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Abstract Statistical dependency analysis is the basis of all empirical science. A com-
monly occurring problem is to find the most significant dependency rules, which describe
either positive or negative dependencies between categorical attributes. In medical science,
for example, one is interested in genetic factors, which can either predispose or prevent dis-
eases. The requirement of statistical significance is essential, because the discoveries should
hold also in future data. Typically, the significance is estimated either by Fisher’s exact test or
the χ2-measure. The problem is computationally very difficult, because the number of all pos-
sible dependency rules increases exponentially with the number of attributes. As a solution,
different kinds of restrictions and heuristics have been applied, but a general, scalable search
method has been missing. In this paper, we introduce an efficient algorithm, called King-
fisher, for searching for the best non-redundant dependency rules with statistical significance
measures. The rules can express either positive or negative dependencies between a set of
positive attributes and a single consequent attribute. The algorithm itself is independent from
the used goodness measure, but we concentrate on Fisher’s exact test and the χ2-measure.
The algorithm is based on an application of the branch-and-bound search strategy, supple-
mented by several pruning properties. Especially, we prove a new lower bound for Fisher’s p
and introduce a new effective pruning principle. According to our experiments on classical
benchmark data, the algorithm is well scalable and can efficiently handle even dense and
high-dimensional data sets. An interesting observation was that Fisher’s exact test did not
only produce more reliable rules than the χ2-measure, but it also performed the search much
faster.
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1 Introduction

Dependency analysis is a fundamental problem in all empirical science. A common form of
the problem is to find dependency rules between categorical attributes. Such rules X → A
or X → ¬A can explain, which combinations of factors can cause or prevent other factors.
Statistical dependencies do not necessarily express causal relationships, but still they give an
important insight on the regularities in data.

In medical science, for example, an important task is to search for dependencies between
gene alleles, environmental factors and diseases. The interesting dependencies do not neces-
sarily have to be strong or frequent, but instead they should be statistically valid, i.e., genuine
dependencies which hold also in future data. Therefore, the significance of discoveries is
tested with Fisher’s exact test or—when it is infeasible—with the χ2-test.

When the number of attributes is relatively small, it is possible to implement a brute-
force search, which tests all possible dependency rules. However, the problem becomes soon
intractable when the number of attributes increases. For example, if we have 9 binary attri-
butes, there are about million possible dependencies to check. If the number of attributes
is 15, there are already 15 × 109 possible dependencies. This exponential explosion is not
surprising, since even a simpler problem—finding the best classification rule containing only
positive attributes—is already N P-hard [19].

The traditional rule discovery algorithms, like Apriori [3], do not work either, because they
are based on the frequency-based pruning. In the worst case, they find only independencies
or spurious rules, while all significant dependencies are missed [23,24].

In addition, statistical dependence is not an anti-monotonic property, which means that an
attribute set can produce a strong dependency rule, even if all of its subsets contained only
independencies. The same holds for the statistical significance, which means that a totally
different kind of a search strategy is needed.

In this paper, we introduce a new algorithm called Kingfisher, which is able to search
for the best non-redundant dependency rules efficiently. We focus on Fisher’s exact test (p-
value) and the χ2-measure as search criteria, but the same algorithm is applicable to other
goodness measures of statistical dependence, like mutual information or leverage (which
actually measures only the strength of the dependency), as well. The requirement for the
non-redundancy means that a more specific rule is pruned out, if a better but more general
rule has already been found. This is an essential property, when statistical dependencies are
analyzed, because redundant rules can obscure the real dependencies and make the rules less
accurate.

Before Kingfisher, there has been no algorithms for searching for even classification rules
(with a fixed consequence) using Fisher’s exact test or for searching for general (positive
and negative) dependency rules with the χ2-measure. The nearest existing solutions have
searched for only classification rules with the χ2-measure or general (positive) dependency
rules with other measures, like leverage. Compared to them, Kingfisher is significantly better
scalable, without their restrictions like minimum frequency thresholds, restricted rule lengths
or fixed consequent attributes. In addition, the algorithm searches for both positive and neg-
ative dependency rules, which is a more demanding task than the search for only positive
dependencies.

The algorithm is based on the common branch-and-bound strategy, supplemented by
several pruning properties. The most important new inventions are a tight lower bound for
Fisher’s p and a new effective pruning principle called Lapis Philosophorum.

According to our experiments, Kingfisher is extremely well scalable and can handle even
dense and high-dimensional data sets efficiently. As expected, Fisher’s exact test produces
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Table 1 Basic notations

Notation Meaning

A, B, C ,… Binary attributes

a, b, c, . . . ∈ {0, 1} Attribute values

R = {A1, . . . , Ak } Set of all attributes

|R| = k Number of attributes

Dom(R) = {0, 1}k Attribute space

X, Y, Z , Q ⊆ R Attribute sets

Dom(X) = {0, 1}l Domain of X, |X | = l

(X = x) ≡ {(A1 = a1), . . . , (Al = al )} Instance of X = {A1, . . . , Al }
(X = 1) ≡ (A1 = 1, . . . , Al = 1) Shorthand notations, when

(X = 0) ≡ (A1 = 0 ∨ . . . ∨ Al = 0) X = {A1, . . . , Al }
t ∈ Dom(R) Row (transaction)

r = {t1, . . . , tn} Data set

|r | = n Number of rows in r

m(X = x) Absolute frequency

P(X = x) = m(X=x)
n Relative frequency

P(A = a|X = x) = P(X=x,A=a)
P(X=x)

Confidence of rule

X = x → A = a

γ (X = x, A = a) = P(X=x,A=a)
P(X=x)P(A=a)

Lift of rule

δ(X = x, A = a) = P(X = x A = a)− P(X = x)P(A = a) Leverage of rule

more reliable results than the χ2-measure, in the sense that the discovered dependencies hold
well also in future data. However, a surprising result was that searching with Fisher’s exact
test is also remarkably more efficient than with the χ2-measure. This is an important result,
because scientists prefer to use Fisher’s exact test, whenever it is feasible.

The rest of the paper is organized as follows: In Sect. 2, we define all basic concepts and
the problem in detail. In Sect. 3, we review the existing solutions and other related research.
The new theoretical results are introduced in Sect. 4. Section 5 represent the Kingfisher algo-
rithm along with the complexity analysis. Experimental results are reported in Sect. 6, and
the final conclusions are drawn in Sect. 7.

The paper extends the author’s ICDM’10 conference paper [11].

2 Problem statement

In this section, we formalize the idea of dependency rules, introduce Fisher’s exact test and
the χ2-measure, analyze the problem of redundancy and define the search problem. The basic
notations are introduced in Table 1.

2.1 Dependency rules

Dependency rules are rules of the form X = x → A = a, where antecedent X = x is a con-
junction of binary attributes or their negations, consequence A = a consists of a single binary
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attribute or its negation, and the antecedent and the consequence are statistically dependent.
Formally, dependency rules are defined as follows:

Definition 1 (Dependency rule) Let R be a set of binary attributes, X ⊆ R and A ∈ R \ X .
Rule X = x → A = a, where |X | = l, x ∈ {0, 1}l and a ∈ {0, 1}, is a dependency rule, if
P(X = x A = a) �= P(X = x)P(A = a).

The dependency is (i) positive, if P(X = x A = a) > P(X = x)P(A = a) and
(ii) negative, if P(X = x A = a) < P(X = x)P(A = a). Otherwise, the rule is called an
independence rule.

In this paper, we concentrate on rules, where all attributes in X are positive. For values
A = 1 and A = 0, we use notations A and ¬A. Now, dependency rules can be expressed
simply by X → A, X → ¬A, ¬X → A and ¬X → ¬A. We notice that negative depen-
dence between X and A is the same as positive dependence between X and ¬A. Therefore,
it is enough to consider only rules which express positive dependencies.

The strength of the dependency is usually measured by leverage

δ(X, A = a) = P(X A = a)− P(X)P(A = a)

or lift

γ (X, A = a) = P(X, A = a)

P(X)P(A = a)
.

Leverage is used in the variable-based semantics (common in statistics), where one is inter-
ested in the dependency between variables X and A, while lift is used in the value-based
semantics (common in the association rule research), where one is interested in the depen-
dency between certain values X = 1 and A = a [6]. In this paper, we concentrate on the
variable-based semantics, which typically produces more reliable results, although the same
search algorithm can be applied to both semantics, given suitable goodness measures.

Finally, we note that generally dependency rules are not the same as association rules [2],
because the latter do not necessarily express any statistical dependence. Instead, associa-
tion rules express relations between frequently occurring attribute sets. In the traditional
frequency-confidence framework, association rule X → A merely expresses that frequency
P(X A) and confidence P(A|X) are larger than some user-defined thresholds. Therefore,
it is quite possible that association rule X → A expresses actually negative dependence
or independence between X and A. Negative association rules [28] are defined similarly,
but now either the antecedent or consequent part is negated, i.e., rules are of the form
X → ¬A, ¬X → A or ¬X → ¬A. We note that by definition, these rules do not
necessarily express negative dependencies (or any statistical dependence) between X and A,
but only state that P(X = x A = a), x, a ∈ {0, 1}, is sufficiently frequent and confidence
P(A = a|X = x) is sufficiently large. In fact, ¬X → ¬A expresses positive dependency
always when X → A is a positive dependency rule.

2.2 Statistical significance measures

Finding strong dependencies does not yet guarantee that the results would be reliable. It is
quite possible that the observed dependency is spurious, i.e., occurred just by chance in the
studied data set but does not hold in future data. Therefore, we should estimate the statistical
significance of the dependency to get guarantees that the dependency is genuine.

Generally, the statistical significance of a positive dependency between X and A = a
is estimated by calculating the probability p that the observed or a stronger dependency
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would have occurred by chance, if X and A were actually independent. The p-value can be
calculated from a cumulative hypergeometric distribution using Fisher’s exact test:

pF (X → A = a) =
J∑

i=0

(
m(X)

m(X A = a)+ i

) (
m(¬X)

m(¬X A �= a)+ i

)

(
n

m(A = a)

) ,

where J = min{m(X A �= a), m(¬X A = a)}.
A commonly used alternative is to estimate the p-value from the χ2-test or use the χ2-

measure as such to rank the dependency rules. The χ2-measure is defined as

χ2(X → A = a) = n(P(X A = a)− P(X)P(A = a))2

P(X)P(¬X)P(A = a)P(A �= a)

= nδ(X, A = a)2

P(X)P(¬X)P(A = a)P(A �= a)
.

