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Abstract  Generally, the impulse noise filtering schemes use all pixels within a neighbor-
hood and increase the size of neighborhood with the increase in noise density. However,
the estimate from all pixels within neighborhood may not be accurate. Moreover, the larger
window may remove edges and fine details as well. In contrast, we propose a novel impulse
noise removal scheme that emphasizes on few noise-free pixels and small neighborhood.
The proposed scheme searches noise-free pixels within a small neighborhood. If at least
three pixels are not found, then the noisy pixel is left unchanged in current iteration. This
iterative process continues until all noisy pixels are replaced with estimated values. In order
to estimate the optimal value of the noisy pixel, genetic programming-based estimator is
developed. The estimator (function) is composed of useful pixel information and arithme-
tic functions. Experimental results show that the proposed scheme is capable of removing
impulse noise effectively while preserving the fine image details. Especially, our approach
has shown effectiveness against high impulse noise density.
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1 Introduction

Digital images, during acquisition or transmission, are often corrupted with impulse noise.
Restoring noise-free images is carried out as a preprocessing task in a wide range of imaging
applications including medical and astronomical imaging [1]. The impulsive noise, generally,
exhibits two major properties: (1) Certain percentage of image pixels is corrupted with noise
and (2) The intensity of the corrupted pixels is largely different from the noise-free pixels.
An image X corrupted with impulse noise can be described as follows:

| nijforp
Mg = (fi,j forl—p M

where x; ; is the noisy image pixel, f; ; denotes a noise-free image pixel, n; j € [Imin, Imax]
is the noisy impulse at the location (i, j), and p is the probability of pixels contaminated
with noise. In literature, commonly two impulse noise models namely salt-and-pepper noise
and random-valued noise are used. The noisy pixels of image, which are contaminated with
salt-and-pepper noise, have two values—the minimum and the maximum values within the
dynamic range. In case of salt-and-pepper noise model, the noisy impulse n; j € [Iin, Imax]
has one of two values: minimum /i, or maximum /ny,x. To remove this kind of noise is
simple because the noisy pixels can be easily detected. However, noisy pixels of image,
corrupted with random-valued noise, have any value from the dynamic range i.e., n; ; €
{I1, I, ..., Ix}. With the increase in noise density, in the image, the numbers of noisy pixels
are increased. If the numbers of noisy pixels are greater than noise-free pixels, then noise
filtering becomes crucial.

In literature, conventional linear filtering techniques have been used to suppress noise
impulses. However, due to the non-linear nature of impulsive noise, linear filtering tech-
niques are unable to suppress it properly [1]. To address this problem, many non-linear and
adaptive filters are proposed. Among these filtering techniques, standard median filter and
its variants are considered more robust and effective [2,3]. These techniques replace every
pixel with the median value computed over a small window without considering the pixel
corrupted or noise-free. Consequently, the important image details such as texture information
and edges are lost. To overcome this problem, switching concept has been introduced [4-7].
In the switching concept, first step is to detect the noisy pixels. In noise detection techniques,
noisy pixels are determined using some criterion that is based on the similarity or difference
to the central pixel within neighborhood. Absolute difference in the median or mean of the
neighboring pixels is the simplest noise detection criterion. If this difference is greater than
a certain threshold value, then the central pixel is declared to be corrupted with noise. For
accurate detection of noisy pixel image statistics [8,9], more sophisticated approaches like
genetic programming [10], neural network [11], fuzzy logic [12-14], genetic algorithm [15],
and self-organizing map [16] have also been proposed. The main difference between the
current work and the proposed work in [10] is the utilization of genetic programming(GP)
for different purposes in filtering process. In [10], GP technique is proposed to develop noise
detector and the noise pixel estimation is carried out using a conventional a-trimmed mean
filter. However, in our work, the noise estimation is carried out using GP-based developed
filter.
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Once detection is performed, noisy pixels are filtered in the second stage. Among the
variety of filtering techniques, adaptive median filter (AMF) has gained considerable atten-
tion [17]. AMF algorithm is based on data-dependent varying window size. Its performance
is satisfactory at low noise density. However, AMF is computationally expensive for high
noise density. In order to minimize cost, progressive switching median filter (PSMF) has been
developed to suppress salt-and-pepper noise [4]. In this scheme, the noise impulse is detected
and the noisy pixel is filtered progressively. Decision-based algorithm (DBA) has also been
proposed to suppress the impulse noise [18]. This algorithm is effective to remove the salt-
and-pepper noise. However, in case of random-valued noise, it performs poorly. Recently,
new impulse detection and filtering (NIDF) algorithm is proposed [6] that uses Laplacian
masks to detect noisy pixels.

In this work, we compare the performance of the proposed scheme with four well-
known impulse noise removal algorithms proposed in [4,6,17,18]. Mostly, these conventional
approaches estimate noisy pixels by taking into account all pixels within the neighbor-
hood. In other words, these estimates are taken from noise-free and noisy pixels. In case
of high-density noise, the number of noisy pixels within the neighborhood is increased and
accurate estimate becomes more difficult. Therefore, the performance of the conventional
approaches is declined remarkably. Some approaches enlarge the window size to deal with
high-density noise. However, a larger window size is more likely to remove edges and image
fine details. As a result, quality of the restored images is degraded. In contrast to these
approaches, we propose a scheme that emphasizes on noise-free pixels and small neighbor-
hood.

