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Abstract We address the problem of discovering the influential nodes in a social network
under the susceptible/infected/susceptible model that allows multiple activation of the same
node, by defining two influence maximization problems: final-time and integral-time. We
solve this problem by constructing a layered graph from the original network with each layer
added on top as the time proceeds and applying the bond percolation with two effective control
strategies: pruning and burnout. We experimentally demonstrate that the proposed method
gives much better solutions than the conventional methods that are based solely on the notion
of centrality using two real-world networks. The pruning is most effective when searching
for a single influential node, but burnout is more powerful in searching for multiple nodes
which together are influential. We further show that the computational complexity is much
smaller than the naive probabilistic simulation both by theory and experiment. The influential
nodes discovered are substantially different from those identified by the centrality measures.
We further note that the solutions of the two optimization problems are also substantially
different, indicating the importance of distinguishing these two problem characteristics and
using the right objective function that best suits the task in hand.
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614 K. Saito et al.

1 Introduction

Social networks mediate the spread of various information including topics, ideas, and even
(computer) viruses. The proliferation of emails, blogs, and social networking services (SNS)
in the World Wide Web accelerates the creation of large social networks. Therefore, substan-
tial attention has recently been directed to investigating information diffusion phenomena in
social networks [1,2,5,16,17,20,29], and other aspects such as analyses of social networking
sites [18,19], topic evolution [24,31], and privacy issues [3,30].

Finding influential nodes is one of the central problems in social network analysis.1 Thus,
developing efficient and practical methods of doing this on the basis of information diffusion
is an important research issue. Widely used fundamental probabilistic models of informa-
tion diffusion are the independent cascade (IC) model [7,9,10] and the linear threshold (LT)
model [10,28]. Researchers investigated the problem of finding a limited number of influential
nodes that are effective for the spread of information under the above models [10,13,14]. This
combinatorial optimization problem is called the influence maximization problem. Kempe
et al. [10] experimentally showed on large collaboration networks that the greedy algorithm
can give a good approximate solution to this problem and mathematically proved a perfor-
mance guarantee of the greedy solution (i.e., the solution obtained by the greedy algorithm).
Recently, methods based on bond percolation [13] and submodularity [15] were proposed for
efficiently estimating the greedy solution. Succeeding work further improved the efficiency
by approximating the solution using a heuristic [4]. The influence maximization problem has
applications in sociology and “viral marketing” [2] and was also investigated in a different set-
ting (a descriptive probabilistic model of interaction) [6,25]. The problem has recently been
extended to influence control problems such as a contamination minimization problem [11].

The IC model can be identified with the so-called susceptible/infected/recovered (SIR)
model for the spread of a disease [9,22]. In the SIR model, only infected individuals can
infect susceptible individuals, while recovered individuals can neither infect others nor be
infected by others. This implies that an individual is never infected with the disease multiple
times. This property holds true for the LT model as well. However, there are many phe-
nomena for which this property does not hold. A typical example would be the following
propagation phenomenon of a topic in the blogosphere: A blogger who has not yet posted
a message about the topic is interested in the topic by reading the blog of a friend and posts a
message about it (i.e., becoming infected (activated)2). Next, the same blogger reads a new
message about the topic posted by some other friend and may post a message (i.e., becoming
infected) again. Note here that we regard the act of “posting” to be the state change from
“susceptible” to “infected”. The blogger can read the next blog and respond to it anytime
after the completion of the previous posting. Most simply, this phenomenon can be modeled
by a susceptible/infected/susceptible (SIS) model from the epidemiology. Other examples
include the growth of hyper-link posts among bloggers [16], the spread of computer viruses
without permanent virus-checking programs, and epidemic disease such as tuberculosis and
gonorrhea [22]. There are many more examples of information diffusion phenomena for
which the SIS model is more appropriate.

We focus on an information diffusion process in a social network G = (V, E) over
a given time span T on the basis of an SIS model. Here, the SIS model is a stochastic

1 “Influence” means many things and there are many factors which make a node influential. In this paper, as
we describe later in this section and define more formally in Sect. 2.2, influence of a node simply means the
expected number of activated nodes as a result of information diffusion that starts from the node.
2 We use “infected” and “activated” interchangeably.
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Efficient discovery of influential nodes for SIS models 615

process model, and the influence of a set of nodes H at time-step t, σ (H, t), is defined as
the expected number of infected nodes at time-step t when all the nodes in H are initially
infected at time-step t = 0. We refer to σ as the influence function for the SIS model. When
we want to find an influential node, we need to know σ({v}, t), (v ∈ V, t = 1, . . . , T ),
but when we want to solve influence maximization problem, we need to know σ(H, t),
(H ⊆ V, t = 1, . . . , T ). It is vital, first of all, to have an effective method for estimating
σ({v}, t). Clearly, in order to extract influential nodes, we must estimate the value of σ({v}, t)
for every node v and every time-step t . Solving influence maximization problem is much
more difficult because we have to find the optimal subset of nods H∗K with a fixed cardi-
nality K . Here, it is vital to have an effective method for evaluating the marginal influence
gains {σ(H ∪ {v}, T ) − σ(H, T ); v ∈ V \H} for any non-empty subset H of V . We have
reported our preliminary work on efficiently estimating {σ({v}, t); v ∈ V, t = 1, . . . , T } for
the SIS model based on the bond percolation with a pruning strategy [12] and extended it to
influential maximization problem in which we introduced a new technique called burnout to
efficiently estimate {σ(H ∪ {v}, T )− σ(H, T ); v ∈ V \H} [26].

In this paper, we describe these two techniques in detail and conduct extensive experi-
ments to evaluate how these two affect the efficiency of solving the influence maximization
problems on a network G = (V, E) under the SIS model. Needless to say, we can naively
estimate the marginal influence gains for any non-empty subset H of V by simulating the SIS
model. However, this naive simulation method is overly inefficient and not practical at all.
Here, we define two influence maximization problems: the final-time maximization problem
and the integral-time maximization problem. The latter problem does not make sense for the
SIR model and is only meaningful for the SIS model. We adopt the greedy algorithm, to
reduce the computational complexity, for approximately solving the problems according to
the work of Kempe et al. [10] which was conducted for the IC and the LT models, ensuring
that submodularity holds in the SIS model setting, too. We show theoretically that the pro-
posed method is expected to achieve a large reduction in computational cost by comparing
computational complexity with the naive probabilistic simulation method. Further, using two
large real networks, we experimentally demonstrate that the proposed method is much more
efficient than the naive greedy method that uses only the bond percolation without employing
both the pruning and the burnout. We show that the pruning is effective when searching for
a single influential node, but the burnout is more powerful and eventually takes over the
pruning as we increase the number of nodes to search. Thus, it is advisable to use both the
pruning and the burnout only in the initial few iterations and stop using the pruning and use
the burnout alone in the succeeding iterations in the greedy algorithm. The computational
cost reduces by 2 orders of magnitudes comparing the naive bond percolation which itself is
2 to 3 orders of magnitudes more efficient than the naive simulation. We also show that the
nodes discovered by the proposed method are substantially different from the nodes discov-
ered by the conventional methods that are based on the notion of various centrality measures
which does not consider the information diffusion phenomena and can be evaluated from
the network topology alone. The proposed method results in a substantial increase in the
expected influence. We further find that the two optimization problems give also substan-
tially different solutions, and it is important to use the right objective function that reflects
the problem characterization.

The paper is organized as follows. We define the information diffusion model in Sect. 2
and the two influential maximization problems we want to solve in Sect. 3. We then give
details of the algorithms to solve this problem (greedy algorithm, bond percolation, pruning,
burnout and their combinations) in Sect. 4. The experimental results are given in Sect. 5
(network data, quality of the solutions, and computation time for both influence function
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estimation and influence maximization estimation), followed by some discussions in Sect. 6.
We end this paper by summarizing the conclusion in Sect. 7.

