link analysis, the data are represented as a three-way dataset as web
page× web page × anchor text [37].

An example of three-way data is shown in Fig. 1 with three modes: data units, features,
and occasions. The cth frontal slice of the three-way data is Xc ∈ R

d1,d2 by holding the last
mode of X fixed at c. There are d3 frontal slices lined up as shown on the left side of Fig. 1.
The three-way data can be matricized in the first mode to form a flattened matrix as shown
on the right side of Fig. 1.

One way to analyze three-way data is to convert the three-way data into two-way matrices,
either by transforming the three-way data into the sum-up matrix

(
X = ∑

i(Xi)
)

where Xi is
the i th front slice or by matricization. After the conversion, traditional low-rank matrix fac-
torization techniques including singular value decomposition (SVD) [17,18], principle com-
ponent analysis (PCA) [6,44], factor analysis [23,34], independent component analysis [24],
and non-negative matrix factorization (NMF) [29,31,32,36,45] can then be applied. How-
ever, the conversion may result in information loss and fail to capture the underlying struc-
tures in three-way datasets [1]. Many extensions of matrix computation techniques have been
proposed to efficiently analyze three-way data for different purposes [3,13,20,26,27,40,54].

We note that there are generally two types of tensor decomposition models including:
(1) Parafac (parallel factor analysis [21]): The Parafac model can be thought as a multi-
linear form of decomposition for the objective tensor. Specially for a 3-D tensor, each entry
of the three-way tensor is approximated by a linear combination of three vectors [21]. It only
allows the same number of factors in each mode, and the i th factor in one mode only interacts
with the i th factors in other modes (e.g., one-to-one interactions). (2) Tucker [8,46]: The

Fig. 1 Three-way data X ∈ R
d1,d2,d3 matricized in the first mode
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Tucker model such as HOSVD (higher-order singular value decomposition) can be thought
as the multi-way principal component analysis and aims to give the optimal low-rank approx-
imation of a tensor in given dimensions. Many multi-way models can be considered as the
extensions or modifications of the above two types [1,25,27,40,54]. These multi-way models
have been applied to many applications such as web link analysis [28], webpage personali-
zation [43], social network analysis [22], and others [2,41,48].

1.2 Content of the paper

In this paper, we present a new tensor decomposition model called Tri-ONTD (Tri-factor
orthogonal non-negative tensor decomposition). The model aims to discover the common
characteristics of a series of input matrices (the common characteristics will be represented
using two basis matrices) and at the same time identify the peculiarity of each matrix (the
peculiarity will be represented using a tensor, see Sect. 3). As a result, the cluster structure
of the data can be discovered based on the specialties of the input matrices (samples), i. e.,
the samples that have similar specialties are grouped into one cluster. In other words, with
the Tri-ONTD model, we obtain two basis matrices which are used to represent the com-
mon characteristics of the objective matrices (samples) and one 3-D tensor which is used to
denote the peculiarities of the samples. The model can be used to perform hard clustering,
soft clustering, and dimensional reduction. The non-negative constraints in the model can
improve the interpretability of the decomposition results [29].

We emphasize two properties of our Tri-ONTD model: (1) The Tri-ONTD model is an
extension of adaptive dimension reduction on tensors. Generally, the dimension reduction is
carried out as a preprocessing step and is decoupled from the clustering process: once the
subspace dimensions are selected, they stay fixed during the clustering process. Adaptive
dimension reduction refers to the approach where the subspace is adaptively adjusted and
integrated with the clustering process [4,5,10,16,33,49]. Our Tri-ONTD model integrates
the subspace identification (i.e., the low-dimensional representation with a common basis for
a set of matrices) and the clustering process into a single process. (2) The Tri-ONTD model
can also be viewed as an extension of the Tri-ONMF (Tri-factor orthogonal non-negative
matrix factorization) model [12]. In [12], Tri-ONMF has been applied to document co-clus-
tering successfully, but it can only cope with static data, i.e., it cannot be used for analyzing
tensor data such as a series of document data across several years. The Tri-ONTD model is
an extension of the Tri-ONMF model on tensors.

Our Tri-ONTD model differs from the multi-linear form of tensor factorization in that
Tri-ONTD explicitly maintains the 2-D nature of the original 2-D items (i.e., image and
document term) while in the multi-linear case, different dimensions are of different natures.
In other words, the Tri-ONTD model maintains the 2-D nature of the original 2-D items (e.g.,
2-D image structures), while the multi-linear form of decompositions does not. In the multi-
linear case, each entry of the original 3-D tensor is approximated by a linear combination of
three vectors, each of which has its own meanings (e.g., unit, variable, or occasion).

Our Tri-ONTD model essentially belongs to the Tucker type but also differs from HOS-
VD in that additional constraints (e.g., non-negativity) are enforced in the model so that
the Tri-ONTD model has better interpretability and is more intuitive [35,52]. We com-
pared the Tri-ONTD model with 2DSVD (a special form of HOSVD with the form Xi jk =∑

i ′ j ′ Uii ′ Vj j ′ Si ′ j ′k , where U and V are matrices and S is a 3-D tensor [13]) in our experi-
ments. The experimental results demonstrated the effectiveness of our Tri-ONTD model.

The rest of the paper is organized as follows: Sect. 2 presents an overview of various
tensor decomposition models. Section 3 introduces the detailed model formulation of the
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Tri-ONTD model. The corresponding algorithms and the convergence proof are introduced
in Sect. 4. Section 5 shows the experiments on author clustering, image clustering, and image
reconstruction. Finally, Sect. 6 concludes.

2 An overview on tensor decomposition

The notations used in the paper are summarized in Table 1. We will mainly use the matrix
representations and occasionally explicit indexes to denote three-way tensors.