In the proposed scheme, first, noisy pixels are detected using directional derivative.
The estimate of the detected impulse is based on noise-free pixels within a small neigh-
borhood. If there are not at least three noise-free pixels in the neighborhood, then the
noisy pixel is left unchanged and is estimated in a later iteration. This iterative pro-
cess continues iteratively until all noisy pixels are estimated. To estimate the noisy pixel,
we develop a generalized estimator through GP. It has been effectively used in devel-
oping mathematical models in the applications of pattern recognition, information sys-
tems, and computer vision [19-23]. GP approach efficiently searches solution in the
defined problem space. This evolutionary optimization approach is based on the princi-
ples of natural selection and recombination to search all possible solutions [24]. During
GP evolution cycle, the most optimal solution is developed in the form of a generic esti-
mator function. This estimator optimal combines the useful information of local clean
pixels along with arithmetic operators. In the current work, we summarize the main
contributions as:

(a) We developed impulse noise removal scheme that emphasizes on clean pixels and small
local neighborhood, in contrast to the estimate noisy pixel from all noisy/noise-free
pixels and large neighborhoods.

(b) GP-based generic estimator is developed to estimate the value of noisy pixels.

The performance of the proposed scheme is investigated using several standard images.
Our comparative analysis highlights the effectiveness of the proposed scheme to remove
impulse noise while preserving the fine image details. The organization of the rest of the
paper is as follows. In Sect. 2, GP-based noise removal proposed scheme is explained in
detail. Experimental results and comparative analysis are presented in Sect. 3. Finally, Sect. 4
concludes this study.
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Fig. 1 Block diagram of the
proposed impulse noise removal
scheme
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2 Proposed scheme

The block diagram of the proposed scheme is shown in Fig. 1. The proposed approach is
divided into two main stages: noise detection and filtering. First, noisy pixels are detected, and
then, values of detected pixels are estimated through GP estimator incorporating noise-free
pixels. This scheme iteratively cleans the corrupted image until all noisy pixels are replaced
with the estimated values.

2.1 Noise detection

In proposed scheme, the first step is to construct the detection map D from the noisy image.
In case of salt-and-pepper noise, the maximum and the minimum intensity values of the
image dynamic range [/min, /max] can be used to detect noisy pixels. Thus, in a 8bit gray
scale image, if the pixel value is O or 255, then, most probably, it is corrupted with salt-and-
pepper noise. In noise-free images, only a very small number of pixels can have these two
values. A detection map is constructed as:

1: X,‘,j = Imax
di,j =11 xij=Inin (@)
0 : otherwise

The values of “1” and “0” represent the noisy and the noise-free pixels in the detection
map. In the work, this approach proves to be very effective for salt-and-pepper noise. How-
ever, in case of random-valued noise, the dynamic range of noise consists of more than one
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minimum and maximum intensity values, and the detection approach mention by Eq. (2) may
not be useful. Therefore, the corrupted pixels by the random-valued noise are detected using
directional derivative [6,25]. Commonly, the second derivative-based methods perform better
than gradient-based approaches. In our approach, we use four directional Laplacian masks
for noise detection. The pixels of noisy image X are convolved with a set of four directional
Laplacian masks shown in Fig. 2. These derivative-based four kernels are sensitive to edges
in different orientations [25]. For impulse noise detection, the minimum absolute value m; ;
is computed as follows:

mi j =min{|x; jxk||: {=1t04} 3)

where k; is the /th kernel and * denotes a convolution operation. The absolute numerical
value of m; ; is compared with a threshold T to determine whether a pixel is corrupted with
noise. If d; ; = 1, the pixel x; ; is decided as a noisy; otherwise, the pixel x; ; is declared as
the noise-free. Thus, the noise detection map D is computed as:

o 1,ifm,-,j>T
dij = [O, otherwise )

where T is the threshold and its value may affect the selection of noisy pixel. For simplicity,
we adopted the same heuristic-based selection procedure as reported in [25]. During simula-
tion, we found suitable threshold range 70-90 empirically, which provides precise detection
map.

2.2 Noise filtering

In this step, noise-free image G is restored from its noisy version X. Let W;; be a window
of size w x w centered at (i, j), i.e.,

Wij=1{0:ls—il<wAlt—j| <w} ®)

Once, we compute the detection map from the noisy image, we apply this window on each
pixel location (i, j) of both noisy image X and detection map. We use a small neighborhood
of size 3 x 3. We prefer to use small window size because the larger window size may not
be too efficient and effective. This is because correlation between pixels decreases as the
pixels are separated apart. Further, the larger window size will also remove the edges and
fine details. By applying this window on noisy image and detection map, patches obtained
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Table 1 Selection of three features from sorted noise-free array
Length of array L(1) L(Q2) L(3) L(4) L(5) L(6) L(7) L(8)
Case I: R =3 1 1 1 - - — _ _
Case2: R =4 0 1 1 1 - - — _
Case3: R =5 0 1 1 1 0 - - -
Case4: R =6 0 0 1 1 1 0 —
Case5: R =17 0 0 1 1 1 0 -
Case 6: R =8 0 0 0 1 1 1 0

are as follows:
Xi—1,j—1 Xi,j—1 Xi4+1,j—1
X
W= Xi-1j  Xij  Xitlj (6)
| Xi—1,j+1 Xi,j+1 Xi+1,j+1 |

di—1,j—1 dij—1 dit1,j-1

W,-fl.,-= di—v,j dij diy1j 7

| di—1,j+1 dij+1 dit1,j+1

If d; ; = 1, then the pixel x; ; is noisy candidate; otherwise, the pixel is noise-free. In case,
pixel is noisy then its correct value is to be estimated. To collect the information about the

noise-free pixels only, we further examine the remaining eight pixels in the window W} j

using the detection window Wﬁj. An array L(r) is populated with noise-free pixels. The
length of this array L(r) varies from zero to eight depending upon noise density within the
patch. The minimum length zero shows that all pixels are noisy in this window whereas max-
imum value eight indicates that all eight pixels are noise-free pixels. To filter the noisy pixel,
we emphasize noise-free pixels and put additional constraint of minimum three noise-free
pixels i.e., length(L) > 2. In other words, there must be at least three noise-free pixels in
the window to estimate the value of noisy pixel. If this condition is not satisfied, then the
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Table 2 Unary and binary functions used in the proposed GP-based scheme

