
Knowl Inf Syst (2012) 30:341–358
DOI 10.1007/s10115-011-0383-7

REGULAR PAPER

BicFinder: a biclustering algorithm for microarray data
analysis

Wassim Ayadi · Mourad Elloumi · Jin-Kao Hao

Received: 30 January 2010 / Revised: 25 October 2010 / Accepted: 22 January 2011 /
Published online: 18 February 2011
© Springer-Verlag London Limited 2011

Abstract In the context of microarray data analysis, biclustering allows the simultaneous
identification of a maximum group of genes that show highly correlated expression patterns
through a maximum group of experimental conditions (samples). This paper introduces a
heuristic algorithm called BicFinder (The BicFinder software is available at: http://www.
info.univ-angers.fr/pub/hao/BicFinder.html) for extracting biclusters from microarray data.
BicFinder relies on a new evaluation function called Average Correspondence Similarity
Index (ACSI) to assess the coherence of a given bicluster and utilizes a directed acyclic graph
to construct its biclusters. The performance of BicFinder is evaluated on synthetic and three
DNA microarray datasets. We test the biological significance using a gene annotation web-
tool to show that our proposed algorithm is able to produce biologically relevant biclusters.
Experimental results show that BicFinder is able to identify coherent and overlapping bicl-
usters.

Keywords Biclustering · Heuristics · Evaluation function · Data mining · Analysis of
DNA microarray data

1 Introduction

Microarray data analysis can be carried out according to at least two different and com-
plementary perspectives. On the one hand, researchers on cancer studies are interested in
categorical phenotypes like cancer occurrences, specific tumor subtypes, or cancer survivals,

W. Ayadi (B) · M. Elloumi
UTIC, Higher School of Sciences and Technologies of Tunis, University of Tunis, 1008 Tunis, Tunisia
e-mail: ayadi@info.univ-angers.fr

M. Elloumi
e-mail: mourad.elloumi@fsegt.rnu.tn

W. Ayadi · J.-K. Hao
LERIA, University of Angers, 2 Boulevard Lavoisier, 49045 Angers, France
e-mail: hao@info.univ-angers.fr

123

http://www.info.univ-angers.fr/pub/hao/BicFinder.html
http://www.info.univ-angers.fr/pub/hao/BicFinder.html

342 W. Ayadi et al.

which naturally leads to supervised classification of data [45]. Supervised classification,
also called class prediction or class discrimination, aims to assign samples to pre-
defined categories [2]. On the other hand, data clustering, i.e., unsupervised classification,
aims to identify groups of genes, or groups of experimental conditions, that exhibit simi-
lar expression patterns. In such a context, it is particularly interesting to be able to identify
simultaneously a group of genes that show similar expression trends across specific groups
of experimental conditions, also called samples, [20,31]. This task is typically achieved by
a particular type of clustering technique known as biclustering and constitutes the focus of
this work. A bicluster is a subset of genes associated with a subset of conditions in which
these genes are co-expressed. The biclustering problem concerns the identification of the
best biclusters of a given dataset. Given the practical importance of the problem, many
algorithms have been devised to extract good and close-to-optimal biclusters [9,16,29,32,
48].

A microarray dataset is represented by a data matrix where each cell represents the gene
expression level of a gene under a particular experimental condition. Formally, a bicluster can
be defined as follows: Let I = {1, 2, . . . , n} be a set of indices of n genes, J = {1, 2, . . . , m}
be a set of indices of m conditions, and M(I, J) be a data matrix associated with I and J .
A bicluster associated with the data matrix M(I, J) is a couple (I ′, J ′) such that I ′ ⊆ I
and J ′ ⊆ J . Biclustering is known to be NP-hard [16]. Indeed, it is a highly combinatorial
problem with a search space of order of O(2|I |+|J |).

Existing biclustering algorithms can be grouped into two large classes [5]: those that
adopt a systematic search approach and those that adopt a stochastic search one, also called
metaheuristic approach. Algorithms that adopt a systematic search approach include greedy
algorithms [9,15,16,29,44], divide-and-conquer algorithms [23,39], and enumeration algo-
rithms [6,24,27,36,42]. Those that adopt a metaheuristic approach include neighborhood-
based algorithms [13], GRASP [19], and evolutionary algorithms [12,21,22,34].

In this paper, we present a greedy algorithm, called BicFinder, for biclustering of DNA
microarray data. The main features of this algorithm include the introduction of a new eval-
uation function called Average Correspondence Similarity Index (ACSI) and the utiliza-
tion of a directed acyclic graph for biclusters extraction. When applied on both synthetic
and real datasets, our algorithm shows better performances compared to other biclustering
algorithms.

2 Our evaluation function: ACSI

To assess a given bicluster, an evaluation function is required. One of the most popular eval-
uation functions is called Mean Squared Residue (MSR) [16], which has been largely used
by several biclustering algorithms [4,12,15,19,34,46,47]. However, MSR is known to be
deficient to correctly assess the quality of certain types of biclusters [1,38,44]. Recently,
another evaluation function called Average Correlation Value (ACV) has been proposed in
[44]. However, the performance of ACV is known to be sensitive to noises [15]. In the fol-
lowing, we briefly present Average Spearman’s Rho (ASR) proposed in [6] and our new
evaluation function Average Correspondence Similarity Index (ACSI).

2.1 Average Spearman’s Rho (ASR)

In [6], we have proposed an evaluation function called Average Spearman’s Rho (ASR) based
on Spearman’s rank correlation [25].

123

BicFinder: a biclustering algorithm for microarray data analysis 343

Let (I ′, J ′) be a bicluster in data matrix M(I, J), the ASR evaluation function is then
defined by:

AS R(I ′, J ′) = 2 max
{ ∑

i∈I ′
∑

j∈I ′; j≥i+1 ρi j

|I ′|(|I ′|−1)
,

∑
k∈J ′

∑
l∈J ′;l≥k+1 ρkl

|J ′|(|J ′|−1)

}
(1)

where ρi j (i �= j) is the Spearman’s rank correlation associated with the row indices i and j
in the bicluster (I ′, J ′) [25], ρkl(k �= l) is the Spearman’s rank correlation associated with
the column indices k and l in the bicluster (I ′, J ′), and ASR (I ′, J ′) ∈ [−1..1]. A high
(resp. low) ASR value, close to 1 (resp. close to −1), indicates that the genes/conditions of
the bicluster are strongly (resp. weakly) correlated. The ASR function can be computed in
O(n2m).

In [7], it has been shown that Spearman’s rank correlation is robust to the presence of
noise in the data and does not require any normalization of the expression data matrix. Since
the evaluation function ASR is based entirely on this correlation function, ASR is robust to
the presence of noise.