In this section, we give a brief overview of the related tensor decomposition models. Here,
we focus on the model formulations.

1. 2DSVD [13]: 2DSVD is an extension of the classic singular value decomposition (SVD)
[17,18]. Different from SVD (which is computed for a set of vectors), 2DSVD is defined
for a set of matrices. We can write the model as:

2DSVD: Xl± ≈ W±Ml± RT±, (1)

for l = 1, . . . , L , where W = (u1, u2, . . . , uk) and R = (v1, v2, . . . , vs). ui is the
eigenvector of F = ∑

i Xi R RT X T
i , and vi is the eigenvector of G = ∑

i X T
i W W T Xi .

Note that W T W = I , RT R = I .
2. NTD (Non-negative tensor decomposition [40]): NTD is an extension of NMF where

the input datum is a non-negative tensor. For a three-way tensor, the standard NTD can
be written as:

NTD: X+ ≈
K∑

i=1

⊗3
j=1W j

i+, (2)

where elements of X, and W j are non-negative. ⊗ denotes the outer product and W j is
a matrix, each column of which is W j

i . Given two vectors a ∈ Rm, b ∈ Rn, a ⊗ b =
C ∈ Rm×n , where Ci j = ai b j .

3. OTD (orthogonal tensor decomposition [27,54]): Similar to NTD, the OTD model for
a 3-D tensor can be formulated as:

OTD: X± ≈
K∑

i=1

⊗3
j=1W j

i±. (3)

Table 1 Notations used in the
paper X = (X1, . . . , X L ) Tensor with L front slices

(Xl )i j = Xi jl The i j-th entry of Xl

X+ Non-negative tensor X

X± Tensor with mixed signs

Xl+ Non-negative matrix Xl ≥ 0

Xl± Matrix with mixed signs

X = (x1, . . . , xm ) Matrix with m column

xi Vector

I Identity matrix
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Non-negative Tri-factor tensor decomposition with applications 247

Instead of adding non-negative constraints, the columns of each matrix W j are required
to be mutually orthogonal.

4. Tri-ONTD (Tri-factor orthogonal non-negative tensor decomposition): The Tri-
ONTD model is an extension of the Tri-ONMF (Tri-Factor Orthogonal Non-negative
matrix factorization) model introduced in [12]. Tri-ONMF is a variation of NMF and
can be written as:

Tri-ONMF: X+ ≈ F+S+GT+, (4)

where FT F = I and GT G = I . Tri-ONMF provides a framework for simultaneously
clustering of rows and columns of an input matrix X : F and G indicate the cluster mem-
berships for rows and columns of X , respectively. S, as an additional freedom degree,
is used to absorb the different scales of X , F , and G. The Tri-ONMF model also bears
similarity with double K-means [15,19,50] as they both perform simultaneous clustering
of rows and columns.
Extending the Tri-ONMF model to a 3-D tensor, we have the Tri-ONTD model as follows:

Tri-ONTD: Xl+ ≈ U+Sl+V T+ , (5)

for l = 1, 2, . . . , n. U and V are the common basis for {Xl |l = 1, 2, . . . , n}, and
{Sl |l = 1, 2, . . . , n} indicates the peculiarity of each Xl . Note that the slices Sl ’s are not
assumed to be diagonal as in the Parafac model [21] but are the slices of a general core
array as in the Tucker3 model [46]. The size of U is m × t , the size of V is n × s, and
both U and V are orthogonal. The common basis means the basis that represents the
common characteristics of the slices in the input tensor. Each slice Sl is the projection
of the original corresponding slice Xl in the input tensor onto the common basis.

3 Model formulation

3.1 Simultaneous subspace selection and data clustering

Consider a set of input data vectors X = (x1, · · · , xn). A long-held standard practice is to
use PCA (principle component analysis) to project the data into a low-dimensional space:

Y = (y1, · · · , yn) = (U T x1, · · · , U T xn) = U T X,

and then perform K-means clustering on Y . Recently, it has been shown that NMF is equiva-
lent to K-means and provides a more versatile and often better clustering model than K-means
[9,11]. Using NMF as the clustering model, the clustering after PCA subspace selection can
be written as:

min
C,H

||Y − C H T ||2F , s.t. C, H ≥ 0, H T H = I. (6)

Here, H is the clustering membership indicator matrix, and each row of C is the cluster
centroid.

We note that this common practice separates the subspace selection and data clustering as
two unrelated procedures. Typically, dimension reduction is carried out as a preprocessing
step and is decoupled from the clustering process: once the subspace dimensions are selected,
they stay fixed during the clustering process. This would lead to poor clustering performance
for high-dimensional data, where different clusters often exist in different low-dimensional
subspaces [33].
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Recently, some research efforts such as the adaptive dimension reduction techniques have
integrated these two procedures into a single process, i.e., the clustering process is integrated
with the subspace selection process, and the data are then simultaneously clustered while the
feature subspaces are selected [4,5,10,16,33,49]. This can be written as:

min
C,H,U

||U T X − C H T ||2F , s.t. H ≥ 0, H T H = I, U T U = I. (7)

We call this SSC (simultaneous subspace identification and clustering) factorization. Assum-
ing UU T = I , the model can be written in a different form:

min
C,H,U

||X − UC H T ||2F , s.t. H ≥ 0, H T H = I, U T U = I. (8)

The most important difference between Eqs. (7) and (8) is that in Eq. (7), data and the cluster
centroids are all in the reduced subspace, while in Eq. (8), only cluster centroids are in the
subspace. Note that: (1) U T U = I can be relaxed to U T U = D, where D is a diagonal
matrix; and (2) SSC can also be viewed as an extension of factorial K-means with a weighted
matrix norm [49].