As a classical rule of thumb [9], the χ2-measure should not be used, if any of the expected
frequencies n P(X = x)P(A = a), x ∈ {0, 1}, a ∈ {0, 1} is less than five. However, this
condition does not yet guarantee accurate results, if the underlying distribution is skewed
[31,4]. The accuracy may be slightly improved by using a continuity correction, i.e., sub-
tracting 0.5 from the difference between observed and expected frequencies, nδ(X, A = a)

(or 0.5
n from δ(X, A = a)) before applying the test [31].

In this paper, both pF and χ2 are used only as goodness measures for ranking the depen-
dency rules. We do not try to solve the multiple testing problem and decide at which level
the rule can be called significant in a statistical sense. Solutions to this problem can be found
in [24,25].

The following search algorithm is not restricted to these two measures, but any measure
M for the statistical significance of dependence could be used, as well. We assume that
the significance is measured in the variable-based semantics and therefore M(X → A) =
M(¬X → ¬A) and M(X → ¬A) = M(¬X → A). With this assumption, it is enough
to search for only rules of the form X → A or X → ¬A. If this assumption does not hold
(typical to value-based measures, like the z-score), then the algorithm can be used to search
for only positive rules.

2.3 Redundant rules

An important task in all rule discovery is to identify redundant rules, which add no new
information to the remaining rules. When the objective is to find statistical dependencies,
independent attributes do not add any new information on the dependency. In fact, they can
rather blur the interpretation of dependencies. For example, if people suffering for disease A
are more likely to have a gene allele B than healthy people, then there is a positive dependency
between A and B. In addition, there are a lot of gene alleles which have no effect on disease
A or the occurrence of B. For any such independent allele C , we can construct a dependency
rule BC → A, which is equally strong to the original rule B → A, but the conclusions could
be quite different. Now, one could assume that the alleles B and C together cause the disease
and consider only people with both alleles B and C as a potential risk group. Even a more
serious error could happen, if C actually prevented the disease (A and C were negatively
dependent), but now the dependency would also be weaker than in the original rule.
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Generally, adding new attributes to the antecedent of a dependency rule can 1) have no
effect, 2) weaken the dependency or 3) strengthen the dependency. When the task is to search
for only positive dependencies (concerning either A or ¬A), the first two cases can only add
redundancy. The third case is more difficult to judge, because now the extra attributes make
the dependency stronger, but in the same time, the rule usually becomes less frequent. If the
frequency is very small, the observed improvement can well be due to chance. For example,
if BC occurs on just one row—where A is also true—then the dependency is the strongest
possible, but we have no guarantees that the same dependency would hold in future data.
Therefore, we need some test to decide, whether the extra attributes made the rule better or
worse.

In this paper, we generalize the classical definition of redundancy (e.g., [1]) to a general
goodness measure M :

Definition 2 (Redundancy) Let M be a goodness measure. Rule X → A = a is redundant,
if there exists rule Y → A = a such that Y � X and M(Y → A = a) is equally good to or
better than M(X → A = a). Otherwise, rule X → A = a is non-redundant.

2.4 Search problem

The search problem for the most significant, non-redundant dependency rules can occur in
two forms: In the enumeration problem, the task is to search for all non-redundant rules
whose goodness value M does not exceed some predefined threshold (minM or maxM ). In the
optimization problem, the task is to search for the K best non-redundant dependency rules,
given the desired number of rules K . Typically, the enumeration problem produces a larger
number of rules, but with suitable parameter settings the results are identical.

In practice, it is often a good compromise to give both the maximal number of rules to be
searched for as well as some predefined threshold. Typically, the user is interested in just 50,
100 or at most 1000 best rules. However, it is good to have also a threshold to guarantee a
certain level of significance and improve the search in the beginning, when less than K rules
have been found so far. After K sufficiently significant rules have been found, the threshold
will be updated automatically, and the initial threshold has no effect on the final results. The
initial threshold affects the results only, if it is so demanding that K sufficiently good non-
redundant rules could not be found in the data. This situation can also occur with permissive
thresholds, if the data does not contain significant dependencies.

Finally, we note that our objective is to find globally optimal results, and therefore,
the search algorithm should be efficient without any suboptimal heuristics like minimum
frequency thresholds or maximal rule lengths (numbers of attributes in the rule).

3 Related research

The problem of searching for the most significant, non-redundant, positive or negative depen-
dency rules with a statistical goodness measure can be divided into three subproblems. First,
each rule X → A = a should express a statistical dependency, which means that the lift
should deviate from one. Second, the significance of the rule should be measured by a
statistical goodness measure, which reflects the probability that such a strong dependency
had occurred by chance, if X and A were independent. Third, the rules should be non-redun-
dant, which means that a more specific rule is pruned out, if there already exists a better but
more general rule.
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Most of the previous research has tackled only some of these subproblems, and only a few
of the existing algorithms have searched for both positive and negative dependencies. As far
as we know, no scalable solutions are known to the general problem.

Let us first consider the search for positive rules. The simplest way to solve the problem is
to search for association rules [2] with a sufficiently low minimum frequency threshold and
then select the most significant non-redundant dependency rules in the post-processing phase.
In this way, it is possible to generate also certain kinds of negative dependency rules, allowing
only frequent sets in the rule antecedent and consequence [32]. The problem of this approach
is that association rule mining requires relative large minimum frequency thresholds to be
feasible. With large-dimensional data sets, the threshold can be 0.60–0.80, which means that
the dependency should occur on at least 60–80% of the rows. Such rules have always low lift
values, and usually, the strongest and most significant dependencies are missed. In addition,
a lot of futile work is done, because most of the frequent rules do not express any significant
dependencies or are redundant specializations of already discovered rules.

A better approach is to search directly for dependency rules, but the problem is still
complex. Therefore, a common solution is to consider only some special cases and use some
minimum frequency thresholds, restrict the maximal rule length, fix the consequent attribute
or use some other restrictions to prune out “uninteresting” rules.

The most common approach is to search for classification rules X → C with a fixed
consequent attribute C . Morishita and Sese [19] as well as Nijssen and Kok [21] searched for
classification rules with the χ2-measure. Both of these approaches utilized the convexity of
the χ2-function and determined a minimum frequency threshold, which guarantees a certain
minimum χ2-value. It was noted that the approach is quite inefficient, because the resulting
minimum frequency thresholds were too low. Nijssen et al. [20] developed a more efficient
solution for searching for the best classification rule with a closed set in the rule anteced-
ent. The problem of this approach is that the closed sets can contain redundant attributes
(which are conditionally independent from C given the other attributes) and the rule can be
suboptimal in future data.

Liu et al. [18] used also the χ2-measure, in addition to minimum frequency thresholds
and some other pruning heuristics, to test the goodness of rule X → C and whether the
productivity (improvement in the confidence) of rule X → C with respect to its immediate
generalizations (Y → C, X = Y B for some attribute B) was significant. It is customary to
test the productivity only against the immediate generalizations, because checking all 2|X |
subrules of the form Y → A, Y � X is inefficient. Unfortunately, this also means that some
rules may appear as productive, even if they are weaker than some more general rules.

Li [17] introduced an algorithm for searching for only non-redundant classification rules
using different goodness measures, including leverage and lift. No minimum frequency
thresholds were used, but instead it was required that P(X |A) was larger than some pre-
defined threshold.

Searching for general dependency rules with any consequent attribute is a more difficult
and less studied problem. Xiong et al. [30] concentrated in positive dependencies between
just two attributes using an upper bound for Pearson’s correlation coefficient as a measure
function. Koh et al. [16] searched for “sporadic rules”, i.e., positive dependency rules concern-
ing rare consequent attributes. The minimum frequency thresholds for antecedent sets, given
consequent attributes, were determined by Fisher’s exact test. However, the algorithm was not
complete, because it was based on the (faulty) assumption that statistical significance would
be an anti-monotonic property, i.e., that if Z → A is significant, then all X → A, X ⊆ Z are
significant, or, equivalently, if X → A is insignificant, then all Z → A, Z ⊇ X are insig-
nificant. Based on this assumption, new antecedent sets Z were generated for a consequence
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A only if there were subsets X and Y, Z = X ∪ Y, |X | = |Y | = |Z | − 1, such that X → A
and Y → A were sufficiently significant. Therefore, all statistically significant dependency
rules having any insignificant generalizations were missed.

In our previous research [10,13,14], we searched for non-redundant, positive dependency
rules with the z-score. No minimum frequency thresholds were required in these algorithms,
but the notion of redundancy was more restrictive than the classical definition.

Webb’s MagnumOpus software [26,27] is able to search for general dependency rules
X → A with different goodness measures, including leverage and lift. In addition, it is pos-
sible to test that the rules are significantly productive. In practice, MagnumOpus tests the
improvement of the confidence of rule X → A with respect to its immediate generalizations
(Y → A, X = Y B for some B) with Fisher’s exact test. Otherwise, redundant rules are not
pruned out and the discovered rules are not necessarily the most significant. The algorithm
is quite well scalable, and if only the K best rules are searched for with the leverage, it is
possible to perform the search without any minimum frequency requirement. However, we
note that the leverage itself favours rules with a frequent consequent, and therefore, some
significant and productive rules can be missed.

All of the previously mentioned algorithms search for only positive dependencies, but
there are a couple of approaches which have searched for also negative dependencies. The
algorithm by Antonie and Zaïane [5] searched for negative dependency rules using a minimum
frequency threshold, minimum confidence threshold and Pearson’s correlation coefficient as
a goodness measure. Since Pearson’s correlation coefficient for binary attributes is the same as√

χ2/n, the algorithm should be able to search for dependencies with the χ2-measure, as well.
Thiruvady and Webb [22] introduced an algorithm for both positive and negative depen-

dency rules of the form (X = x)→ (A = a), x, a ∈ {0, 1}, using leverage as a goodness
measure. No minimum frequency thresholds were needed, but the rule length was restricted.

In addition, there are a couple of algorithms based on the assumption that statistical depen-
dence or significance would be an anti-monotonic property. In these algorithms, the basic idea
is to generate new attribute sets Z by combining two simpler sets, X and Y, Z = X∪Y , satis-
fying certain extra requirements. For example, Wu et al. [29] required that sets X and Y were
sufficiently frequent and both of them contained at least one sufficiently strong dependency,
evaluated by a heuristic criterion. Negative dependency rules were generated from infrequent
sets Z and further pruned by their frequency, leverage and certainty factor. Koh and Pears
[15] did not require any minimum frequency, but instead, both X and Y (where |X | = |Y | =
|Z | − 1) should contain a sufficiently significant positive dependency, evaluated by Fisher’s
exact test. Either positive or negative dependency rules were generated from sets Z based
on Fisher’s exact test and minimum confidence requirement. In both algorithms, all positive
dependency rules satisfying the extra requirements could be produced correctly, if statistical
dependence would be an anti-monotonic property. However, only certain special cases of neg-
ative dependency rules could be found, even if the anti-monotonicity assumption were true.
Since statistical dependence and significance are not anti-monotonic properties, these kind of
algorithms are incomplete (even if no minimum frequency thresholds were used) and there are
no guarantees that the strongest or most significant dependency rules would be discovered.