Unary functions Description Binary functions Description

Sin (v;) Returns the sin of the input Plus (v, vj) Adds two inputs

cos (vj) Returns the cos of the input Minus (v;, v;) Subtracts the second input from

the first input

Sqrt (v;) Computes square root of the given  Divide (v;, v;) Divides the first input by the sec-
input ond input

Exp (v;) Returns the exponential value of Times (v;, v;) Multiplies first input with the sec-
the input ond input

Log (v;) Returns the log value of the input ~ Power (v;, v;) Raises the first input to the power

of the second input

Table 3 GP parameters setting under minimum MSE fitness criterion

Parameters Set values

Terminals set Feature vector v. = (vy, vp,v3) along with
random constants in the range [—1, 1]

Functions set Lest in Table 1

Fitness criterion and selection method Minimization of MSE & generational, respectively

Pop. size and generations 50 & 500, respectively

Pop. initialization and sampling Ramped half and half and tournament, respectively

Expected offspring rank85

Operators probabilities Variable crossover/mutation ratio

Survival criterion Keep the best individual

noisy pixel is left unchanged. Thus, the replacement of noisy pixel with the estimated value
is carried out as:

e ifdii=1and R > 2
gij_[s " 8)

X;,j, otherwise

where e is the estimated value for the noisy pixel and R = length(L) is the length of the
array L. In our case, we develop a GP-based function Fgp to estimate the correct pixel value
(Sect. 2.3). If the noisy pixel is estimated, then the detection map D is also updated using
the following function as:

di’j_’o if dj; =1and R > 2 ©

d; j, otherwise

This process is furnished for each noisy pixel in image X. As a result, a refined image
G and an updated detection map D are obtained. Due to this constraint, many noisy pix-
els in X are left unchanged. Particularly, when noise density is very high, more noisy pixels
will not satisfy the condition. This leads to iterate the filtering process until all noisy pixels
are corrected. The number of iterations depends upon the noise density and the constraint
imposed.

2.3 GP-based estimator

Block diagram for the development of GP estimator is shown in Fig. 3. In this process, the
first step is to generate a set of feature vectors. The proposed GP-based function uses feature
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- e . % -

Fig. 4 Standard test images: a LENA, b CAMERAMAN, and ¢ BABOON

vector to compute the estimated pixel value. We use the constructed array L(r) for feature
selection. This array contains only noise-free pixels as discussed in Sect. 2.2. The length of
array L(r) varies from zero to eight. First, elements of this array are sorted in the ascending
order. We compute the feature vector that contains three elements vy, vy, v3 as:

R
- =L(LEJ +1), =012, (10)

If the length of the sorted array is odd number, then this feature vector contains the median
and its neighboring pixels. Thus, these features contain characteristics of ordered statistics.
Experimentally, we found that more than three features have very slight effect on the GP-based
estimator. Therefore, we use feature vector consisting of only three pixels. For lucid expla-
nation of the feature selection, Table 1 shows all possible cases. Selected elements are shown
by “Is” and “Os” which indicate non-selected element in different cases.

For the development of GP-based estimator, a set of N training data points is constructed
using a standard test image. The standard test image is corrupted with 50% salt-and-pepper
noise, and a feature vector v = (vy, vz, v3) is formed for those pixels which are noisy and
have more than two noise-free pixels in the neighborhood. It is possible to pick corresponding
target value y for each feature vector from the original noise-free image. Thus, a training
data set S = {(v,, y,,)},]:’=1 is obtained for the development of GP estimator.

The main goal of GP module is to estimate optimal model Fgp : v — y from the train-
ing examples. The numerical function Fgp is represented in a tree-like data structure with
selected variables, random constants, and arithmetic operators. Initial population of candi-
date solutions is created randomly as a possible solution space. The fitness score of each
candidate is computed in terms of mean square error (MSE). On the basis of the survival
of fittest rule, the best candidates are ranked and then selected for the creation of the next
generation. During evolution cycle, new generation has higher average fitness score. In this
way, the solution space is refined and the best solution converges to the optimal/near-optimal
solution. The developed function optimally combines the useful local information along with
some other parameters. After the development, this function is ready to estimate the optimal
value of noisy images. Now, we will explain briefly the main steps involved in developing
GP function.

2.3.1 GP parameters

GP parameters consist of terminals and non-terminal parameters. A list of these functions
is provided in Table 2. Terminal parameters (variables and random constants) contain the
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Fig.5 Accuracy versus complexity. a Improvement in accuracy/fitness score exhibited by the best individual
in each generation. b Increase in complexity in terms of level of tree depth and number of nodes. ¢ Graphical
representation of the GP-based developed filter

useful input information. Currently, for each pixel, a feature vector v is given. This set of
gray values is provided as variable terminals for each noisy pixel. Moreover, some random
numbers in the range [—1, 1] are generated from uniform distribution.

