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Abstract The research reported in this paper addresses the problem of energy conservation
in wireless sensor networks (WSNs). It proposes concepts and techniques to extract envi-
ronmental information that are useful for controlling sensor operations, in order to enable
sensor nodes to conserve their energy, and consequently prolong the network lifetime. These
concepts and techniques are consolidated in a generic framework we term CASE: Context
Awareness in Sensing Environments framework. CASE targets energy conservation at the
network level. A subset framework of CASE, we term CASE Compact, targets energy conser-
vation at the sensor node level. In this paper, we elaborate on these two frameworks, elucidate
the requirements for them to operate together within a WSN and evaluate the applications
they can be applied to for energy conservation.

Keywords Context awareness · Wireless sensor networks · Association rule mining ·
Energy conservation

1 Introduction

The challenge of improving sensor energy consumption is a key issue in wireless sensor
networks (WSNs). This is due to the fact that sensor network lifetime is directly related
to operational lifetime. If sensors can operate for longer periods of time and the frequency
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of node failures can be reduced, the reliability and adaptability of the sensor network will
consequently improve. Furthermore, in keeping with Moore’s law, technological advances in
sensor processing hardware significantly outpace progress in sensor battery capacity. Thus,
it becomes imperative to enhance the energy conservation in sensor networks.

In this research, we focus on the challenge of maximising sensor network lifetime.
In addressing this challenge, we note that one of the important factors that affect a sen-
sor’s energy consumption is the number of operations that sensors perform to gather data
about their environment. For example, a sensor that frequently collects and transmits data
will consume more energy than a sensor that only periodically collects and transmits data to
a central processing station. We assert that the number of sensing operations can be reduced
if certain sensors’ future readings can be inferred from previous readings. For instance, if it is
known that all sensors in the same group give low-temperature readings after a period of time
(for e.g. deployed temperature sensors that allow us to assess fire situations in a building),
we can choose to switch off some sensors in the group for the specified period to reduce the
number of sensing operations performed. This assertion forms the basis of this research.

In this paper, we propose concepts and techniques to extract environmental information
that can be used to conserve sensor energy. These concepts and techniques are consolidated
in a generic framework we term the CASE (Context Awareness for Sensing Environments)
framework. The CASE framework is composed of building, learning and triggering compo-
nents for conserving energy in both centralised and in-network WSN configurations. CASE
is further extended to build the subset framework, CASE Compact, to support autonomous
and context-aware learning of triggers that control sensors efficiently in an ‘in-network’ data
processing environment. As part of CASE Compact, we have proposed and developed a
novel rule-learning algorithm, Highly Correlated Rules for Energy Conservation (HiCoRE)
algorithm, that can autonomously learn and discover rules to efficiently regulate sensing
operations. Our experiences in implementing CASE and CASE Compact are reported in
details benefiting practitioners as well as researchers.

CASE and CASE Compact have been implemented, and the extent of energy conser-
vation that can result by using context-driven control of sensor operations is demonstrated
through experimental evaluation. Specifically, for CASE, we have evaluated its application
for a generic scenario to improve generic sensor tasks and for data muling to improve the
data collection process within the application. For CASE Compact, we have evaluated two
applications that have applied rules learnt from using HiCoRE. These applications include
(1) physical clustering [2,39], in which rules are applied to conserve energy of cluster heads
and allow more efficient clustering; and (2) query processing, in which rules are applied to
reduce the amount of data transmissions required for responding to user queries.

The remainder of this paper is organised as follows. Section 2 discusses existing data-
driven approaches to conserve energy in WSNs, with a later emphasis on those that have
studied context-awareness in WSNs. In Sects. 3 and 4, we discuss our proposed context-
aware frameworks to target energy conservation in WSNs. Following this, Sect. 5 details how
both frameworks can be used in a WSN. Section 6 describes the experiments and the results
obtained from our evaluation of CASE and CASE Compact. Lastly, we conclude our findings
and suggest future work in Sect. 7. All code listings can be found in the appendix in Sect. 8.