3.2 The Tri-ONTD model

Now, we extend the SSC factorization to tensors. Given a 3-D tensor, say a set of 2-D images,
we denote them as

X = (X1, . . . , X L),

where Xi is a m × n matrix.
First, we consider the subspace projection. In this case, we seek two sets of basis U and V ,

and the low-dimensional representation Si , i = 1, . . . , L:

min
U,V,Sl

L∑

l=1

||Xl − U Sl V
T ||2F , s.t., V T V = I, U T U = I. (9)

The size of U is m×t , and the size of V is n×s. In the subspace, we have S = (S1, · · · , SL),
where Sl is a t ×s matrix. t ×s is the size of the low dimension (subspace) representation. We
then perform K-means clustering on them. Let C = (C1, · · · , CK ) represent the centroids of
the K clusters, where Ci is also a t ×s matrix. Viewing Sl , Ci as vectors in a t ×s-dimensional
space, we can write down the K-means clustering objective function as follows:

O =
K∑

k=1

∑

l∈cluster k

||Sl − Ck ||2F

=
L∑

l=1

K∑

k=1

Hlk ||Sl − Ck ||2F

=
L∑

l=1

∑

Hlk �=0

||Sl − Ck ||2F

=
L∑

l=1

||Sl −
K∑

k=1

Ck Hlk ||2F , (10)
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where H ∈ RL×K is the cluster membership indicator matrix, each row of which has and
only has one nonzero element 1. Note that the above optimization is similar to the tandem
analysis described in [39]. Equation (10) can be written in the complete index:

O =
L∑

l=1

k∑

i=1

s∑

j=1

(

Si jl −
K∑

k=1

Ci jk Hlk

)2

.

Similar to SSC, we combine the two optimization problems in Eqs. (9) and (10) into one
process, and thus, the Tri-ONTD model can be written as:

min
C,H,U,V

∑

l

∥
∥
∥
∥∥

Xl − U
K∑

k=1

(Ck Hlk)V T

∥
∥
∥
∥∥

2

F

,

s.t. U T U = I, V T V = I, H T H = I,

U, V, H, C ≥ 0.

(11)

If one only wants to identify the optimal subspace, solving Eq. (9) is enough for subspace
identification. It should be pointed out that the results of our proposed model are essentially
unique except for column/row permutations. The proof follows directly from the Proposition
1 in [9].

3.3 Extension of Tri-ONMF

The Tri-ONTD model can be regarded as an extension of the Tri-ONMF model. The two basis
U and V identify the common characteristics of the series of matrices that are composing the
tensor X, while the core tensor S gives the peculiarity of each slice of X. Based on S, we can
cluster each slice of X into different groups. In other words, we factorize S into C and H ,
where C is the centroid tensor and H is the cluster membership indicator. Figure 2 illustrates
the relation between our Tri-ONTD model and the Tri-ONMF model.

3.4 An illustrative example

We close this section by a small example to show the effectiveness of our tensor decom-
position model. We try to cluster twelve matrices into different classes. The first six slices

of the tensor are the same as:

⎛

⎝
1 1 0 0
1 1 0 0
1 1 0 0

⎞

⎠; while the remaining six slices of the tensor

are the same as

⎛

⎝
0 0 1 1
0 0 1 1
0 0 1 1

⎞

⎠. Clearly, the twelve matrices can be separated into two clus-

ters. We randomly flip some elements of the matrices(i.e., change some elements from 0
to 1 or from 1 to 0) to obtain a noisy version of the tensor. When applying NMF, we
write the tensor as a matrix form, i.e., reshape each slice of the tensor into one column
of a matrix
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Fig. 2 An intuitive illustration of
the differences between
Tri-ONTD and Tri-ONMF:
a Tri-ONMF; b Tri-ONTD

X SF G=

(a)

U V=
X

S

(b)

X =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 1 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 1 0 0 0
1 0 1 0 0 1 0 1 0 0 0 0
1 0 0 1 1 0 0 1 0 0 0 0
0 0 0 1 0 1 1 1 1 1 1 1
1 0 1 1 0 0 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1
0 1 0 1 1 1 1 0 1 1 1 1
0 1 0 0 0 0 1 1 1 1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

When we apply NMF to obtain the columns’ cluster membership information, the second
and the sixth columns, and the columns from 7th to 12th are of one cluster while the rest are
of the other cluster. The tensor model can discover the correct cluster structure, while NMF
cannot. The centroids of the two clusters are the following:

C1 =
(

0.65 1.00
0.79 0.00

)
, C2 =

(
0.066 1.59
0.054 1.79

)
.

4 Algorithm procedure and analysis of convergence

4.1 Algorithm procedure

In most cases, we only want to identify the optimal basis U and V for a series of matrices in
order to discover the common characteristics of the matrices. Under this consideration, the
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model can be written as:

min J =
∑

l

||Xl − U Sl V
T ||2F , (12)

s. t. U T U = I, V T V = I, (13)

U, V, S ≥ 0. (14)

As we can see, all the elements of U , V , and S are variables that need to be determined. In
other words, we need to find the optimal matrices U , S, and V so that the objective function
J achieves its local minimum. It will be very time-consuming if we employ the standard
optimization methods.

We then follow the multiplicative update strategy that is widely used in solving NMF.
In other words, instead of iteratively searching for the optimal solutions of U , S, and V ,
we alternatively update one of the three matrices while fixing the other two. We derive the
update rules from the Karush-Kuhn-Tucker (KKT) condition. Note that the KKT condition is
the necessary condition for local optimal solutions in non-linear programming, provided that
some constraint qualification such as LICQ (linear independence constraint qualification, the
gradients of the active constraints are linearly independent at the optimal point) is satisfied.