2.3.2 Initial population
Population initialization is the first step to start GP cycle. Each individual is represented in
the form of randomly generated GP tree that is constituent of variables, random constants,

and mathematical functions. The initial population is created using ramped half-and-half
method. This method requires that half of the randomly generated trees must be generated
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Table 4 Performance comparison of the proposed method with different algorithms in terms of PSNR (db)
for Lena image corrupted with salt-and-pepper (SPN) and random-valued (RVN) noise

Noise density Type SMF PSMF DBA NIDF Proposed
10% SPN 33.74 38.31 41.54 37.45 42.89
RVN 33.82 35.10 19.30 35.11 35.64
20% SPN 29.47 34.79 37.33 34.04 39.18
RVN 31.65 31.68 16.26 32.25 32.99
30% SPN 24.03 30.74 34.82 31.37 37.03
RVN 28.35 28.56 14.55 29.87 30.71
40% SPN 19.15 26.09 32.52 29.55 35.02
RVN 24.67 25.24 13.25 27.53 28.46
50% SPN 15.37 21.13 30.19 27.42 33.31
RVN 21.50 22.26 12.31 24.74 25.71
60% SPN 12.41 12.33 28.19 23.53 31.76
RVN 19.00 19.69 11.51 22.15 22.85
70% SPN 10.00 9.95 25.66 17.84 29.86
RVN 16.78 17.24 10.83 19.13 19.69
80% SPN 8.15 8.12 23.30 16.50 27.74
RVN 15.01 15.24 10.25 16.60 17.28
90% SPN 6.66 6.64 19.67 10.25 24.16
RVN 13.51 13.52 9.73 14.57 15.35
Mean SPN 17.66 20.90 30.36 25.33 33.44
RVN 22.70 23.17 13.11 24.66 25.41
Overall mean 20.18 22.03 21.73 25.00 29.40

by a random process that ensures all branches of the maximum initial depth. The remaining
randomly generated trees require branches whose lengths do not exceed this depth. These
constraints have been found to generate a good initial sample of trees. Now, for each tree
depth level, half of the individuals are initialized using Grow method and the other half
individuals using Full method.

2.3.3 Fitness criterion

In second step, the fitness of each individual is measured through a suitable fitness function.
This plays an important role to obtain the optimal solution within a large search space. The
performance of each individual is assessed by this function. We use mean square error (MSE)
as fitness criteria. The value of fit(Q/) measures how effectively jth individual minimizes
the MSE:

N
. 1 .
f(Q)) = - D UQ ) =y m=1.2.....N. (11)

n=1

where y, is the nth target values taken from the original noise-free image corresponding to
the nth training pattern (v, y).
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Table 5 Performance comparison of the proposed method with different algorithms in terms of PSNR (db)
for the Cameraman image corrupted with salt-and-pepper (SPN) and random-valued (RVN) noise

Noise density Type SMF PSMF DBA NIDF Proposed
10% SPN 34.63 36.76 41.70 34.55 43.47
RVN 34.36 33.53 18.42 34.02 34.53
20% SPN 29.22 33.17 37.19 32.15 39.30
RVN 30.77 29.87 15.42 30.91 31.16
30% SPN 23.67 29.92 34.34 30.52 36.98
RVN 26.53 26.68 13.68 28.82 29.19
40% SPN 18.74 26.19 31.67 28.66 34.90
RVN 22.58 23.34 12.46 25.92 26.67
50% SPN 14.92 21.39 29.41 26.30 33.11
RVN 19.45 20.23 11.46 22.51 23.50
60% SPN 11.94 11.93 26.93 22.56 31.16
RVN 16.75 17.29 10.66 18.81 20.11
70% SPN 9.67 9.66 24.55 17.46 28.97
RVN 14.74 15.01 9.98 16.11 17.13
80% SPN 7.81 7.80 22.06 12.37 26.56
RVN 13.15 13.26 9.42 14.13 14.93
90% SPN 6.25 6.25 18.37 7.94 22.46
RVN 11.85 11.85 8.90 12.57 13.29
Mean SPN 17.43 20.34 29.58 23.61 32.99
RVN 21.13 21.23 12.27 22.64 23.39
Overall mean 19.28 20.78 19.7 23.13 28.19

2.3.4 Creation of new population

To create new population, based on fitness scores, GP individuals are selected from the whole
population. Crossover, mutation, and replication operators are applied. Crossover creates
offspring by exchanging genetic material between two individual parents. It tries to mimic
recombination and sexual reproduction. For crossover, a method namely tournament selec-
tion is used. Tournament selection works by first selecting trees at random from the current
generation. Two trees with the highest fitness values exchanged their sub-trees resulting in
two new possible solutions. Crossover helps in converging to optimal/near-optimal solution.
In mutation, a small part of an individual is changed that often brings diversity in the solution
space. In this case, an individual is selected and a mutation point picked (a sub-tree of the
individual). The sub-tree blow the mutation point is replaced with a randomly generated
sub-tree. A variable ratio of crossover to mutation is adapted. Replication is the copying of
an individual into the next generation without any change. The probability of jth individual
Qf, being selected is given by:

fit(QJ)

Pr(Q)) = —y———.
T o))

(12)

where Z;Vi 1 ﬁt(Qé) is the accumulative fitness of the population of size N,.
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Table 6 Performance comparison of the proposed method with different algorithms in terms of PSNR (db)
for the Baboon image corrupted with salt-and-pepper (SPN) and random-valued (RVN) noise