2 Related work

Existing data processing approaches have focused on the challenge of running sensor opera-
tions efficiently at multiple data levels. To conserve energy, these approaches have shown that

123



Energy conservation in wireless sensor networks 581

achieving a suitable energy trade-off between computation and communication operations is
important. This trade-off is achieved in these approaches generally at the network data level
and the node data level. In the following subsections, we discuss approaches in these two
categories with respect to how they target energy conservation and subsequently how they
fit into the context of our work.

2.1 Network-based approaches

Network-based approaches focus on processing of sensory data collected at a resource-rich
central location (for instance, a base station) in a sensor network in order to conserve energy.
This rationale has been adopted in sensor data sampling techniques, WSN monitoring appli-
cations and sensor data querying systems with respect to data transmission control and
network adaptation. In these categories of approaches, the main idea is that if sensor data
correlations or probabilistic models about sensor data are derived at the base station, the base
station selectively choose nodes in the sensor network to send their data samples during data
gathering. As a consequence, while sampling sensor nodes, the energy consumption of nodes
is minimised through reducing the number of data samples that needs to be collected at the
base station.

With respect to data transmission control techniques, spatial/temporal correlations and
probabilistic models have been used as means to efficiently control data collection. In par-
ticular, spatial and temporal correlations have been utilised to more efficiently perform sam-
pling. In [27], the blue noise sensor selection algorithm is presented to selectively activate
only a subset of sensors in densely populated sensor networks while sampling. This selec-
tion of nodes is derived through building a statistical model of the sensor network nodes
known as blue noise pattern (typically used in image processing applications). This model
is used to deselect sensor nodes that are active while maintaining sufficient accuracy in
sensing. The algorithm used also ensures that sensor nodes with the least residual energy
are less likely to be selected through incorporating of an energy cost function in the sen-
sor selection algorithm. This approach is an improvement over existing coverage-preserving
approaches such as PEAS [37] and node scheduling [33] that do not consider load bal-
ancing in node selection. Probabilistic models have also been used as a means to reduce the
amount of communication from sensor nodes to the network’s base station [10,12,34]. In [12],
this is achieved through utilising a probabilistic model based on time-varying multivariate
Gaussians to derive the probability density function (pdf) over the set of sensor attributes
present in a stored collection of data. The resulting probabilities can then be used to derive
spatial and temporal correlations between sensing attributes, which are consequently utilised
to form the answer to any user query. Their approach conserves energy as these correlations
can be used to develop a query plan that chooses the most cost-effective plan to query the
sensors. For instance, in answering a query, the model might suggest a plan to sample a volt-
age sensor (voltage reading used to predict temperature reading) rather than the temperature
sensor as the cost to sample a temperature sensor is higher.

In relation to network adaptation techniques, a network-based approach can conserve
energy through adapting sensor network operations to physical parameters in the network
such as energy levels or to adapt sensing to specific requirements of the WSN monitoring
application (for instance, perform sensing only when an expected event is likely to occur).
Approaches described in [11,26] have explored these aspects for energy conservation. In
[26], a system-level dynamic power management scheme is used, which adapts sensing and
communication operations to the expected occurrence (in terms of probability measure) of the
event being monitored. This approach is proposed as traditional power management schemes
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only focus on hardware idleness identification to reduce energy consumption. Their results
have shown a gain of 266.92% in energy savings compared to the naive approach that does
not apply such adaptation behaviour. Separately, in [11], the authors propose the use of low-
power sensors as tools for enhancing the operating system-based energy management. From
readings obtained by low-powered sensors, the system would infer the user intent and use it to
match user needs to conserve energy. For example, energy-consuming cameras that capture
user faces would turn off power until low-power thermal sensors indicate a user’s presence.
They have evaluated this approach by an experimental setting consisting of a camera that
periodically captures images and a face detection algorithm that determines the presence or
absence of a user. When a user is present at the screen, the display on the computer will be
turned on and vice versa. An average energy saving of 12% has been reported respectively
for their prototype using low-power sensors.

2.2 Node-based approaches

Node-based approaches focus on processing sensor data on a single sensor node that have
higher processing capabilities. These are approaches that extract useful information from
sensor stream data on the sensor node in a resource-efficient manner. These include data-
centric routing techniques used to determine the structure of communication in the WSN in
an energy-efficient manner, described here as aggregation-based topology control and data
processing techniques that have been proposed to conserve energy at the node level, described
here as data granularity control techniques.