2.2 Average Correspondence Similarity Index (ACSI)

Recently, in the area of clustering, Son and Baek [41] showed that the correlation coefficients
like Spearman’s rank correlation [25] or Pearson’s correlation [35] are not reliable measures
when conditions are few. Furthermore, a high correlation coefficient does not necessarily
imply a homogeneous cluster, nor does a low correlation coefficient necessarily imply a het-
erogeneous cluster [37]. To avoid this difficulty, we propose a new evaluation function called
Average Correspondence Similarity Index (ACSI) for bicluster evaluation. The proposed
ACSI is based on Concordance Index (CI) [41], which is designed to measure clusters.

In fact, in microarray data analysis, genes are considered to belong to the same cluster
if their trajectory patterns of expression levels are similar (see [30,37,40]), i.e., if they have
the same profile shape (which may be either monotone increasing, or monotone decreasing,
or up-down, or down-up, etc.). Our proposed ACSI is designed to keep track of the profile
shape over conditions and preserves the similarity information of trajectory patterns of the
expression levels.

In order to calculate ACSI, we first discretize the initial data matrix M (I, J),

I = {1, 2, . . . , n}, and J = {1, 2, . . . , m} into a matrix M ′ defined as follows:

M ′[i, l] =
⎧⎨
⎩

1 if M[i, l] < M[i, l + 1]
−1 if M[i, l] > M[i, l + 1]
0 if M[i, l] = M[i, l + 1]

(2)

with i ∈ [1..n] and l ∈[1..m − 1].
Let the correspondence similarity list between genes gi and g j (i < j), denoted by C SLi, j ,

be the list whose each element is represented by T (M ′[i, l] = M ′[j, l]) where T (Func) is
true, if and only if, Func is true, and T (Func) is false otherwise. Let NumC SLi, j be the num-
ber of times where we have a true value in C SLi, j and MaxC SLi = max{NumC SLi,i+1,

NumC SLi,i+2, . . . , NumCSLi,n}. We define the correspondence similarity index as follows:

C SI (i, j, k) =
∑m−1

l=1 T (M ′[i, l] = M ′[j, l] = M ′[k, l])
MaxC SLi

(3)

with i ∈ [1..n − 2], j ∈ [2..n − 1], k ∈ [3..n], l ∈ [1..m − 1], and i < j < k.

123

344 W. Ayadi et al.

Table 1 Data matrix M c′
1 c′

2 c′
3 c′

4 c′
5 c′

6

g1 10 20 5 15 40 18
g2 20 40 10 30 24 20
g3 23 12 8 15 29 50
g4 4 8 2 6 5 5
g5 12 13 8 15 31 50
g6 23 12 8 15 29 50

Table 2 Discretized data matrix
M ′ c1 c2 c3 c4 c5

g1 1 −1 1 1 −1
g2 1 −1 1 −1 −1
g3 −1 −1 1 1 1
g4 1 −1 1 −1 0
g5 1 −1 1 1 1
g6 −1 −1 1 1 1

Proposition 1 Let i, j , and k, i < j < k, be indices of rows in a data matrix M(I, J), we
have (see Proof 1 in appendix):

0 ≤ C SI (i, j, k) ≤ 1.

C SI (i, j, k) indicates the proportion of true’s, i.e., the change in the same direction, that
exists between rows i, j , and k in the same set of columns. This enables to see how genes
gi , g j , and gk behave over a subset of conditions.

Finally, for the whole bicluster, we define the Average Correspondence Similarity Index
(ACSI) for the row i(i ∈ I ′ and i < j < k):

AC SIi (I ′, J ′) = 2 ∗
∑

j∈I ′; j≥i+1
∑

k∈I ′;k≥ j+1 C SI (i, j, k)

|I ′′|(|I ′′| − 1)
(4)

where |I ′′| is the number of rows (genes) in the bicluster without the row index i .

Proposition 2 Let (I ′, J ′) be a bicluster in a data matrix M(I, J). We have (see Proof 2 in
appendix):

0 ≤ AC SIi (I ′, J ′) ≤ 1.

Proposition 3 The ACSI function can be computed in a time O(n2m), where n is the number
of the rows, and m is the number of the columns of the data matrix (see Proof 3 in appendix).

A high (resp. low) ACSI value, close to 1 (resp. close to 0), indicates that the genes of the
bicluster are strongly (resp. weakly) correlated.

To illustrate the computation of ACSI, we use the following example: Let M be a data
matrix (Table 1). When we discretize M , using Eq. 2, we obtain the data matrix M ′ (Table 2).

Suppose that Bic = ({g1, g2, g4, g5}; {c′
1, c′

2, c′
3, c′

4}) is a bicluster. The ACSI of Bic is

equal to AC SI1 = C SI (1,2,4)+C SI (1,2,5)+C SI (1,4,5)
3(3−1)/2 = 3/4+3/4+3/4

3 = 0.75.
The difference between CI [41] and ACSI is that CI can only measure the coherence

between two genes with all conditions while ACSI measures the coherence of the whole
bicluster, i.e., subset of rows under a subset of columns.

123

BicFinder: a biclustering algorithm for microarray data analysis 345

Fig. 1 The expression profiles of two biclusters B1 a and B2 b with 3 genes and 5 conditions. The genes of
B1 show different profiles while those of B2 show similar patterns. B2 is a better bicluster than B1

With the discretization of the data matrix M , both ACSI and CI can only count the number
of conditions that indicate the same sign of change between rows. Likewise, both ACSI and
CI may lose the information concerning the change of the bicluster size [41]. That is why,
we also compute the ASR evaluation function to take into account the information concern-
ing the change of the bicluster size. Indeed, the existing evaluation functions adopted for
biclustering can roughly be classified into two families: numerical measures and qualitative
measures. Numerical measures, like Pearson’s correlation or Euclidean distance, are easy to
compute but they are quite sensitive toward outliers and noise. Qualitative measures, like
measures that consider only ups, downs, and no change of conditions, are very sensitive to
precise the values of changes. So, ASR, which is based on Spearman’s rank correlation, can
be considered as a good compromise between numerical measures and qualitative ones.

Finally, the example of Fig. 1 shows how ACSI can better discriminate biclusters having
the same profile shape than other evaluation functions. We consider two biclusters B1 and B2
composed of three genes and five conditions. B1={G1(2, 3, 6, 4, 7), G2(1, 2, 3, 5, 3), G3(0,
−5, 1, 9, 2)} and B2={G1(4, 3, 6, 2, 7), G2(5, 2, 3, 1, 3), G3(9, −5, 1, 0, 2)}. B2 is thus
the same as B1, with the first and the fourth conditions of each gene permuted. According to
these profile shapes shown in Fig. 1, B2 is intrinsically better than B1. Yet, the ACV score
[44] (based on Pearson’s correlation coefficient) of B1 and B2 is equally 0.498 just like ASR
[6] (based on Spearman’s correlation coefficient) that leads to the same value of 0.667 for
both biclusters. When we apply our ACSI evaluation function,1 we get an ACSI score of
0.334 (i.e., weakly correlated) for B1 and an ACSI score of 1.0 (i.e., strongly correlated) for
B2, showing clearly B2 is better than B1.