2 Information diffusion model

Let G = (V, E) be a directed network, where V and E stand for the sets of all the nodes
and (directed) links, respectively. Here, note that E is a subset of V × V . For any v ∈ V , let
�(v;G) denote the set of the child nodes (directed neighbors) of v, that is,

�(v;G) = {w ∈ V ; (v,w) ∈ E}.
2.1 SIS model

An SIS model for the spread of a disease is based on the cycle of disease in a host. A per-
son is first susceptible to the disease and becomes infected with some probability when the
person has contact with an infected person. The infected person becomes susceptible to the
disease soon without moving to the immune state. We consider a discrete-time SIS model
for information diffusion on a network. In this context, infected nodes mean that they have
just adopted the information, and we call these infected nodes active nodes.

We define the SIS model for information diffusion on G. In the model, the diffusion pro-
cess unfolds in discrete time-steps t ≥ 0, and it is assumed that the state of a node is either
active or inactive. For every link (u, v) ∈ E , we specify a real value pu,v with 0 < pu,v < 1
in advance. Here, pu,v is referred to as the diffusion probability through link (u, v). Given
an initial set of active nodes H and a time span T , the diffusion process proceeds in the fol-
lowing way. Suppose that node u becomes active at time-step t (<T ). Then, node u attempts
to activate every v ∈ �(u;G) and succeeds with probability pu,v . If node u succeeds, then
node v will become active at time-step t + 1. If multiple active nodes attempt to activate
node v at time-step t , then their activation attempts are sequenced in an arbitrary order. On
the other hand, node u becomes or remains inactive at time-step t + 1 unless it is activated
from other active node at time-step t . The process terminates if the current time-step reaches
the time limit T .

2.2 Influence function

For the SIS model on G, we consider an information diffusion from an initially activated
node set H ⊂ V over time span T . Let S(H, t) denote the set of active nodes at time-
step t . Note that S(H, t) is a random subset of V and S(H, 0) = H . Let σ(H, t) denote
the expected number of |S(H, t)|, where |X | stands for the number of elements in a set X .
We call σ(H, t) the influence of node set H at time-step t . Note that σ is a function defined
on 2V × {0, 1, . . . , T }. We call the function σ the influence function for the SIS model over
time span T on network G. In view of more complex social influence, we need to incor-
porate a number of social factors with social networks such as rank, prestige, and power.
In our approach, we assume that we can encode such factors as diffusion probabilities of
each node.3 As emphasized in Sect. 1, it is important to estimate the influence function σ

efficiently. In theory, we can simply estimate σ by the simulations based on the SIS model in

3 Such factors as rank, prestige, and power exert influence in a cumulative way, i.e., richer gets richer phe-
nomena. We need some reinforcement mechanism outside the SIS model to deal with such feedback which is
beyond the scope of our framework.
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the following way. First, a sufficiently large positive integer M is specified. For each H ⊂ V ,
the diffusion process of the SIS model is simulated from the initially activated node set H , and
the number of active nodes at time-step t, |S(H, t)|, is calculated for every t ∈ {0, 1, . . . , T }.
Then, σ(H, t) is estimated as the empirical mean of |S(H, t)|’s that are obtained from M
such simulations. However, this is extremely inefficient and cannot be practical.

3 Influence maximization problem

We mathematically define the influence maximization problems on a network G = (V, E)

under the SIS model. Let K be a positive integer with K < |V |. First, we define the final-time
maximization problem: Find a set H∗K of K nodes to target for initial activation such that
σ(H∗K ; T ) ≥ σ(H ; T ) for any set H of k nodes, that is, find

H∗K = arg max{H⊂V ; |H |=K } σ(H ; T ). (1)

Second, we define the integral-time maximization problem: Find a set H∗K of K nodes to tar-
get for initial activation such that σ(H∗K ; 1)+ · · · + σ(H∗K ; T ) ≥ σ(H ; 1)+ · · · + σ(H ; T )

for any set H of k nodes, that is, find

H∗K = arg max{H⊂V ; |H |=K }

T∑

t=1

σ(H ; t). (2)

The first problem cares only how many nodes are influenced at the time of interest. For
example, in an election campaign, it is only those people who are convinced to vote the
candidate at the time of voting that really matter and not those who were convinced during
the campaign but changed their mind at the very end. Maximizing the number of people who
actually vote falls in this category. The second problem cares how many nodes have been
influenced throughout the period of interest. For example, maximizing the amount of product
purchase during a sales campaign falls in this category.

4 Proposed method

Kempe et al. [10] showed the effectiveness of the greedy algorithm for the influence max-
imization problem under the IC and LT models. In this section, we introduce the greedy
algorithm for the SIS model and describe three techniques (the bond percolation method, the
pruning method, and the burnout method) for efficiently solving the influence maximization
problem under the greedy algorithm. We also discuss the computational complexity of these
methods and show the merit of the pruning and the burnout.

4.1 Greedy algorithm

We approximately solve the influence maximization problem by the greedy algorithm. Below,
we describe this algorithm first for the final-time maximization problem and then for the inte-
gral-time maximization problem.
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Greedy algorithm for the final-time maximization problem:

A1. Set H ← ∅.
A2. For k = 1 to K do the following steps:

A2-1. Choose a node vk ∈ V \H maximizing σ(H ∪ {v}, T ).
A2-2. Set H ← H ∪ {vk}.

A3. Output H .

We can easily modify this algorithm for the integral-time maximization problem by replacing
step A2-1 as follows:

Greedy algorithm for the integral-time maximization problem:

A1. Set H ← ∅.
A2. For k = 1 to K do the following steps:

A2-1′. Choose a node vk ∈ V \ H maximizing
∑T

t=1 σ(H ∪ {v}, t).
A2-2. Set H ← H ∪ {vk}.

A3. Output H .

Let HK denote the set of K nodes obtained by this algorithm. We refer to HK as the greedy
solution of size K . Then, it is known that

σ(HK , t) ≥
(

1− 1

e

)
σ(H∗K , t),

where H∗k is the exact solution defined by Eq. (1) or (2), that is, the expected influence of the
greedy solution is lower bounded and it is guaranteed that it is at worst 63% of the optimal
expected influence [10].

To implement the greedy algorithm, we need a method for estimating all the marginal
influence degrees {σ(H ∪ {v}, t); v ∈ V \H} of H in step A2-1 or A2-1′ of the above algo-
rithms. In the subsequent subsections, we propose a method for efficiently estimating the
influence function σ over time span T for the SIS model on network G.

4.2 Layered graph

We build a layered graph GT = (V T , ET ) from G in the following way (see Fig. 1). First,
for each node v ∈ V and each time-step t ∈ {0, 1, . . . , T }, we generate a copy vt of v

at time-step t . Let Vt denote the set of copies of all v ∈ V at time-step t . We define V T

by V T = V0 ∪ V1 ∪ · · · ∪ VT . In particular, we identify V with V0. Next, for each link
(u, v) ∈ E , we generate T links (ut−1, vt ), (t ∈ {1, . . . , T }), in the set of nodes V T . We
set Et = {(ut−1, vt ); (u, v) ∈ E} and define ET by ET = E1 ∪ · · · ∪ ET . Moreover, for
any link (ut−1, vt ) of the layered graph GT , we define the occupation probability qut−1,vt by
qut−1,vt = pu,v .

