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Abstract In previous work, we have shown the possibility to automatically discriminate
between legitimate software and spyware-associated software by performing supervised
learning of end user license agreements (EULAs). However, the amount of false positives
(spyware classified as legitimate software) was too large for practical use. In this study, the
false positives problem is addressed by removing noisy EULAs, which are identified by
performing similarity analysis of the previously studied EULAs. Two candidate similarity
analysis methods for this purpose are experimentally compared: cosine similarity assessment
in conjunction with latent semantic analysis (LSA) and normalized compression distance
(NCD). The results show that the number of false positives can be reduced significantly by
removing noise identified by either method. However, the experimental results also indicate
subtle performance differences between LSA and NCD. To improve the performance even
further and to decrease the large number of attributes, the categorical proportional difference
(CPD) feature selection algorithm was applied. CPD managed to greatly reduce the number
of attributes while at the same time increase classification performance on the original data
set, as well as on the LSA- and NCD-based data sets.

Keywords End user license agreement · Latent semantic analysis ·
Normalized compression distance · Spyware

1 Introduction

The amount of spyware has increased dramatically due to the high value for marketing
companies of the information that is collected. Spyware is designed to collect user informa-
tion for marketing campaigns without the informed consent of the user. This type of software
is commonly distributed by bundling it with popular applications available for free down-
load. A spyware application is typically difficult to remove once it has been installed, and it
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can seriously degrade system performance and compromise the privacy of the user [5]. The
motivation for conducting this study is that spyware is privacy intrusive and affects system
performance. Moreover, spyware is difficult to detect and most users do not have the time
or the experience needed to identify possible spyware inclusions from reading the end user
license agreements that accompany most software installers.

Previous work has investigated the relationship between the contents of end user license
agreements (EULAs) and the legitimacy of the associated software applications [26,27]. In
the most recent study, a data set was generated from 996 EULA instances of legitimate (good)
and spyware-associated (bad) software. The experimental results showed that a majority of
the evaluated supervised learning algorithms significantly outperformed a baseline classifier,
indicating the feasibility of the approach. Furthermore, it was determined that bag-of-words
was a suitable data model for the learning task.

However, the results obtained when conducting the previous experiments also indicated
that the amount of false positives (spyware classified as legitimate software) was too great
for practical use. Since most software is not associated with spyware, the detector has to
operate in a skewed environment, with many more good than bad instances. Due to the base
rate fallacy, the false positives suppression capability of the classifier dominates its effective-
ness, much as in the computer security classification task of intrusion detection [2]. The false
positives problem is a general problem in data mining, but there is no universal or general
solution to the problem. However, there are some approaches that are commonly applied; for
example, it is possible to address the class imbalance problem by increasing the number of
training instances in order to reduce the number of false positives in some situations [44].
This is not a realistic option in our case, since it is difficult to obtain more spyware instances
in order to reduce the imbalance. Instead, we focus on removing noisy examples contained
in the data.

The innovation presented in this paper is that we address the problem of false positives by
providing means for automatically removing instances of EULAs that even human experts
cannot distinguish as belonging to either spyware or legitimate software. Thus providing the
learning algorithm with less “confusing” data.

1.1 Aim and scope

In the present study, the EULA classification task is further examined by investigating two
approaches for decreasing the number of false positives. The aim is to experimentally compare
latent semantic analysis (LSA) in conjunction with cosine similarity (CS), with normalized
compression distance (NCD) applied to the problem of noisy EULA detection. Addition-
ally, we investigate whether the categorical proportional difference (CPD) feature selection
method can increase the classification performance further, while at the same time decreas-
ing the number of attributes. The informal hypothesis is that the noisy cases identified by
either method will, with some variation, match the borderline cases identified by the human
examiner.

If the informal hypothesis is accepted, it could be argued that the removal of the noisy
EULAs is justified. To expand on this notion, if the identification performed by a human
domain expert is consistent with the identification of an automatic approach, the automatic
approach may be regarded as an appropriate way of decreasing the number of false positives.
The formal hypothesis is then that, once these noisy EULAs are removed, the false positive
rate is significantly lower than the false positive rate on the original data set.

The informal hypothesis is difficult to test and would require extensive manual exam-
inations of EULAs, not to mention an human expertise in information security in general
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and EULA analysis in particular. Hence, in the present study, we will describe a small case
study on manual examination but we will focus on the formal hypothesis and work under the
assumption that the informal hypothesis is true.

1.2 Related work

Similarity detection and search is a heavily researched area since a larger number of applica-
tions, e.g., document comparison, object recognition, and so on, depend on this functionality.
However, the objectives and requirements can be quite different between these applications.
Typically, most similarity-based search methods depend on an indexing method and an index
structure. For example, Zhang and Alhajj [43] compare different graph-based index struc-
tures for similarity search in high-dimensional metric spaces. However, in relation to the
problems studied by Zhang and Alhajj, the EULA classification problem may be regarded
as quite small in terms of dimensionality.

Noise reduction has been researched extensively, especially with regard to finding rem-
edies for specific classes of problems. Recently, a thorough review of noise reduction
approaches for instance-based learning algorithms has been carried out [10]. This review iden-
tifies problems associated specifically with instance-based learners and presents an approach,
based on case-based reasoning, to detect instances that are either contributing negatively or
positively to a particular case or problem. However, a majority of these recent approaches
only focus on remedies for instance-based learning algorithms, which means that they would
apply only to a small subset of the algorithms we study. Moreover, our recent work on EULA
analysis has shown that instance-based algorithms do not seem to be particularly useful for
the task of EULA classification.

LSA was introduced by Deerwater et al. [9] as a method for automatic indexing and
retrieval, based on singular-value decomposition. It has been studied extensively during the
last two decades. Berry et al. described how LSA can be used for intelligent information
retrieval and demonstrated its applicability over then-standard lexical methods [4].

Hofmann highlighted some possible issues of LSA for certain applications and presented
a new method, based on LSA, called probabilistic latent semantic indexing (PLSA) [20].
PLSA was claimed to have a solid statistical foundation and to define a proper generative
data model. Moreover, Hofmann’s experiments indicated performance gains over LSA when
using PLSA. Nevertheless, LSA remains the most popular of the two and is a widely applied
indexing and retrieval method with successful use in, for example: web applications [25] and
spam filtering [17].

NCD was introduced by Cilibrasi [8], and its applicability to various problems such as
clustering and classification was demonstrated. NCD has been experimentally evaluated on
a number of problems, including: classification of biological sequences and structures [15],
novelty detection in patient histories [13], mining of sequential data [23], and even static
analysis of source code [3]. It has also been evaluated in terms of the impact of information
distortion on the compression [19].