The aim of the next section is to assess the quality of the proposed ACSI evaluation func-
tion in comparison with ASR and two popular functions that are the Mean Squared Residue
(MSR) and the Average Correlation Value (ACV).

2.3 Study of the ACSI evaluation function

As in [44], we compare the ACSI evaluation function with the most used evaluation ones:
MSR [16] and ACV [44]. We also compare ACSI with ASR [6].

To compare evaluation functions mentioned above, we use seven data matrices, named
M1, M2, . . . , M7, representing all typical biclusters [31,44]: a constant bicluster (M1), a
constant rows bicluster (M2), a constant column bicluster (M3), a bicluster with coherent

1 The values of ACSI and ACV (between 0 and 1) are normalized to drop in [−1 .. 1] to be compared with
the scores of ASR which are between −1 and 1.

123

346 W. Ayadi et al.

Table 3 ACSI versus ASR, MSR and ACV

M1 M2 M3 M4 M5 M6 M7

MSR 0.00 0.00 0.00 0.00 0.62 2.425 131.87
ACV 1.00 1.00 1.00 1.00 1.00 1.00 0.84
ASR 1.00 1.00 1.00 1.00 1.00 1.00 0.99
ACSI 1.00 1.00 1.00 1.00 1.00 1.00 1.00

values using an additive model (M4), a bicluster with coherent values using a multiplicative
model (M5), a bicluster with coherent values using a multiplicative model where the first
row of M5 is multiplied by 10 (M6), and a coherent evolution bicluster (M7).

For each bicluster M1, M2, . . . , M7, we calculate the coherence score with our evaluation
functions ACSI and ASR. The values of MSR and ACV were taken from Table 2 in [44].
The results are summarized in Table 3. Concerning MSR, a low (resp. high) value, close to
0 (resp. higher than a fixed threshold), indicates that the genes/conditions of the bicluster
are strongly (resp. weakly) correlated. Concerning ACV, a high (resp. low) value, close to
1 (resp. close to 0), indicates that the genes/conditions of the bicluster are strongly (resp.
weakly) correlated. According to Table 3, the ASR, ACSI, ACV, and MSR functions are per-
fect to assess the quality of biclusters M1, M2, M3, and M4. However, MSR is deficient on
M6 and M7, confirming the claim that MSR is not appropriate on certain types of biclusters
[1,38,44]. On the other hand, ASR and ACV are perfect to assess the quality of biclusters
M5 and M6. ASR is slightly better than ACV when applied on M7. Let us notice that ACSI
is perfect when applied in all biclusters M1, M2, . . . , M7.

3 BicFinder: our proposed biclustering algorithm

The BicFinder biclustering algorithm is based on the construction of a Directed Acyclic
Graph (DAG) to represent the different correspondence similarity lists C SLi j , 1≤ i < j ≤n,
between rows. ASR and ACSI are used as evaluation functions. BicFinder operates in four
main steps: dicretization of the data matrix, construction of the associated DAG, and extrac-
tion and selection of biclusters. The discretization of the data matrix M is obtained thanks to
Eq. 2.

3.1 Construction of DAG and, extraction and selection of biclusters

A DAG associated with a data matrix M ′ is represented as follows: a node ni represents a
gene gi and an arc connecting a node ni to a node n j if and only if i < j . To each arc (ni , n j),
we assign C SLi, j .

The next step extracts coherent biclusters. For each node ni , first we initialize the associ-
ated bicluster Bi = (I ′

i , J ′
i) to (∅,∅). Then, we sort the arcs leaving ni in a decreasing way

according to the number of true’s associated with each arc. We consider then the sorted arcs
successively. Let (ni , nk) the current arc, if the evaluation function ACSI associated with the
bicluster (I ′

i ∪ {gi , gk}, J ′
i ∪ {cl , cl+1 such that T (M ′[i, l] = M ′[k, l]) = true}) is greater

than or equal to a fixed threshold α, then we set Bi = (I ′
i ∪ {gi , gk}, J ′

i ∪ {cl , cl+1 such that
T (M ′[i, l] = M ′[k, l]) = true}). This process is repeated until all the arcs leaving ni are
processed.

123

BicFinder: a biclustering algorithm for microarray data analysis 347

Finally, we consider only the obtained biclusters for which the ASR evaluation function
is greater than or equal to another fixed threshold β. The set of such biclusters represents a
solution to our problem.

To describe formally the BicFinder algorithm, let us define some variables:

M(resp. M ′): data matrix (resp. discretized data matrix),
B: set of biclusters,

ni (resp. nk): node that represents a gene gi (resp. gk),
Bi = (I ′

i , J ′
i): current bicluster,

I c, Jc: current subset of genes and current subset of conditions,
α, β: quality thresholds, respectively, according to ACSI and ASR.

Algorithm 1 BicFinder
1: Input: M, α, β ; Output: B
2: Discretize M using Equation 2 to obtain M ′ // Discretization step
3: Construct the DAG associated with M ′ // Construction step
4: B = Ø // Extraction step
5: for each ni in the DAG do
6: I ′

i = Ø; J ′
i = Ø; // Bi = (I ′

i , J ′
i)

7: Sort the arcs leaving ni in a decreasing way according to the number of true’s
8: for each arc (ni , nk) do
9: I c = I ′

i ∪ {gi , gk }; Jc = J ′
i ∪ {cl , cl+1 such that T (M ′[i, l] = M ′[k, l]) = true};

10: if AC SIi (I c, Jc) ≥ α then Bi = (I c, Jc)
11: endfor
12: B = B ∪ Bi
13: endfor
14: for each bicluster Bi = (I ′

i , J ′
i) in B do // Selection step

15: if AS R(I ′
i , J ′

i) < β then B = B\Bi
16: endfor
17: Return B

Proposition 4 Time complexity of BicFinder is O(n5m), where n is the number of the rows,
and m is the number of the columns of the data matrix (see Proof 4 in appendix).

3.2 An illustrative example

By using the previous example in Sect. 2.2, we represent the data matrix M ′(Table 2) by
the DAG that represents all the genes with their C SL (see Fig. 3). Let us set α = 0.75 and
β = 0.9.

Figure 3 shows the first node g1 with its C SL , i.e., arcs {(a),(b),(c),(d),(e)}. We have two
MaxC SL1:2 arc (a) with NumC SL1,2 = 4 and arc (d) with NumC SL1,5 =4. When we com-
pute AC SI1 of (a) and (d), we find that AC SI1 is equal to 0.75, i.e., AC SI1 = C SI (1,2,5)

2(2−1)/2 =
3/4
1 = 0.75, then we can merge them in B1, giving B1 = ({g1, g2, g5}; {c′

1, c′
2, c′

3, c′
4}).