Then, we can easily prove that the SIS model with diffusion probabilities {pe; e ∈ E} on G
over time span T is equivalent to the bond percolation process (BP) with occupation probabil-
ities {qe; e ∈ ET } on GT .4 Here, the BP process with occupation probabilities {qe; e ∈ ET }
on GT is the random process in which each link e ∈ ET is independently declared “occupied”
with probability qe. We perform the BP process on GT and generate a graph constructed by
occupied links, G̃T = (V T , ẼT ). Then, in terms of information diffusion by the SIS model
on G, an occupied link (ut−1, vt ) ∈ Et represents a link (u, v) ∈ E through which the

4 The SIS model over time span T on G can be exactly mapped onto the IC model on GT [10]. Thus, the
result follows from the equivalence of the BP process and the IC model [8,10,13,21].
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t = T (= 2):
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Fig. 1 An example of a layered graph

information propagates at time-step t , and an unoccupied link (ut−1, vt ) ∈ Et represents a
link (u, v) ∈ E through which the information does not propagate at time-step t . For any
v ∈ V \H , let F(H ∪ {v}; G̃T ) be the set of all nodes that can be reached from H ∪ {v} ∈ V0

through a path on the graph G̃T . When we consider a diffusion sample from an initial active
node v ∈ V for the SIS model on G, F(H ∪ {v}; G̃T )∩ Vt represents the set of active nodes
at time-step t, S(H ∪ {v}, t).

4.3 Bond percolation method

Using the equivalent BP process, we present a method for efficiently estimating influence
function σ . We refer to this method as the BP method. Unlike the naive method, the BP
method simultaneously estimates σ(H ∪{v}, t) for all v ∈ V \ H . Moreover, the BP method
does not fully perform the BP process, but performs it partially. Note first that all the paths
from nodes H ∪ {v} (v ∈ V \H ) on the graph G̃T represent a diffusion sample from the
initial active nodes H ∪ {v} for the SIS model on G. Let L ′ be the set of the links in GT that
start from the non-activated nodes in the diffusion sample. For calculating |S(H ∪ {v}, t)|,
it is unnecessary to determine whether the links in L ′ are occupied or not. Therefore, the BP
method performs the BP process for only an appropriate set of links in GT . The BP method
estimates σ by the following algorithm:

BP method:
B1. Set σ(H ∪ {v}, t)← 0 for each v ∈ V \H and t ∈ {1, . . . , T }.
B2. Repeat the following procedure M times:

B2-1. Initialize S(H ∪ {v}, 0) = H ∪ {v} for each v ∈ V \H , and set A(0) ←
V \H, A(1)← ∅, . . . , A(T )← ∅.

B2-2. For t = 1 to T do the following steps:
B2-2a. Compute B(t − 1) =⋃

v∈A(t−1) S(H ∪ {v}, t − 1).

B2-2b. Perform the BP process for the links from B(t − 1) in GT , and generate the
graph G̃t constructed by the occupied links.

B2-2c. For each v ∈ A(t−1), compute S(H ∪{v}, t) =⋃
w∈S(H∪{v},t−1) �(w; G̃t ),

and set σ(H∪{v}, t)← σ(H∪{v}, t)+|S(H∪{v}, t)| and A(t)← A(t)∪{v}
if S(H ∪ {v}, t) �= ∅.
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B3. For each v ∈ V \H and t ∈ {1, . . . , T }, set σ(H∪{v}, t)← σ(H∪{v}, t)/M ,
and output σ(H ∪ {v}, t).

Note that A(t) finally becomes the set of information source nodes that have at least an
active node at time-step t , that is, A(t) = {v ∈ V \H ; S(H ∪ {v}, t) �= ∅}. Note also that
B(t − 1) is the set of nodes that are activated at time-step t − 1 by some source nodes, that
is, B(t − 1) =⋃

v∈V S(H ∪ {v}, t − 1).
Now we estimate the computational complexity of the BP method in terms of the number

of the nodes, Na , that are identified in step B2-2a, the number of the coin-flips, Nb, for the
BP process in step B2-2b, and the number of the links, Nc, that are followed in step B2-2c.
Let d(v) be the number of out-links from node v (i.e., out-degree of v) and d ′(v) the average
number of occupied out-links from node v after the BP process. Here, we can estimate d ′(v)

by
∑

w∈�(v;G) pv,w . Then, for each time-step t ∈ {1, . . . , T }, we have

Na =
∑

v∈A(t−1)

|S(H ∪ {v}, t − 1)|, Nb =
∑

w∈B(t−1)

d(w), Nc =
∑

v∈A(t−1)

∑

w∈S(H∪{v},t−1)

d ′(w)

(3)

on the average.
In order to compare the computational complexity of the BP method to that of the naive

method, we consider mapping the naive method onto the BP framework, that is, separating
the coin-flip process and the link-following process. We can easily verify that the following
algorithm in the BP framework is equivalent to the naive method:

Naive method expressed in the framework of BP method:

B1. Set σ(H ∪ {v}, t)← 0 for each v ∈ V \H and t ∈ {1, . . . , T }.
B2. Repeat the following procedure M times:

B2-1. Initialize S(H ∪ {v}, 0) = H ∪ {v} for each v ∈ V \H , and set A(0) ←
V \H, A(1)← ∅, . . . , A(T )← ∅.

B2-2. For t = 1 to T do the following steps:
B2-2b′. For each v ∈ A(t−1), perform the BP process for the links from S(H ∪{v}, t−1)

in GT , and generate the graph G̃t (v) constructed by the occupied links.
B2-2c′. For each v ∈ A(t − 1), compute S(H ∪ {v}; t) = ⋃

w∈S(H∪{v},t−1) �(w; G̃t (v)),
and set σ(H ∪ {v}, t)← σ(H ∪ {v}, t)+ |S(H ∪ {v}, t)| and A(t)← A(t) ∪ {v}
if S(H ∪ {v}, t) �= ∅.

B3. For each v ∈ V \H and t ∈ {1, . . . , T }, set σ(H ∪ {v}, t) ← σ(H ∪ {v}, t)/M ,
and output σ(H ∪ {v}, t).

Then, for each t ∈ {1, . . . , T }, the number of coin-flips, Nb′ , in step B2-2b′ is

Nb′ =
∑

v∈A(t−1)

∑

w∈S(H∪{v},t−1)

d(w), (4)

and the number of the links, Nc′ , followed in step B2-2c′ is equal to Nc in the BP method on
the average. From equations (3) and (4), we can see that Nb′ is much larger than Nc′ = Nc,
especially for the case where the diffusion probabilities are small. We can also see that Nb′
is generally much larger than each of Na and Nb in the BP method for a real social network.
In fact, since such a network generally includes large clique-like subgraphs, there are many
nodes w ∈ V such that d(w) 1, and we can expect that

∑
v∈A(t−1) |S(H ∪ {v}, t − 1)| 

|⋃v∈A(t−1) S(H ∪ {v}, t − 1)| (= |B(t − 1)|). Therefore, the BP method is expected to
achieve a large reduction in computational cost.
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4.4 Pruning Method

In order to further improve the computational efficiency of the BP method, we introduce
a pruning technique and propose a method referred to as the BP with pruning method.
The key idea of the pruning technique is to utilize the following property: Once we have
S(H ∪ {u}, t0) = S(H ∪ {v}, t0) at some time-step t0 on the course of the BP process for a
pair of information source nodes, u and v, then we have S(H ∪ {u}, t) = S(H ∪ {v}, t) for
all t > t0. The BP with pruning method estimates σ by the following algorithm:

BP with pruning method:

B1. Set σ(H ∪ {v}, t)← 0 for each v ∈ V \H and t ∈ {1, . . . , T }.
B2. Repeat the following procedure M times:

B2-1′′. Initialize S(H ∪ {v}; 0) = H ∪ {v} for each v ∈ V \H , and set A(0) ←
V \H, A(1)← ∅, . . . , A(T )← ∅, and C(v)← {v} for each v ∈ V \H .

B2-2. For t = 1 to T do the following steps:
B2-2a. Compute B(t − 1) =⋃

v∈A(t−1) S(H ∪ {v}, t − 1).

B2-2b. Perform the BP process for the links from B(t − 1) in GT , and generate the graph
G̃t constructed by the occupied links.