Noise density Type SMF PSMF DBA NIDF Proposed
10% SPN 28.99 31.93 37.12 31.66 38.19
RVN 29.00 30.50 19.66 30.59 30.37
20% SPN 26.78 30.25 33.05 29.63 34.57
RVN 27.58 28.30 16.70 28.20 28.14
30% SPN 22.88 27.68 30.33 27.89 32.39
RVN 25.90 26.29 14.98 26.50 26.58
40% SPN 18.78 24.37 28.14 26.37 30.63
RVN 23.77 24.14 13.72 24.87 25.05
50% SPN 15.25 20.56 26.11 24.72 29.04
RVN 21.60 21.99 12.75 23.13 23.47
60% SPN 12.44 12.47 24.24 22.08 27.30
RVN 19.41 19.77 11.94 21.19 21.65
70% SPN 10.15 10.15 22.48 17.73 25.63
RVN 17.56 17.84 11.27 19.21 19.75
80% SPN 8.29 8.28 20.53 12.78 23.66
RVN 15.85 15.98 10.68 17.33 18.03
90% SPN 6.77 6.77 18.45 8.65 21.14
RVN 14.43 14.41 10.16 15.60 16.44
Mean SPN 16.70 19.16 24.83 22.39 29.17
RVN 21.68 22.14 13.54 22.96 23.28
Overall mean 19.19 20.65 19.18 22.67 26.22

2.3.5 Termination criterion

The algorithm is stopped if the number of generations reaches the maximum limit or fitness
value (MSE) approaches the minimum set value. At the end, the best solution in the form
of optimal composite function is developed. GP simulations and experiments are carried out
using GPLAB [26] toolbox on a PC equipped with processor Intel Pentium IV 2.88-GHz and
1 GB RAM. In order to represent a possible solution in the form of an optimal function, all
necessary parameters including arithmetic functions, variables, and constants are provided
in Table 3.

3 Results and discussion

Several experiments have been carried out to analyze the performance of proposed scheme.
Experiments are reported using three commonly used standard images namely LENA,
CAMERAMAN, and BABOON. These images are shown in Fig. 4. The test images were
corrupted by two types of noises: salt-and-pepper noise and random-valued noise. The level
of noise density is varied from 10 to 90%. The experimental results obtained through the
proposed scheme and several well-known filtering schemes SMF [27], PSMF [4], DBA [28],
and NIDF [6] have been compared.
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3.1 Experimental setup

To develop GP-based filter, the training data have been prepared from the LENA image. The
original LENA image corrupted with salt-and-pepper noise with 50% density. A set of feature
vectors of the form v = (vy, vz, v3) is formed as explained in Sect. 2.2. There are total pixels
(511 x 511=261,121) in LENA image by excluding one pixel from boundary of the image.
By adding 50% salt-and-pepper noise, a total of 129,717 pixels have been corrupted out of
total pixels 261,121. Among the noisy pixels, 110,986 pixels have satisfied the constraints.
From the original LENA image, corresponding true values have been taken. In this way, the
training data set consisting of 110,986 has been used to develop the GP estimator.

Figure 5a shows the improvement in the best fit individual in each generation. The com-
plexity is expressed as a function of tree depth level and the number of nodes. During
GP evolution, constructive blocks are created that try to minimize the destruction of useful
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Fig. 8 Overall performance comparison using different images corrupted with random-valued noise
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Fig. 9 Number of noisy pixels at each iteration computed for the CAMERAMAN image corrupted with
different levels of salt-and-pepper noise

Table 7 Temporal cost comparison using 10 and 90% salt-and-pepper noise

Method/cost Lena Baboon Cameraman

10% 90% 10% 90% 10% 90%
SMF 0.5262 0.5052 0.5219 0.5119 0.5123 0.4881
PSMF 1.84388 0.8630 1.8383 0.8704 1.6146 0.8470
DBA 5.9977 5.9998 6.0519 6.0104 6.0136 5.9915
NIDF 2.9094 5.1900 3.0059 5.2488 2.8804 5.1931
Proposed 5.9389 51.2127 6.2709 47.4326 5.8900 53.2468
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Table 8 Detailed temporal cost

of the proposed approach using Noise density (%) Lena Baboon Cameraman
different levels of salt-and-pepper 10 5.0389 6.2709 5.8900
e 20 10.1998 10.2037 10.1667

30 11.3426 11.3507 11.4423

40 12.5127 15.5479 12.5259

50 16.8946 17.1032 16.8242

60 18.2422 18.0106 21.2084

70 22.8480 25.7079 25.8530

80 34.3977 34.5850 30.9486

90 51.2127 47.4326 53.2468

building blocks [29]. As aresult, in several regions of Fig. 5b, the size of GP individual grows
exponentially without appreciable improvement in performance curve of the best individual.
This is due to the bloating phenomenon occurring during GP cycle [30]. Many branches do
not contribute in improving its performance. Therefore, the best genome’s total number of
nodes increases, and its average tree depth becomes very large. Therefore, with the increase
in complexity, performance curve of the best individual approaches toward the optimal solu-
tion. During the training phase, several GP runs were carried out and the best filter function is
reported. Each GP simulation took considerable computational time that depends on several
input parameters i.e., input data size, population size, and number of generations. At the end
of GP simulation, the developed filter is given, in prefix form as well as in algebraic form,
as follows:

Fap(v1, v2, v3) = sqrt(plus(vs, times(sqrt(times(vy, v1)), sqrt(plus(minus(
times(cos(log(sqrt(times(vy, v1)))), sqrt(vy)), plus(vy, cos(
sqrt(times(vy, v3))))), times(sqrt(times(vy, v3)), v2)))))).  (13)

Fap(vi, v2, v3)

:/(+[W eos o (V1)) % am)} = (n-+eos (Voron)) + (Vi % )] )
(14)

The above empirical expression highlights a generic structure of the filter function, which
may not be easily understood by human being [30]. However, such empirical function can be
easily used by providing input parameters vy, v, and v3. The tree structure of the generated
filter function is demonstrated in Fig. Sc. This graphical representation highlights the func-
tional dependency of the GP-based empirical expression on the input features vy, va, and v3
along with some selected arithmetic and trigonometric functions.