It is our firm belief that there has been no attempts to develop methods for detecting noisy
or duplicate end user license agreement text documents before, simply because the research
on the basic problem of using EULAs to distinguish between spyware and legitimate software
has started rather recently. However, we argue that LSA and NCD are two good candidates
to compare as a starting point of this direction of research since they have been shown to
be very successful at similar tasks. For example, NCD has been shown to work well for
the problems of similarity analysis and document clustering [8,19,37]. LSA-based reflection
of human knowledge has been established as adequate in a several ways. For example, it
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has been shown to mimic human word sorting and category judgments [24], which is quite
relevant for the studied problem. Furthermore, LSA has been used to cluster other types of
natural language-based text with good performance [12].

The contribution of this study is thus that we identify the problem of noisy EULAs in the
context of EULA-based spyware detection and that we provide a comparison of two good
candidates for conducting the task of noisy EULA removal. It is not the aim of the presented
study to investigate how to best find duplicate EULAs. However, for reasons that will be
presented later, the task of identifying duplicates in data sets is related to the detection of
noise. There are many reliable studies on duplicate document detection. For example, refer to
the study by Ye et al. on large-scale duplicate document detection [42], which is focused on
shingling-based algorithms as opposed to the presented study, which focuses on term-based
algorithms.

1.3 Outline

The remainder of this paper is organized as follows: in Sect. 2, a more extensive background
to the studied problem is provided. Section 4 gives a detailed description of the approach to
address the problem. The subsequent sections introduce the suggested similarity assessment
methods. In Sect. 5, the experimental procedure is presented. The results of the experiments
are then analyzed in Sect. 6. The last section includes conclusions and pointers to future
work.

2 Background

From now on, the terms bad and good are used to signify spyware-associated and legitimate
applications, respectively. The distributors of bad software usually try to disguise it as good
in an attempt to reach as many users as possible. However, to avoid legal repercussions,
they are required to mention in the end user license agreement (EULA) that spyware will
indeed be installed. For obvious reasons, this information is given in a way most users find
difficult to understand. (Even EULAs for legitimate software can be hard to comprehend
due to their length and their extensive use of legal terminology [18].) If the distributors do
not mention in the EULA that unwanted applications or behavior is installed then detect-
ing it is outside the scope of this study as we study the EULA specifically for signs of
spyware.

Consequently, we recognize the need for an efficient method for helping users to distin-
guish between good and bad software during the installation process. If spyware is detected
through such a method, users can be warned about the potentially hazardous behavior of the
application and avoid installing it.

2.1 Anti-virus techniques

Anti-virus techniques are used for removing malicious software (malware) such as computer
viruses and worms. Malware is illegal in many countries but the same is not necessarily
true for spyware. The reason for this is that spyware resides in a gray zone between what is
considered legal or illegal. Thus, the actions of a piece of spyware can be interpreted as either
legal or illegal depending on who you ask; what one individual regards as spyware could
be considered a legitimate business application by another individual. Because of this, it is
difficult to define spyware and many anti-virus companies do not categorize questionable
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applications as spyware, since that exposes them to possible lawsuits from the application
vendors.

2.2 Previous studies on EULA classification

In a pilot study [26], we investigated whether it was possible to take advantage of the fact
that the installation of bad software has to be mentioned in the EULA. We addressed this
problem by applying supervised learning algorithms to classify EULAs of both good and bad
applications, in order to detect if the associated software hosts spyware. The results indicated
that the approach was feasible. However, the amount of experimental data was limited (the
data set featured 100 EULAs in total).

In a later study, we collected 996 EULAs (900 good, 96 bad) and the experimental results
were quite promising: EULA-based spyware detection seems to be a feasible approach to
alert users before the installation of downloaded applications [27].

2.3 The EULA classification task

EULA classification, as a problem, is quite analogous to that of spam classification, i.e.,
to distinguish between unsolicited commercial email (spam) and legitimate email. Suppose
that we have a collection, I , of EULAs, each labeled either good or bad. The set of possible
classes is thus C = {good, bad}.

We would like to approximate the unknown target function, f : I × C = {1, 0}. The
value of f (i, c) is equal to 1 if the EULA, i , belongs to the class c or zero otherwise. It is
now possible to define a classifier as an approximation function, a : I × C = {1, 0}. The
objective of the learning task is to generate a classifier that produces results as close to that
of F as possible.

Theoretically, the goal is to generate a classifier, a, where ∀i( f (i) = a(i)), that is, a
classifier that achieves a globally optimal classification accuracy. This goal is unreachable in
practice, however. It is at least impossible to know whether the goal has been met since one
does not have access to all possible instances. In practice, one therefore has to assume that,
if a certain classification performance is estimated reliably on I , and I is regarded as a good
representation of the complete set of definable instances, then that level of performance may
be expected for the complete set (or at least within reasonable proximity).

2.4 Data representation

2.4.1 Pre-similarity analysis

The raw data set consists of 996 ASCII text documents.1 The size of these documents range
from 1 to 35 KB (good EULAs) and from 2 to 56 KB (bad EULAs), respectively.

In general, the bad EULA documents are definitely of greater size than the good EULA
documents: 21 out of the 96 bad EULAs have a file size that is greater than 20 KB. By com-
parison, only 4 out of 900 good EULAs are larger than 20 KB. The raw EULA documents
have not been modified in any way. The text featured in each document has been copied and
pasted from an actual software product installation wizard, as described in previous work on
EULA classification [27].

1 Original data available at: http://www.bth.se/com/nla.nsf/sidor/resources.
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2.4.2 Post-similarity analysis

The bag-of-words model is a common model to use in order to represent documents as feature
vectors [14]. In fact, it has been found in several experiments that more sophisticated repre-
sentations do not yield any significant increase in effectiveness [34], although there are some
recent approaches that have shown promise. For example, Wang automatically constructed
a thesaurus of concepts from Wikipedia and introduced a unified framework to expand the
bag-of-words representation with semantic relations [39]. More research is needed in order
to establish whether this type of expansion really increases performance significantly over
the traditional model.

In the bag-of-words model, every word in a document represents a feature. Thus, a text
document is transformed into a vector with one element for each word that occurs in the
document. A weight is associated with each word, see below. A collection of documents is
then represented by a set of word vectors and the dimension of the feature space is equal to the
number of different words in the whole document collection. Some studies have investigated
whether the use of phrases is more suitable than words when performing text classification.
However, the experimental results achieved in these studies have not been as encouraging as
those in studies that use words as terms [34].