After that, we test ACSI of (a) and (d) with (b) and get AC SI1 =
C SI (1,2,3)+C SI (1,2,5)+C SI (1,3,5)

3(3−1)/2 = 0.58. Hence, this case is discarded because ACSI is
lower than 0.75. Then, we test ACSI of (a) and (d) with (c) and we obtain AC SI1 =
C SI (1,2,4)+C SI (1,2,5)+C SI (1,4,5)

3(3−1)/2 = 0.75, then we can merge them. So, B1 becomes
B1 = ({g1, g2, g4, g5}; {c′

1, c′
2, c′

3, c′
4}). Finally, with the node g1, we test ACSI of (a), (d) and

2 Arcs with stars.

123

348 W. Ayadi et al.

Fig. 2 Different typical biclusters

Fig. 3 DAG associated with M ′

(c) with (e), then we obtain AC SI1 =
C SI (1,2,4)+C SI (1,2,5)+C SI (1,2,6)+C SI (1,4,5)+C SI (1,4,6)+C SI (1,5,6)

4(4−1)/2 = 0.625. This case is dis-
carded because ACSI is lower than 0.75. This completes the first node g1 of DAG, and
we repeat the same process for all the other nodes.

After that, we select only the biclusters that are higher than a β threshold, i.e., β = 0.9. At
the end, we obtain two biclusters B1 = ({g1, g2, g4, g5}; {c′

1, c′
2, c′

3, c′
4}) with ASR = 0.9 and

B3 = ({g3, g5, g6}; {c′
2, c′

3, c′
4, c′

5, c′
6}) with ASR = 1. So, B = {({g1, g2, g4, g5}; {c′

1, c′
2, c′

3,

c′
4}) ; ({g3, g5, g6}; {c′

2, c′
3, c′

4, c′
5, c′

6})} is the output of our algorithm.

123

BicFinder: a biclustering algorithm for microarray data analysis 349

4 Results

We assess the BicFinder algorithm on both synthetic and real DNA microarray datasets.
For synthetic data, we compare our results with the results of some prominent biclustering
algorithms used by the community, namely, CC [16], OPSM [9], ISA [10], and Bimax [39].
For these references, we have used Biclustering Analysis Toolbox (BicAT) which is a recent
software platform for clustering-based data analysis that integrates all these biclustering
algorithms [8]. For real datasets, in addition to the algorithms mentioned before, we compare
our algorithm with the results of Samba [42], RMSBE [29], MOEA [34], MOPSOB [28],
and CMOPSOB [26]. For both synthetic and real datasets, the parameters of BicFinder
are fixed after a number of simulations. The parameter settings used for CC, OPSM, ISA,
and Bimax for the synthetic datasets are the default values as used in [29]. For all the other
experiments, we report the results of the compared algorithms from their original papers.
The BicFinder algorithm was implemented in Java and was run on a PC Intel Core 2 Duo
T6400 with 2.0 GHz CPU and 3.5Gb RAM.

4.1 Computational results of BicFinder on synthetic data

According to [13,14,44], we have randomly generated two types of synthetic datasets 3 of
size (|I |, |J |)= (200, 20). Different types of biclusters are embedded like constant, additive,
multiplicative, and coherent evolution biclusters. The first (resp. second) dataset contains bicl-
usters without (resp. with) overlapping. To obtain statistically stable results, for each type
of datasets, we have generated 10 problem instances by randomly inserting the biclusters at
different places in the data matrix.

4.1.1 Comparison criteria

Following [14], we use the following two ratios to evaluate our biclustering algorithm:

θShared = Scb

T otsize
∗ 100 (5)

where Scb is the portion size of biclusters correctly extracted, and T otsize is the total size of
correct biclusters.

θNotShared = Sncb

T otsize
∗ 100 (6)

where Sncb is the portion size of biclusters not correctly extracted, and T otsize is the total size
of corrected biclusters.

The ratio θShared (resp. θNotShared) expresses the percent of shared (resp. not shared) bicl-
usters volume that corresponds (resp. does not corresponds) with the real biclusters. In fact,
when θShared (resp. θNotShared) is equal to 100% the algorithm extracts the correct (resp. not
correct) biclusters. A perfect solution has θShared =100% and θNotShared=0%, respectively,
thus, the exact number of genes and conditions of implanted biclusters.

4.1.2 Results and comparisons

For our algorithm, we fix the threshold of ACSI α = 0.85 and threshold of ASR β = 0.3.
We run all the algorithms and we select the 4 biclusters obtained by each algorithm which

3 Datasets available at http://www.info.univ-angers.fr/pub/hao/BicFinder.html.

123

http://www.info.univ-angers.fr/pub/hao/BicFinder.html

350 W. Ayadi et al.

Fig. 4 a Results of BicFinder and comparison with other algorithms on synthetic data without overlapped
biclusters. b Results of BicFinder and comparison with other algorithms on synthetic data with overlapped
biclusters

best fit the 4 real biclusters. We compute the θShared and the θNotShared for each algorithm
to show the averaged percentage of volume of the resulting biclusters which is shared and
not shared with the real biclusters. The objective of this experiment is to determine which
algorithm is able to extract all types of biclusters. Figure 4 shows the statistics of the best
biclusters provided by each algorithm for the two datasets.

As we can see in Fig. 4a, BicFinder obtains 100% of the volume of the correctly extracted
biclusters, with an extra volume that represents 36.18 %. In fact, to enlarge a bicluster, Bic-
Finder tries to add genes that have the maximum similarity with each other over the same
subset of conditions. Hence, it can provide an extra volume only on conditions but gives
exactly the correct number of genes. This is due to the higher number of extracted condi-
tions. In fact, BicFinder tries to keep the maximum number of conditions which have the
same gene expression profile shape.

On the other hand, the best of the studied algorithms, i.e., Bimax, can extract only 58.18%
of implanted biclusters with 21.39% of extra volume. The discretization preprocessing used
by Bimax may render it impossible to identify the elements in the coherent biclusters and
miss some implanted biclusters. ISA has, despite the low value of θNotShared (5.31%), a poor
performance since it extracts only 39.38 % of the implanted biclusters (θShared = 39.38%).
In fact, ISA uses only upregulated and downregulated constant expression values. When
coherent biclusters exist, ISA may miss some rows and columns of the implanted biclusters.
As to CC, when the signal of the implanted biclusters is weak, the greedy nature of CC may
delete some rows and columns of the implanted biclusters at the beginning of the algorithm
and miss definitively the deleted rows and columns in the output biclusters. OPSM seeks
only up- and downregulation expression values with coherent evolution. Its performance
decreases when there exist constant biclusters.