From non-linear optimization, the Lagrangian function of the constrained programming is:

L = tr

[
∑

l

(Xl − U Sl V
T )T (Xl − U Sl V

T )

]

+tr(λ(U T U − I ) + ξ(V T V − I )) +
∑

i j

(δi j Ui j + γi j Vi j + θi j Si j )

=
∑

l

tr [X T
l Xl − 2X T

l U Sl V
T + V ST

l U T U Sl V
T ]

+tr(λ(U T U − I ) + ξ(V T V − I )) +
∑

i j

(δi j Ui j + γi j Vi j + θi j Si j ),

where λ, ξ, δ, γ, θ are the matrices of corresponding Lagrangian multipliers of the five con-
straints. We rewrite V ST

l as Gl , and then, the first part of Lagrangian function can be writ-
ten as:

∑

l

tr
[

X T
l Xl − 2X T

l U GT
l + GT

l U T U GT
l

]
.

So, the gradient of L with respect to U is:

∂L

∂U
= 2

∑

l

(−Xl Gl + U GT
l Gl) + 2Uλ + δ. (15)

From the constraint U ≥ 0, the complementary condition of U is δabUab = 0 for any a, b.
Using this condition, we have:

(

−
∑

l

Xl Gl +
∑

l

U GT
l Gl + Uλ

)

ab

Uab = 0, (16)
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which gives the update rule of U while fixing V and S. Similarly, we can obtain the update
rules of V and S. We summarize the rules of U , V , and S as follows:

Uab := Uab

√ ∑
l [Xl V ST

l ]ab
∑

l(UU T Xl V ST
l )ab

; (17)

Vab := Vab

√ ∑
l [X T

l U Sl ]ab∑
l(V V T X T U Sl)ab

; (18)

Sabl := Sabl

√
(U T Xl V )ab

(U T U Sl V T )Vab
. (19)

Consequently, we can prove that the update rules converge to a local minima of the
Lagrangian function L . We have the following monotonic property theorem:

Theorem 1 (Convergence and Correctness) The Lagrangian function L is non-increasing
under the update rules in Eqs. (17), (18) and (19).

The proof is given in the Appendix. Note that as similar to most NMF algorithms, the
algorithm of the Tri-ONTD model only has the monotonic property, and hence, the global
optimal solution is not guaranteed. Though the algorithm often falls into a suboptimal sta-
tionary point, the experimental results of clustering and the image reconstruction are stable
as demonstrated in Sect. 5.

4.2 Hard clustering

As we have discussed earlier, U and V are the common basis of a series of matrices X , and S
shows the specialty of each slice of X . We can cluster the series of matrices X into K classes
based on S. Note that usually the number of clusters K is less than the number of slices L . To
perform clustering, we factorize S into C and H so that Sl = ∑K

k=1 Ck Hlk for l = 1, · · · , L ,
where H is of size L × K and satisfies H T H = I , and C is a tensor of size d1 × d2 × K
which can be viewed as centroids of the clusters. Formally, the model can be written as:

min J =
∑

l

∥∥∥∥∥
Xl − U

K∑

k=1

(Ck Hlk)V T

∥∥∥∥∥

2

F

, (20)

s. t. U T U = I, V T V = I, H T H = I, (21)

U, V, H, C ≥ 0. (22)

The updating rules of U and V are the same as those in Sect. 4.1.
The update rule of C is:

Cabc = Cabc

∑
l(U

T Xl V )ab Hlc
∑

l

{
U T

[
U

(∑K
i=1 Ci Hli

)
V T

]
V

}

ab
Hlc

. (23)

Since H is the cluster membership indicator, there is only one nonzero element 1 in each
row of H under hard clustering. Hence, H can be updated via a greedy strategy: at each
iteration, from i = 1 to L , Hip∗ = 1 if p∗ = argmin p J for Hip = 1 while Hip′ = 0,
p′ �= p. The algorithm procedure for hard clustering is described in Table 2.
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Table 2 The algorithm
procedure of Tri-ONTD:
hard clustering case

Input: The data tensor X, the positive integers d1, d2 and K .

Output: Left basis (feature basis) U ,

Right Basis (sample basis) V ,

The centroid tensor C,

The cluster membership indicator H .

Method:

Step 1. Initialize U , V , C and H

with random positive numbers in [0,1].

Step 2. Repeat:

1. Fixing V , C and H , update U ;

2. Fixing U , C and H , update V ;

3. Fixing U , V and H , update C;

4. Fixing U , V and C, update H using a greedy strategy;

Until Convergence.

4.3 Soft clustering

The model can be naturally extended to perform soft clustering. Different from hard cluster-
ing, each slice of a tensor X can be grouped into multiple clusters with a certain probability.
The only modification of the algorithm is the updating rule of H . Instead of using a greedy
strategy, H is updated based on the gradient descent similar to that of U , V , and C.

Hab := Hab

∑
t, j (Xa)t j (UCbV T )t j

∑

t, j
[U (Cb Hab)V T ]t j (UCbV T )t j + ∑

j
Haj

. (24)

4.4 Time complexity

If the sizes of U , V , and S are m × t , n × s, and t × s × L , respectively, then the time
complexity for updating U in Eq. (17) is of order mt + 2m2t + Lmns + Lmst , the time
complexity for updating v in Eq. (18) is of order ns + 2n2s + Lmnt + Lnst , and the
time complexity for updating S in Eq. (19) is L(ts + mnt + nts + mt2 + ns2 + st2 + ts2).
The time complexity for updating C (of size d1 × d2 × K ) in Eq. (23) is of order K (d1d2 +
L(mnd1 + nd1d2 + 2d1d2 + md2

1 + nd2
2 + d1d2 K + d1d2

2 + d2d2
1 )). A similar analysis can

also be found in [11]. In practice, the values of t (or d1), s(or d2), and K are often very small,
and hence, these matrix multiplications can be computed efficiently on most cases.