There are basically two methods for assigning weights to features. The simplest is the
binary method, which either assigns a value of one if the word is present in the document or a
value of zero otherwise. The binary method can be used if the chosen learning algorithm can
handle only nominal attributes. However, the more common method is to take the frequency
of the word into account. We adopt this method and calculate frequencies using the standard
term frequency—inverse document frequency (TF IDF) scheme [14]. The TF IDF function
embodies the intuitions that the more often a term occurs in a document, the more it is rep-
resentative of its content, and the more documents a term occurs in, the less discriminating
it is [34].

Several variations of TF IDF exist, and they differ from each other in terms of logarithms,
normalization, or other factors. The following variant of TF IDF is used in this study: given
a word, w, in a EULA, d , the TF IDF weight is calculated according to Eq. 1, where N
is the total number of EULAs, DocFreq is the number of EULAs containing the word and
TermFreq represents the frequency of the word in the particular EULA.

weight(w, d) = TermFreq(w, d) · log
N

DocFreq(w)
. (1)

3 Approach

Real-world data sets often contain classes that are not linearly separable. This is to be expected
for some problems because of the very nature of those problems. However, data sets may
also contain noisy examples, e.g., instances that are either incorrectly labeled or represent
something that would not exist in the real world, e.g., an individual with a height of 6 ft and an
age of 4 years. It is obvious that such instances may confuse a supervised learning algorithm
or a generated classifier.

The main approach presented here for the detection of noisy EULAs additionally assumes
that there exists a subset of examples from the good and bad class that are more related to
each other than to instances of their respective class per se. In other words, the assumption
is that this subset represent an undefined, and hence hidden, neutral class.
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3.1 Similarity-based identification of noise

If I represents a set of EULA documents with a distribution of k bad document instances and
|I | − k good document instances, the objective is to find which bad and good instances are
closer to instances of the other document class, as in the instance space or some transformed
version of the instance space.

Definition 3.1 A neutral instance is an instance whose original class label is unequal to the
class label of its nearest neighbor.

Using Definition 3.1 and a suitable similarity measure, we may obtain a set, E ⊂ I , of all
neutral instances in I . It is now possible to generate two new data sets by regarding E either
as noise or by introducing a third class (neutral) to more appropriately label the instances
of E .

3.2 Removal of noisy instances

An important question to ask is: why the detection and removal of noisy document examples
should be performed to begin with. It is obvious that in any non-trivial supervised classi-
fication learning task, some classes are not easily separable. Thus, removing examples to
increase the separation of classes in the instance space may be seen as over-simplifying the
studied problem. To answer the stated question, and address the related issues, we would like
to draw the reader’s attention to the discussion in Sect. 2 about the collection and labeling of
end user license agreements; since there is no consensus about the definition of spyware, it
is impossible to correctly label a collection of EULAs, in the sense that everyone will agree
upon the correctness of the associated class labels. Thus, the objective is not to generate a
perfectly labeled collection of EULAs. Rather, we are interested in developing a tool that
can be used to alert users of the possible inclusion of spyware during the installation of
downloaded applications. The tool needs to be robust in its classification of the clear cases
of legitimate software and spyware-associated software. Hence, we consider it better if the
borderline or noisy cases are labeled as belonging to a third class; neutral, or not labeled at
all, as opposed to being incorrectly labeled as good or bad (were the former case is the most
problematic).

3.3 Removal of noisy attributes

The EULA classification task does not suffer only from the possible inclusion of noisy
instances in the data set: it is also quite common that the dimensionality of the data with
regard to the number of attributes is large in comparison to the number of EULA documents,
or instances. A common approach to address this issue for the general problem of text cate-
gorization is to apply a feature selection method. The potential benefits of feature selection
are that it may:

1. reduce computational cost and storage requirements,
2. deal with the degradation of classification efficiency due to the finite size of training

sample sets,
3. reduce training and prediction time, and
4. facilitate data understanding and visualization [1], as cited by Lin et al. [30].
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3.3.1 Statistical and algorithmic feature selection

Consequently, it may be worth investigating whether feature selection can be used to decrease
attribute dimensionality and increase classification performance for the EULA classification
task. There is a large number of feature selection algorithms available. Generally, one could
make a distinction between statistical and algorithmic feature selection approaches. Whereas
the former type makes use of statistics or measures calculated directly on the data, the latter
type may involve the application of a learning algorithm to generate a classifier, from which
information about the quality of different features can be obtained. In general, the algorithmic
approach is much more computationally expensive than the statistical approach. (There are
also hybrid approaches available, for example, based on determination of an optimal feature
set by means of running an appropriate optimization technique [30]).

3.3.2 Categorical proportional difference

A recent statistical feature selection technique, categorical proportional difference (CPD),
has been shown to outperform commonly applied feature selection methods, such as χ2,
information gain, document frequency, mutual information, odds ratio, and simplified χ2, on
several text categorization corpora in terms of F-measure performance improvement [36].
Moreover, CPD has also managed to significantly reduce the number of attributes in the
aforementioned cases of performance improvement. Thus, we argue that CPD is a suitable
choice of feature selection technique for the EULA classification problem.

Intuitively, CPD is a measure of the degree to which a word contributes to differentiating
a particular class from other classes. The possible values that CPD can take on are limited
to the interval of −1 and 1, where CPD values close to −1 indicate that a word occurs in
approximately an equal number of EULAs in all classes and a CPD value of 1 indicates that a
word occurs in the EULAs of only one class. Let A be the number of times word w and class
c occur together, and let B be the number of times word w occurs without class c. According
to Simeona and Hilderman, we may then define CPD for a particular word, w, and class, c,
as follows:

CPD(w, c) = A − B

A + B
. (2)

This is the ratio of the difference between the number of EULAs of a class in which a word
occurs and the number of EULAs of other classes in which the word also occurs, divided
by the total number of EULAs in which the word occurs. The CPD for a word is the ratio
associated with the category ci for which the ratio is the highest, i.e.:

CPD(w) = max
i

{CPD(w, ci )}. (3)

4 Similarity analysis methods

We will now present two different similarity-based analysis approaches for reducing the
number of false positives for the EULA classification problem by removing noisy instances.

4.1 Latent semantic analysis

A document-term matrix, M , is constructed from a given text document collection of n doc-
uments containing m terms. A feature extraction component is used to extract the values
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vi j for each term, mi , from each document, j . The m-dimensional column vector, Vj , with
the components, vi j ; i = 1, 2, . . . , m, then represents document j in the so-called Vector
Space Model. The m × n document-term matrix, M , is composed using the vectors Vj for
all documents as columns [17].

This matrix, M , is then decomposed via singular-value decomposition (SVD) into: the
term vector matrix, T , the document vector matrix, D, and the diagonal matrix, S, according
to Eq. 4.