Figure 4b illustrates the statistics of the best biclusters provided by each algorithm for
the second dataset. As we can see in Fig. 4b, the results with BicFinder present the highest
coverage of the correctly extracted biclusters (79.94%) with an extra volume that represent
46.11% of implanted biclusters. On the contrary, the best of the studied algorithms, i.e.,
OPSM, can extract only 42.87% of implanted biclusters with 49.31% of extra volume. To
find overlapped biclusters in a given matrix, some algorithms, e.g., CC, need to mask the
discovered biclusters with random values which is not necessary for BicFinder. ISA and
OPSM are sensitive to overlapping biclusters. They use a normalization step in the first pre-
processing step. With overlapping biclusters, the expression value range after normalization
becomes narrower. Figure 4b shows that BicFinder is marginally affected by the implanted

123

BicFinder: a biclustering algorithm for microarray data analysis 351

Table 4 Five biclusters found on
human B-cell Lymphoma dataset

Genes Conditions Size ASR

649 86 55,814 0.3064
472 91 42,952 0.3246
588 86 50,568 0.3107
596 83 49,468 0.3009
1,018 41 41,738 0.2746

overlap biclusters compared to other algorithms. This study tends to show that, contrary to
existing algorithms, BicFinder is able to extract all types of biclusters.

4.2 Computational results of BicFinder on real data

In this section, we show computational results of BicFinder on three well-known real data-
sets. For the experiments, the two thresholds of BicFinder, i.e., α (ACSI threshold) and β

(ASR threshold), are fixed after a number of simulations. To proceed, we fix one threshold
and tune the other, and vice-versa. For each experiment, five values are tested between 0.5
and 1 with a stepwise of 0.1 for α and ten values are tested between 0.1 and 1 with a stepwise
of 0.1 for β. For each combination, we compute the p-values of the obtained biclusters.
Note that a smaller p-value, close to 0, is indicative of a better match [43]. When a good
combination of α and β is identified, we test ten more values above and below the fixed
thresholds with a stepwise of 0.01 (for both α and β) to obtain more precise values that lead
to biclusters with the lowest p-values.

4.2.1 Human B-cell lymphoma dataset

The Human B-cell Lymphoma dataset [3] contains 4026 genes and 96 conditions.4 As in
[12,16,26,28,34], we use the criterion of the coverage which is defined as the total number
of cells in microarray data matrix covered by the obtained biclusters. For this experiment, the
two parameters of BicFinder α and β are experimentally set to 0.85 and 0.27. The running
time of BicFinder on this test was 78 min.

We select one hundred biggest biclusters out of 727 with high ASR like [12,16,26,28].
These biclusters cover 55.89% of the genes, 100% of the conditions, and in total 44.24%
cells of the expression data matrix.

On the contrary, in [26], the authors report an average coverage of 38.3% cells of the
dataset matrix, while a coverage of 20.96%, 36.9%, and 36.81% cells is reported in [28,34],
and [16], respectively.

Table 4 shows the information of five biclusters out of the one hundred biclusters found
by BicFinder on the Human lymphoma dataset with their ASR. The largest bicluster, in this
table, is of size 55,814.

This implies that BicFinder can generate maximal biclusters with high coverage of a
data matrix.

4.2.2 Saccharomyces cerevisiae dataset

The Saccharomyces cerevisiae dataset5 contains the expression levels of 2993 genes under
173 experimental conditions. In order to evaluate the biological relevance of our proposed

4 Available at http://arep.med.harvard.edu/biclustering/.
5 Available at http://www.tik.ethz.ch/sop/bimax/.

123

http://arep.med.harvard.edu/biclustering/
http://www.tik.ethz.ch/sop/bimax/

352 W. Ayadi et al.

Fig. 5 Proportions of Biclusters significantly enriched by GO annotations

biclustering algorithm, we compute the p-values to indicate the quality of the extracted bicl-
usters. For this experiment, the two parameters of BicFinder α (ACSI threshold) and β

(ASR threshold) are experimentally set as follows: α = 0.85 and β = 0.29. The running
time of BicFinder on this test was 484 min.

Following the same process as in [18,29,39], we extract the largest 100 biclusters out
of 1,163. The results of BicFinder are compared against the reported scores of RMSBE,
Bimax, OPSM, ISA, Samba, and CC from [29,39]. The idea is to determine whether the set
of genes discovered by biclustering algorithms shows significant enrichment with respect to
a specific Gene Ontology (GO) annotation. We use the web-tool FuncAssociate [11] for this
purpose. FuncAssociate computes the adjusted significance scores for each bicluster, i.e.,
adjusted p-values (p). Indeed, the adjusted significance scores assess genes in each bicluster
by computing , which indicates how well they match with the different GO categories.

Figure 5 presents different significant scores p for each algorithm over the percentage
of total extracted biclusters. On the one hand, BicFinder and RMSBE seem to outperform
other algorithms. The BicFinder (resp. RMSBE) result shows that 100% (resp. 98%) of
discovered biclusters are statistically significant with p < 0.001%. On the other hand, apart
from CC, other algorithms have reasonably good performance, i.e., the best of the other
compared algorithms, OPSM, has 87% of biclusters with p < 0.001%. CC underperforms
because it is unable to find coherent biclusters and its lack of robustness against noise.

4.2.3 Yeast cell-cycle dataset

The Yeast Cell-Cycle dataset is described in [43]. This dataset is processed in [16] and pub-
licly available from [17]. It contains the expression profiles of more than 6000 yeast genes
measured at 17 conditions over two complete cell cycles. In our experiments, we use 2884
genes selected by [16]. To assess the quality of the extracted biclusters, we use a well-known
web-tool on yeast cell-cycle to search for the significant shared Gene Ontology terms of the
groups of selected genes. For this experiment, the two parameters of BicFinder α (ACSI
threshold) and β (ASR threshold) are experimentally set as follows: α = 0.80 and β = 0.45.
The running time of BicFinder on this test was 5 minutes.