Some instances of aggregation-based topology control approaches include Synopsis Dif-
fusion [25] and Tributaries and Delta [23]. In [25], a ring topology is formed when a node
sends a query over the sensor network. In particular, as the query is distributed across to the
nodes, the network nodes form a set of rings around the querying node (i.e. the base sta-
tion). Nevertheless, although the underlying communication is broadcast, the technique only
requires each node to transmit exactly once, allowing it to generate equal optimal number of
messages as tree-based schemes. However, in this technique, a node may receive duplicates
of the same packets from other neighbouring nodes, which can affect the aggregation result.
Improving over [25] and tree-based approaches, [23] have proposed an algorithm that alter-
nates between using a tree structure for efficiency in low packet loss situations and the ring
structure for robustness in cases of high packet loss. Topology control protocols can also be
clustering-based. In the clustering scheme, cluster heads are nominated to directly aggregate
data from nodes within their cluster. In physical clustering, the clustering is performed on the
basis of physical network parameters such as a node’s residual energy. Physical clustering
protocols include Hybrid Energy Efficient Distributed Clustering: HEED [39], Low Energy
Adaptive Clustering Hierarchy: LEACH [17] and their variants that run on sensor nodes. In
[17], the LEACH protocol proposed allows nodes distributed in a sensor network to organise
themselves into sets of clusters based on a similarity measure. Among these sets of clusters,
sensors would then elect themselves as cluster heads with a certain probability. The novelty of
LEACH lies in the randomised rotation of high-energy cluster-head selection among sensors
in its cluster to avoid energy drain on a single sensor. Finally, local data fusion is performed
on cluster heads to allow only aggregated information to be transmitted to the source, thereby
enhancing network lifetime.

In contrast, data granularity control approaches refer to those that reduce the amount of
data communicated in-network and thus prolong sensor network lifetime. The specific type
of approach that can be applied to reduce communication is dependent upon the granularity of
data required for the WSN application. For instance, a critical-sensing WSN application such
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as smart home health care systems [4] would require accurate values from sensor nodes at
all times to monitor patient health conditions, whereas coarse-granularity data would suffice
for certain event detection systems, for e.g. [16].

As a consequence, various data granularity control mechanisms have been proposed to
cater to the data requirements of WSN applications, utilising compression, approximation and
prediction. In relation to compression, studies that have manipulated the data communication
structure to more efficiently perform compression include [3,28]. In [28], a scheme known as
‘Coding by Ordering’ has been proposed to compress sensory data by encoding information
according to the arrival sequence of sensory data packets. The compression scheme merges
packets routed from nodes to base station into one single large packet up an aggregation tree.
The main idea used in compression is to disregard the order in which sensor data packets
reach the base station in order to suppress some packets sent from intermediate aggregator
nodes to the base station. In effect, this omits the encoding required for the suppressed packets
and thus improves the efficiency to perform compression. Conversely, in applications where
approximations in the collected data can be tolerated, approximations on sensory data can
be performed instead to further reduce data transmissions. The application of approximation
to reduce data transmissions in-network has been explored in works such as [7,40]. These
studies have explored the computation of aggregates in sensor network data. In [40], the
authors propose protocols to continuously compute network digests. These digests are spe-
cifically digests defined by decomposable functions such as min, max, average and count.
The novelty in their computation of network digests lies in the distributed computation of
the digest function at each node in the network in order to reduce communication overhead
and promote load-balanced computation. The partial results obtained on the nodes are then
piggybacked on neighbour-to-neighbour communication and eventually propagated up to the
root node (base station) in the communication tree. The third class of techniques that can be
applied to reduce network data transmissions is prediction. Prediction techniques at the node
level derive spatial and temporal relationships or probabilistic models from sensory data to
estimate local data readings or readings of neighbouring nodes. When sensory data of partic-
ular sensor nodes can be predicted, these sensor nodes are then suppressed from transmitting
the data to save communication costs. Similar to compression and approximation, predic-
tion-based techniques are also required to run in a light-weight manner on sensor nodes. In
the literature, prediction techniques have been proposed as algorithms for enhancing data
acquisition in [22] and [14] as well as generic light-weight learning techniques to reduce
communication costs in transmissions.