M = T SDT. (4)

These matrices can then be reduced to a given number of dimensions, k, resulting in the trun-
cated matrices Tk, Sk and Dk : the Latent Semantic Space.2 If these matrices are multiplied,
the product is a matrix, Mk , which is the least-squares best fit approximation of M with k
singular values (see Eq. 5).

Mk =
k∑

i=1

ti · si · dT
i . (5)

If a similarity measure is used, it is now possible to determine the similarity between dif-
ferent documents represented in Mk or between an external document and the documents of
Mk . One measure, that is commonly used together with Latent Semantic Analysis, is cosine
similarity (CS) [28]. Given a query vector q of length f , the distances to all documents
represented in Mk can be measured in terms of the cosines of the angles between q and
the columns of Mk . The closest column represents the closest match between the document
collection and the query vector [17]. Given the query vector, q , and an arbitrary document
vector in the collection, p, the cosine similarity is defined using the dot product as shown in
Eq. 6.

cos(θ) = q · p

‖q‖ ‖p‖ . (6)

For our particular task, it is useful to construct a cosine similarity matrix (CSM), as shown in
Eq. 7. The CSM includes the similarity scores, θ , or distances between all EULA documents,
N = {1 . . . n} (good and bad). Naturally, the cosine similarity between a certain document
and itself is 1.

CSM =

⎛

⎜⎜⎜⎝

θ11 θ12 . . . θ1n

θ21 θ22 . . . θ2n
...

...
. . .

...

θn1 θm2 . . . θnn

⎞

⎟⎟⎟⎠. (7)

4.2 Normalized compression distance

An alternative approach to that of latent semantic analysis and cosine similarity is a fairly
recent algorithm that computes distances between arbitrary data vectors: normalized com-
pression distance (NCD) [8] as it is generally applicable [15], parameter free [22], noise resis-
tant [6] and demonstrated theoretically optimal [38]. The NCD is an approximation to the
uncomputable normalized information distance, which is based on the notion of Kolmogorov
complexity.

2 Documentation of the LSA package for the R-project, http://cran.r-project.org/web/packages/lsa/lsa.pdf.

123

http://cran.r-project.org/web/packages/lsa/lsa.pdf


176 N. Lavesson, S. Axelsson

Since the NCD is a distance function, it must satisfy (verbatim from [38]):

– D(x, y) = 0 if and only if x = y, (identity)
– D(x, y) = D(y, x) (symmetry)
– D(x, y) ≤ D(x, z) + D(z, y) (triangle inequality)

In order to work well, there are also requirements on distance densities for the population,
i.e., only a certain number of distances of pairs of input may be the same, not all of them. This
is to avoid undesirable distances functions such as D(x, y) = 1 when x �= y, and 0 when
x = y. Although that function satisfies the requirements above, it is clearly useless [38].

NCD is based on the idea that by using a compression algorithm on data vectors (in
whatever shape or form these may come) both individually and concatenated, we will receive
a measure of how distant they are. The better the combination of the two vectors compress,
compared to how the individual vectors compress on their own (normalized to remove dif-
ferences in length between the set of all vectors), the more similar the vectors are. More
formally, NCD is a metric:

NCD(x, y) = C(x, y) − min(C(x), C(y))

max(C(x), C(y))

where C(x) is the compressed length of x and C(x, y) is the compressed length of x con-
catenated with y. The range of the NCD function is ideally within 0 ≤ NC D ≤ 1. This
always holds true for the lower bound, but due to failure of the chosen compression algo-
rithm, C(x), to accurately approximate the incomputable Kolmogorov complexity function
the upper bound is sometimes not met, and the NCD will be greater than one. This does
not materially affect operation as long as the distance does not greatly exceed one, as that
signifies major problems with the compression algorithm for use as part of the NCD. At least
for the particular data set.

The reason for choosing max(C(x), C(y)) for the denominator is not obvious. In fact,
most of the alternatives that come to mind will not work as the NCD then does not satisfy
the distance function requirements. The interested reader is referred to Vitanyi et al. [38] for
further details. That the resulting function is indeed a distance metric is far from self evident,
is demonstrated by Li et al. [29].

In addition to the advantages listed above, the NCD has several additional advantages, a
significant of which is the lack of parameters that need to be set. Parameter-free methods are
advantageous in that setting the correct parameters requires detailed knowledge of the inter-
nal operation of the algorithm. Setting the wrong parameters can have a sizable impact on
the performance of the algorithm, both when it comes to false positives and false negatives.
It is of course also problematic to compare the same algorithm on differing problem sets if
the parameters are also different. How to set the correct parameters in a real-world usage
scenario, when labels are absent from the data set is also fraught with peril [38]. Many of the
same problems also abound when it comes to feature selection, selecting the right features
can involve intimate knowledge of the problem domain, and in the instances when it does
not, it can still be a time consuming and error-prone process [38].

The only parameter one has to set when performing NCD is to choose a compression
algorithm. The best performing algorithm overall is most often the statistical compressors
in the PPM-family [41]. However, in this experiment, we have chosen to use the bzip2 [35]
algorithm. This algorithm was selected since it has previously been demonstrated to work
well on the type of text classification problem that we are faced with here [7] and the run-
time is much shorter than for the PPMD. With a window length of as much as 900 KB, we
are comfortably within the length of the concatenation of our two largest EULAs (105 KB),
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which is in the range where bzip2 works well. (It is, however, too large for the gzip algorithm
as it can only comfortably handle concatenated document sizes of approximately 60 KB).

4.3 Detection of noisy instances

The LSA and NCD methods can both be used to generate similarity scores for all pairs of
EULA documents. In order to actually detect noisy instances, we need to choose an appropri-
ate detector. The 1-nearest neighbor algorithm is one of the most commonly used methods for
this purpose although it would be quite possible to make use of more sophisticated methods
as well. The K -nearest neighbor algorithm could, for example, be used instead (refer to the
discussion on using NCD as a learner in the previous section). However, for the purpose of
the present study, no alternative methods to 1-nearest neighbor will be evaluated.

4.3.1 LSA detection

Based on the cosine similarity matrix (CSM), as defined in Eq. 7, we obtain some interesting
results. Primarily, we are interested in finding out which documents from a certain class are
most likely to be confused with documents from the other class. That is, we want to find the
set of documents that are closest (in the CSM-sense), to a document of the opposite class.
We therefore order the column of similarity scores from highest to lowest for each document
and compare the class of each document with the class of its closest neighbor.