123

BicFinder: a biclustering algorithm for microarray data analysis 353

Table 5 Most significant shared GO terms (process, function, component) for two biclusters on yeast data
extracted by BicFinder

Biclusters Biological process Molecular function Cellular component

92 genes × Translation (59.7%, 4.33e-30) Structural constituent Cytosolic ribosome
16 conditions of ribosome (52.1%, 3.67e-48) (53.2%, 6.22e-56)

Cellular protein metabolic Structural molecule Cytosolic part
process (65.2%, 1.48e-18) activity (53.2%, 3.76e-40) (54.3%, 8.15e-52)

Protein metabolic process
(65.2%, 1.43e-17)

50 genes × Cellular response to DNA damage Double-stranded DNA Replication fork
17 conditions stimulus (37.3%, 3.24e-14) binding (9.8%, 0.00026) (21.6%, 3.36e-12)

Response to DNA Cyclin-dependent protein Chromosome
damage stimulus kinase regulator activity (35.3%, 1.94e-10)
(37.3%, 5.27e-13) (7.8%, 0.00124)

Chromosomal part
(31.4%, 5.28e-09)

In order to identify the biological annotations for the biclusters, we use GOTermFinder6

which is a tool available in the Saccharomyces Genome Database (SGD). GOTermFinder is
designed to search for the significant shared GO terms of the groups of genes and provides
users with the means to identify the characteristics that the genes may have in common.
We present the significant shared GO terms (or parent of GO terms) used to describe the
two selected set of genes with 92 genes × 16 conditions and 50 genes × 17 conditions
in each bicluster with ASR equal to 0.4543 and 0.7844, respectively, for biological pro-
cess, molecular function and cellular component. As [33], we report the most significant
GO terms shared by these biclusters. For example, with the first bicluster (Table 5), the
genes (YEL034W, YER074W, YER117W, YER131W, YGR214W, YHL001W, YIL069C,
YJL111W, YJL136C, YJL177W, YJL189W, YJL190C, YJR123W, YKL056C, YKL156W,
YKL180W, YKR057W, YKR094C, YLR029C, YLR048W, YLR075W, YLR150W,
YLR167W, YLR185W, YLR248W, YLR249W, YLR325C, YLR344W, YLR367W,
YLR380W, YLR406C, YLR441C, YLR448W, YML026C, YML063W, YML073C,
YMR143W, YMR225C, YNL030W, YNL067W, YNL096C, YNL162W, YNL301C,
YNL302C, YOL039W, YOL040C, YOL127W, YOL139C, YOR167C, YOR234C,
YOR293W, YOR312C, YOR369C, YPL037C, YPL081W, YPL090C, YPL143W,
YPR043W, YPR102C, YPR163C) are particularly involved in the cellular protein meta-
bolic process and protein metabolic process. The values within parentheses after each GO
term in Table 5, such as (59.7%, 4.33e-30) for translation in the first bicluster, indicate the
cluster frequency and the statistical significance. The cluster frequency (59.7%) shows that
out of 92 genes in the first bicluster 55 belong to this process, and the statistical significance
is provided by a p-value of 4.33e-30 (highly significant).

Figure 6 shows the two biclusters of Table 5 found by BicFinder algorithm on the yeast
dataset. From a visual inspection of the biclusters presented, we can notice that the genes do
present a similar behavior under the selected conditions. This fact confirms the claim that
in microarray data analysis, genes are considered to be in the same cluster if their trajectory
patterns of expression levels are similar across a set of conditions [30,37,40].

The experiments on these real datasets show that our proposed algorithms can identify
biclusters with a high biological relevance.

6 Available at http://db.yeastgenome.org/cgi-bin/GO/goTermFinder.

123

http://db.yeastgenome.org/cgi-bin/GO/goTermFinder

354 W. Ayadi et al.

Fig. 6 Two Biclusters found by BicFinder on yeast data: a 92 genes × 16 conditions with ASR = 0.4543
b 50 genes × 17 conditions with ASR = 0.7844

5 Conclusion

We have proposed a novel greedy biclustering algorithm called BicFinder. BicFinder, do
not require fixing a minimum or a maximum number of genes or conditions, enabling a
generation of diversified biclusters.

BicFinder is based on several new features including a more informative evaluation func-
tion, Average Correspondence Similarity Index (ACSI), and an effective bicluster extraction
mechanism using a Directed Acyclic Graph (DAG).

To assess the performance of BicFinder algorithm, experiments were done on both syn-
thetic and real DNA microarray datasets. This experimental study that we have achieved
showed highly competitive results of BicFinder in comparison with other popular bicluster-
ing algorithms. Biological significance of biclustering results has been verified using Gene
Ontology (GO) annotations. This study also shows that the BicFinder algorithm competes
very favorably with several existing algorithms in terms of the percentage and the number of
functionally enriched biclusters for p-values.

Acknowledgments We are grateful to the reviewers for their careful reviews and highly helpful comments.
The work is partially supported by the French Biogenouest Network and the Region “Pays de La Loire” via
the “Bioinformatique Ligérienn” Project.

Appendix

Proof 1 In the same set of columns,
∑m−1

l=1 T (M ′[i, l] = M ′[j, l] = M ′[k, l]) represents
the number of true’s between indices i, j , and k, and MaxC SLi represents the maximum
number of true’s between {(i, i + 1), (i, i + 2), . . . , (i, n)}, i.e.,
MaxC SLi = max{NumC SLi,i+1, NumC SLi,i+2, . . . , NumCSLi,n}. So, the number of
true’s in

∑m−1
l=1 T (M ′[i, l] = M ′[j, l] = M ′[k, l]) is usually smaller than or equal to

MaxC SLi . Since we have:∑m−1
l=1 T (M ′[i, l] = M ′[j, l] = M ′[k, l]) ≥ 0, and MaxC SLi ≥ 0, then we have:

0 ≤
∑m−1

l=1 T (M ′[i,l]=M ′[j,l]=M ′[k,l])
MaxC SLi

≤ 1, i.e., 0 ≤ C SI (i, j, k) ≤ 1. ��

Proof 2 Indeed, we have |I ′′|(|I ′′|−1)
2 values of C SI to calculate. For C SI (i, j, k), i < j < k,

we have then:

123

BicFinder: a biclustering algorithm for microarray data analysis 355

0 ≤ C SI (i, j, k) ≤ 1, then, 0 ≤ ∑
j∈I ′; j≥i+1

∑
k∈I ′;k≥ j+1 C SI (i, j, k) ≤ |I ′′|(|I ′′|−1)

2 ,

hence, 0 ≤
∑

j∈I ′; j≥i+1
∑

k∈I ′;k≥ j+1 C SI (i, j,k)

|I ′′ |(|I ′′ |−1)
2

≤ 1, i.e., 0 ≤ AC SIi (I ′, J ′) ≤ 1. ��

Proof 3 The computing of T (M ′[i, l] = M ′[j, l] = M ′[k, l]) can be achieved in a time
O(1). We repeat this function m − 1 times. We have |I ′′|(|I ′′|−1)

2 values of Correspondence
Similarity Index to calculate, i.e., O(n2). Hence, the ACSI function can be computed in a
time O(n2m). ��
Proof 4 Time complexity of the discretization step is O(nm). Indeed, this step is achieved
via a scanning of the whole data matrix M that is of size nm.