5 Applications

In this section, we evaluate our Tri-ONTD model with different real-world applications: doc-
ument applications (author clustering) and image applications (image clustering and recon-
struction). For each application, we compare our proposed model with the popular and the
state-of-the-art techniques used in the specific application. Note that documents and images
are of different types with different data characteristics. Hence, the state-of-art techniques
used for different applications might be different. For author clustering, we compare our pro-
posed model with several tensor factorization methods such as Parafac and HOSVD which
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can be directly used for data clustering. We also compare our proposed model with other
popular two-way document clustering methods by matricizing the input tensor data. For
image applications, since NMF, SVD, and 2D-SVD are the popular techniques used in image
clustering and reconstruction, we compare our proposed model with them.

5.1 Clustering of authors

5.1.1 Dataset description

We performed author clustering on a dataset extracted from the DBLP record file that can be
downloaded at http:// www.informatik.uni-trier.de/ ~ley/ db/ . DBLP is a bibliography website
that indexes up-to-date papers with the associated conferences or journals in the computer
science field. We extracted author names, publication titles, and the corresponding years of
the publications. Among these records, 1000 active researchers with their publication titles
for the last 20 years (from 1988 to 2007) were chosen for our experiment. These researchers
and their publications were divided into 9 different research areas: Database, Data Mining,
Software Engineering, Theory, Computer Vision, Operating System, Machine Learning, Net-
working, and Natural Language Processing based on authors’ major activities in these areas.
These different areas were served as the ground-truth labels for our experimental comparison
purpose. The data were preprocessed by using the standard text preprocessing techniques. For
each year, a binary matrix with each entry denoting the co-occurrence of the corresponding
author and the term in that year was constructed. The data were represented as a three-way
tensor with the author, term, and year modes.

Each slice of the tensor is a author-by-term matrix, where the terms are words that used
in the paper titles. Recall that in our Tri-ONTD model, the size of U is m × t , the size of
V is n × s, and the size of S is t × s × L . In the author clustering application, we set m =
1,000, n = 500, L = 20, t = 9, and s = 9. The goal of author clustering is to find the cluster
information of authors from the basis matrix U , i.e., author i is of cluster j if the element ui j

of matrix U is the largest in i th row.

5.1.2 Performance measures

In order to compare the clustering performance, we used normalized mutual information
(NMI) and accuracy(ACC) as our performance measures. These measures provide good
insights on how the clustering results agree with the true label. Normalized mutual informa-
tion measures how clustering results share the information with the ground-truth label [42].
Generally, the larger the NMI value, the better the clustering quality is. Its value is between
[0, 1]. The NMI of the entire clustering solution is computed as:

NMI =
∑

i, j P(i, j)log2
P(i, j)

P(i)P( j)√
(∑

i −P(i)log2 P(i)
) (∑

j −P( j)log2 P( j)
) , (25)

where P(i) is the probability that an arbitrary data point belongs to cluster i , and P( j) is
the probability that an arbitrary data point belongs to ground-truth class j . P(i, j) is the
joint probability that an arbitrary data point belongs to cluster i and also class j . Note that
NMI is actually the mutual information between clustering and ground-truth class knowledge
divided by the maximum value of clustering entropy and class entropy.
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Accuracy (ACC) discovers the one-to-one relationship between clusters and classes and
measures the extent to which each cluster contains data points from the corresponding class.
It sums up the whole matching degree between all class-cluster pairs. Its value is also between
[0, 1]. Accuracy can be represented as:

ACC = max

⎛

⎝
∑

Ck ,Lm

T (Ck, Lm)

⎞

⎠
/

N , (26)

where Ck denotes the kth cluster, and Lm is the mth class. T (Ck, Lm) is the number of entities
that belong to class m, but are assigned to cluster k. Accuracy computes the maximum sum of
T (Ck, Lm) for all pairs of clusters and classes, and these pairs have no overlaps. Generally,
the greater the accuracy, the better the clustering performance.

5.1.3 Comparison methods

The clustering performance of Tri-ONTD was compared with a wide range of clustering
algorithms, and we expect these comparisons would provide us with enough insights into the
performance of Tri-ONTD. The comparison methods include:

– Tensor factorization methods: We compared Tri-ONTD with Parafac [20] and HOSVD
[46], two commonly used multi-way analysis models. The clustering results were derived
as follows: given the component matrix W from Parafac and HOSVD, we discretize it by
solving arg minH,R ||W − H R||, where H is fixed to indicator matrix and R is rotation
matrix, as in [47].

– Two-way data clustering methods

• (a) KMeans(sum): Run K-Means algorithm [53] on the sum-up matrix of 20 years
author × terms matrices;

• (b) KMeans(ext): Run K-Means algorithm on the unfolded matrix in the first mode
of the three-way array;

• (c) KMeans(PCA): Perform PCA first to reduce the dimensionality of the unfolded
matrix in the first mode and then use K-Means algorithm;

• (d) InfoCo: Run information theoretic co-clustering algorithm [14] on the sum-up
matrix of 20 years author×terms matrices;

• (e) EuclCo: Run Euclidean co-clustering algorithm [7] on the sum-up matrix;
• (f) MinSqCo: Performs minimum squared residue co-clustering algorithm [7] on the

sum-up matrix.