3.2 Quantitative analysis

To measure the quality of the restored image and compare the results quantitatively, quality
measure peak signal-to-noise ratio (PSNR) is used. It can be defined as:
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Fig. 10 Performance comparison of image restoration results obtained from the LENA image using different
algorithms. a Image corrupted with 20% salt-and-pepper noise, b SMF (29.47 db), ¢ PSMF (34.79 db), d DBA
(37.33db), e NIDF (34.04 db), and f proposed method (39.18 db)

(255)2
PSNR = 101og 10 (15)
MSE
1 M M
Z Z 2

i=1 j=1

where Xl’ j is the original noise-free image, G; ; is the de-noised image, and M is the
number of pixels in rows and columns of the original and de-noised images. Tables 4, 5
and 6 show PSNR values computed through proposed algorithm along with other well-
known methods. Table 4 shows the PSNR for LENA image. For salt-and-pepper noise,
our scheme has provided the best mean PSNR value 33.44, whereas PSNR for other
four algorithms SMF, PSMF, DBA, and NIDF has given 17.66, 20.90, 30.36, and 25.33,
respectively. The improved performance of the proposed scheme is also obtained for
random-valued noise. The overall performance of the proposed scheme is calculated to
be 29.40. Other four schemes gave the overall mean values of 20.18, 22.03, 21.73, and
25.00. These values are considerably lower as compared with the proposed scheme. From
Table 5, it can be observed that the proposed scheme provides higher mean value (32.99)
as compared with other schemes (17.43, 20.34, 29.58, and 23.61) for salt-and-pepper
noise. Our scheme has given the improved performance for random-valued noise as well.
Experimental results on high-textured image BABOON are listed in Table 6. In this
table, for salt-and-pepper noise, our method gives a considerable margin of improvement
(29.17) as compared to other four filtering schemes (16.70, 19.16, 24.83, and 22.39).
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Fig. 11 Performance comparison of image restoration results obtained from the LENA image using different
algorithms. a Image corrupted with 50% salt-and-pepper noise, b SMF (15.37 db), ¢ PSMF (21.13db), d DBA
(30.19db), e NIDF (27.42 db), and f proposed method (33.31 db)

The value of overall performance of the proposed scheme (26.22) is better than other
filtering approaches (19.19, 20.65, 19.18, and 22.67). Our scheme provided better result
for random-valued noise as well. For lucid comparison, Figs. 6, 7 and 8 show the overall
performance for salt-and-pepper-noise, random-valued noise, and including both types of
noises using different images. The proposed scheme has outperformed these existing tech-
niques.

While using GP filter for noise filtering, it is found that the number of iterations increases
with the increase in noise density. Figure 9 shows this character of the generated filter.
It highlights the number of noisy pixels left after each iteration with increasing impulse noise
density. The number of iterations also depends on the window size and the minimum length
of noise-free array. For experimentation, we have used a fix window of size 3 x 3 and the
minimum length of noise-free array is adjusted to three pixels.

Table 7 shows the comparison of computational time consumed by SMF, PSMF, DBA,
and NIDF, and the proposed approach for images is corrupted with 10 and 90% salt-and-
pepper noise. It is observed that, for low noise density, the temporal coast of our approach is
competitive with the previous schemes. However, In case of high-density noise, our approach
is computationally expensive. Further, Table 8 highlights the detailed temporal cost of the
proposed approach for test images corrupted with various levels of salt-and-pepper noise.
This table shows that the temporal cost increases with the increase in noise density. This
is due to the fact that the proposed approach iteratively estimates the noisy pixel using
noise-free pixels. More iteration is needed to estimate all noisy pixels for high-density
noise.
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Fig. 12 Performance comparison of image restoration results obtained from the LENA image using different
algorithms. a Image corrupted with 80% salt-and-pepper noise, b SMF (8.15db), ¢ PSMF (8.12db), d DBA
(23.30db), e NIDF (16.50db), and f proposed method (27.74 db)

3.3 Qualitative analysis

Figures 10, 11, 12, 13, and 14 show restored images using proposed algorithm and existing
approaches (NIDF, SMF, PSMF, and DBA) from LENA, BABOON, and CAMERAMAN
images corrupted with different noise densities. The restored images results on low (20%),
middle (50%), and high (80%) range of salt-and-pepper noise for LENA images are shown
in Figs. 10, 11 and 12. For low category of noisy, among all other restorations meth-
ods, our proposed algorithm gives the best quality image. DBA is the nearest competitor
to our scheme. Similarly, from Fig. 11, it can be observed that our scheme has restored
images of good quality for 50% noise density. For this category of noise, DBA is again
the nearest competitor. In case of LENA image corrupted with 80% salt-and-pepper noise,
Fig. 12 shows the effect of high noise that suppressed by DBA filter. The distortion effect
near the lines and edges of LENA image is clearly visible. On the other hand, it can be
observed that the proposed approach has preserved edges and fine details of restored LENA
image.