2.3 Summary

In essence, these approaches have explored how sensor communication can be improved
through utilising processed data obtained from sensors. However, these approaches have not
yet explored how results obtained from computation can be used explicitly to drive energy-
efficient sensor operations. In other words, the notion of using computed information (locally
at sensor node or globally at application) to autonomously decide how a sensor should oper-
ate efficiently at any point during its sensing task has not been explored. For example, if the
computed information suggests that sensing is no longer required at a sensed region, then
the energy-efficient operation to be carried out by sensors in that sensed region is to sleep.

A data-driven technique that can provide direct control of sensor operations is necessary
to further conserve energy in wireless sensor networks. From our observation of related work
in data processing approaches, we discover that a subset of network-based approaches using
context to make sensor operations more energy-efficient have research potential towards
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developing this technique. The context in their work refers to meaningful information
discovered in a sensor network, in which context characterises sensed information by the
sensors about their environments. In their research [11,13], the authors derive contextual
information about sensors to reduce the amount of sensing and communication required.
For example, in [13], the authors focus on using spatio-temporal correlations in sensor data
as contextual information about the network so that sensors can avoid sending information
where possible, while in [11], work is presented on using low-power sensors to detect user
intent in the application to save energy. Nevertheless, their work is not targeted towards
energy conservation. For example, in [13], spatio-temporal correlations are used as context
while context in a sensor network also covers other information such as remaining energy
resource and sensed readings. Thus, this paper focuses on the problem of obtaining contextual
information in a WSN to enable energy conservation.

3 CASE framework

We propose the Context-Awareness for Sensing Environments (CASE) framework to achieve
context-aware management and control for energy conservation in sensor networks. The
CASE framework is built upon the notion of using available discovered contextual informa-
tion in a sensor network to drive sensor operations efficiently, whereby contextual information
can be regarded as any information that can be used to describe the situation of a sensor. The
notion of context use in a WSN was first presented in [9].

As illustrated in Fig. 1, CASE includes three main components: (1) Learning Component;
(2) Context Processor; and (3) the Context Trigger Engine and supporting datastores that
include (a) Rules datastore, (b) Rules-Context datastore, (c) Context-Action datastore, (d)
Action-Operations datastore, and (e) Sensor Group Information datastore.

Sensor data readings that arrive at CASE are handled by the learning component and the
context processor component. The learning component is responsible for discovering rules
useful to define relationships between sensor readings to be used within CASE. These rules
provide the basis for triggering to happen. As an example of a rule, given three sensor nodes
S1, S2 and S3 that detect temperature readings in a sensor network, a rule might suggest that
when S1 and S2 have temperature readings over 30 degree celsius, sensor node S3 would have
a temperature above 30. The reason for the association between sensors S1, S2 and S3 could
be that they are all deployed in the same region where the situation context is summer and
temperatures are high. A rule such as “S1 = ‘H ′ ∧ S2 = ‘H ′ → S3 = ‘H ′” has two parts:
(1) antecedents from the left hand side of the rule (i.e. S1 and S2 have high temperatures) and
(2) consequents from the right hand side of the rule (i.e. S3 has high temperature).

On one hand, the antecedents of the rule imply the context of the situation in which some
action can be taken when CASE next determines that this context has occured again. On the
other hand, the consequents of the rule provide the action to be taken. In this example, when
sensors S1 and S2 have high temperature readings, one action that CASE can take is to sleep
‘S3’ while the rule holds true. The rules would be stored in the Rules datastore to be used by
that the user or a script to program the Rules-Context datastore and Context-Action datastore
in CASE. The rules can be obtained by mining sensor data through the learning component
or they can be supplied by the user from prolonged observation of trends in sensor data:

(1) Direct mapping from sensor readings using static rules by user The rules in the
rules datastore can be manually programmed by users. The user can program the
rules by observing the trends in sensor data stored over time. Manually programming

123



Energy conservation in wireless sensor networks 585

Fig. 1 CASE architecture

rules will complement any other approaches in which the rules need to be updated
frequently to adjust to any sensor data distribution changes. Nevertheless, incorrect
rules can result in rule conflicts or context switches and as a result, possibly increase
energy consumptions.