4 Pruning the search space

In this section, we introduce the theoretical basis for the search algorithm. We describe the
basic branch-and-bound search, give required bounds for the goodness measures pF and χ2

and introduce additional pruning properties.
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Fig. 1 A complete enumeration tree on attributes A, . . . , E . A node and its parent nodes are emphasized

4.1 Branch-and-bound search

The whole search space can be represented by an enumeration tree (Fig. 1). Given a set of
attributes R, the enumeration tree lists all possible attribute sets Z ∈ P(R). In each set Z ,
rules Xi → Ai = ai , Z = Xi Ai , ai ∈ {0, 1} can be generated. We recall that this form of
rules covers dependency rules Xi → Ai , Xi → ¬Ai , ¬Xi → Ai and ¬Xi → ¬Ai . If any
of these rules Xi → Ai = ai has a sufficiently good M-value and there are no better more
general rules Y → Ai = ai , Y � Xi , the rule is non-redundant and significant. If the task is
to search for only the best K rules, the threshold value (maxM or minM ) is updated always,
when a new K th best rule with a better M-value is found. On the other hand, if the task is
to search for all non-redundant dependency rules, the user-defined threshold maxM or minM

remains constant during the whole search.
The basic idea of the branch-and-bound search is to traverse the enumeration tree and

in each node, estimate the goodness of rules, which can be constructed in the underlying
subtree or whose antecedent occurs in the subtree. Each node, representing set Z , has a list
of possible consequences Ai = ai , inherited from its parent nodes. For all possible con-
sequences Ai = ai , where Ai ∈ Z , we should estimate the maximal goodness of rules
Xi Q → Ai = ai , where Z = Xi Ai and Q ⊆ R \ Z (possibly Q = ∅). If the value is
too poor, then Ai = ai becomes an impossible consequence (can be removed from the list
of possible consequences). On the other hand, if the bound is sufficiently good, we check
also the goodness of rule Xi → Ai = ai . If this rule is sufficiently good (significant and
non-redundant), the rule is stored into the collection of the best rules. On the other hand, if
Ai /∈ Z , then Z or any of its supersets Z Q, Ai /∈ Q, can be an antecedent for the conse-
quence Ai = ai . Now, we should estimate the maximal goodness of rules Z Q → Ai = ai

for any Q ⊆ R \ (Z ∪ {Ai }). If the value is too poor, then Ai = ai becomes an impossible
consequence. If all consequences in the node become impossible, the whole node can be
removed.

In the following subsection, we will introduce the required lower and upper bounds, when
the goodness measure M is either Fisher’s pF or the χ2-measure. However, the basic branch-
and-bound search is quite inefficient as such. Therefore, we will introduce additional pruning
properties, which can prune the search space remarkably.

The search order has also an important impact on the efficiency. In principle, the attributes
can be in any order in the enumeration tree and the enumeration tree can be traversed either
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in a breadth-first or depth-first manner, from right to left or left to right. In practice, the best
approach is to order the attributes in an ascending order by their frequency, i.e., in Fig. 1,
P(A) ≤ . . . ≤ P(E). Now, the largest subtree (under A) is likely to contain the least frequent
sets and many of the sets can be totally missing. The breadth-first search is also more efficient
than the depth-first search, because we search for only non-redundant dependency rules. In
the breadth-first search, the more general rules are checked before their specializations, and
it is possible to prune out the specializations without checking, if we know that they would
be redundant with respect to already discovered rules. Finally, we prefer to perform the
search from left to right, because it enables an efficient extra pruning property called Lapis
Philosophorum, which is described in a subsequent subsection.

4.2 Required upper and lower bounds

To perform the search, we need a bound (best possible value) for rules of the form
M(Z \ {Ai }Q → Ai = ai ) (when Ai ∈ Z ) and M(Z Q → Ai = ai ) (when Ai /∈ Z )
for any extension set Q ⊆ R \ (Z ∪ {Ai }), given the information available in the node cor-
responding to set Z . If the goodness measure M is increasing (like χ2), an upper bound is
needed, while for decreasing measures (like pF ), lower bounds are used.

In practice, we need bounds for three different cases, given set Z : First, if Ai /∈ Z and
m(Z) ≥ m(Ai = ai ), it is possible to find a rule Z Q → Ai = ai expressing maximal depen-
dence between Z Q and Ai = ai . Since the statistical dependence is maximal, when Z Q and
Ai = ai are identical, the bound is achieved when m(Z Q Ai = ai ) = m(Z Q) = m(Ai = ai )

and the consequence frequency m(Ai = ai ) alone determines the bound. This case occurs
also in the beginning, when sets of single attributes are checked and Z = ∅. In this phase, we
may already find out that some consequence Ai = ai is impossible in all rules and attribute
Ai can occur only in the rule antecedent.

Second, if Ai /∈ Z but m(Z) < m(Ai = ai ), then the maximal dependence is no more pos-
sible to achieve in any rules Z Q → Ai = ai . Since frequency m(Z Ai = ai ) is not yet known,
the bound is determined based on frequencies m(Z) and m(Ai = ai ). This case occurs also in
the beginning, when rules of the form A j → Ai = ai are checked and m(A j ) < m(Ai = ai ).
The resulting bound is tighter than in the first case, and it can be possible to eliminate con-
sequence Ai = ai from the node representing set A j , even if Ai = ai is possible in other
nodes. Later, we show that with measures pF and χ2 (as well as with all common statistical
significance measures), this bound is achieved, when m(Z Q Ai = ai ) = m(Z Q) and thus
P(Ai = ai |Z Q) = 1.0.

Third, if Ai ∈ Z , then we already know frequencies m(Z) = m(Xi Ai ), m(Z \ {Ai }) =
m(Xi ) and m(Ai = ai ), where Z = Xi Ai . From these, we also get m(Xi Ai = ai ) (i.e.,
m(Xi¬Ai ), if ai = 0). Therefore, we can define a tighter bound than in the second case. It
turns out that with pF and χ2, this bound is achieved, when m(Xi Q Ai = ai ) = m(Xi Q)

and thus P(Ai = ai |Xi Q) = 1.0.
In the following, we will notate the lower bounds for these three different cases by lb1, lb2

and lb3 and corresponding upper bounds by ub1, ub2 and ub3. Table 2 gives lb1, lb2 and
lb3 for pF and ub1, ub2 and ub3 for the χ2-measure. The upper bounds for the χ2-measure
are well-known (e.g., [19]), but the lower bounds for pF are new results, introduced in the
conference version of this paper [11]. The proofs for the lower bounds are given in A.

We note that in the case of the χ2-measure, the first upper bound ub1 is uninformative,
because any consequence Ai = ai can gain the maximal possible χ2-value. However, the first
lower bound lb1 for pF contains already useful information, which can be used to eliminate
some consequences Ai = ai before any other frequencies except m(Ai = ai ) are checked.
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Table 2 Lower bounds lb1, lb2
and lb3 for pF and upper bounds
ub1, ub2 and ub3 for χ2

Lower bounds for pF Upper bounds for χ2

lb1 = m(A)!m(¬A)!
n! ub1 = n

lb2 = m(¬X)!m(A=a)!
n!(m(A=a)−m(X))! ub2 = nm(X)m(A �=a)

m(¬X)m(A=a)

lb3 = m(A)!m(¬A)!(n−m(X A=a))!
n!m(A �=a)!m(¬X A=a)! ub3 = nm(X A=a)m(A �=a)

(n−m(X A=a))m(A=a)

We also observe that lb1 obtains its best (minimal) value, when m(Ai ) = n
2 , and the further

m(Ai ) diverges from n
2 , the more lb1 deteriorates. In practice, this means that if m(Ai ) or

m(¬Ai ) is very low, lb1 can be so large that no rule with consequence A or ¬A is signifi-
cant and both of them can be marked as impossible consequences in the whole enumeration
tree. However, attribute Ai may still occur in the antecedent part of significant rules. The
following result shows that with the extra condition m(Ai ) ≤ n

2 , Ai cannot occur even in
the antecedent and it can be totally pruned out.

Observation 1 If m(A) ≤ n
2 , then for all Q ⊆ R \ {A}, B ∈ R \ (Q ∪ {A}) holds

pF (Q A→ B = b) = pF (B = b→ Q A) ≥ m(Q A)!m(¬(Q A))!
n! ≥ m(A)!m(¬A)!

n! .

Corollary 1 If m(A) ≤ n
2 and lb1 > maxM, then A cannot occur in any significant rule.

This result can be used to determine a minimum frequency threshold min f r ≤ 0.5 such
that no rule containing A, P(A) < min f r , can be significant. We note that pF is not the
only measure, which allows this extra pruning, but corresponding results can be shown for
some other measures, like mutual information (when ub1 < minM ), as well.

4.3 Pruning by minimality

Rule X → A = a with P(A = a|X) = 1 is called minimal, because none of its specializa-
tions X Q → A = a can achieve a better M-value. However, this kind of minimal rules can
be used to prune out other rules as insignificant or redundant, too. The following observation
extends a well-known result (e.g., [17]) for consequence A = a, a ∈ {0, 1}, with a general
statistical goodness measure M . We note that this result extends also our previous work [11],
where the result was shown only for pF .

Observation 2 Let M be a statistical goodness measure, whose value M(X → A = a) for
any rule X → A = a depends on only m(X), m(X A = a), m(A = a) and n.

If P(A = a|X) = 1, then all rules of the form X Q A→ B = b, where B ∈ R\(X∪{A}),
Q ⊆ R \ (X ∪ {A, B}) and b ∈ {0, 1} are either insignificant or redundant.

Proof First, we notice that M can be expressed by function f : N4 → R such that
M(X → A = a) = f (m(X), m(X A = a), m(A = a), n).

(1) If P(A|X) = 1, m(X Q A) = m(X Q) and m(X Q AB = b) = m(X Q B = b) for any
B ∈ R\(X∪{A}), Q ⊆ R\(X∪{A, B}), and b ∈ {0, 1}. Therefore, M(X Q A→ B =
b) = f (m(X Q A), m(X Q AB = b), m(B = b), n) = f (m(X Q), m(X Q B = b),

m(B = b), n) = M(X Q → B = b) and rule X Q A→ B = b is redundant.
(2) If P(¬A|X) = 1, m(X A) = 0 and also m(X Q A) = 0 and m(X Q AB = b) = 0.