Figure 13 shows the restoration results on different filtering algorithms for BABOON
image corrupted with 80% salt-and-pepper noise. For this high-textured image, all other
algorithms, except DBA, could not recovered visible BABOON image. Among the
existing approaches, DBA is performing better. However, in case of high-density noise,
this method could not preserve the fine details near the high-contrast region and the
blurring effect is visible. This is because the existing approaches estimate noisy pixels
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Fig. 13 Performance comparison of image restoration results obtained from the BABOON image using dif-
ferent algorithms. a Image corrupted with 80% salt-and-pepper noise, b SMF (8.29 db), ¢ PSMF (8.28 db),
d DBA (20.53db), e NIDF (12.78 db), and f proposed method (23.66 db)

by taking into account all neighbors (noisy/noise-free pixels) without any distinction.
However, our filtering scheme estimates the noisy image by taking only noise-free
neighbors. Therefore, the quality of restored BABOON image through our scheme is
superior.

Figure 14 shows the restored CAMERAMAN images from corrupted with 30% random-
valued noise. In this case, NIDF is the nearest competitor to our scheme, whereas DBA could
not yield the same image quality. DBA performed well for salt-and-pepper noise; however, its
performance for the random-valued noise is poor. The effect of distortion in restored image
is clearly visible. In summary, our proposed approach has successfully suppressed noise and
able to preserve fine details as well.

4 Conclusion

In this work, we have proposed a novel impulse noise removal scheme that emphasizes on few
noise-free pixels and small neighborhood instead of using all pixels within a neighborhood.
This scheme iteratively cleans the corrupted image until all noisy pixels are replaced with the
estimated values. To estimate the optimal value of noisy pixel, we have developed GP-based
robust estimator that combined the useful local clean pixel and arithmetic functions. The
proposed scheme was tested using standard images, and the simulated results are compared
with four well-known techniques. Our scheme has provided better performance as compared
to existing approaches. Moreover, this scheme is capable to restore the corrupted images

@ Springer



524 A. Majid et al.

Fig. 14 Performance comparison of image restoration results obtained from the CAMERAMAN using dif-
ferent algorithms. a Image corrupted with 30% random-valued impulse noise, b SMF (23.67db), ¢ PSMF
(29.92db), d DBA (34.34db), e NIDF (30.52db), and f proposed method (36.98 db)

while preserving edges and fine details. Especially, in the presence of high-density impulse
noise, our scheme outperformed the previous approaches.

Acknowledgments This work was supported by the Korea Science and Engineering Foundation (KOSEF)
grant funded by the Korea government (MEST) (No. 2009-0083733) and, by the Korea University of Tech-
nology and Education 2010 Research Support for New Professors.

References

Gonzalez RC, Woods RE (2007) Digital imageProcessing, 3rd edn. Prentice Hall PTR, New Jersey
. Huang T, Yang G, Tang G (1979) A fast two-dimensional median filtering algorithm. IEEE Trans Acoust
Speech Signal Process 27:13-18

3. Lin T-C (2007) A new adaptive center weighted median filter for suppressing impulsive noise in images.
Inf Sci 177:1073-1087

4. Zhou W, Zhang D (1999) Progressive switching median filter for the removal of impulse noise from
highly corrupted images. IEEE Trans Circuits Syst I Analog Digit Signal Process 46:78-80

5. Lin T-C (2010) Switching-based filter based on Dempster’s combination rule for image processing.
Inf Sci 180:4892-4908

6. Wang S-S, Wu C-H (2009) A new impulse detection and filtering method for removal of wide range
impulse noises. Pattern Recogn 42:2194-2202

7. Sheng-Fu L, Shih-Mao L, Jyh-Yeong C, Chin-Teng L (2008) A novel two-stage impulse noise removal
technique based on neural networks and fuzzy decision. IEEE Trans Fuzzy Syst 16:863-873

8. Hussain A, Jaffar MA, Mirza AM (2009) Detail preserving fuzzy filter for impulse noise removal. Int
J Innov Comput Inf Control 5:3583-3591

9. Zhengya X, Hong Ren W, Bin Q, Xinghuo Y (2009) Geometric features-based filtering for suppression

of impulse noise in color images. IEEE Trans Image Process 18:1742-1759

o —

@ Springer



Impulse noise filtering 525

10. Petrovic NI, Crnojevic V (2008) Universal impulse noise filter based on genetic programming. IEEE
Trans Image Process 17:1109-1120

11. Kaliraj G, Baskar S (2010) An efficient approach for the removal of impulse noise from the corrupted
image using neural network based impulse detector. Image Vis Comput 28:458-466

12. Hussain A, Jaffar M, Mirza A (2009) A hybrid image restoration approach: fuzzy logic and directional
weighted median based uniform impulse noise removal. Knowl Inf Syst 24:77-90

13. Beecerikli Y, Karan TM, Okatan A (2009) A new fuzzy based edge detection for noisy images using
modified WEM filter. Int J Innov Comput Inf Control 5:1725-1733

14. Schulte S, Nachtegael M, De Witte V, Vander Weken D, Kerre EE (2006) A fuzzy impulse noise detection
and reduction method. IEEE Trans Image Process 15:1153-1162