B2-2c′′. For each v ∈ A(t − 1), compute S(H ∪ {v}, t) = ⋃
w∈S(H∪{v},t−1) �(w; G̃t ), set

A(t)← A(t)∪ {v} if S(H ∪ {v}, t) �= ∅, and set σ(H ∪ {u}, t)← σ(H ∪ {u}, t)+
|S(H ∪ {v}, t)| for each u ∈ C(v).

B2-2d. Check whether S(H ∪ {u}, t) = S(H ∪ {v}, t) for u, v ∈ A(t), and set C(v) ←
C(v) ∪ C(u) and A(t)← A(t)\{u} if S(H ∪ {u}, t) = S(H ∪ {v}, t).

B3. For each v ∈ V \H and t ∈ {1, . . . , T }, set σ(H ∪{v}, t)← σ(H ∪{v}, t)/M , and
output σ(H ∪ {v}, t).

Basically, by introducing step B2-2d and reducing the size of A(t), the proposed method
attempts to improve the computational efficiency over the original BP method. For the pro-
posed method, it is important to implement efficiently the equivalence check process in
step B2-2d. In our implementation, we first scan each v ∈ A(t) according to the value of
n = |S(H ∪ {v}, t)| and identify those nodes with the same n value.

4.5 Burnout method

In order to further improve the computational efficiency of the BP with pruning method, we
introduce another technique called burnout and propose a method that is referred to as the BP
with pruning and burnout method.5 More specifically, we focus on the fact that maximizing
the marginal influence degree σ(H ∪ {v}, t) with respect to v ∈ V \H is equivalent to max-
imizing the marginal influence gain φH (v, t) = σ(H ∪ {v}, t)− σ(H, t). Here, in terms of
the BP process for a newly added information source node v, maximizing φH (v, t) reduces
to maximizing |S(H ∪ {v}, t)\S(H, t)| on the average. The BP with pruning and burnout
method estimates φH by the following algorithm:

BP with pruning and burnout methods:

C1. Set φH (v, t)← 0 for each v ∈ V \ H and t ∈ {1, . . . , T }.
C2. Repeat the following procedure M times:

C2-1. Initialize S(H ; 0) = H , and S({v}; 0) = {v} for each v ∈ V \H , and set A(0) ←
V \ H, A(1)← ∅, . . . , A(T )← ∅, and C(v)← {v} for each v ∈ V \H .

5 Here, we integrated these two techniques, but it is also possible to combine the BP method with only the
burnout method. We skipped this one because it is self-evident.
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C2-2. For t = 1 to T do the following steps:
C2-2a. Compute B(t − 1) =⋃

v∈A(t−1) S({v}, t − 1) ∪ S(H, t − 1).

C2-2b. Perform the BP process for the links from B(t − 1) in GT , and generate the graph
G̃t constructed by the occupied links.

C2-2c. Compute S(H, t) = ⋃
w∈S(H,t−1) �(w; G̃t ), and for each v ∈ A(t − 1), com-

pute S({v}, t) = ⋃
w∈S({v},t−1) �(w; G̃t ) \ S(H, t), set A(t) ← A(t) ∪ {v} if

S({v}, t) �= ∅, and set φH ({u}, t)← φH ({u}, t)+ |S({v}, t)| for each u ∈ C(v).
C2-2d. Check whether S({u}, t) = S({v}, t) for u, v ∈ A(t), and set C(v)← C(v)∪C(u)

and A(t)← A(t)\{u} if S({u}, t) = S({v}, t).
C3. For each v ∈ V \H and t ∈ {1, . . . , T }, set φH ({v}, t)← φH ({v}, t)/M , and output

φH ({v}, t).

Intuitively, by using the burnout technique, we can substantially reduce the size of the active
node set from S(H ∪ {v}, t) to S({v}, t) for each v ∈ V \H and t ∈ {1, . . . , T } compared
with the BP with pruning method. Namely, in terms of computational costs described by
Eq. (3), we can expect to obtain smaller numbers for Na and Nc when H �= ∅. However, how
effectively the proposed method works will depend on several conditions such as network
structure, time span, values of diffusion probabilities, etc. We will do a simple analysis later
and experimentally show that it is indeed effective.

5 Experimental evaluation

We have carried out extensive experiments and evaluated the effects of the two techniques
that were implemented on top of the bond percolation on the quality of the solution and
the computation time, using two real-world social networks. The baseline to compare the
quality of the solution is the naive simulation method which is confirmed to be prohibitively
inefficient.

5.1 Network data and basic settings

In our experiments, we employed two datasets of large real networks used in [11], which
exhibit many of the key features of social networks [23].

The first one is a trackback network of Japanese blogs. The network data was collected by
tracing the trackbacks from one blog in the site “goo (http://blog.goo.ne.jp/)” in May, 2005.
We refer to the network data as the blog network. The blog network was a strongly connected
bidirectional network, where a link created by a trackback was regarded as a bidirectional link
since blog authors establish mutual communications by putting trackbacks on each other’s
blogs. The blog network had 12,047 nodes and 79,920 directed links. The second one is
a network of people that was derived from the “list of people” within Japanese Wikipedia.
Specifically, we extracted the maximal connected component of the undirected graph obtained
by linking two people in the “list of people” if they co-occur in six or more Wikipedia pages
and constructed a directed graph by regarding those undirected links as bidirectional ones.
We refer to the network data as the Wikipedia network. Thus, the Wikipedia network was
also a strongly connected bidirectional network and had 9,481 nodes and 245,044 directed
links.

We assigned a uniform value p to the diffusion probability pu,v for any link (u, v) ∈ E ,
that is, pu,v = p for the SIS model we used. According to [10] and [16], we set the value of
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p relatively small. In particular, we set the value of p to a value smaller than 1/d̄ , where d̄
is the mean out-degree of a network. Since the values of d̄ were about 6.63 and 25.85 for the
blog and the Wikipedia networks, respectively, the corresponding values of 1/d̄ were about
0.15 and 0.039. In view of these values, we decided to set p = 0.1 for the blog network and
p = 0.03 for the Wikipedia network. Time span T can be arbitrarily set, but it is constrained
by the inefficiency of the naive simulation method. We found T = 30 is good enough to eval-
uate the performance of our method. We also need to specify the number M of performing
the bond percolation process. The larger, the better, but we have to compromise between the
solution quality and the computational cost. We set M = 10,000 for estimating influence
degrees for the blog and Wikipedia networks (See Sect. 5.2.1).

All our experimentations were undertaken on a single PC with an Intel Dual Core Xeon
X5272 3.4 GHz processor, with 32 GB of memory, running under Linux.

5.2 Performance for influence function estimation

5.2.1 Accuracy of estimated influence function

We first investigated how accurately the proposed method can estimate the value of influence
function in terms of node ranking. Since, in this case, the information diffusion starts with
every single node v ∈ V independently with all the other nodes remaining inactive, i.e.,
H = ∅, there is no room for burnout to come in. Thus, we compared the BP with pruning
method (BPP for short) with the naive method (naive for short) which we consider as the
baseline. Both methods require M to be specified in advance as a parameter. If M is set at
∞, both BPP and naive should give the correct expected influence degree. For a finite value
of M , the results may seem different. In fact, as shown in Sect. 4.3, the number of coin-flips
is different in these two methods and it is much larger in the naive method. However, this
does not mean that there is more randomness introduced in the naive method and thus the
convergence of the naive method is faster. In fact, for each single (initially activated) node v

from which to propagate the information, the number of independent coin-flips is effectively
the same for both the methods. Thus by using the same value of M , both would estimate
σ(v, t) with the same accuracy in principle.