Note that since the text documents are tokenized into word elements prior to LSA analysis,
and since LSA results in a truncated vector space model, the nearest neighbor to a certain
document is only approximately identical to that document, even if the cosine similarity is 1.
We say that if the nearest neighbor to a document belongs to another class than that of the
document itself, the document is classified as incorrectly labeled by the LSA-based analysis.
Consequently, we hypothesize that the document may contribute to a higher false positive
rate were it included during classifier generation. For an arbitrary document, d , and its nearest
neighbor, d∗, we define c(d) and c(d∗) as their corresponding classes. We may then define
label correctness with Eq. 8.

label(d) =
{

incorrect : c(d) �= c(d∗)
correct : otherwise

(8)

Secondarily, we may use the information provided in the CSM to find duplicate documents.
Again, we will only find approximately duplicate documents with our approach, but the
information about these documents may prove to be valuable in further research on EULA
classification. We define the set of duplicates of a document, n, as the documents for which
the cosine similarity scores to n are 1.

4.3.2 NCD detection

Analogously to LSA-based detection, the NCD-based detection is carried out by finding the
nearest neighbor. For each EULA document, d , a vector of all available EULA documents is
generated, ordered by the NCD-based similarity to the document in question. The EULA with
the highest similarity score from this vector, d∗, is then the nearest neighbor. Consequently,
Eq. 8 can once again be used to determine the correctness of the labeling of d according to
the NCD. Similarly, the set of EULAs for which the NCD-based similarity is above a certain
threshold could be regarded as duplicates according to the NCD.
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Table 1 LSA-based analysis of
the original data

Class #Instances #Duplicates #Correct #Incorrect

Good 900 158 869 31

Bad 96 8 52 44

Total 996 166 921 75

Table 2 NCD-based analysis of
the original data

Class #Instances #Duplicates #Correct #Incorrect

Good 900 109 873 27

Bad 96 0 64 32

Total 996 109 937 59

5 Experiments

5.1 Detection of noisy instances

Table 1 includes the results from the LSA-based analysis of the original 996 raw EULA text
documents. As can be seen in the fifth column, there is a rather large amount of misclassified
instances, especially from the bad class. Recall that, duplicates and incorrectly classified
instances actually denote instances that are determined by the cosine similarity measure to
be either equal to another instance or most similar to an instance of another class. Table 2 fea-
tures the results from the NCD-based analysis of the original EULAs. Similarly to the results
of the LSA-based analysis, the fifth column shows a quite substantial amount of misclassified
instances from the bad class although the amount of incorrectly labeled instances according
to NCD is smaller than what was detected by LSA. The information about duplicate instances
is not used in the presented study. That is, the duplicate EULAs are not removed from the col-
lection. Recall that, duplicates and incorrectly classified instances actually denote instances
that are determined by either the cosine similarity measure or the normalized compression
distance measure to be either equal to another instance, or more similar to an instance of the
other class, than to any instances of their own class.

5.2 Comparison of noise detection approaches

In the primary experiment, the aim is to determine whether the removal of instances, labeled
as incorrectly classified cases by any of the similarity-based instance removal approaches,
yields an increase in classification performance. Instances from either class, determined by
LSA and NCD to be closer to an instance of the other class, are removed from the correspond-
ing data set before transforming it to a bag-of-words model. Thus, to generate the LSA-based
data set, 75 instances are removed from the original data set (31 good, 44 bad), resulting in
a new data set that features 921 instances. Similarly, to generate the NCD-based data set, 59
instances are removed from the original data set (27 good, 32 bad). The NCD-based data set
features 937 instances in total.

5.2.1 Bag-of-words generation

The total number of words, contained in all of the EULAs, is close to 10,000 but experimental
evidence suggests that this number can be reduced by circa 90% without reducing classifier
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performance [14]. In order to decrease the number of attributes, we convert all characters
to lowercase and consider only alphabetic tokens. Furthermore, we remove stop words and
words that occur only once (hapax legomena) and store a maximum of 1,000 words per
class. Finally, we apply the Iterated Lovins Stemmer [31] to be able to store only the stems
of the remaining words. The result is an original data set with 1,269 numeric attributes, an
LSA-based data set with 1,295 attributes, and an NCD-based data set with 1,302 attributes.
All data sets include a nominal target attribute, which indicates the class of the EULA (good
or bad).

5.2.2 Feature selection

Prior to the experimental comparison of noise detection approaches, the three data sets under
investigation are subjected to feature selection using the categorical proportional difference
(CPD) technique. As described by Simeon and Hilderman [36], the search for a suitable
cutoff point for CPD is computationally expensive due to the possible non-linearity of the
function of the number of kept words and the resulting performance. We opted to define a
keep ratio interval and select a reasonable step size. In the presented study, we use an interval
of 1.0 to 0.6 together with a step size of 0.01, which yields 40 iterations for each data set.
These settings let us investigate, in increments of one percent, the possible performance gain,
from using CPD-based feature selection, for each data set when keeping from 60% and up
to 100% of the attributes.

Since Naive Bayes Multinomial [32] achieved the top AUC score in the previous
study [27], it is argued that this algorithm could serve as a reasonable estimator of gen-
eral performance for the purpose of feature selection. Thus, the Multinomial Naive Bayes
algorithm is evaluated according to area under the ROC curve (AUC) performance by run-
ning 10 ten-fold cross-validation tests for each iteration and data set. For each of the three
data sets, which attributes to keep is determined by selecting the subset of attributes from the
iteration that yields the highest AUC performance by the multinomial Bayesian algorithm.

5.2.3 Evaluation and hypothesis testing

In the primary experiment, all algorithms investigated during the previous study [27] except
K-star are compared in terms of the area under the ROC Curve (AUC) performance on the
feature selected versions of the original data set, the LSA-based data set, and the NCD-based
data set. A decision was taken to remove K-star since it achieved the poorest AUC perfor-
mance in the previous study and, moreover, it was by far the most computationally expensive
algorithm.

In order to obtain reliable results, the comparison is performed by subjecting each of the
included algorithms to ten runs of re-sampled and stratified tenfold cross-validations. The
cross-validation folds are generated by using an initial seed of 1 for each algorithm. Thus,
given a particular data set, each algorithm is accessing identical folds. In essence, this setup
also increases the reproducibility of the results. For the selected set of algorithms and data
set, we aim to test the following null hypothesis, h0: there is no AUC performance difference
between the original data set, the LSA-based data set, and the NCD-based data set. In order
to investigate the validity of this hypothesis, the non-parametric Friedman’s test [16] and
the corresponding Nemenyi post hoc test [33] are used since the hypothesis testing involves
comparisons of multiple algorithms and data sets [11].