Therefore, rule X Q A→ B = b does not express any dependence (P(X Q AB = b) =
0 = P(X Q A)P(B = b)). �

123



394 W. Hämäläinen

Fig. 2 Lapis Philosophorum
principle. If consequence A = a
is impossible in node qX A , then it
is impossible in nodes qX and
qX Q , |X | = l. Dash lines
represent paths

Q

level l+1

X

level l

q
XA

qX

q
XQ

A

X

4.4 The Lapis Philosophorum principle

The basic branch-and-bound search prunes possible consequences only in the subtrees of a
given node (like in [27]). However, it is also possible to prune consequences in the parent
nodes and propagate the results to other subtrees. This requires that the node is processed
before any children are generated for its parents, except the immediate parent. Figure 1 shows
an example. When we proceed level by level, from left to right, set AC D is processed before
any children are created for its parent sets AD and C D. If set AC D is now removed (e.g., has
a zero frequency, which means that rule AD→ ¬C was minimal), then C and ¬C become
impossible consequences in the node for AD and its subtrees. Similarly, if we find in the
node for AC D that no rule QC D → A (for any Q ⊆ R \ {A, C, D}) could be significant
and non-redundant, then A can be marked as an impossible consequence in the node for C D
and its subtrees. This simple principle performs so effective pruning that it is called Lapis
Philosophorum, the legendary Philosopher’s stone.

Principle 1 (Lapis Philosophorum) Let M be a decreasing measure, where the goodness of
rules increases when the corresponding M-value decreases.

Let qX A be a node corresponding to set X A, and qX a node corresponding to set X as
shown in Fig. 2. If any of the following conditions holds in node qX A, consequence A = a
can be marked as impossible in node qX and all nodes qX Q in its subtrees:

(i) Node qX A does not exist (i.e., no consequence was possible in set X A or its supersets).
(ii) Rule X → A = a is minimal.

(iii) Rule X Q → A = a would be insignificant or redundant, i.e., for a decreasing good-
ness measure M lower bound lb = L B(M(X Q → A = a)) > maxM or lb ≥
min{M(Y → A = a)|Y � X}.

The principle is based on the fact that all supersets X Q A lie in the subtree under qX A,
and qX Q is needed only as a parent node for rules X Q → A = a. The same principle can
be applied to any goodness measure M , but for increasing goodness measures (where high
values are better), the lower bound should be replaced by an upper bound, threshold maxM

by minM , and the inequality signs should be reversed.

5 Algorithm

In this section, we represent the Kingfisher algorithm, which implements an efficient search
for the best non-redundant dependency rules. The algorithm is represented by a detailed
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pseudocode and illustrated by an example. In addition, we discuss central implementation
issues and analyze the worst-case time and space complexity.

5.1 Pseudocode for the Kingfisher algorithm

The Kingfisher algorithm is given in Algorithms 5.1, 5.2, 5.3, 5.4 and 5.5. For simplicity,
we represent the algorithm for a decreasing goodness measure M (like pF ), but increasing
goodness measures can be used as well, with the previously mentioned adjustments. For pF ,
the required lower bounds are given in Table 2.

The node corresponding to attribute set X is denoted by Node(X). In each node
v = Node(X), we use the following fields:

– v.set set X ; in practice, it is enough to store just the last attribute in the path from the
root to node v.

– v.children table of pointers to v’s child nodes. The size of the table is denoted by
|v.children|.

– v.ppossible and v.npossible bit-vectors, whose j th bits indicate whether consequence
A j or ¬A j is a possible consequence in node v or its descendants. For simplicity, we
assume that both vectors have |R| bits.

– v.pbest and v.nbest tables for the best M-values of rules Y → A j and Y → ¬A j , Y ⊆
X, A j ∈ X . For simplicity, we assume that both tables have |R| elements and index j cor-
responds to consequence A j . In practice, the tables can be implemented more compactly
by tables of |X | elements.

Algorithm 5.1 Kingfisher(R, r, maxM , K )
Input: set of attributes R, data set r , initial threshold maxM , maximal number of best rules K
Output: the best K non-redundant dependency rules for which M ≤ maxM
Method:
1 determine minfr using Corollary 1
2 t ←check1sets(R,r ,maxM ,minfr )
3 l←2
4 while (number of (l − 1)-sets ≥ l)

// check l-sets
5 for i = 1 to |R|
6 bfs(t.children[i], l, 0)
7 l←l + 1
8 output the K best rules

The main idea of the algorithm is the following:

1. Use Corollary 1 to determine the maximal absolute frequency value minfr such that even
the best possible rule X → A = a with m(A = a) = m(X) = m(X A = a) < minfr

cannot be significant. Prune out all attributes which cannot occur in significant rules.
(Algorithm 5.1, line 1 and Algorithm 5.2, lines 3–4.) This step is possible only with
some goodness measures like pF and mutual information, satisfying the conditions of
Corollary 1.

2. Order the remaining attributes Ai ∈ R into an ascending order by frequency and add
them to the enumeration tree. For all Ai , use lower bounds lb1 and lb2 to determine
possible consequences A j = a j such that X Ai → A j = a j can be significant.
The possible consequences are marked into tables ppossible and npossible in node
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Algorithm 5.2 Check1sets(R, r, maxM , minfr)

Input: set of attributes R, data set r , thresholds maxM and minfr
Output: root of an enumeration tree t containing the first level of nodes
Method:
1 for ∀Ai ∈ R
2 calculate absolute frequency m(Ai )
3 if (m(Ai ) < minfr )
4 R←R \ {Ai }
5 order R into an ascending order by frequency
6 create root node t
7 for ∀Ai ∈ R
8 create node v = Node(Ai )
9 add v to t.children
10 for ∀A j ∈ R

// initialize best-tables for all consequences A j and ¬A j
11 v.pbest[ j] ←max{M(·)} // maximal possible M-value
12 v.nbest[ j] ←max{M(·)}

// is A j or ¬A j a possible consequence for set X Ai ?
13 v.ppossible[ j] ←possible(A j , 1, s, Ai )
14 v.npossible[ j] ←possible(A j , 0, s, Ai )
15 return t

Algorithm 5.3 bfs(st, l, len)
Input: root of a subtree st , goal level l, path length len
Output: discovered new best rules at level l in subtree st are stored into collection brules
Method:
1 if (len = l − 2)

// combine (l − 1)-sets to create new l-sets
2 for i = 1 to |st.children| − 1
3 Y ←st.children[i].set
4 for j = i + 1 to |st.children|
5 Z ←st.children[ j].set
6 X ←Y ∪ Z
7 create node child = Node(X)

8 add child to st.children[i].children
9 initialize possible- and best-tables

// all possible-values are set to 1 and best-values to max{M(·)}
10 if (checknode(child)=0)
11 delete child

// use Lapis Philosophorum
12 for ∀ parent nodes v = Node(Ym ) where (X = Ym Am )
13 v.ppossible[m] ←0
14 v.npossible[m] ←0
15 if (Node(Y ).children = ∅)
16 delete node Node(Y )

// st’s last child has never child nodes
17 delete st.children[|st.children|]
18 else for i = 1 to |st.children|
19 bfs(st.children[i], l, len + 1)
20 if (|st.children| = 0) // if all st’s children were deleted
21 delete node st

Node(Ai ). If A j is possible, then Node(Ai ).ppossible[ j] = 1, and if ¬A j is possible,
then Node(Ai ).npossible[ j] = 1. (Algorithm 5.2, lines 5–14.)

3. Expand attribute sets as long as new non-redundant, significant rules can be found.
(Algorithm 5.1, lines 4–7.)
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Algorithm 5.4 Checknode(vX )
Input: node vX = Node(X)

Output: return 0, if node vX can be removed, and 1 otherwise; discovered new best rules
in vX are stored into collection brules
Method:
1 ismin←0 // no minimal rules, yet
2 for ∀Y � X , where |Y | = |X | − 1 // all parent sets
3 parY ←searchset(Y )
4 if (parY not found) return 0
5 updatetables(vX , parY ) // update possible- and best-tables
6 if (no possible consequences left) return 0
7 calculate m(X)

8 if ((m(X) = 0) or (∃parY such that m(Y ) = m(X)))
9 ismin←1 // minimal rule found
10 for ∀Ai ∈ R // update possible consequences
11 vX .ppossible[i] ←(vX .ppossible[i] & possible(Ai , 1, vX , X ))
12 vX .npossible[i] ←(vX .npossible[i]& possible(Ai , 0, vX , X ))
13 if ((Ai ∈ X ) and (vX .ppossible[i])) // check pos. rule
14 val←M(X \ {Ai } → Ai )
15 if ((val ≤ maxM ) and (val < vX .pbest[i]))
16 add rule X → Ai to brules; vX .pbest[i] ← val
17 update maxM // nothing to do, until K rules found
18 if ((Ai ∈ X ) and (vX .npossible[i])) // check neg. rule
19 val←M(X \ {Ai } → ¬Ai )
20 if ((val ≤ minM ) and (val < vX .nbest[i]))
21 add rule X → ¬Ai to brules; vX .nbest[i] ← val
22 update maxM // nothing to do, until K rules found
23 if (ismin) // pruning by minimality
24 for ∀Ai ∈ R \ X
25 vX .ppossible[i] ←0; vX .npossible[i] ←0
26 for ∀parm = Node(Ym ) where (Ym Am = X )
27 if ((P(Am |Ym ) = 1) or (P(¬Am |Ym ) = 1))
28 vX .ppossible[m] ←0; vX .npossible[m] ←0 // by minimality
29 parm .ppossible[m] ←0; parm .npossible[m] ←0 // by Lapis P.
30 if (no possible consequences left) return 0
31 return 1

– Create l-sets from (l − 1)-sets. (Algorithm 5.3, lines 2–9.)
– For each l-set X , initialize possible consequences in Node(X), given possible con-

sequences in its parent nodes Node(Ym), where X = Ym Am for some Am ∈ X .
Consequence A j = a j , A j ∈ R, is possible in Node(X) only if it is possible in all
parent nodes Node(Ym). Initialize the best M-values for all consequences A j = a j ,
where A j ∈ X , using the best-values in the parent nodes. (Algorithm 5.4, lines 2–5
and Algorithm 5.5, function updatetables.)