We have first experimentally confirmed that use of M = 100,000 gives a very stable
identical converged solution for both methods for a few selected initial nodes, but the naive
method took an order of week to return the result and thus is not practical to perform the
comparative study. Then we found that further reducing the value to M = 10,000 still gives
reliable results, i.e., in effect the same ranking and value of σ(v, t), for t = 1, . . . , 20 for the
high ranked nodes. The following results were obtained by using M = 10,000. Tables 1 and 2
show the ranking of the initially activated influential nodes v evaluated at time-step T = 20
for the blog network. We had to limit T to 20 because of the prohibitive computation cost
for the naive simulation. The value of influence function σ(v, 20) is sorted in the decreasing
order, and the top 10 nodes are listed. We repeated the experiment twice for each method
(BPP and naive), and the results for both are shown side by side. We note that the ranking is
exactly the same for the two runs, and this is also true between the two methods. We further
note that the values of corresponding influence degrees are very similar. The influence degree
varies slowly and it decreases only by less than 10% in going from the top to the 10th. Tables 3
and 4 are the results for the Wikipedia network. The results are slightly less stable than for
the blog network. However, the rankings of top 7 are the same for the two runs of BPP and
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Table 1 Results for the top 10
nodes v and the values of
σ(v, 20) based on the proposed
method (BPP) for the blog
network

Left the result of the first
experiment. Right the result of
the second experiment

Rank v σ(v, 20) Rank v σ(v, 20)

1 2,210 984.74 1 2,210 984.87

2 2,248 980.41 2 2,248 979.46

3 3,906 956.97 3 3,906 955.84

4 3,907 953.04 4 3,907 952.71

5 146 929.96 5 146 929.30

6 155 928.77 6 155 928.49

7 3,233 912.61 7 3,233 911.01

8 3,228 912.18 8 3,228 910.49

9 140 909.22 9 140 910.31

10 2,247 909.12 10 2,247 909.59

Table 2 Results for the top 10
nodes v and the values of
σ(v, 20) based on the naive
method for the blog network.

Left the result of the first
experiment. Right the result of
the second experiment

Rank v σ(v, 20) Rank v σ(v, 20)

1 2,210 984.38 1 2,210 985.74

2 2,248 979.59 2 2,248 980.72

3 3,906 956.82 3 3,906 956.57

4 3,907 953.14 4 3,907 953.89

5 146 931.03 5 146 931.62

6 155 929.68 6 155 930.21

7 3,233 913.50 7 3,233 911.89

8 3,228 912.27 8 3,228 910.52

9 140 910.04 9 140 910.37

10 2,247 909.59 10 2247 909.59

the first run of the naive. We note that the values of the influence degrees change much more
slowly, and the value only reduces by less than 0.5% in going from the top to the 10th. The
Wikipedia network is much more difficult in terms of correctly identifying the ranking. From
the overall experimental results, we confirm that for the same and large enough values of M,
the proposed method (BPP) gives the same results as the naive method.

We have not evaluated the integral influence function over the time span T :
∑T

t=1 σ(v, t)
because if it is confirmed that each component σ(v, t) can be well approximated, its sum is
equally well approximated.

5.2.2 Computational cost for influence function estimation

Next, we compared the processing time of the proposed method (BPP) with the BP method
without pruning (BP for short) and the naive method. Here, we used M = 1,000 in order
to keep the computational time for the naive method at a reasonable level so that it runs for
a larger T . Figures 2 and 3 show the processing time to estimate {σ(v, t); v ∈ V, t = 0,

1, . . . , T } as a function of the time span T for the blog and the Wikipedia networks, respec-
tively. In these figures, the circles, squares, and triangles indicate the results for BPP, BP
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Table 3 Results for the top 10
nodes v and the values of
σ(v, 20) based on the proposed
method (BPP) for the Wikipedia
network

Left the result of the first
experiment. Right the result of
the second experiment

Rank v σ(v, 20) Rank v σ(v, 20)

1 790 2,121.52 1 790 2,120.45

2 279 2,120.52 2 279 2,119.32

3 8,340 2,119.33 3 8,340 2,118.42

4 323 2,118.86 4 323 2,117.81

5 326 2,117.98 5 326 2,117.15

6 772 2,117.06 6 772 2,116.66

7 325 2,116.12 7 325 2,114.85

8 2,441 2,113.09 8 4,924 2,112.72

9 2,465 2,112.52 9 1,407 2,112.44

10 1,407 2,112.19 10 2,498 2,111.35

Table 4 Results for the top 10
nodes v and the values of
σ(v, 20) based on the naive
method for the Wikipedia
network

Left the result of the first
experiment. Right The result of
the second experiment

Rank v σ(v, 20) Rank v σ(v, 20)

1 790 2,122.14 1 790 2,120.84

2 279 2,119.62 2 323 2,118.81

3 8,340 2,119.10 3 279 2,118.76

4 323 2,117.97 4 8,340 2,118.52

5 326 2,117.84 5 326 2,117.75

6 772 2,116.37 6 772 2,117.32

7 325 2,115.84 7 325 2,116.39

8 1,407 2,113.85 8 1,407 2,114.42

9 4,294 2,112.79 9 2,465 2,114.34

10 3,149 2,112.57 10 4,924 2,113.55

and, naive, respectively. Note that in case of the blog network, the processing time for the
time span T = 100 is about 7 min, 2.8 h, and 1.5 days for BPP, BP, and naive, respectively.
Namely, BPP is about 25 and 310 times faster than BP and naive, respectively. Note also that
in case of the Wikipedia network, the processing time for the time span T = 100 is about
21 min, 5 h, and 155 h for BPP, BP, and naive, respectively. Namely, BPP is about 14 and 440
times faster than BP and naive, respectively.

The reduction in the processing time due to the pruning is large. The processing time is
about 20 times less when evaluated for T = 100. However, when T is small, the pruning
adversely affects the processing time because of the computational overhead. The two BP
methods (with and without pruning) are much faster than the naive method. The perfor-
mance difference between BPP and each of BP and naive increases as time-step (or time
span) increases. Moreover, the same performance difference becomes larger for the blog
network than the Wikipedia network. The following simple analysis explains this. Consider
the extreme case where S(u, t) = S(v, t) for ∀u, v ∈ A(t) and d(w) = d for ∀w ∈ S(v, t)
(v ∈ A(t)) at some time-step t . We denote |A(t)| = a and |S(v, t)| = s. Then, we have
Na = as, Nb = sd, Nb′ = asd and Nc = asd ′ on the average for time-step t + 1. Recall
that d ′ is the expected number of the occupied links, which is calculated as pd , where p is
the common diffusion probability for all links. Further, assume that the pruning was ideal
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Fig. 2 Results for the blog network
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Fig. 3 Results for the Wikipedia network

such that Ña = s and Ñc = sd ′, which respectively denote the number of nodes identified in
step 2-2a and the average number of links followed in step 2-2c′′ for BPP. Then, if ad ′ > d ,
i.e., ad ′/d = ap > 1 holds, the improvement ratios of BPP over BP and naive are respec-
tively asd ′/sd = ap and asd/sd = a. From our experimental results, we can estimate a as
310 for the blog network and 440 for the Wikipedia network. Then, we obtain ap as 31 and
13 respectively, which approximates the actual ratio (Proc_timeB P/Proc_timeB P P ), 25 and
14. The similar discussion applies to the processing time for the integrated influence function
over the time span T .
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5.3 Performance of influence maximization problem

5.3.1 Comparison of accuracy of the proposed methods with centrality measures

We compared the quality of the solution of the proposed method, i.e., the BP with pruning
and burnout method (BPPB for short) with the three well-known centrality measures: “degree
centrality”, “closeness centrality”, and “betweenness centrality” that are commonly used as
the influence measure in sociology [27]. Here, the betweenness of node v is defined as the
total number of shortest paths between pairs of nodes that pass through v, the closeness of
node v is defined as the reciprocal of the average distance between v and other nodes in
the network, and the degree of node v is defined as the number of links attached to v. We
evaluated the value of these measures for each node and ranked the nodes in decreasing order
and calculated the influence degree (both the final-time value and the integral-time value)
using the top K nodes with K = 1, 2, . . ., 30. We refer to these methods as the betweenness
method, the closeness method, and the degree method, respectively.