Time complexity of the construction step is O(n2m). In fact, the construction of an arc
and the counting of the number of the associated true’s in the DAG is made in O(m). Since
the total number of arcs is n(n−1)

2 , then time complexity of the construction step is O(n2m).
Time complexity of the extraction step is O(n5m). Indeed, in the worst case, a node ni

has (n − 1) outgoing arcs. So, the determination of the outgoing arcs of a node ni that have
the maximum number of true’s is achieved in O(n). Each one of these arcs will be com-
pared to a bicluster by computing the corresponding ACSI evaluation function. According
to Proposition 3, this is done in a time O(n2m). In the worst case, the comparison between a
bicluster and all the outgoing arcs, that have the maximum number of true’s, is achieved in
a time O(n3m). In the worst case, we have O(n) biclusters, so the comparison between all
the existing biclusters and all the outgoing arcs, that have the maximum number of true’s, is
achieved in O(n4m). We have n nodes, so time complexity of the extraction step is O(n5m).

Time complexity of the selection step is O(n4m). In fact, for a bicluster, the ASR eval-
uation function is computed in a time O(n2m). In the worst case, we have n(n−1)

2 extracted
biclusters. Thus, this step is achieved in a time O(n4m).

Hence, time complexity of BicFinder is O(n5m).

References

1. Aguilar-Ruiz JS (2005) Shifting and scaling patterns from gene expression data. Bioinformatics 21:3840–
3845

2. Akadi A, Amine A, El Ouardighi A, Aboutajdine D (2010) A two-stage gene selection scheme utilizing
MRMR filter and GA wrapper. Knowl Inf Syst, Published online: 10 March 2010

3. Alizadeh AA, Eisen MB, Davis RE et al (2000) Distinct types of diffuse large b-cell lymphoma identified
by gene expression profiling. Nature 403:503–511

4. Angiulli F, Cesario E, Pizzuti C (2008) Random walk biclustering for microarray data. J Inf Sci 178:1479–
1497

5. Ayadi W, Elloumi M (2011) Algorithms in computational molecular biology: techniques, approaches and
applications, chapter biclustering of microarray data. In: Wiley book series on bioinformatics : computa-
tional techniques and engineering, Wiley-Blackwell, John Wiley & Sons Ltd., New Jersey (Publish.) (to
appear)

6. Ayadi W, Elloumi M, Hao JK (2009) A biclustering algorithm based on a bicluster enumeration tree:
application to dna microarray data. BioData Min 2(1):9

7. Balasubramaniyan R, llermeier H, Weskamp E, Kamper J (2005) Clustering of gene expression data using
a local shape-based similarity measure. Bioinformatics 21:1069–1077

8. Barkow S, Bleuler S, Prelic A, Zimmermann P, Zitzler E (2006) Bicat: a biclustering analysis toolbox.
Bioinformatics 22(10):1282–1283

9. Ben-Dor A, Chor B, Karp R, Yakhini Z (2002) Discovering local structure in gene expression data: the
order-preserving submatrix problem. In: RECOMB ’02: proceedings of the sixth annual international
conference on computational biology. ACM, New York, pp 49–57

10. Bergmann S, Ihmels J, Barkai N (2004) Defining transcription modules using large-scale gene expression
data. Bioinformatics 20(13):1993–2003

123

356 W. Ayadi et al.

11. Berriz GF, King OD, Bryant B, Sander C, Roth FP (2003) Characterizing gene sets with funcassociate.
Bioinformatics 19(18):2502–2504

12. Bleuler S, Prelic A, Zitzler E (2004) An ea framework for biclustering of gene expression data. In:
Proceedings of congress on evolutionary computation. pp 166–173

13. Bryan K, Cunningham P, Bolshakova N (2006) Application of simulated annealing to the bicluster-
ing of gene expression data. In: IEEE Transactions on information technology on biomedicine, 10(3):
519–525

14. Cano C, Adarve L, Lopez J, Blanco A (2007) Possibilistic approach for biclustering microarray data. In:
Computers in biology and medicine, 37, pp 1426–1436

15. Cheng KO, Law NF, Siu WC, Liew AW (2008) Identification of coherent patterns in gene expression
data using an efficient biclustering algorithm and parallel coordinate visualization. BMC Bioinformatics
9(210):1282–1283

16. Cheng Y, Church GM (2000) Biclustering of expression data. In: Proceedings of the eighth international
conference on intelligent systems for molecular biology. AAAI Press, pp 93–103

17. Cheng Y, Church GM (2006) Biclustering of expression data. Technical report (supplementary informa-
tion)

18. Christinat Y, Wachmann B, Zhang L (2008) Gene expression data analysis using a novel approach to
biclustering combining discrete and continuous data. IEEE/ACM Trans Comput Biol Bioinform 5(4):
583–593

19. Dharan A, Nair AS (2009) Biclustering of gene expression data using reactive greedy randomized adap-
tive search procedure. BMC Bioinform 10(Suppl 1):S27

20. Dimaggio P, Mcallister S, Floudas C (2008) Biclustering via optimal re-ordering of data matrices in
systems biology: rigorous methods and comparative studies. BMC Bioinform 9(1):458

21. Divina F, Aguilar-Ruiz JS (2007) A multi-objective approach to discover biclusters in microarray data. In:
GECCO ’07: Proceedings of the 9th annual conference on genetic and evolutionary computation. ACM,
New York

22. Gallo CA, Carballido JA, Ponzoni I (2009) Microarray biclustering: A novel memetic approach based
on the pisa platform. In: EvoBIO ’09: Proceedings of the 7th European conference on evolutionary
computation, machine learning and data mining in bioinformatics. Springer, Berlin, pp 44–55

23. Hartigan JA (1972) Direct clustering of a data matrix. J American Statistical Association 67(337):123–
129

24. Jiang D, Pei J, Ramanathan M, Lin C, Tang C, Zhang A (2007) Mining gene-sample-time microarray
data: a coherent gene cluster discovery approach. Knowl Inf Syst 13(3):305–335

25. Lehmann EL, D’Abrera HJM (1998) Nonparametrics: statistical methods based on ranks. Prentice-Hall,
rev. ed. Englewood Cliffs, NJ, pp 292–323

26. Liu J, Li Z, Hu X, Chen Y (2009) Biclustering of microarray data with MOSPO based on crowding
distance. BMC Bioinform 10(S–4)

27. Liu J, Wang W (2003) Op-cluster: clustering by tendency in high dimensional space. IEEE Int Conf Data
Min. ISBN 0-7695-1978-4, pp 187–194

28. Liu JW, Li ZJ, Liu FF, Chen YM (2008) Multi-objective particle swarm optimization biclustering of
microarray data. In: IEEE international conference on bioinformatics and biomedicine(BIBM 2008).
IEEE Computer Society, Washington, pp 363–366

29. Liu X, Wang L (2007) Computing the maximum similarity bi-clusters of gene expression data. Bioinfor-
matics 23(1):50–56