– Calculate frequency m(X) and check if P(Am = am |Ym) = 1 for any parent set Ym .
Use lower bounds lb1, lb2 and lb3 to decide whether any rule (X Q)\{A j } → A j =
a j can be a non-redundant significant rule. (Lower bounds lb1 and lb2 are used, when
A j /∈ X , and lb3, when A j ∈ X .) (Algorithm 5.4, lines 7–12 and Algorithm 5.5,
function possible.) We note that in function possible (Algorithm 5.5), the frequency
comparison does not prune out anything else than the lower bound comparison, if
the threshold minfr was determined using Corollary 1. However, this point allows
the use of other minimum frequency thresholds, if desired. For example, a common
requirement is that all statistically valid rules should occur on at least five rows of
data.

123



398 W. Hämäläinen

Algorithm 5.5 Auxiliary functions
updatetables(s, v)
// update possible- and best-tables in node s given parent node v

for i = 1 to |R|
s.ppossible[i] ←(v.ppossible[i] & s.ppossible[i])
s.npossible[i] ←(v.npossible[i] & s.npossible[i])
s.pbest[i] ←min{v.pbest[i], s.pbest[i]}
s.nbest[i] ←min{n.pbest[i], s.nbest[i]}

possible(A j , a j , v, X )
// can rule (X Q) \ {A j } → A j = a j be significant and non-redundant?
// lb1, lb2 and lb3 are implemented by LB1, LB2 and LB3

if (((A j /∈ X ) and (m(X) < minfr )) or
((A j ∈ X ) and (m(X \ {A j }A j = a j ) < minfr )))

return 0 // rule would be too infrequent
if (A j /∈ X )

if (m(X) ≤ m(A j = a j ))
lb←LB2(m(X), m(A j = a j ))

else lb←LB1(m(A j = a j ))
else lb←LB3(m(X), m(A j = a j ), m(X A j = a j ))
if ((lb > maxM ) or ((a j = 1) and (lb ≥ v.pbest[ j]))

or ((a j = 0) and (lb ≥ v.nbest[ j])))
return 0

return 1

searchset(Y )
return Node(Y )

– If A j ∈ X and A j = a j was possible, calculate M(X → A j = a j ). If it is sufficiently
good (among the best K rules and better than more general rules with consequence
A j = a j ), add it to the rule collection and update Node(X).pbest[ j] (if a j = 1)
or Node(X).nbest[ j] (if a j = 0). Update also maxM , if K rules have been found.
(Algorithm 5.4, lines 13–22.)

– If minimal rules were found, mark all redundant consequences as impossible as
explained in Sect. 4.3 (Algorithm 5.4, lines 23–25 and 28).

– Use the Lapis Philosophorum principle to propagate information on possible conse-
quences to parents. (Algorithm 5.4, line 29 and Algorithm 5.3, lines 12–14.)

We note that when the χ2-measure is used as a goodness measure, then the upper bounds
in Table 2 are used instead of the lower bounds. Because χ2 is an increasing measure, all
comparisons concerning the M-value are reversed and maxM is replaced by minM .

Another note concerns the interchangeability of the goodness measure M . If M is inter-
changeable, then M(A→ B) = M(B → A) and it is sufficient to report the dependency just
once. In the implementation, we report only the rule with a larger confidence. In addition,
with some measures like the χ2-measure, mutual information and Fisher’s pF also holds
M(A→ ¬B) = M(B → ¬A). In this case, we also report the rule, which has a larger con-
fidence. In both cases, the best-values are updated for both consequences of equivalent rules.

5.2 Simulation

The following simulation demonstrates the Kingfisher algorithm with the example data given
in Table 3. In this example, we search for all non-redundant rules, whose pF -value is at most
1.2× 10−8. The discovered rules are represented in Table 4.
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Table 3 Example data Set Freq.

ABC¬D 10

A¬B¬C D 85

¬AB¬C D 5

Table 4 The rules discovered
from the example data

Rule pF

AD→ ¬B 3.9× 10−18

D→ ¬C 5.8× 10−14

AB → C 5.8× 10−14

AB → ¬D 5.8× 10−14

C → B 1.7× 10−10

D→ ¬B 1.7× 10−10

Possible

in node DA:

consequences
C

B
D

A

AA

A

A

A
A

A

D
D

D

B

0
0 1

1 10

0 0
A C D

pos
neg

B

Fig. 3 Nodes of the enumeration tree are represented by bit-vectors corresponding to possible positive and
negative consequences. For example, in the node for D A possible consequences are D, ¬B and ¬D

The simulation is shown in Fig. 4. Each node of the enumeration tree shows bit-vectors
for possible consequences as explained in Fig. 3. Abbreviation “LP” refers to the Lapis
Philosophorum principle.

In the beginning, the algorithm calculates frequencies of all single attributes and checks
with lb1, whether the attribute can occur in any consequence at all. In this example, A and
¬A are impossible consequences, but attribute A can occur in the antecedent of significant
rules.

On the first level, all single attributes are added to the enumeration tree and their conse-
quence vectors are initialized using lower bounds (step 1 in Fig. 4). We note that the attributes
are added in an ascending order by frequency, because then the potentially largest subtree,
under C , tends to have the smallest frequencies and is pruned effectively.

On the second level, the algorithm first creates node C B (step 2). Its consequence vectors
are initialized by combining the parents’ consequence vectors by logical bit-and operations.
Because B, C and¬D are possible consequences, their lower bounds and rules are checked.

The algorithm finds a significant rule, C → B. The rule has confidence 1.0, and therefore,
B and¬D are marked as impossible consequences by the minimality condition (step 3). The
Lapis Philosophorum principle is used to set B as an impossible consequence also in the
parent node C . (In the other parent, B, consequence ¬C was already impossible and LP has
no effect.)
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Fig. 4 Simulation of the Kingfisher algorithm with the example data

In step 4, the algorithm creates node C D and initializes and updates its consequence vec-
tors like before. Because all consequences become impossible, the node is removed. Once
again, the Lapis Philosophorum principle is applied in the parent nodes C and D.

In step 5, node C A is added, but no rules are found.
In step 6, node B D is created. The algorithm finds a significant rule, D → ¬B, but it is

not minimal. B is set as an impossible consequence based on lower bound lb3. The Lapis
Philosophorum principle is used to propagate the information to parent node D.

In step 7, B A and D A are created, but no rules are found.
On the third level, the algorithm first creates node C B A (step 8). It finds a significant

rule, AB → C . Since the rule has confidence 1.0, C becomes an impossible consequence.
Because all consequences are impossible, the node is removed. LP is used to propagate the
information to B A.
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In step 9, the algorithm creates node B D A. It finds two minimal rules (with confidence
1.0), AD→ ¬B and AB → ¬D. Once again, all consequences become impossible and the
node is removed. After that the algorithm finishes, because no more nodes can be created.

5.3 Implementation issues

In the Kingfisher algorithm, the main objective has been to optimize the execution time. This
has been achieved by two subobjectives: by minimizing the size of the enumeration tree,
especially the number of leaf nodes, and the number of frequency calculations, which are
costly operations. In practice, the space requirement is also quite feasible, because all data
contents (possible- and best-tables) are stored into the leaf nodes, whose number is mini-
mized. The nodes themselves could be implemented more compactly, but as a trade-off, it
would require more costly search operations.

Implementation of the enumeration tree is the most crucial factor for the efficiency, because
it represents the exponential search space. In Kingfisher, we have adopted a strategy, where
each set X corresponds to rules X \{Ai } → Ai = ai , for all Ai ∈ X, ai ∈ {0, 1}. Since
the enumeration tree is traversed in a breath-first manner, all frequencies of parent sets
Yi � X, X = Yi Ai , are already stored into the tree. Therefore, it is enough to evaluate just
the frequency of set X to get all required frequencies m(Yi ) and m(Yi Ai = ai ). By contrast,
MagnumOpus [26,27]—whose search strategy is otherwise the nearest previous equivalent
to Kingfisher—organizes the search space by an enumeration tree of rule antecedents. Each
node of the tree, representing set X , corresponds to rules X → Ai = 1, Ai ∈ R \ {Ai }.
We note that MagnumOpus does not implement negative rules, but the same search strategy
could be applied to negative rules as well [22]. The problem of this approach is that the same
frequencies have to be evaluated multiple times.

Another important difference to MagnumOpus search strategy is that Kingfisher combines
the possible consequences from all |X | parent nodes when evaluating the possible conse-
quences for set X . In MagnumOpus, the node inherits only its immediate parent’s possible
consequences. In practice, this can cause much unnecessary work, because a consequence
may well be possible in the immediate parent, even if it is impossible in another parent. It
can also happen that all consequences become impossible, when the parents’ possible-tables
are combined, and the node can be deleted immediately without checking its frequency or
evaluating any rules. Deleting the node can further impact other parent nodes, which may
become deleted before any children are created for them. In this way, the information on pos-
sible consequences is propagated to the whole enumeration tree, which can lead to dramatic
pruning. The only drawback of this strategy is that the possible-tables have to be stored into
nodes, which is space consuming. Fortunately, it is enough to keep the possible-tables only
in the leaf nodes, which can be parents to next level nodes. Similarly, the best-tables—which
enable efficient redundancy checking—are kept only in the leaf nodes. When the data con-
tents (possible- and best-tables) become useless, they can be destroyed and the node becomes
an inner node, whose only purpose is to represent the search space (currently examined sets).
The node can be even deleted, if it cannot be a parent node to any current level nodes. This
saves both space and traversing time significantly.

In practice, the enumeration tree can be implemented as a trie (a prefix tree), whose inner
nodes contain just the node labels and pointers to the child nodes, while the leaf nodes contain
also the best- and possible-tables and frequencies. If the child nodes are kept in an order by
their labels, a child with a given label can be searched with a binary search in O(log(d)) time,
where d is the number of children. This means that a parent set Y, |Y | = l, can be searched
from the tree in=(log(d0)+ . . .+ log(dl−1)) time, where di s are numbers of children in the
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nodes from the root to the node corresponding to set Y . The search could be implemented
more efficiently, in O(l) time, if each node contained pointers to all possible children, whether
they existed or not. However, the resulting data structure would be too space consuming.

For efficient frequency counting, the data set is stored in the vertical layout, by k bit-
vectors, each of them n bits long. In this representation, the frequency of set X ⊆ R can
be evaluated efficiently by bitwise logical operations. Compared to horizontal layout (n bit-
vectors, each of them k bits long), the efficiency of vertical layout is superior, in spite of the
same asymptotic time complexity [13].