The solution HK of the proposed method is calculated by the bond percolation algorithm
described in Sect. 4.5 using both pruning and burnout. Clearly, the quality of HK can be eval-
uated by the influence degree σ(HK , T ) for the final-time maximization problem and the
influence degree

∑T
t=1 σ(HK , t) for the integral-time maximization problem. We estimated

the values of σ(HK , T ) and
∑T

t=1 σ(HK , t) with M = 10,000 and T = 30. Figures 4 and
5 show the influence degree σ(HK , T ) (solution of the final-time maximization problem) as
a function of the number of initial active nodes K for the blog and the Wikipedia networks,
respectively. In the same way, Figs. 6 and 7 show the influence degree

∑T
t=1 σ(HK , t) (solu-

tion of the integral-time maximization problem) as a function of the number of initial active
nodes K for the blog and the Wikipedia networks, respectively. In the figures, the circles,
triangles, diamonds, and squares indicate the results for the proposed (BPPB), the between-
ness, the closeness, and the degree methods, respectively. Evidently, the proposed method
performs the best for both networks and for both maximization problems. The shapes of the
curves are different for the two problems. In the final-time maximization problem, only the
first top 5 to 10 nodes are influential and the succeeding nodes do not contribute to increasing
the influence degree. As a rule of thumb, this is true for all the four methods. In the inte-
gral-time maximization problem, nodes after the top 10 are also influential and contribute to
increasing the influence degree. This is also true for all the four methods as a rule of thumb.
There is no clear indication as to which centrality measures rank higher for a wide range of
nodes. For example, betweenness measure appears to be the next best for the both networks
in case of the final-time maximization problem, but degree measure is also good for the both
networks (slightly better for the blog and slightly worse for the Wikipedia network) in case of
the integral-time maximization problem. If we focus only the first 10 nodes, degree method
appears to be the best among the three conventional methods. How well or badly each of
the conventional heuristics performs depends on the characteristics of the network structure
and the type of the maximization problem. Note that there are substantial differences in
the amount of the influence degree (value of the objective function). These results clearly
indicate that it is indeed important to obtain the optimal solution. The proposed method can
be effectively used for this purpose and outperforms the conventional heuristics centrality
measures from social network analysis.

It is interesting to note that the k nodes (k = 1, 2, . . ., K ) that are discovered to be the most
influential by the proposed method are substantially different from those that are found by
the conventional centrality measures. For example, in the case of the final-time maximization
problem, the best node (k = 1) chosen by the proposed method for the blog dataset is ranked
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Fig. 4 Comparison of solution quality for the blog network (final-time maximization problem)
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Fig. 5 Comparison of solution quality for the Wikipedia network (final-time maximization problem)

118 for the betweenness method, 659 for the closeness method and 6 for the degree method,
and the 15th node (k = 15) by the proposed method is ranked 1,373, 8,848, and 507 for
the corresponding conventional methods, respectively. The best node (k = 1) chosen by the
proposed method for the Wikipedia dataset is ranked 580 for the betweenness method, 2,766
for the closeness method and 15 for the degree method, and the 15th node (k = 15) by the
proposed method is ranked 265,2041, and 21 for the corresponding conventional methods,
respectively. In the case of the integral-time maximization problem, the difference is not that
much but is similar by no means. The best node (k = 1) chosen by the proposed method
for the blog dataset is ranked 17, 5, and 3 for the corresponding conventional methods, and
the 15th node (k = 15) by the proposed method is ranked 31, 653, and 27, respectively. The
best node (k = 1) chosen by the proposed method for the Wikipedia dataset is ranked 15, 6,
and 3, and the 15th node (k = 15) by the proposed method is ranked 84, 23, and 12.
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Fig. 6 Comparison of solution quality for the blog network (integral-time maximization problem)
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Fig. 7 Comparison of solution quality for the Wikipedia network (integral-time maximization problem)

What these results imply is that the influential nodes strongly depend on the objective
functions to be maximized, which in turn implies that taking the diffusion process into con-
sideration is crucially important. The results would be affected not only by the network
structure but also by the values of diffusion parameters, i.e., even if the network structure
remains the same, assigning different diffusion probabilities changes the influence degree of
each node. Said differently, any centrality measure that is solely based on network topology
has an intrinsic limitation to correctly evaluate the node influence as defined in this paper.
We realize that these centrality measures are not necessarily designed to infer the influential
nodes. They have their own advantages, e.g., degree centrality can be used to identify the
core nodes of a community, and betweenness centrality can be used to study community
structure. Indeed, the recently proposed topological centrality [32] is shown to be very use-
ful to understand the structure of network by distinguishing the roles of nodes, discovering
communities, and finding underlying backbone networks.
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5.3.2 Comparison of computational cost among different combinations of component
techniques

Next, we compared the processing time of the proposed method (BPPB) with three other
methods with different combinations of component techniques (with/without Pruning and
Burnout), i.e., bond percolation only (BP), bond percolation with pruning (BPP), and bond
percolation with burnout (BPB) to see the effect of each component. We only show the results
for the final-time maximization problem because it is self-evident that the processing time for
the integral-time maximization problem is almost the same from the algorithm in Sect. 4.1.
Figures 8 and 9 show the processing time of these four methods as a function of the number
of initial active nodes K for the blog and the Wikipedia networks, respectively. In these
figures, circles, triangles, squares, and crosses indicate the results of BPPB, BPB, BPP, and
BP, respectively. The effect of the pruning is shown by the difference in the processing time
at K = 1 (difference between BP and BPP). The pruning reduces the processing time to
about 1/5, which is consistent with Figs. 2 and 3 for T = 30 in Sect. 5.2.2. At K = 2, the
effect of burnout starts appearing and it surpasses the effect of pruning for the blog network
(BPB < BPP), but it still does not do so for the Wikipedia network (BPP < BPB). However,
after K ≥ 3, the effect of burnout surpasses the effect of pruning, and burnout plays a key role
in reducing the computational cost. Combining the both, i.e., BPPB, always gives the best
results within the region where the experiments were performed, i.e., K ≤ 5. The amount
of reduction in processing time by BPPB is large. The processing time of BP and BPPB
for K = 5 is 5.8 days and 2.8 h, respectively, for the blog network, and 9.3 days and 5.6 h,
respectively, for the Wikipedia network. The processing time reduces to 1/50 for the blog
network and 1/40 for the Wikipedia network for K = 5. However, it is seen that the differ-
ence between BPB and BPPB becomes smaller as K becomes larger, and it is predicted that
eventually BPB will surpass BPPB, meaning that the overhead of pruning exceeds the saving
by pruning. Thus, it is advisable to use both the strategies only in the initial few iterations, and
stop using the pruning and use the burnout alone in the succeeding iterations in the greedy
algorithm. Note that the above reduction is for T = 30. It is expected that the reduction is
much larger for a larger T , e.g., T = 100, and also for a larger K , e.g., K = 30. Needless
to say, the naive method needs an order of month to return the results and is prohibitively
inefficient. From these results, we can conclude that the proposed method is much more
efficient than the simple BP method and can be practical.