Friedman’s test is based on calculating the average ranks of each data set rather than using
the actual AUC performance score. For each algorithm, the data set for which the algorithm
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achieves the highest performance is awarded the rank of 1, the second best the rank of 2, and
so on. In the case of a tie, the average rank of the tied data sets is assigned. We can now state
the null hypothesis more formally. Given that R j represents the average rank of the j-th out
of k data sets, we wish to test H0 : R1 = · · · = Rk . The regular statistic used for Friedman’s
test, χ2

F , is defined, with k − 1 degrees of freedom, as follows:

χ2
F = 12

Nk(k + 1)
−

∑

j

(N R j )
23N (k + 1). (9)

Since it has been shown that Friedman’s statistic is too conservative [21], we employ the
recommended alternative statistic based on the F-distribution, as defined in Eq. 10 where N
is the number of included algorithms and k is the number of data sets to compare. Moreover,
we perform hypothesis testing at p < 0.05 and with k − 1 and (k − 1)(N − 1) degrees of
freedom.

FF = (N − 1) χ2
F

N (k − 1) − χ2
F

. (10)

If the null hypothesis is rejected, the Nemenyi post hoc test can be applied to determine
whether the performance achieved on two particular data sets is significantly different. In
order for this difference to be significant, the corresponding average ranks of the two data
sets must differ by at least the critical difference (CD), which is defined in Eq. 11, where
qα is the critical value for the two-tailed Nemenyi post hoc test at p < α. For k = 3 and
p < 0.05, the critical value, qα , is 2.343. Thus, the critical difference for p < 0.05 is
2.343

√
1.125 ≈ 0.828, given that k = 3 and N = 16.

CD = qα

√
k (k + 1)

6N
. (11)

As in previous work, the Weka [40] default configurations are applied for a majority of
the algorithms since it is not the main objective of the study to find the optimal algorithm.
The exceptions are IBk and Stacking. For convenience, a comprehensive description of the
configurations of the included algorithms can be viewed in Table 3.

5.3 Introduction of the neutral class

In the secondary experiment, a third class is introduced: the instances determined to be incor-
rectly labeled on the basis of either the LSA or the NCD analysis are now categorized as
belonging to the neutral class instead of being removed from the data set. The procedure to
transform the EULA document collection to a bag-of-words model is identical to the pro-
cedure followed in the primary experiment. Thus, the data sets generated for the secondary
experiment both feature 996 instances. The LSA-based three-class data set features 869 good,
75 neutral, and 52 bad instances and the NCD-based three-class data set features 873 good,
59 neutral, and 64 bad instances.

Since this data set includes three classes instead of two, as in the original data set, it makes
little sense to formally compare the performance of learning algorithms across the different
types of data sets. Instead, our aims are to investigate whether the performance in classifying
bad and good instances deteriorate when introducing the neutral class and to examine the
classification confusion between the good, bad, and neutral classes. The experiment is con-
ducted by subjecting the top performing algorithm from the primary experiment to a stratified
tenfold cross-validation test.
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Table 3 Learning algorithm configurations

Algorithm Configuration

NaiveBayes Kernel estimator: false, supervised discretization: false

NaiveBayesMultinomial N/A

RBFNetworka Ridge: 1.0E-8

SMOb Kernel: polynomial, complexity: 1.0

VotedPerceptron Exponent: 1.0, max kernel alterations: 10,000

IBkc Number of neighbors: 10, distance weighting: false

AdaBoostM1 Classifier: DecisionStump

Bagging Classifier: REPTree (Pruning: true)

Stacking Meta: SMO, committee: SMO, VotedPerceptron, NaiveBayesMultinomial

HyperPipes N/A

JRipd Pruning: true, number of optimizations: 2

PART Binary splits: false, pruning: true (confidence factor: 0.25)

Ridor N/A

DecisionStump N/A

J48e Pruning: subtree raising, pruning confidence factor: 0.25

RandomForest Number of trees: 10

This table is from the previous EULA study [27]
a Radial basis function network
b Support vector machines
c K-nearest neighbor
d Ripper
e C4.5

6 Results

We now review and discuss the results of the experiments. First, the results from the CPD-
based feature selection are revealed. The results from the main experiment are then described
in detail. As earlier described, in the main experiment, the performances on the original data
set, the LSA-based data set, and the NCD-based data set are compared. Finally, we present
results from and discuss the possibility of adding a third, neutral, class to the EULA clas-
sification task by including the instances previously identified as noise. Prior to the present
study, a domain expert manually examined a subset of the bad EULAs (all instances with a
smaller size than 10 KB). It was concluded that for 18 of the 36 examined EULAs, it would
be impossible for a human to infer that spyware would be installed by the software prod-
uct. Interestingly, the LSA-based approach managed to remove 13 of these 18 bad instances
(72%) and the NCD-based approach removed over 80% of these bad instances, stemming
from the fact that they were more similar to good EULAs. Thus, the initially stated infor-
mal hypothesis seems to be true, which arguably increases the meaningfulness of using an
automated approach to remove noisy instances.

6.1 Feature selection results

The complete results of the feature selection performed on the two-class data sets are pre-
sented in Table 4. As can be seen in the Table 5, the AUC performance gains for the orig-
inal data set, the LSA-based data set, and the NCD-based data set are: 1.2, 0.9, and 0.6%,
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Table 4 Post-feature selection AUC results for Naive Bayes Multinomial on 40 levels of keep ratio

Keep ratio Original LSA-based NCD-based
mean (SD) mean (SD) mean (SD)

0.61 0.934 (0.054) 0.998 (0.004) 0.994 (0.006)

0.62 0.933 (0.054) 0.998 (0.004) 0.994 (0.006)

0.63 0.933 (0.054) 0.998 (0.004) 0.994 (0.006)

0.64 0.933 (0.054) 0.998 (0.004) 0.994 (0.006)

0.65 0.932 (0.054) 0.998 (0.004) 0.994 (0.006)

0.66 0.931 (0.054) 0.998 (0.004) 0.994 (0.006)

0.67 0.931 (0.054) 0.998 (0.004) 0.993 (0.006)

0.68 0.931 (0.054) 0.998 (0.004) 0.993 (0.006)

0.69 0.931 (0.054) 0.998 (0.004) 0.993 (0.006)

0.70 0.931 (0.054) 0.998 (0.004) 0.993 (0.006)

0.71 0.931 (0.054) 0.998 (0.004) 0.993 (0.006)

0.72 0.931 (0.054) 0.997 (0.004) 0.993 (0.006)

0.73 0.929 (0.054) 0.997 (0.004) 0.993 (0.005)

0.74 0.929 (0.054) 0.997 (0.004) 0.993 (0.006)