The final note concerns an efficient evaluation of Fisher’s exact test. Asymptotic measures,
like the χ2-measure, can be evaluated in constant time, but calculating Fisher’s pF can be
a time consuming operation, because the value is a sum of several terms, each containing
binomial coefficients. In addition, the evaluation can easily cause an overflow or underflow.
For the latter problem, a common solution is to use logarithms in the middle steps, when each
term is evaluated. For the efficiency problem, we use two strategies. First, the logarithms of
all factorials, ln(m!) =∑m

i=1 ln(i), m = 1, . . . , n, are calculated just once and stored into a
table. Thus, each term in pF can be evaluated in constant time. Evaluating pF (Y → A = a)

takes J = min{m(Y A �= a), m(¬Y A = a)} ≤ n
4 steps. Second, we avoid evaluating the

exact pF value as often as possible and instead check only its first term, which gives a lower
bound. If the lower bound is too large for rule Y → A = a to be sufficiently significant and
non-redundant, there is no reason to evaluate the exact value.

5.4 Time and space complexity

Next, we analyze the worst-case time and space complexity of the Kingfisher algorithm.
Both time and space complexity are exponential in the number of attributes. This is not sur-
prising, because already a simpler problem—searching for the best classification rules of the
form X → C = c, c ∈ {0, 1}, with common goodness measures like the χ2-measure—is
N P-hard [19]. One problem in the complexity analysis is that the complexity depends on the
data distribution, and the effect of new pruning strategies is impossible to analyze. In Sect. 6,
we will see that in practice the algorithm is quite feasible with the classical benchmark data
sets.

The following theorem gives the worst-case time complexity of the Kingfisher algorithm.
We assume that the maximal transaction length (maximal number of 1s on any row), L , is
given. Parameter L defines the maximal level (depth) and, thus, the maximal size of the gen-
erated enumeration tree. Typically L << k, and the resulting complexity is more realistic
than the assumption that a complete enumeration tree with 2k nodes is generated.

Theorem 1 Let n be the number of rows, k the number of attributes, K the number of best
rules to be searched for and L the maximal transaction length.

Then the worst-case time complexity of searching for the K best dependency rules with
the Kingfisher algorithm is

(i) O
(

(k + n + log(K ))L min

{
2k−1, L+2

k−2(L+2)

(
k

L + 2

)})
, if L + 2 < k

2 , and

(ii) O((k + n + log(K ))k2k−1), otherwise.

Proof Processing the first level (single attribute sets) takes O(log(n)+k log(k)+kn+k2) =
O(k(n + k)). This is composed as follows: Determining minfr (Algorithm 5.1 line 1) can be
done in O(log(n)) using a binary search (iterating interval [1, n/2]). Algorithm 5.2 takes in
the worst case O(kn+k log(k)+k2). Frequency counting for each of the k attributes takes at
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most n steps, which together make kn steps. The attributes can be ordered in O(k log(k)) time.
Possible consequences are determined for at most k nodes, and for each node, at most 2k con-
sequences (each positive and negative consequence) are checked. These make together 2k2

steps. With some measures, like Fisher’s pF , this phase can be implemented more efficiently,
but it does not make any difference to the overall asymptotic complexity.

Let us then analyze the complexity of processing levels l ≥ 2. The last level is always
≤ L+1, because after that level all sets X ⊆ R have frequency 0 (on level L+1, m(X A) = 0
for all A /∈ X, |X | = L , but m(X¬A) = m(X)). However, l ≤ k and, therefore, the last
level is ≤ min{L + 1, k}. On each level l = 2, . . . , min{L + 1, k}, the time complexity is

O
((

k
l

)
l(k + n + log(K ))

)
.

Traversing all nodes on the lth level of the tree (Algorithm 5.3) takes at most O(l Nl),
where Nl is the number of nodes on level l. The reason is that the tree is always pruned such
that it contains only paths leading to level l − 1. Reaching each of the new nodes on level l
takes at most l steps. If the leaf nodes were linked to their successors, the traversing could
be done in Nl steps. The value of Nl is difficult to evaluate, because it depends on the data

distribution. However, it has always an upper bound Nl ≤
(

k
l

)
, which is the number of all

possible l-sets.
Processing each l-set (Algorithm 5.3, lines 9–14 and Algorithm 5.4) takes O(l(k + n +

log(K ))). This is composed as follows:
The first two parents are always known, but the rest l − 2 parents have to be searched for

from the tree (Algorithm 5.4, line 3). Searching an (l − 1)-set from the enumeration tree can
be done in time O(l log(k)). Then, in each node, the correct child can be found in log2(k)

time using a binary search. (In practice, the number of possible children is always < k, except
in the root.) Since the path length is l − 1, the overall complexity is the given.

All possible- and best-values are first initialized (Algorithm 5.3 line 9) and then updated
using the parents (Algorithm 5.4, line 5). This takes at most (l + 1)(2k + 2l) steps, because
there are at most k consequences in both possible-tables and l possible consequences in both
best-tables, and all tables are processed at most l+1 times (initialization + l times updating).
Since l ≤ k, the overall complexity is O(kl). (We note that in practice, we also have to
reserve space, when new child nodes are added, and free space, when they are deleted, but
all additions and deletions can be done in O(k) time per node.)

Frequency counting (Algorithm 5.4, line 7) takes at most ln steps. The possible-values
are updated once again (Algorithm 5.4, lines 11–12), which takes at most 2k steps. Together,
these take O(ln + k).

Assuming that measure M can be calculated in constant time, the rule checking
(Algorithm 5.4, lines 13–22) takes at most O(l log(K )). Each of the at most 2l possible
rules can be checked in constant time. Adding a rule to collection brules can be done in
O(log(K )) time, if the collection is implemented as a binary heap with the worst rule on the
top.

If minimal rules are found, the possible-tables are updated once again (lines 23–28),
taking at most 2k steps. Lapis Philosophorum (Algorithm 5.4, line 29 and Algorithm 5.3,
lines 12–14) can be implemented in 2l steps. Since l ≤ k, these take together O(k) time.

Thus, processing each l-set takes O(l log(k)) + O(kl) + O(ln + k) + O(l log(K )) +
O(k) = O(l(k + n + log(K ))). The lth level takes O(Nll(k + n + log(K ))) =
O

((
k
l

)
l(k + n + log(K ))

)
. Because the first level takes O

((
k
1

)
1(k + n)

)
, the time
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complexity of processing levels 1, . . . , L + 1 has an upper bound

O
(

(k + n + log(K ))

L+1∑

l=1

(
k
l

)
l

)
.

Because L + 1 ≤ k, we can always use an upper bound O((k+ n+ log(K ))k2k−1), but it
is often unnecessarily large. Typically L+2 < k

2 , and we can use the following upper bound
[8, 122–123]:

L+1∑

l=1

(
k
l

)
l < (L + 1)

L+1∑

l=1

(
k
l

)
<

(L + 1)(L + 2)

k − 2(L + 2)

(
k

L + 2

)
.

Since
∑ k

2
l=0

(
k
l

)
≤ 2k−1, the upper bound is

L+1∑

l=1

(
k
l

)
l < (L + 1) min

{
2k−1,

L + 2

k − 2(L + 2)

(
k

L + 2

)}
.

Therefore, the total complexity is

O((k + n + log(K ))k2k−1),

when L + 2 ≥ k
2 , and

O
(

(k + n + log(K ))L min

{
2k−1,

L + 2

k − 2(L + 2)

(
k

L + 2

)})
,

when L + 2 < k
2 . �

Typically L << k, and the complexity can be bounded by the binomial coefficient. For

example, if k ≥ 3(L + 2), the complexity reduces to O
(

(k + n + log(K ))L

(
k

L + 2

))
.

If the maximal transaction length L is not given, we can use an upper bound L ≤ k. Then,
the time complexity becomes O((k+n+ log(K ))k2k−1). In a typical case, where k ≤ n and
K ≤ n, the expression can be simplified to O(nk2k). This is a loose upper bound, because it
corresponds to checking all possible sets in P(R).

In the previous analysis, we have assumed that the measure M can be calculated in con-
stant time. This is true for asymptotic measures, but some measures, like Fisher’s pF , require
summing over several terms and each term can contain binomial coefficients. Tabulating all
factorials (as explained in Sect. 5.3) enables us to evaluate each term in constant time, but
the asymptotic time complexity of calculating pF is still quite large, O(n).

Let us then analyze the worst-case space complexity of the Kingfisher algorithm.

Theorem 2 Let k, K and L be like before. Then the space complexity of searching for the
K best dependency rules with the Kingfisher algorithm is

(i) O
(

k min

{
2k−1, L+2

k−2(L+2)

(
k

L + 2

)})
, if L + 2 < k

2 , and

(ii) O(k2k), otherwise.

Proof First, we note that the enumeration tree contains two kinds of nodes, which we call
structure nodes and data nodes. When level l is finished, nodes on levels 1, . . . , l − 1 only

123



Kingfisher: an efficient algorithm 405

A B C

l=1

B

l=3

A
B C

DD

EEEEEEDC

D C

D

B C

D

A B

B

C

C C

D

D

D E

D D

E E E E

l=4

A

B

C

D

E

l=5

l=2

A
B C

D

C D E C D DE E E

Fig. 5 An example of the worst-case tree development. Data nodes are shaded

code the tree structure. All data nodes (containing best- and possible-tables) are stored onto
level l. On level l+ 1, new data nodes are created onto level l+ 1 and the previous level data
nodes are either removed or changed to structure nodes. All nodes which do not lead to the
last level are removed.

In the worst case, we have to construct all l-sets, l = 1, . . . , min{L + 1, k}. After each
level l, the enumeration tree contains all l-sets and all inner nodes (structure nodes), which
lead to leaf nodes. Figure 5 shows an example of the worst-case tree development (the tree
after each level l), when all sets are generated.

After each level l, the number of data nodes is Nd =
(

k
l

)
. For the structure nodes, we

can give an upper bound

Nstr ≤
l−1∑

j=1

(
k − 1

j

)
.

The derivation is the following: On each level, we know that at least all nodes with label
Ak are leaf nodes and removed. (In addition, new nodes become leaf nodes later, when their
children are removed.) If all possible sets are generated, the number of non-leaf nodes on

level j is at most the number of all j-sets, which do not contain attribute Ak , i.e.,

(
k − 1

j

)
.

Summing over all levels j = 1, . . . , l − 1 gives Nstr .
Because the structure node contains only the label and child pointers, all structure nodes

up to level l−1 take together space O(Nstr +Nd) (each node is pointed by one pointer). This
can be bounded by O(k Nstr ), because each structure node contains at most k child pointers.