– ClusterAgg: Run K-Means clustering on each frontal slice of the three-way array, and
combine them using clustering aggregation [42]. We used the hypergraph partitioning
algorithm for cluster aggregation.

5.1.4 Analysis of results

In the experiments, the clustering quality was obtained by averaging ten trials. The accuracy
and NMI results are presented in Figs. 3 and 4, respectively. We observed that Tri-ONTD
achieved the obviously better clustering performance than other algorithms. KMeans(PCA)
and three co-clustering algorithms performed relatively better since the dimensionality reduc-
tion step made them viable on clustering high-dimensional data. KMeans(ext) obtained very
poor clustering results because it was easily affected by noise dimensions.
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Fig. 3 Accuracy comparison for author clustering
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Fig. 4 NMI comparison for author clustering

To gain more insights into the Tri-ONTD model, Table 3 lists the terms whose corre-
sponding coefficients are the largest in the columns that are highly related to the factors (i.e.,
columns) in U (such as Factor 1, Factor 2 and Factor 6). After checking the author informa-
tion, we know that Factor 1 is dominated by authors in data mining, Factor 2 is dominated
by authors in database, and Factor 6 is dominated by authors in theory. We observe that the
discovered terms are highly related to the author clusters.

5.2 Image clustering

We used the CBCL face dataset1 to evaluate the clustering performance of Tri-ONTD on
image datasets. The CBCL dataset contains two classes of data: face and non-face. The size
of each image is 19×19 (i.e., m = 19 and n = 19). The goal of image clustering is to cluster
the images into two different classes: face and non-face.

1 http://cbcl.mit.edu/software-datasets/FaceData2.html.
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Table 3 The most highly related
terms to Factor 1 (Data Mining),
Factor 2 (Database), and Factor 6
(Theory)

The results are based on the
DBLP dataset

Authors Terms

Factor 1 Mining Data Cluster

Data mining Pattern Discovery Rule

Frequent

Factor 2 Web Xml Database

Database Management System Access

Document Service

Factor 6 Algorithm Problem Approximation

Theory Time Complexity Graph

Table 4 Performance comparison of Non-negative matrix factorization (NMF) and Non-negative Orthogonal
Tensor Decomposition (Tri-ONTD) on the CBCL dataset

Accuracy NMI Memory storage

Data size = 50
NMF 0.68 0.01 822 (19 × 19 × 2 + 50 × 2)

Tri-ONTD (t = s = 2) 0.90 0.53 184 (19 × 2 × 2 + 2 × 2 × 2 + 50 × 2)

Tri-ONTD (t = s = 3) 0.90 0.53 194 (19 × 2 × 2 + 3 × 3 × 2 + 50 × 2)

Tri-ONTD (t = s = 5) 0.90 0.53 226 (19 × 2 × 2 + 5 × 5 × 2 + 50 × 2)

Data size=100
NMF 0,56 0 922

Tri-ONTD (t = s = 2) 0.84 0.37 284

Tri-ONTD (t = s = 3) 0.84 0.37 294

Tri-ONTD (t = s = 5) 0.84 0.37 326

Data size=200
NMF 0.62 0.04 1,122

Tri-ONTD (t = s = 2) 0.74 0.19 484

Tri-ONTD (t = s = 3) 0.74 0.19 494

Tri-ONTD (t = s = 5) 0.74 0.19 526

Data size=300
NMF 0.65 0.07 1,322

Tri-ONTD (t = s = 2) 0.74 0.12 684

Tri-ONTD (t = s = 3) 0.74 0.12 694

Tri-ONTD (t = s = 5) 0.74 0.12 726

We compared our method with NMF (which has been successfully applied to image clus-
tering). To apply NMF, we converted the tensor into matrices by re-arranging each slice of
the tensor into a column vector. In addition to the clustering performance comparison, we
also compared the memory usage of different methods. Note that for image clustering, we
usually chose t = s in low-dimensional subspace representations [13]. In our experiments,
three different values (e.g., 2,3, and 5) were used for t and s.

To systematically study the clustering performance under different parameters, we per-
formed the experiments on four subsets of the CBCL dataset. The four subsets have different
sizes ranging from 50 to 300, in other words, L = 50, 100, 200, 300. Table 4 shows the
performance results and the memory storage of the corresponding methods. The memory
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Table 5 Performance comparison of non-negative matrix factorization (NMF) and non-negative orthogonal
tensor decomposition (Tri-ONTD) on a subset of the ORL dataset (including 80 images)

Accuracy NMI Storage

NMF 0.8750 0.8271 83072

Tri-ONTD 0.8960 0.8305 5,500

For Tri-ONTD, t = s = 15

storage was calculated as the number of matrix elements used during the computation. From
Table 4, we observed that the clustering performance of Tri-ONTD was consistently better
than that of NMF. For example, the accuracy value was significantly improved from 0.66 to
0.9 when the dataset size is 50. In general, the performance of Tri-ONTD was about 10%
better than that of NMF. In addition, the clustering performance of Tri-ONTD did not vary
too much when the dimensions of the subspaces changed. Table 5 presents the experimental
results on ORL dataset.

Tri-ONTD is able to capture the 2-D nature of the images while converting the tensor into a
matrix has changed the intrinsic structure of the image. Hence, Tri-ONTD outperforms NMF
in the experiments. Moreover, Tri-ONTD is able to discover the common characteristics of
the series of matrices and thus has the smaller memory usage than NMF (as it only needs to
store the specialty for each image).

5.3 Image reconstruction

We used the ORL Database of Faces2 to evaluate Tri-ONTD’s ability of image reconstruc-
tion. The ORL dataset is a well-known dataset in image processing society. It contains 400
face images of 40 persons, each for 10 images including different poses. The size of each
image is 112 × 92 (i.e., m = 112 and n = 92).