6 Discussion

The influence function σ(·, T ) is submodular [10]. For solving a combinatorial optimization
problem of a submodular function f on V by the greedy algorithm, Leskovec et al. [15] have
recently presented a lazy evaluation method that leads to far fewer (expensive) evaluations
of the marginal increments f (H ∪ {v}) − f (H), (v ∈ V \ H ) in the greedy algorithm for
H �= ∅, and achieved an improvement in speed. Note here that their method requires evaluat-
ing f (v) for all v ∈ V at least. Thus, we can apply their method to the influence maximization
problem for the SIS model, where the influence function σ(·, T ) is evaluated by simulating
the corresponding random process. It is clear that (1) this method is more efficient than the
naive greedy method that does not employ the BP method and instead evaluates the influence
degrees by simulating the diffusion phenomena and (2) further both the methods become
the same for K = 1 and empirically estimate the influence function σ(·, T ) by probabilistic
simulations. These methods also require M to be specified in advance as a parameter, where
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Fig. 8 Comparison of processing time for the blog network (final-time maximization problem)
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Fig. 9 Comparison of processing time for the Wikipedia network (final-time maximization problem)

M is the number of simulations. Note that the BP and the simulation methods can estimate
influence degree σ(v, t) with the same accuracy by using the same value of M . Moreover,
estimating influence function σ(·, 30) by 10,000 simulations needed more than 35.8 h for the
blog dataset and 13.2 days for the Wikipedia dataset, respectively. However, the proposed
method for K = 30 needed less than 7.0 h for the blog dataset and 13.1 h for the Wikipedia
dataset, respectively. Therefore, it is clear that the proposed method can be faster than the
method by Leskovec et al. [15] for the influence maximization problem for the SIS model.
In fact, we have confirmed in [14] that the bond percolation method is 10 times faster than
the lazy evaluation for the SIR model for K = 30. Since the SIS model can be mapped to the
SIR model by introducing the layered graph, the result above is consistent with our previous
result.
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We discussed the accuracy and the computational cost of the proposed method in Sects. 5.2
and 5.3. Here, we look into the solutions of the final-time maximization problem and the inte-
gral-time maximization problem. We found that these two different maximization problems
give almost totally different nodes although the objective function to be maximized for the
latter is the sum of the objective function of the former over the final time T . There is only
one common node out of 30 influential nodes in case of the blog network, and there are only
five common nodes in case of the Wikipedia network. In general, the identified influential
nodes for the final-time maximization problem reflect the diffusion characteristics of one
time slot but those for the integral-time maximization problem reflect the global diffusion
characteristics. Intermediate process does not matter and what matters is only the final situ-
ation for the former, whereas the whole process does matter for the latter. It is important to
distinguish these two different problem characteristics and use the right objective function
that best suits the task in hand.

7 Conclusion

Finding influential nodes is one of the most central problems in the field of social network anal-
ysis. There are several models that simulate how various things, e.g., news, rumors, diseases,
innovation, ideas, etc. diffuse across the network. One such realistic model is the suscepti-
ble/infected/susceptible (SIS) model, an information diffusion model where nodes are allowed
to be activated multiple times. The computational complexity drastically increases because
of this multiple activation property, e.g., compared with the susceptible/infected/recovered
(SIR) model where nodes once activated can never be deactivated/reactivated. We addressed
the problem of efficiently discovering the influential nodes under the SIS model, i.e., esti-
mating the expected number of activated nodes at time-step t for t = 1, . . . , T starting from
an initially activated node set H ∈ V at time-step t = 0 and finding the optimal subset
H∗ to maximize the expected influence. We solved this problem by constructing a layered
graph from the original social network by adding each layer on top of the existing layers
as the time proceeds and applying the bond percolation with two control strategies: pruning
and burnout. We showed that the computational complexity of the proposed method is much
smaller than the conventional naive probabilistic simulation method by a theoretical analysis.
We applied the proposed method to two different types of influence maximization problem,
i.e., discovering the K most influential nodes that together maximize the expected influence
degree at the time of interest (final-time maximization problem) or the expected influence
degree over the time span of interest (integral-time maximization problem). Both problems
are solved by the greedy algorithm taking advantage of the submodularity of the objective
function. We confirmed by applying the proposed method to two real-world networks taken
from the blog and Wikipedia data that the proposed method can achieve considerable reduc-
tion in computation time without degrading the accuracy compared with the naive simulation
method as predicted by the theory. Use of the two control strategies contributes to reducing
the computational cost by a factor of 50 compared with the naive bond percolation which
itself is 2–3 orders of magnitudes faster than the naive simulation method. The proposed
method can discover nodes that are more influential than the nodes identified by the con-
ventional methods based on the various centrality measures. The results of the two influence
maximization problems are totally different in terms of the identified influential nodes and
thus it is crucial to choose the right objective function that meets the need for the task. We
further found that the pruning is effective when searching for a single influential node, but
gradually its overhead surpasses its saving and the burnout is more powerful when searching

123



Efficient discovery of influential nodes for SIS models 633

for multiple influential nodes. Use of both is most effective for the initial few iterations.
Thus, we recommend to use both the pruning and the burnout only in the initial few iter-
ations, and stop using the pruning and use the burnout alone in the succeeding iterations
in the greedy algorithm. Just as a key task on biology is to find some important groups of
genes or proteins by performing biologically plausible simulations over regulatory networks
or metabolic pathways, our proposed method can be a core technique for the discovery of
influential persons over real social networks.

Acknowledgments This work was partly supported by Asian Office of Aerospace Research and Develop-
ment, Air Force Office of Scientific Research, US Air Force Research Laboratory under Grant No. AOARD-
10-4053, and JSPS Grant-in-Aid for Scientific Research (C) (No. 20500147).

References

1. Adar E, Adamic LA (2005) Tracking information epidemics in blogspace. In: Skowron A, Agrawal
R, Luck M, Yamaguchi T, Morizet-Mahoudeaux P, Liu J, Zhong N (eds) Proceedings of 2005
IEEE/WIC/ACM international conference on web intelligence, Compiegne, Sept 2005, pp 207–214

2. Agarwal N, Liu H (2008) Blogosphere: research issues, tools, and applications. SIGKDD Explor
10(1):18–31

3. Backstrom L, Dwork C, Kleinberg J (2007) Wherefore art thou r3579×?: anonymized social net-
works, hidden patterns, and structural steganography. In: Williamson CL, Zurko ME, Patel-Schneider PF,
Shenoy PJ (eds). Proceedings of the 16th international conference on world wide web, Banff, May 2007,
pp 181–190

4. Chen W, Wang Y, Yang S (2009) Efficient influence maximization in social networks. In: Elder IV JF,
Fogelman-Soulié F, Flach PA, Zaki MJ (eds) Proceedings of the 15th ACM SIGKDD international con-
ference on knowledge discovery and data mining, Paris, June 2009, pp 199–208

5. Domingos P (2005) Mining social networks for viral marketing. IEEE Intell Syst 20(1):80–82
6. Domingos P, Richardson M (2001) Mining the network value of customers. In: Proceedings of the 7th

ACM SIGKDD international conference on knowledge discovery and data mining, San Francisco, Aug
2001, pp 57–66

7. Goldenberg J, Libai B, Muller E (2001) Talk of the network: a complex systems look at the underlying
process of word-o-mouth. Market Lett 12(3):211–223

8. Grassberger P (1983) On the critical behavior of the general epidemic process and dynamical percolation.
Math Biosci 63(2):157–172

9. Gruhl D, Guha R, Liben-Nowell D, Tomkins A (2004) Information diffusion through blogspace.
In: Feldman SI, Uretsky M, Najork M, Wills CE (eds) Proceedings of the 13th international confer-
ence on world wide web, New York, May 2004, pp 107–117

10. Kempe D, Kleinberg J, Tardos E (2003) Maximizing the spread of influence through a social network. In:
Getoor L, Senator TE, Domingos P, Faloutsos C (eds) Proceedings of the 9th ACM SIGKDD international
conference on knowledge discovery and data mining, Washington Aug 2003, pp 137–146

11. Kimura M, Saito K, Motoda H (2009) Blocking links to minimize contamination spread in a social net-
work. ACM Trans Knowl Discov Data 3(2):9:1–9:23

12. Kimura M, Saito K, Motoda H (2009b) Efficient estimation of influence functions for SIS model on
social networks. In: Boutilier C (ed) Proceedings of the 21st international joint conference on artificial
intelligence, Pasadena, July 2009, pp 2046–2051

13. Kimura M, Saito K, Nakano R (2007) Extracting influential nodes for information diffusion on a social
network. In: Proceedings of the 22nd AAAI conference on artificial intelligence, Vancouver, July 2007,
pp 1371–1376