Each data node contains two possible-tables, whose maximum size is k bits and two
best-tables, whose maximum size is l. Since l ≤ k, the space requirement for each data node
is at most O(k), and together, all data nodes on level l take space O(k Nd).
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Therefore, the worst-case space requirement for the whole tree after level l is

O
⎛

⎝k
l−1∑

j=1

(
k − 1

j

)
+ k

(
k
l

)⎞

⎠ ≤ O
⎛

⎝k
l∑

j=1

(
k
j

)⎞

⎠ .

This is largest on the last level, which is l ≤ min{L + 1, k}. The sum can always be
bounded by O(k2k). However, if L + 2 < k

2 , we can give a tighter upper bound (like in the
proof for Theorem 1)

O
(

k min

{
2k−1,

L + 2

k − 2(L + 2)

(
k

L + 2

)})
.

In addition to the enumeration tree, we have to store the data and the best rules. Because
the data can be represented by a n × k bit matrix, it takes at most O(nk) space. (More
compact representations are possible, but this supports efficient frequency counting.) For the
K best rules, we have to store the attributes of the rule and at least the goodness measure
value and information, whether the consequence is negated (“sign”). The measure value, sign
and possible other parameters (like frequencies m(X A = a), m(X) and m(A = a)) take
constant space. Because the maximum rule length is L + 1, the best rules take at most space
O(K L). �

In a typical case, where n ≤ 2k−1 and K ≤ n, and L is not given, the complexity simpli-
fies to O(k2k). However, if the maximal transaction length L is known, it gives often a more
realistic upper bound for the space complexity.

6 Experiments

The goal of the experiments was twofold. First, we were interested in to compare the qual-
ity of discovered rules between pF and χ2. This is an interesting issue, since Kingfisher is
the first algorithm, which enables the search with pF , and it has often been assumed that
the χ2-measure produces fairly comparable results. Second, we wanted to assess the effi-
ciency of the search with both measures as well as the effect of the new pruning principle
(Lapis Philosophorum). The underlying question was what is the quality-efficiency trade-off
between pF and χ2. To our surprise, pF turned out to be clearly superior in both aspects.

6.1 Test setting

For testing, we used classical benchmark data sets, which are available in the FIMI repository
(http://fimi.cs.helsinki.fi/data/). The data sets and their dimensions are given in Table 5.

In all data sets, we searched for the 100 best non-redundant rules with pF and the continuity
corrected χ2-measure. When the χ2-measure was used, we needed low minimum frequency
thresholds with data sets Accidents, Pumsb and Retail. The thresholds are reported in Table 5.
With Pumsb, we also restricted the search to level 7, because no new rules were found after
that. In other data sets, we used only the general requirement that all rules should occur on
at least five rows of data. With pF , no thresholds were needed, because minimum frequency
thresholds are derived implicitly from the maximal pF -value requirement.

The implementation of Kingfisher algorithm is available on http://www.cs.helsinki.fi/u/
whamalai/sourcecode.html. All experiments were run on 2.5 GHz AMD Opteron 8360 SE
having 256 GB central memory and Linux operating system. We note that the exceptionally
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Table 5 Data sets

n k tlen min f r

Mushroom 8,124 119 23.0 –

Chess 3,196 75 37.0 –

T10I4D100K 100,000 870 10.1 –

T40I10D100K 100,000 942 39.6 –

Accidents 340,183 468 33.8 0.0001

Pumsb 49,046 2,113 74.0 0.0005

Retail 88,162 16,470 10.3 0.0005

n number of rows, k number of attributes, tlen average transaction length, min f r minimum frequency threshold

used with the χ2-measure

large memory size was beneficial for the χ2-measure, but with pF , all experiments could be
run with just 1 GB main memory.

Finally, we recall that there are no previous algorithms for searching for both positive and
negative dependency rules with the χ2-measure or pF , and therefore, no comparisons to other
algorithms could be made. If we were interested in only positive dependency rules with the
χ2-measure, we could first search for association rules with a minimal possible frequency
threshold and then filter the best non-redundant rules afterwards, using the χ2-measure.
However, according to our previous experiments [12, Ch. 5], this approach is enormously
inefficient, unless large minimum frequency thresholds are used. For example, if we search
for the 100 best rules (including redundant rules) by Borgelt’s Apriori [7] in the same test
environment, set Pumsb requires min f r = 0.45 and the maximal rule length (number of
attributes, including the consequence attribute) of five. These are so strict restrictions that
73% of the actually best non-redundant rules could not be found even in principle.

6.2 Quality evaluation

In the quality evaluation, the objective is that the discovered dependency rules should be
reliable, i.e., hold also in future data. To estimate the behaviour in future data, we used the
following cross-validation scheme: Each data set was divided 10 times randomly to a training
set and a test set. Because each test set should also be sufficiently large, we used 2/3 of the data
for training and 1/3 for testing. For each training set, we searched for the 100 best rules and
evaluated them in the test set. For assessing how well the dependency held in the test data, we
calculated the mean squared errors of lift (M SEγ ) and leverage (M SEδ). If the discovered
dependency rules were equally strong in the test set, then both M SEγ and M SEδ would be
zero. On the other hand, large M SE values indicate that the dependencies were significantly
weaker or stronger in the test sets. It is not necessarily harmful, if the dependency is stronger
in the test set (future data), but in some applications, one may want to ascertain that the data
does not contain any strong dependencies. Because the M SE values are difficult to interpret,
we report the root mean squared errors, which are in the same scale as the lift and leverage.

The results of the quality evaluation are represented in Tables 6 and 7. In addition to√
M SEγ and

√
M SEδ , we report the average frequency, confidence, lift and leverage in the

training sets.
In all data sets, pF produced more frequent rules, with a significantly smaller lift but

larger leverage than the χ2-measure. The χ2-measure suffered for exaggerated values (due
to extremely low or high frequency rules) in all sets except Chess and Retail. This was
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Table 6 Statistics characterizing the quality of the 100 best non-redundant rules discovered with measure pF

Set f r c f γ δ
√

M SEγ
√

M SEδ

Mushroom 0.2364 0.97 4.3 0.1713 0.2 0.00479

Chess 0.4534 0.84 2.1 0.1672 0.1 0.00639

T10I4D100K 0.0073 0.89 68.1 0.0071 4.7 0.00053

T40I10D100K 0.0150 0.96 36.0 0.0145 2.2 0.00072

Accidents 0.3495 0.94 3.4 0.1254 0.0 0.00093

Pumsb 0.4876 1.00 2.1 0.2462 0.0 0.00038

Retail 0.0096 0.61 140.1 0.0042 37.1 0.00046

Table 7 Statistics characterizing the quality of the 100 best non-redundant rules discovered with measure χ2

Set f r c f γ δ
√

M SEγ
√

M SEδ

Mushroom 0.0550 1.00 339.0 0.0232 448.0 0.00227

Chess 0.2988 0.93 123.9 0.0585 75.8 0.00456

T10I4D100K 0.0007 1.00 4221.9 0.0007 8250.0 0.00015

T40I10D100K 0.0012 0.99 1632.6 0.0012 846.0 0.00019

Accidents 0.2210 0.92 228.5 0.0908 664.0 0.00082

Pumsb 0.3379 1.00 132.6 0.1173 132.0 0.00136

Retail 0.0019 0.57 288.7 0.0017 71.1 0.00029

especially clear in Mushroom, T10I4D100K and Accidents where the lift values held poorly
in the test sets. On the other hand, the dependencies by pF held extremely well in all test
sets (

√
M SEγ was about 7% from the average lift and

√
M SEδ about 4% from the average

leverage, while for the χ2-measure, the proportions were about 122 and 11%).
In set Accidents, the χ2-measure produced some harmful rules (about 0.6%), which

expressed independence in the test sets. In all training sets, the harmful rule was the same
negative dependency rule, which held in nearly all rows of data. In the corresponding test
sets, it occurred on all rows or was missing only from a couple of rows. We note that other
classical goodness measures, especially when combined to large minimum frequency thresh-
olds, produce often a large number of harmful rules which express positive dependence in
the learning set, but negative dependence or independence in the test sets [13].

Negative dependency rules were found among the 100 best rules in sets Mushroom (6.6%
with pF and 6.0% with χ2), Chess (61.6 and 36.0%), Accidents (42.8 and 29.2%) and Pumsb
(63.3 and 18.8%). The χ2-measure found less and simpler negative dependency rules (typi-
cally 2-rules), while pF produced also more complex rules. The reason is that the χ2-measure
gets its maximal value, whenever m(X A = a) = m(X) = m(A = a). This occurs more
often for simple and relatively infrequent rules, while the negative dependency rules were
typically quite frequent.

6.3 Efficiency evaluation

In the efficiency evaluation, we compared the search with pF and χ2. With both goodness
measures, we tested two versions of the Kingfisher algorithm: the original version and another
one where the Lapis Philosophorum principle was disabled.
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Table 8 Parameters for the
efficiency comparison: maxM is
the initial value for the threshold
ln(max p), min f r is the
corresponding implicit minimum
frequency threshold, and minM is
the minimal χ2 threshold

Set maxM minfr minM

Mushroom −2,000 0.06745 8,000

Chess −850 0.07541 2,200

T10I4D100K −1,600 0.00227 93,000

T40I10D100K −3,500 0.00569 95,000

Accidents −73,000 0.05557 1,60,000

Pumsb −18,000 0.12011 46,000

Retail −350 0.00047 10,000

Table 9 Efficiency comparison of Kingfisher using pF with and without the Lapis Philosophorum principle

Set With LP Without LP

l w wsi ze t l w wsi ze t

Mushroom 6 3 454 0 7 3 959 0

Chess 15 8 23,09,751 169 ≥10 ≥10 ≥3,63,98,778 ≥1,200

T10I4D100K 4 2 1,399 11 8 2 3129 12

T40I10D100K 6 2 9,098 17 18 7 91112 92

Accidents 13 6 1,42,133 79 ≥7 ≥7 ≥34,48,942 ≥1,200

Pumsb 11 6 30,009 7 ≥7 ≥7 ≥4,71,05,062 ≥1,200

Retail 5 2 6,387 379 6 2 9,208 389

l last level, w widest level, wsi ze size of the widest level, t execution time in seconds

With each experiment, we searched for the 100 best rules from the whole data set. For pF ,
no minimum frequency thresholds were used, but the initial ln(max p)-values and correspond-
ing (implicit) minimum frequency thresholds are reported in Table 8. For the χ2-measure,
we used the same minimum frequency thresholds as for the quality evaluation. The initial
minimum χ2 thresholds are given in Table 8. When the Lapis Philosophorum principle was
disabled, the program often got stuck and was halted after 20 min CPU time.