In this experiment, we compared Tri-ONTD with 2DSVD.3 We also compared Tri-ONTD
with two other methods: (1) One is SVD: each image Xi was factorized into Ui ,

∑
i and

Vi so that Xi = Ui
∑

i V T
i , the top r singular values of each

∑
i were selected to recon-

struct the image Xi , the cost function is
∑L

i=1

(
Xi − (

σ 1
i U 1

i V 1T
i + · · · + σ r

i Ur
i V rT

i

))
where

Ur
i and V r

i are the r th columns of the matrices Ui and Vi , respectively. (2) Another one is
matrix_SVD: a new matrix X , each column of which is a image, was constructed first, then
SVD was applied to X to obtain U, 	, and V , the top d singular values of 	 were selected
to produce the reconstructed matrix X̄ , and finally each column of X̄ was rearranged back as
a matrix to approximate the corresponding image. The cost function is ||X − X̄ ||2F .

Figure 5 shows the comparisons of reconstruction errors for SVD, matrix_SVD, 2DSVD,
and Tri-ONTD on ORL dataset. The size of each slice in the core tensor of 2DSVD is p × q
and that of the Tri-ONTD model is r ×s. We observed that SVD had the largest reconstruction
errors and 2DSVD had the smallest. In addition, the errors of Tri-ONTD were between those
of SVD and 2DSVD. This was because we imposed non-negative constraints on the Tri-
ONTD model. In fact, we also observed that the reconstruction error difference between
2DSVD and Tri-ONTD was small.

Table 6 shows the comparison of the memory storage. The number of top r singular values
of SVD was selected from 5 to 15, the number of top d singular values of matrix_SVD was

2 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.
3 Note that the cost function of 2DSVD is

∑
l ||Xl − L Ml RT ||2F .
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Fig. 5 Comparison of reconstruction errors on the ORL dataset. Note that the sizes of the reduced matrices
(tensors) are different. Here, r and d are the numbers of selected singular values in SVD and matrix_SVD,
respectively. k is the size of each slice of the resulted core tensors in 2DSVD and the Tri-ONTD, respectively,
i.e., p = q = k, r = s = k

Table 6 Memory storage
comparison of SVD,
matrix_SVD, 2DSVD, and
Tri-ONTD

The entries shown are the number
of matrix elements used during
the computation

SVD r = 5 r = 10 r = 15

83,600 171,200 262,800

Matrix_SVD d = 25 d = 30 d = 35

260,225 312,420 364,665

2DSVD p = q = 25 p = q = 30 p = q = 35

55,100 78,120 105,140

Tri-ONTD t = s = 25 t = s = 30 t = s = 35

55,100 78,120 105,140

selected from 25 to 35, the size of matrices Sl in Tri-ONTD (e.g., the dimensions of the
subspace) ranged from 25 × 25 to 35 × 35, and the size of matrices Ml in 2DSVD ranged
from 25 × 25 to 35 × 35. Note that 2DSVD and Tri-ONTD had similar memory usage
as both methods made use of the common basis for the low-dimensional representation.
We observed that matrix_SVD had the largest memory storage while Tri-ONTD and 2DSVD
used the smallest memory storage.

Figure 6 illustrates eight reconstructed images selected from the ORL database. The first
row was reconstructed by Tri-ONTD with t = s = 35, and the second row was reconstructed
by Tri-ONTD with t = s = 25. The third row was reconstructed by 2DSVD when the size
of matrices Ml is 35 × 35, and the fourth row was reconstructed by 2DSVD when the size of
matrices Ml is 25 × 25. The fifth and the sixth rows were obtained by SVD with r = 15 and
r = 5, respectively. The seventh row was reconstructed by matrix_SVD with d = 25. From
Fig. 6, we observed: (1) If all the methods used nearly the same memory storage (e.g., the
second row: Tri-ONTD; the fourth row: 2DSVD; and the sixth row: SVD), Tri-ONTD and
2DSVD produced better reconstruction results. (2) When all the methods gave comparable
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Fig. 6 Eight images reconstructed by Tri-ONTD (the first row, t = s = 35; the second row, t = s = 25),
by 2DSVD (the third row, 35 × 35; the fourth row, 25 × 25), by SVD (the fifth row, r = 15; the sixth row,
r = 5), and by matrix_SVD (the seventh row, r = 25). The tensor of Tri-ONTD is composed of 80 images
(L = 80), each of which is one pose of a person

Table 7 Sparsity comparison of 2DSVD and Tri-ONTD

Subspace Methods Left Right Core
size basis basis tensor

35 × 35 2DSVD L 100% R 100% M 100%

TRi-ONTD U 10.26% V 27.5% S 100%

30 × 30 2DSVD L 100% R 100% M 100%

Tri-ONTD U 8.75% V 10.58% S 100%

25 × 25 2DSVD L 100% R 100% M 100%

Tri-ONTD U 8.9% V 8.6% S 100%

The entries shown are the percentage of the elements whose absolute values are larger than 10−10. Hence, the
smaller percentage values imply the better sparsity of the results

reconstruction results (e.g., the first row: Tri-ONTD; the third row: 2DSVD; the fifth row:
SVD), SVD used more memory storage.

We also compared the sparsity of 2DSVD and Tri-ONTD as shown in Table 7. We observed
that the results of Tri-ONTD had sparse structures, while the results of 2DSVD did not.
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Hence, Tri-ONTD identified more localized information for image reconstruction. From
above analysis, we have the following observations: (1) Tri-ONTD and 2DSVD give the best
reconstruction images if different methods use same memory storage; (2) Tri-ONTD and
2DSVD need the smallest memory storage, while matrix_SVD needs the largest in the case
of comparatively good image reconstruction ability; (3) the results of Tri-ONTD have sparse
structure, while those of 2DSVD have not, so Tri-ONTD can identify the more localized
structure and save the memory storage.