14. Kimura M, Saito K, Nakano R, Motoda H (2010) Extracting influential nodes on a social network for
information. Data Min Knowl Discov 20(1):70–97

15. Leskovec J, Krause A, Guestrin C, Faloutsos C, VanBriesen J, Glance N (2007a) Cost-effective outbreak
detection in networks. In: Berkhin P, Caruana R, Wu X (eds) Proceedings of the 13th ACM SIGKDD
international conference on knowledge discovery and data mining, San Jose, Aug 2007, pp 420–429

123



634 K. Saito et al.

16. Leskovec J, McGlohon M, Faloutsos C, Glance N, Hurst M (2007b) Patterns of cascading behavior in
large blog graphs. In: Proceedings of the 7th SIAM international conference on data mining, Minneapolis,
Apr 2007, pp 551–556

17. McCallum A, Corrada-Emmanuel A, Wang X (2005) Topic and role discovery in social networks. In:
Kaelbling LP, Saffiotti A (eds) Proceedings of the 19th international joint conference on artificial intelli-
gence, Edinburgh, July–Aug 2005, pp 786–791

18. Mislove A, Marcon M, Gummadi KP, Druschel P, Bhattacharjee B (2007) Measurement and analysis
of online social networks. In: Dovrolis C, Roughan M (eds) Proceedings of the 7th ACM SIGCOMM
conference on internet measurement, San Diego, Oct 2007, pp 29–42

19. Muhlestein D, Lim S (2009) Online learning with social computing based interest sharing. Knowl Inf
Syst (published online: Nov 2009)

20. Newman MEJ (2001) The structure of scientific collaboration networks. Proc Natl Acad Sci USA
98(2):404–409

21. Newman MEJ (2002) Spread of epidemic disease on networks. Phys Rev E 66:016128
22. Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45(2):167–256
23. Newman MEJ, Park J (2003) Why social networks are different from other types of networks. Phys Rev

E 68:036122
24. Peng W, Li T (2010) Temporal relation co-clustering on directional social network and author-topic

evolution. Knowl Inf Syst (published online: March 2010)
25. Richardson M, Domingos P (2002) Mining knowledge-sharing sites for viral marketing. In: Proceedings

of the 8th ACM SIGKDD international conference on knowledge discovery and data mining, Edmonton,
July 2002, pp 61–70

26. Saito K, Kimura M, Motoda H (2009) Discovering influential nodes for SIS models in social networks.
In: Gama J, Costa VS, Jorge AM, Brazdil P (eds). Proceedings of the 12th international conference of
discovery science, Porto, Oct 2009. Lecture Notes in Computer Science, vol 5808. Springer, pp 302–316

27. Wasserman S, Faust K (1994) Social network analysis. Cambridge University Press, Cambridge
28. Watts DJ (2002) A simple model of global cascade on random networks. Proc Natl Acad Sci USA

99(9):5766–5771
29. Watts DJ, Dodds PS (2007) Influence, networks, and public opinion formation. J Consum Res 34(4):441–

458
30. Zhou B, Pei J (2010) The k-anonymity and l-diversity approaches for privacy preservation in social

networks against neighborhood attacks. Knowl Inf Syst (published online: June 2010)
31. Zhou D, Ji X, Zha H, Giles CL (2006) Topic evolution and social interactions: how authors effect research.

In: Yu PS, Tsotras VJ, Fox EA, Liu B (eds) Proceedings of the 2006 ACM CIKM international conference
on information and knowledge management, Arlington, Nov 2006, pp 248–257

32. Zhuge H, Zhang J (2010) Topological centrality and its applications. J Am Soc Inf Sci Technol
61(9):1824–1841

Author Biographies

Kazumi Saito received a BS degree in mathematics from Keio
University, Kanagawa, Japan, in 1985 and a PhD in engineering from
University of Tokyo, Tokyo, Japan, in 1998. In 1985, he joined the NTT
Electrical Communication Laboratories, Kanagawa, Japan. In 1991, he
joined the NTT Communication Science Laboratories, Kyoto, Japan.
In 2007, he joined the University of Shizuoka, Shizuoka, Japan. He is a
professor at the School of Administration and Informatics. From 1991
to 1992, he was a visiting scholar at the University of Ottawa, Ontario,
Canada. His current research interests are machine learning and statis-
tical analysis of complex networks. He is a member of the Institute of
Electronics, Information, and Communication Engineers (IEICE), the
Information Processing Society of Japan (IPSJ), the Japanese Society
of Artificial Intelligence (JSAI), the Japanese Neural Network Society
(JNNS).

123



Efficient discovery of influential nodes for SIS models 635

Masahiro Kimura received his BS, MS, and PhD degrees in mathe-
matics from Osaka University, Osaka, Japan, in 1987, 1989, and 2000,
respectively. In April 1989, he joined Nippon Telegraph and Tele-
phone (NTT) Corporation, Tokyo, Japan. He mainly worked at NTT
Human Interface Laboratories and NTT Communication Science Lab-
oratories. In April 2005, he joined Ryukoku University, Kyoto, Japan.
Currently, he serves as a professor of the Department of Electronics and
Informatics. His research interests include complex networks science,
data mining, and machine learning. He is a member of the Japanese
Society for Artificial Intelligence (JSAI), the Mathematical Society
of Japan (MSJ), the Japan Society for Industrial and Applied Mathe-
matics (JSIAM), the Japanese Neural Networks Society (JNNS), and
the Institute of Electronics, Information and Communication Engineers
(IEICE).

Kouzou Ohara received the Master of Engineering degree from
Osaka University, Osaka, Japan in 1995. He also received the PhD
degree in engineering from Osaka University in 2002. He is currently
an Associate Professor in the department of Integrated Information
Technology at the college of Science and Engineering of Aoyama
Gakuin University. His research interests include machine learning,
data mining, social network analysis, and personalization of intelligent
systems. He is a member of the Institute of Electrical and Electron-
ics Engineers (IEEE), the Association for the Advancement of Artifi-
cial Intelligence (AAAI), the Institute of Electronics, Information, and
Communication Engineers (IEICE), the Information Processing Soci-
ety of Japan (IPSJ) and the Japanese Society of Artificial Intelligence
(JSAI).

Hiroshi Motoda is a professor emeritus of Osaka University and
a scientific advisor of AFOSR/AOARD (Asian Office of Aerospace
Research and Development, Air Force Office of Scientific Research,
US Air Force Research Laboratory). His research interests include
information diffusion in social network, data mining, machine learning,
knowledge acquisition, scientific knowledge discovery, and artificial
intelligence in general. He received his BS, MS, and PhD degrees all
in nuclear engineering from the University of Tokyo. He is a mem-
ber of the steering committee of PAKDD, PRICAI, DS, and ACML.
He received the best paper awards from Atomic Energy Society of
Japan (1977, 1984) and from Japanese Society of Artificial Intelligence
(1989, 1992, 2001), the outstanding achievement awards from JSAI
(2000) and Okawa Publication Prize from Okawa Foundation (2007).

123


	Efficient discovery of influential nodes for SIS models in social networks
	Abstract
	1 Introduction
	2 Information diffusion model
	2.1 SIS model
	2.2 Influence function

	3 Influence maximization problem
	4 Proposed method
	4.1 Greedy algorithm
	4.2 Layered graph
	4.3 Bond percolation method
	4.4 Pruning Method
	4.5 Burnout method

	5 Experimental evaluation
	5.1 Network data and basic settings
	5.2 Performance for influence function estimation
	5.2.1 Accuracy of estimated influence function
	5.2.2 Computational cost for influence function estimation

	5.3 Performance of influence maximization problem
	5.3.1 Comparison of accuracy of the proposed methods with centrality measures
	5.3.2 Comparison of computational cost among different combinations of component techniques


	6 Discussion
	7 Conclusion
	Acknowledgments
	References