The results are represented in Tables 9 and 10. The size of the generated enumeration tree
(traversed search space) is described by three variables: the last level, the widest level and the
number of sets on the widest level. We recall that the enumeration tree is pruned after each
level, and thus, the widest level is the bottleneck. In addition, we give the execution time in
seconds.

With the original Kingfisher using pF , the whole search space could be traversed, and
therefore, the discovered rules were globally optimal. The most demanding data set was
Retail, where the number of attributes is extremely large. In addition, all dependencies are
relatively weak, and therefore, Kingfisher could not determine any effective minimum fre-
quency from the maximal pF -value requirement. Most of the execution time was spent on
level 2, where the program had to determine lower bounds for over 17 million attribute com-
binations.

The implicit minimum frequency thresholds explain the efficiency of Kingfisher only on
the first levels. After that, the Lapis Philosophorum principle begins to play a more important
role. When the principle was not used, the program got stuck with data sets Chess, Accidents
and Pumsb. The sparsest data sets could be handled without Lapis Philosophorum, but the
enumeration tree was still significantly larger. In the densest data sets, the widest level was
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Table 10 Efficiency comparison of Kingfisher using χ2 with and without the Lapis Philosophorum principle

Set With LP Without LP

l w wsi ze t l w wsi ze t

Mushroom 8 4 6,486 0 9 4 22,004 1

Chess 19 10 46,38,560 914 ≥9 ≥8 ≥7,07,03,089 ≥1,200

T10I4D100K 4 2 604 23 10 3 55,338 182

T40I10D100K 7 4 2,413 28 ≥3 ≥2 ≥3,18,909 ≥1,200

Accidents 15 7 13,72,901 1,038 ≥4 ≥3 ≥7,27,536 ≥1,200

Pumsb ≥8 ≥7 ≥1,09,62,956 ≥1,200 ≥4 ≥3 ≥ 41,38,149 ≥ 1,200

Retail 5 2 7,598 335 6 2 8,424 319

l last level, w widest level, wsi ze size of the widest level, t execution time in seconds

at least 15–1570 times as large as with the Lapis Philosophorum principle and none of these
experiments could have been run in an ordinary desktop computer.

Search with the χ2-measure was remarkably slowlier. Chess, Accidents, Pumsb and Retail
were the most demanding data sets for the χ2-measure, in spite of minimum frequency
thresholds. The problem is that the minimal χ2-value requirement does not define any min-
imum frequency threshold, but any rule—even one occurring on just one row—can gain the
maximal value. Therefore, the upper bounds used for pruning tend to be large and the search
continues deep.

When the Lapis Philosophorum principle was used, the program got stuck only with set
Pumsb, on level 8. For curiosity, we tested the most difficult data set, Pumsb, also without
any minimum frequency threshold or maximal rule length. The search continued to level
20, and the widest level was 11 with over 60 million sets. The execution took 411 min. The
interesting phenomenon was that now all the 100 best rules were found on levels 2 and 3, but
the program was not able to decide that no more rules are to be found on deeper levels.

When the Lapis Philosophorum principle was disabled, the program got soon stuck in all
data sets, except the sparsest—Mushroom, T10I4D100K and Retail (where min f r = 0.0005
was required). In Accidents and Pumsb, only the first three levels could be processed in 20 min
CPU time. The biggest surprise was set T40I10D100K, which was easy to handle without
any extra restrictions, when Lapis Philosophorum was used, but without it just the first two
levels could be finished in 20 min.

7 Conclusions and future research

Searching for statistical dependencies from high-dimensional data is a fundamental problem
in all empirical science. The problem is computationally very demanding, and so far, there
have not been any scalable solutions to the general problem. Heuristic or suboptimal solutions
are often insufficient, because the new scientific theories should be based on valid informa-
tion. In practice, the scientists want to find the most significant dependencies which hold
also in future data. For this purpose, we need an efficient search algorithm, which optimizes
some statistical significance measure like Fisher’s p-value, without any other restrictions
like minimum frequency requirements. Pruning redundant dependencies is also important,
because scientists want to find the real causes of dependencies, without any weakening or
occasional extra factors.
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In this paper, we have introduced an effective solution for a special case, where depen-
dency rules are searched for from binary data. The rules can be of the form X→ A, X→
¬A, ¬X → A or ¬X → ¬A, where X is a set of positive-valued attributes, and A can
be any attribute. We recall that any categorical data can be represented in such a form by
creating a new attribute for each attribute value in the original data (numerical data would
require discretization first).

The new Kingfisher algorithm can be used to search for either the K best, non-redundant
dependency rules or to enumerate all sufficiently good, non-redundant rules. The search
algorithm itself is applicable to any statistical goodness measure, given the required upper or
lower bounds, but in this paper, we have focused on the search with Fisher’s exact test and
the χ2-measure. For this purpose, we have introduced new, tight lower bounds for Fisher’s
pF -value. In addition, we have introduced several general pruning principles, which enable
to restrict the search into areas, where the most significant non-redundant dependencies are
to be found.

According to our experiments, the algorithm is extremely well-scalable, even to densest
and largest-dimensional data sets, when pF is used as a search criterion. No minimum fre-
quency thresholds or other restrictions were required. Surprisingly, the χ2-measure turned
out to be much less effective, and small minimum frequency thresholds were needed with
the most demanding data sets. Another surprising result was the relatively poor quality of
rules, when the χ2-measure was used. With pF , the results were very accurate, and we can
conclude that Kingfisher offers a robust and efficient tool for scientists.

Finally, we note that in this research, we have taken a very careful attitude against losing
significant rules and pruned out only clearly redundant rules. In reality, some dependency
rules may appear as non-redundant only in the given data, but in future data, they would
be redundant. Clearly, they could be pruned out and thus the efficiency improved, but first
one should develop the statistical theory for the significance of improvement. On the other
hand, some of the discovered significant dependency rules may be specious, just by-prod-
ucts of other dependency rules, and not interesting as such. Detecting specious rules would
also require more statistical investigation as well as new algorithmic insights for efficient
pruning. Another important challenge for future research is to develop an efficient algorithm
for searching for general dependency rules (containing an arbitrary number of negations).
All these problems are likely to require new Philosopher’s stones or other magic tricks to be
solved.

Appendix A: Proofs for the three lower bounds on Fisher’s pF

Theorem 3 Let us notate pabs = m(A)!m(¬A)!
n! . For any attribute A ∈ R and X ⊆ R\{A},

pF (X → A) ≥ pabs and pF (X → ¬A) ≥ pabs .

Proof pF can be expressed as

pF (X → A) = pabs

J∑

i=0

(
m(X)

m(X A)+ i

) (
m(¬X)

m(¬X¬A)+ i

)
.

Since the sum is always ≥ 1, the minimum value is pabs . Case pF (X → ¬A) is
similar. �
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Theorem 4 For all X � R, A ∈ R \ X, a ∈ {0, 1} and Q ⊆ R \ (X ∪ {A}) such that
m(X) ≤ m(A = a) holds

pF (X Q → A = a) ≥ m(¬X)!m(A = a)!
n!(m(A = a)− m(X))! .

Proof pF (X Q → A = a) is of the form t0 + . . . tJ , where

ti = pabs

(
m(X Q)

m(X Q A = a)+ i

) (
n − m(X Q)

m(¬(X Q)A �= a)+ i

)
. Therefore, pF ≥ tJ , where

J = min{m(X Q A �= a), m(¬(X Q)A = a)}. Because m(X Q) ≤ m(X) ≤ m(A = a),

J = m(X Q A �= a) and pF have a lower bound tJ = pabs

(
n − m(X Q)

m(A �= a)

)
. Because

(
m
l

)

is an increasing function of m, tJ ≥ pabs

(
m(¬X)

m(A �= a)

)
, which is equal to m(¬X)!m(A=a)!

n!(m(A=a)−m(X))! .
�

Theorem 5 For all X � R, A ∈ R \ X, a ∈ {0, 1} and Q ⊆ R \ (X ∪ {A}) holds

pF (X Q → A = a) ≥ pabs

(
n − m(X A = a)

m(A �= a)

)
.

Proof In this proof, we use the fact that for positive dependency rule X → A = a holds
m(X A = a) >

m(X)m(A=a)
n (the lift is > 1). We notice that it is enough to show that

pF (X → A = a) ≥ pabs

(
n − m(X A = a)

m(A �= a)

)
, because for any Q ⊆ R \ (X ∪ {A}) holds

(
n − m(X Q A = a)

m(A �= a)

)
≥

(
n − m(X A = a)

m(A �= a)

)
.

Let us notate pF = pabs pX . Because pabs is a constant, when the consequence is fixed, it
can be omitted. For clarity, we present the proof for case a = 1. The same result is achieved
for a = 0, when A and ¬A are reversed.

If m(X) = m(X A), then pX (X → A) contains just one term, which is equal to its
lower bound. Otherwise, pX (X → A) is a sum of several terms, but it is enough to show

that for the first term t0 holds: t0 =
(

m(X)

m(X A)

)(
m(¬X)

m(¬X¬A)

)
≥

(
n − m(X A)

m(¬A)

)
⇔

m(X)!m(¬A)!
m(X A)!m(X¬A)!(m(¬A)−m(X¬A))! ≥ (n−m(X A))!

m(¬X)! ⇔ [m(X) · . . . · (m(X A)+ 1)][m(¬A) · . . . ·
(m(¬X¬A)+ 1)] ≥ [(n−m(X A)) · . . . · (m(¬X)+ 1)]m(X¬A)! ⇔ �

m(X¬A)−1
i=0 (m(X)−

i)(m(¬A)− i) ≥ �
m(X¬A)−1
i=0 (n − m(X A)− i)(m(X¬A)− i).

This is true, because for all i = 0, . . . , m(X¬A) − 1 holds (m(X) − i)(m(¬A) − i) ≥
(n − m(X A) − i)(m(X¬A) − i) ⇔ m(X)m(¬A) − im(X) − im(¬A) + i2 ≥ m(X)(n −
m(X A))−m(X A)(n−m(X A))−i(n−m(X A))−im(X)+im(X A)+i2 ⇔ −m(X)m(A)+
im(A)+ m(X)m(X A)+ nm(X A)− m(X A)2 − 2im(X A) ≥ 0.

Because nm(X A) > m(X)m(A) and im(A)− 2im(X A) ≥ −im(X A), it is sufficient to
show that m(X)m(X A) − m(X A)2 − im(X A) ≥ 0 ⇔ m(X A)m(X¬A) ≥ im(X A) ⇔
m(X¬A) ≥ i , which was true. �
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