0.75 0.929 (0.054) 0.997 (0.004) 0.993 (0.005)

0.76 0.929 (0.054) 0.997 (0.004) 0.993 (0.005)

0.77 0.929 (0.054) 0.996 (0.005) 0.993 (0.005)

0.78 0.928 (0.055) 0.996 (0.005) 0.993 (0.005)

0.79 0.928 (0.055) 0.996 (0.005) 0.993 (0.006)

0.80 0.929 (0.055) 0.996 (0.005) 0.993 (0.005)

0.81 0.929 (0.055) 0.995 (0.005) 0.993 (0.006)

0.82 0.929 (0.055) 0.995 (0.006) 0.993 (0.006)

0.83 0.928 (0.055) 0.995 (0.006) 0.992 (0.006)

0.84 0.928 (0.056) 0.995 (0.006) 0.992 (0.006)

0.85 0.928 (0.056) 0.995 (0.006) 0.992 (0.006)

0.86 0.928 (0.055) 0.994 (0.006) 0.992 (0.006)

0.87 0.928 (0.056) 0.994 (0.006) 0.992 (0.006)

0.88 0.927 (0.056) 0.993 (0.006) 0.992 (0.007)

0.89 0.927 (0.056) 0.993 (0.007) 0.992 (0.007)

0.90 0.928 (0.055) 0.992 (0.007) 0.991 (0.007)

0.91 0.927 (0.056) 0.992 (0.007) 0.991 (0.007)

0.92 0.927 (0.056) 0.992 (0.007) 0.990 (0.007)

0.93 0.926 (0.056) 0.991 (0.007) 0.989 (0.008)

0.94 0.926 (0.057) 0.991 (0.007) 0.989 (0.008)

0.95 0.925 (0.057) 0.991 (0.007) 0.988 (0.008)

0.96 0.925 (0.057) 0.991 (0.007) 0.988 (0.008)

0.97 0.923 (0.057) 0.990 (0.007) 0.988 (0.008)

0.98 0.923 (0.057) 0.990 (0.008) 0.988 (0.009)

0.99 0.923 (0.058) 0.990 (0.008) 0.988 (0.008)

1.00 0.922 (0.058) 0.989 (0.008) 0.988 (0.008)

Optimal AUC performance is indicated with bold
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Table 5 Data set statistics post-
and pre-feature selection

Data set #Instances Pre Post

#Attributes #Attributes AUC gain

Original 996 1,269 775 0.012

LSA-based 922 1,295 791 0.009

NCD-based 937 1,302 795 0.006

respectively. Table 5 also shows that the number of attributes has decreased to 775, 791, and
795 for the three data sets.

We conclude that CPD is successful in substantially decreasing the number of attributes
for each data set while at the same time managing to increase the AUC performance reason-
ably well. Intuitively, the largest performance gain is attributed to the feature selection on the
original data set, since the potential for improvement was the highest on this data set, due to
the comparably low initial performance.

For the three-class problem, feature selection was again performed using CPD and
40 iterations with Multinomial Naive Bayes as a general performance estimator. This
feature selection process resulted in a substantial decrease of attributes for both the
LSA- and NCD-based three-class data sets. The best AUC performance was found
with a keep ratio of 0.61 and 0.65 for the NCD and LSA data sets, respectively. In
other words, the original three-class data sets included 1440 attributes, and after fea-
ture selection, this number was reduced to 879 for the NCD data set and to 937 for the
LSA data set since 61% of the original 1440 attributes were kept when generating the
NCD data set and 65% of the original attributes were kept when generating the LSA
set.

6.2 Data set Comparison Results

The results from the main experiment, in which we compare the original EULA data set with
the LSA-based data set and the NCD-based data set, are summarized in Table 6. Clearly, the
AUC performances of all included algorithms are substantially higher when their classifiers
are generated from the LSA-based data set or the NCD-based data set, in which noisy exam-
ples have been removed. With 3 data sets and 16 algorithms, FF is distributed according to
the F-distribution with 3 − 1 = 2 and (3 − 1)(16 − 1) = 30 degrees of freedom. The critical
value of F(2, 30) for α = 0.05 is 3.32, so we may reject the null hypothesis (h0). In fact, it
is even possible to reject the null hypothesis with the χ2 statistic and 3 − 1 = 2 degrees of
freedom since the critical value of χ2(2) for α = 0.05 is 5.991 and χ2 = 26.

Since a significant average rank difference has been detected, we proceed with the
Nemenyi post hoc test to determine individual significant differences between all possi-
ble pairs of data sets. As described in Sect. 5.2.3, the critical difference for p < 0.05, 3
data sets, and 16 algorithms is 0.828. The difference in average rank between two data sets
must therefore be larger than 0.828 in order for the difference to be significant according
to the Nemenyi test. Since 3 − 1.75 = 1.25 and 3 − 1.25 = 1.75, we conclude that both
the LSA-based and NCD-based data sets are significantly better than the original data set.
However, since 1.75 − 1.25 = 0.5, the conclusion is that there is no significant difference,
in terms of average AUC performance of the evaluated algorithms, between the LSA-based
and the NCD-based approach.

Similarly to the previous study, the Multinomial Naive Bayes algorithm is superior in
terms of AUC performance. In fact, this algorithm achieves the highest AUC performance
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Table 6 Comparison of AUC between the original data set and the two similarity-based data sets

Algorithm Type Original LSA-based NCD-based
mean (SD) mean (SD) mean (SD)

NaiveBayes Bayes 0.898 (0.055) 0.990 (0.019) 0.977 (0.037)

NaiveBayesMultinomial 0.934 (0.054) 0.998 (0.004) 0.994 (0.006)

RBFNetwork Function 0.821 (0.096) 0.982 (0.038) 0.980 (0.025)

VotedPerceptron 0.829 (0.080) 0.893 (0.091) 0.904 (0.084)

SMO 0.814 (0.080) 0.926 (0.086) 0.948 (0.061)

IBk Lazy 0.826 (0.086) 0.966 (0.074) 0.990 (0.018)

AdaBoostM1 Meta 0.864 (0.079) 0.966 (0.046) 0.969 (0.032)

Bagging 0.889 (0.067) 0.914 (0.075) 0.954 (0.071)

Stacking 0.847 (0.084) 0.921 (0.088) 0.948 (0.061)

HyperPipes Misc 0.811 (0.090) 0.978 (0.018) 0.983 (0.016)

JRip Rules 0.805 (0.083) 0.845 (0.104) 0.886 (0.089)

PART 0.796 (0.097) 0.872 (0.145) 0.852 (0.136)

Ridor 0.739 (0.089) 0.832 (0.105) 0.860 (0.103)

DecisionStump Trees 0.814 (0.069) 0.901 (0.076) 0.902 (0.085)

J48 0.737 (0.115) 0.853 (0.138) 0.859 (0.125)

RandomForest 0.884 (0.069) 0.962 (0.062) 0.982 (0.030)

Average rank 3.00 1.75 1.25

Table 7 Comparison of LSA and
NCD on the three-class problem

Confusion matrices generated
from one tenfold cross-validation
test of Multinomial Naive Bayes

Dataset Classifications Actual

Bad Good Neutral class

LSA 44 0 8 Bad

10 706 154 Good

9 24 41 Neutral

NCD 56 0 8 Bad

12 714 147 Good

13 23 23 Neutral

on all three data sets. The overall algorithm performance results indicate that both the LSA-
based and the NCD-based approach represent feasible ways to reduce the false positive rate
for the EULA classification task.