30. Luan Y, Li H (2003) Clustering of time-course gene expression data using a mixed-effects model with
b-splines. Bioinformatics 19:474–482

31. Madeira SaraC, Oliveira ArlindoL (2004) Biclustering algorithms for biological data analysis: A survey.
IEEE/ACM Trans Comput Biol Bioinform (TCBB) 1(1):24–45

32. Madeira SC, Oliveira AL (2009) A polynomial time biclustering algorithm for finding approximate
expression patterns in gene expression time series. Algorithms Mol Biol 4:8

33. Maulik U, Mukhopadhyay A, Bandyopadhyay S (2009) Combining pareto-optimal clusters using super-
vised learning for identifying co-expressed genes. BMC Bioinform 10:27

34. Mitra S, Banka H (2006) Multi-objective evolutionary biclustering of gene expression data. Pattern
Recogn 39(12):2464–2477

35. Myers JL, Arnold DW (2003) Research design and statistical analysis
36. Okada Y, Okubo K, Horton P, Fujibuchi W (2007) Exhaustive search method of gene expression mod-

ules and its application to human tissue data. In: IAENG international journal of computer science, 34,
pp 1–16

123

BicFinder: a biclustering algorithm for microarray data analysis 357

37. Peddada SD, Lobenhofer EK, Li L, Afshari CA, Weinberg CR, Umbach DM (2003) Gene selection and
clustering for time-course and dose-response microarray experiments using order-restricted inference.
Bioinformatics 19:834–841

38. Pontes B, Divina F, Giráldez R, Aguilar-Ruiz JS (2007) Virtual error: a new measure for evolution-
ary biclustering. In: Evolutionary computation, machine learning and data mining in bioinformatics.
pp 217–226

39. Prelic A, Bleuler S, Zimmermann P, Buhlmann P, Gruissem W, Hennig L, Thiele L, Zitzler E (2006)
A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics
22(9):1122–1129

40. Schliep A, Schonhuth A, Steinhoff C (2003) Using hidden markov models to analyze gene expression
time course data. Bioinformatics 19:i255–i263

41. Son YS, Baek J (2008) A modified correlation coefficient based similarity measure for clustering time-
course gene expression data. Pattern Recognit Lett 29(3):232–242

42. Tanay A, Sharan R, Shamir R (2002) Discovering statistically significant biclusters in gene expression
data. Bioinformatics 18:S136–S144

43. Tavazoie S, Hughes JD, Campbell MJ, Cho RJ, Church GM (1999) Systematic determination of genetic
network architecture. Nat Genet 22:281–285

44. Teng L, Chan L (2008) Discovering biclusters by iteratively sorting with weighted correlation coefficient
in gene expression data. J Signal Process Syst 50(3):267–280

45. Wei JM, Wang SQ, Yuan XJ (2010) Ensemble rough hypercuboid approach for classifying cancers. IEEE
Trans Knowl Data Eng 22(3):381–391

46. Yang J, Wang H, Wang W, Yu P (2003) Enhanced biclustering on expression data. In: BIBE ’03: Pro-
ceedings of the 3rd IEEE symposium on bioInformatics and bioengineering. IEEE Computer Society,
Washington, p 321

47. Zhang Z, Teo A, Ooi BC, Tan KL (2004) Mining deterministic biclusters in gene expression data. Bioin-
formatic and bioengineering, IEEE international symposium on, pp 283–290

48. Zhao H, Liew A, Xie X, Yan H (2008) A new geometric biclustering algorithm based on the hough
transform for analysis of large scale microarray data. J Theoretical Biol 251:264–274

Author Biographies

Wassim Ayadi received an Undergraduate Degree in Computer
Science applied to Management in 2004 from the Higher Institute of
Management, Tunis, Tunisia, and a Master’s Degree in Computer Sci-
ence in 2007, from the Faculty of Sciences of Tunis, Tunisia. He is
currently a PhD Student in the Faculty of Sciences of Tunis, and in
the University of Angers, France, where he is working his PhD degree
in the area of biclustering algorithms. He is Teaching Assistant in the
Higher School of Economic and Commercial Sciences, Tunis. He is
also a member of research Unit of Technologies of Information and
Communication (UTIC), Higher School of Sciences and Technologies
of Tunis, University of Tunis, and of Laboratoire d’Etude et de Recher-
che en Informatique d’Angers (LERIA), University of Angers. His
research interests are Computational Molecular Biology, and Knowl-
edge Discovery and Data Mining.

123

358 W. Ayadi et al.

Mourad Elloumi is currently Associate Professor in Computer
Science, Faculty of Economic Sciences and Management of Tunis,
University of Tunis-El Manar, and member of the research Unit
of Technologies of Information and Communication (UTIC), Higher
School of Sciences and Technologies of Tunis, University of Tunis,
Tunisia. Professor Elloumi is the author/co-author of more than 30
publications in international journals and conferences. He was the
guest editor of a special issue on biological knowledge discovery and
data mining, Knowledge Based Systems Journal (Elsevier 2002), the
co-editor, with Prof. Albert Y. Zomaya of the University of Sydney
(Australia), of a book entitled Algorithms in Computational Molecular
Biology: Techniques, Approaches and Applications (Wiley, to appear
in 2011) and the co-editor of the proceedings of two international con-
ferences. His research interests are Computational Molecular Biology,
Algorithmics and Knowledge Discovery and Data Mining.

Jin-Kao Hao holds the title of Distinguished Professor at the Com-
puter Science Department of the University of Angers (France) and
is currently the Director of the LERIA Laboratory. His research lies
in the design of effective algorithms for solving large-scale combina-
torial search problems. He is interested in various application areas
including bioinformatics, telecommunication networks, and transporta-
tion. He has authored or co-authored more than 140 peer-reviewed pub-
lications and edited four books. He has served as an Invited Member of
more than 130 Program Committees of the Conferences and is on the
Editorial Board of four International Journals.

123

	BicFinder: a biclustering algorithm for microarray data analysis
	Abstract
	1 Introduction
	2 Our evaluation function: ACSI
	2.1 Average Spearman's Rho (ASR)
	2.2 Average Correspondence Similarity Index (ACSI)
	2.3 Study of the ACSI evaluation function

	3 BicFinder: our proposed biclustering algorithm
	3.1 Construction of DAG and, extraction and selection of biclusters
	3.2 An illustrative example

	4 Results
	4.1 Computational results of BicFinder on synthetic data
	4.1.1 Comparison criteria
	4.1.2 Results and comparisons

	4.2 Computational results of BicFinder on real data
	4.2.1 Human B-cell lymphoma dataset
	4.2.2 Saccharomyces cerevisiae dataset
	4.2.3 Yeast cell-cycle dataset

	5 Conclusion
	Acknowledgments
	Appendix
	References