15. El Akadi A, Amine A, El Ouardighi A, Aboutajdine D (2010) A two-stage gene selection scheme utilizing
MRMR filter and GA wrapper. Knowl Inf Syst 24:77-90

16. Suetake N (2001) Self-organizing maps based impulse detector for switching median filters. In: Interna-
tional conferences on In Info-tech and Info-net, 2001. Proceedings. ICII 2001—DBeijing, vol 24, pp 20-25

17. Xuming Z, Youlun X (2009) Impulse noise removal using directional difference based noise detector and
adaptive weighted mean filter. IEEE Signal Process Lett 16:295-298

18. Srinivasan KS, Ebenezer D (2007) A new fast and efficient decision-based algorithm for removal of
high-density impulse noises. IEEE Signal Process Lett 14:189-192

19. Rodriguez-Vazquez K, Fleming PJ (2005) Evolution of mathematical models of chaotic systems based
on multiobjective genetic programming. Knowl Inf Syst 8:235-256

20. Pappa GL, Freitas AA (2009) Evolving rule induction algorithms with multi-objective grammar-based
genetic programming. Knowl Inf Syst 19:283-309

21. Majid A (2006) Optimization and combination of classifiers using Genetic Programming. In: Faculty of
Computer Science, GIK institute, Swabi

22. Kouchakpour P, Zaknich A, Brnl T (2009) Dynamic population variation in genetic programming. Inf
Sci 179:1078-1091

23. Mahmood MT, Majid A, Choi TS (2011) Optimal depth estimation by combining focus measures using
genetic programming. Inf Sci 181:1249-1263

24. Kouchakpour P, Zaknich A, Briunl T (2009) A survey and taxonomy of performance improvement of
canonical genetic programming. Knowl Inf Syst 21:1-39

25. Zhang S, Karim MA (2002) A new impulse detector for switching median filters. IEEE Signal Process
Lett 9:360-363

26. Silva S, Almeida J (2003) GPLAB-a genetic programming toolbox for MATLAB

27. PitasI, Venetsanopoulos AN (1992) Order statistics in digital image processing. Proc IEEE 80:1893-1921

28. Srinivasan KS, Ebenezer D (2007) A new fast and efficient decision-based algorithm for removal of
high-density impulse noises. IEEE Signal Process Lett 14:189-192

29. Majid A, Khan A, Mirza AM (2006) Combination of support vector machines using genetic program-
ming. Int J Hybrid Intell Syst 3:109-125

30. Langdon WB (2000) Size fair and homologous tree genetic programming crossovers. Genet Program
Evol Mach 1:95-119

Author Biographies

Abdul Majid received his M.Sc. degree in Electronics from
Quaid-i-Azam University, Islamabad, Pakistan, in 1991. He received
his M.S. and Ph.D. degrees in Computer Systems Engineering from
Ghulam Ishaq Khan Institute of Engineering Sciences and Technology,
Topi, Pakistan, in 2003 and 2006, respectively. He has more than 16
years of research and development experience. Currently, he is work-
ing as Associate Professor in Department of Computer and Informa-
tion Sciences at PIEAS. He has completed his Post-Doc Research in the
Department of Mechatronics, GIST, South Korea, in 2010. His research
areas include pattern recognition, image processing, machine learning,
and computational material science.

@ Springer



526

A. Majid et al.

@ Springer

Choong-Hwan Lee received the B.S. degree in electrical engineering
from the Hanyang University, Seoul, Korea, in 1991, the M.S and Ph.D.
degrees in electrical engineering and Computer Science from the Korea
Advanced Institute of Science and Technology, Daejon, Korea, in 1993
and 1997, repectivly. He served for many years as a senior researcher
at Electrical Telecommunication Research Institute (ETRI) in Daejon,
Korea. He is currently CTO in Digital Aria Co., Ltd, Seoul, Korea.
His research interests include computer vision, graphics, embedded
systems, and software engineering.

Muhammad Tariq Mahmood received the MCS degree in computer
science from AJK University of Muzaffarabad, Pakistan, in 2004, and
the ML.S. degree in intelligent software systems from Blekinge Institute
of Technology, Sweden, in 2006, and the Ph.D. degree in information
and mechatronics from Gwangju Institute of Science and Technology,
Korea, in 2011. He is currently a full-time lecturer at School of Com-
puter Science and Engineering, Korea University of Technology and
Education, Korea. His research interests include image processing, 3D
shape recovery from image focus, computer vision, pattern recognition,
and machine learning.

Tae-Sun Choi received the B.S. degree in electrical engineering from
the Seoul Nation University, Seoul, Korea, in 1976, the M.S. degree
in electrical engineering from the Korea Advanced Institute of Science
and Technology, Seoul, Korea, in 1979, and the Ph.D. degree in elec-
trical engineering from the State University of New York at Stony
Brook, 1993. He is currently a Professor in the School of Informa-
tion and Mechatronics at Gwangju Institute of Science and Technology,
Gwangju, Korea. His research interests include image processing,
machine/robot vision, and visual communications.



	Impulse noise filtering based on noise-free pixels using genetic programming
	Abstract
	1 Introduction
	2 Proposed scheme
	2.1 Noise detection
	2.2 Noise filtering
	2.3 GP-based estimator
	2.3.1 GP parameters
	2.3.2 Initial population
	2.3.3 Fitness criterion
	2.3.4 Creation of new population
	2.3.5 Termination criterion


	3 Results and discussion
	3.1 Experimental setup
	3.2 Quantitative analysis
	3.3 Qualitative analysis

	4 Conclusion
	Acknowledgments
	References