6.3 Introduction of the Neutral class

The results of the secondary experiment can be viewed in Table 7 and consist of two confusion
matrices generated for the Multinomial Naive Bayes algorithm on the three-class versions
of the LSA-based and NCD-based data sets. Interestingly, no bad instances are classified
as good, which would be the worst type of classification error in a real-world setting. The
neutral instances are classified slightly more correctly in the LSA-based data set. A large
amount of the good instances are classified as neutral in both the data sets.

LSA and NCD perform comparably in generating suitable three-class data sets. However,
as can be interpreted from the AUC performance, the introduction of a neutral class affects
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Table 8 The ten wordstems with
the highest conditional
probability for each class and
data set

Word stem probabilities
generated by Multinomial Naive
Bayes

Data set Bad Neutral Good

NCD search toolbar evalu

toolbar search register

arbitr act program

whenu effect el

view jurisdict ver

cook commerc tr

url el sharewar

anonym sol fil

18 direct pack

avail respon author

LSA search search evalu

toolbar serv register

whenu toolbar el

view act program

cook download ver

download oper tr

anonym effect sharewar

serv direct pack

acc commerc fil

upd control author

the performance negatively. Arguably, the conclusion that can be drawn is that the neutral
instances are confusingly similar to either good or bad instances. Further research is required
to determine whether completely different categorizations of spyware may resolve the issue.
For example, one might classify the spyware applications according to functionalities like:
browser hijacking, advertisement pop-ups, user behavior reporting, and so on. However, it is
quite obvious that this type of functionality-based labeling of instances would most certainly
be time consuming and difficult to conduct manually.

6.4 Discussion

As in many other domains, false positives are particularly troublesome in the EULA classifi-
cation task, since the principal objective of this classification is to provide decision support to
computer users during software product installation. A false positive (a spyware-associated
application classified as legitimate software) would then mislead the user to install the prod-
uct, which could possibly lead to system performance degradation or worse; loss of system
control and theft of information. A false negative (a legitimate application classified as spy-
ware) is not as potentially costly. However, if the user knows about the legitimacy of the
application, a false negative may result in a decrease of trust in the decision support tool. The
decreased trust would, in the worst scenario, leads the user to not pay attention to the recom-
mendation from the decision support tool, much like most users today do not pay attention
to the displayed EULA when installing software downloaded from the Internet.

Table 8 includes the word stems with the highest conditional probabilities for each of the
three classes from the secondary experiment. In analyzing the conditional probability-based
prioritized lists of word stems, some evidence is uncovered as to why bad and neutral instances
are indeed hard to separate, which confirms the conclusions drawn from the manual EULA
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examination. Additionally, it is also obvious that, despite their demonstrated differences,
the LSA-based and NCD-based approaches yield data sets in which the lists of the most
representative words for each class are quite correlated.

We have not been able to find any additional public domain collection of EULAs, and
the generation of this type of collection is a labor intensive task since each EULA has to be
extracted during the actual installation of a software product. Since research on the definition
of spyware is still on-going, it is often also difficult to correctly label the collected instances.
This fact, together with the conclusions drawn on the basis of the aforementioned results
of the manual examination, motivates the need for an efficient method for detecting noisy
examples. It is intuitively not a good idea to remove instances from a data set based on the
mere fact that they were misclassified by one or more algorithms. In contrast, both the man-
ual examination and the experimental evidence of the present study suggest that the noisy
examples should be removed since they are not at all semantically separable from instances
from the other class.

7 Conclusions and future work

End user license agreement (EULA)-based spyware detection is essentially a text catego-
rization task. Previous work by us has reported good classification performance results of
supervised learning algorithms, such as Multinomial Naive Bayes and Random Forests, on
a collection of 96 spyware-related EULAs and 900 legitimate EULAs. However, the false
positive rate (the rate of spyware EULAs classified as legitimate EULAs) has been reported
as too high for practical use.

This study examines the use of feature selection and compares two candidate approaches
for removal of noisy instances to decrease the false positive rate. The first approach is based
on using latent semantic analysis (LSA) in conjunction with cosine similarity to find noisy
instances in the EULA collection under study. The second approach is based on normalized
compression distance (NCD). After performing the feature selection, we experimentally eval-
uated the performance of 16 supervised learning algorithms on the original EULA collection
studied in previous work and the LSA-based and NCD-based data sets. These were generated
by removing noisy examples using the aforementioned methods, to investigate whether it is
possible to reduce the false positive rate.

The area under the ROC curve (AUC) performances are significantly higher on the LSA-
based and NCD-based data sets in comparison to the AUC scores on the original EULA col-
lection. However, no significant difference in AUC performance could be revealed between
the LSA-based and NCD-based approaches. Thus, we conclude that LSA and NCD both
represent suitable approaches for finding noisy instances whose removal reduce the number
of false positives during classification.

The categorical proportional difference (CPD) feature selection method was applied on
the three studied data sets prior to experimental comparison. CPD managed to substantially
decrease the number of instances while at the same time increasing AUC performance on
all data sets. Moreover, the experimental evidence confirms the results of previous work in
that the Multinomial Naive Bayes algorithm seems to be the most suitable algorithm for the
EULA classification task.

Future work is focused on compiling a larger database of EULAs in collaboration with the
anti-spyware industry. Moreover, we are in the process of developing a spyware prevention
tool, based on Multinomial Naive Bayes, that will be able to automatically extract and analyze
EULAs in order to provide users with a means to give an informed consent when installing
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applications downloaded from the Internet. The availability of the prevention tool will also
allow for more human-oriented studies on spyware awareness and informed consent. We aim
to compare additional feature selection methods and learning algorithms in the subsequent
experiments to be carried out on new data.
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