6 Conclusion

In this paper, we present the Tri-ONTD model to analyze 3-way tensors. The Tri-ONTD
model performs adaptive dimension reduction on tensors as it integrates the subspace identi-
fication and the clustering process into a single process. Thus, the Tri-ONTD model is able to
discover the common characteristics of a series of matrices while identifying the peculiarity
of each matrix at the same time. The Tri-ONTD model can be regarded as an extension of
the Tri-factor non-negative matrix factorization model. Three real-world applications: author
clustering, image clustering, and image reconstruction were conducted to demonstrate the
effectiveness of the proposed model.
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Appendix: Proof of convergence

We adopt the auxiliary function method that was introduced by [30] into the convergence
proof of NMF algorithms.

Definition 6.1 (Auxiliary Function) Function Z(H, H ′) is called an auxiliary function of
L(H) if it satisfies

Z(H, H ′) ≥ L(H), Z(H, H) = L(H)

for any H , H ′.

The following Lemma 1 establishes the key property of auxiliary function that is useful
in convergence proof.

Lemma 1 (Lee & Seung) If Z(H, H ′) is an auxiliary function of L(H), then L(H) is non-
increasing under the update

Ht+1 = arg min
H

Z(H, Ht ).

We first prove the convergence of update rule in Eq. (17) by constructing an auxiliary
function of L(U ). The convergence of the update rules in Eqs. (18) and (19) can be proved
similarly.4 To do this, we follow the proving steps used in [12]. We show that the conclusion
can be reached as an extension of the convergence results of [12].

4 In fact, only the convergence of rules in Eqs. (17) and (18) need to be proved. The proof of the rule in Eq.
(19) is the same as that in [12] since Sl is only related to Xl when U and V are fixed.
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Proposition 1 For any matrices A ∈ Rn×n+ , B ∈ Rk×k+ , S ∈ Rn×k+ , S′ ∈ Rn×k+ , where A, B
are symmetric, the following inequality holds

n∑

i=1

k∑

p=1

(AS′ B)i p S2
i p

S′
i p

≥ T r(ST ASB).

If we regard the Lagrangian function L as a function of U ,
∑

l tr(X T
l Xl), tr(λD) and

ξ(V T V − D) are all constants and can be ignored. Thus, the Lagrangian function L can be
written as:

L(U ) =
∑

l

tr [−2U T Xl Gl + GT
l GlU

T U ] + trλU T U

=
∑

l

tr(−2U T Xl Gl) + tr

(
∑

l

GT
l Gl + λ

)

U T U.

Theorem 2 The following function is an auxiliary function of L(U ).

Z(U, U ′) = −
∑

lik

2(Xl Gl)ikU ′
ik

(
1 + log

Uik

U ′
ik

)

+
∑

ik

[
U ′ (∑

l GT
l Gl + λ

)]
ik U 2

ik

U ′
ik

.

Proof Firstly, when F = F ′, the equality Z(U, U ′) = L(U ) holds. Secondly, when F �=
F ′, the first part of Z(U, U ′) is always not bigger than that of L(U ) from the inequality
z ≥ 1 + log(z) for any z > 0; the second part of Z(U, U ′) is always not smaller than that
of L(U ). This can be obtained from Proposition 1 where we let A = I , B = ∑

l GT
l Gl + λ,

S = U and S′ = U ′. To summarize, Z(U, U ′) ≥ L(U ) when F �= F ′. Thus, the theorem is
proved. 	


Theorem 2 gives an auxiliary function of L(U ). We can observe that Z(U, U ′) is a convex
function of U , so the gradient of U is zero if and only if at the global minimum point:

∂ Z(U, U ′)
∂Uab

= 0

= −2
∑

l

U ′
ab

Uab
(Xl Gl)ab + 2

[
U ′ (∑

l GT
l Gl + λ

)]
ab Uab

U ′
ab

.

Solving for the global minimum solution of U , we have:

Uab := U ′
ab

√ ∑
l(Xl Gl)ab[

U ′ (∑
l GT

l Gl + λ
)]

ab

.

Now, we try to determine the Lagrangian multiplier matrix λ. The diagonal elements of λ

can be obtained by summing over index a of Eq. (16):
[

−U T

(
∑

l

Xl Gl

)]

bb

+
[

U T U
∑

l

GT
l Gl

]

bb

+ (U T U )bbλbb = 0.
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Using the constraint U T U − D = 0, we get:
[

−U T

(
∑

l

Xl Gl

)]

bb

+
[

D
∑

l

GT
l Gl

]

bb

+ Dbbλbb = 0,

so λbb = [D−1U T (
∑

l Xl Gl) − ∑
l(G

T
l Gl)]bb for any b. The off-diagonal elements of λ

can be approximately computed by eliminating the non-negative constraint of U . Under this
relaxed condition, by computing the gradient of the Lagrangian function with respect of U ,
we have:

λab =
(

D−1U T
∑

l

Xl Gl − GT
l Gl

)

ab

, a �= b.

So, the Lagrangian multiplier λ has an uniform formulation. The update rule of U can then
be written as a more compact formulation:

Uab := Uab

√ ∑
l [Xl V ST

l ]ab
∑

l(UU T Xl V ST
l )ab

. (27)

From Lemma 1 and the above analysis, we have the conclusion that the Lagrangian function
L is non-increasing under the update rules in Eqs. (17), (18) and (19).
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