(2) Learning Component mines for rules from sensor readings An adaptive approach to
programming the rules can be provided through the use of a learning component to mine
rules from sensor data. The learning component within CASE can be implemented in
two ways to form rules: (1) by mining sensor data streams using existing stream asso-
ciation rule-mining techniques to track frequent items in sensor data streams [20] and
generate rules from the frequent items and (2) by mining static sensor databases using
conventional rule-mining techniques [1,29]; this requires storage of sensor readings in
databases.

The datastores used by the components within CASE store information regarding contex-
tual data, actions that can be executed and rules that describe conditions for which actions
that are to be executed given the discovered context. These information can be more formally
defined as events, conditions and triggers, commonly used for past active database sys-
tems [36]. Active database systems is a form of database technology that focusses on cre-
ating a system that would perform certain operations to react to expected events that can
occur at runtime. The reactive nature of such a system is realised through the definitions of
functions to be performed, storage for conditions to be met to trigger these functions and the
expected events. As this research uses the same rule triggering paradigm as active database
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systems, the following discussion conceptualises the elements stored by the CASE datastores
using some data definitions adopted by active database systems.

An active database system is centred on the notion of rule, and the rule can be defined in
terms of three data parts: (1) Event: which could results in the triggering of a rule; (2) Condi-
tion: which is checked in the process of rule triggering; and (3) Action: which is performed
when the rule is triggered and the conditions have been satisfied. These declared ECA rules
(Event-Condition-Action rules) can then be applied in the process of events monitoring by
an active database system.

In relation to our work, an ECA rule in CASE can be formally defined as follows:

Event The event in CASE is the discovered contextual information represented by the con-
text_tag Ci in the set C , in which C = {C0, C1, . . . , Ck} is the set of context_tags that can
be discovered in the system, where C0, C1, . . . , Ck are distinct and |C | > 0. Ck is a string
representation composed of numerical values (0–9) and alphabetic characters (a–z, A–Z). In
other words, the context_tag is a user-defined textual representation used within the system
to describe the current context for a given rule. This is given based on the user’s knowledge
of the application and his interpretation of the learnt rules in the Rules datastore. The con-
text_tag is used to complement rules that describe relationships among subsets of sensors
and not all sensors in the sensor network.

Condition The conditions in CASE are IF-ELSE statements that define the thresholds of sen-
sor attribute values that need to be met to establish that any particular event has occured. The
operators used for the conditional statements include <,>,>=,<= and==. The threshold
values that need to be met apply to selected attributes belonging to the set of all possible sensor
in the WSN, S = {S0, S1, . . . , Sm}, where S0, S1, . . . , Sm are distinct and |S| > 0. Sm in turn
can belong to a sensor group Go is in the set G, in which G = {G0, G1, . . . , G p}, |G| > 0
and G ⊂ S.

Action The action in CASE is the action_macro ml in the set M , in which M =
{m0, m1, . . . , m j }, |M | > 0, is the set of macros used that can be triggered in response
to the event, or more specifically given any context_tag Ci . The macro ml can eventually be
reduced to operations executed by sensors.

Information regarding the events, conditions and actions can be stored textually or in any
other metadata types such as XML. The relationship between context_tag, action macros and
operations is illustrated in Fig. 2.

As an example, let us reconsider the rule “S1 = ‘H ′ ∧ S2 = ‘H ′ → S3 = ‘H ′”. The
following information is obtained from this rule: given the readings of sensors S1 and S2,
there is a high possibility that S3 would have a similar reading. This entails that some of the
sensors deployed in the same region as S3 can reduce their sensing frequency or be put to sleep
because some abnormal behaviour of the sensor is unlikely, as long as the rule holds true.

Thus, from this rule, the context_tag ‘SUMMER’ may be set to identify the event in which
the condition ‘IF both S1 and S2 having high temperature values’ needs to be satisfied. If
CASE detects this the event and which satisfies the conditions, the assigned action macro,
REDUCE_3, is triggered. Within the Context Trigger Engine, REDUCE_3 is then decoded to
the corresponding operation TRANSMIT_RATE&10000&3 to conserve energy. As a result,
this particular sensor operation reduces the sampling rate to 10,000 milliseconds for sensor S3.

3.1 CASE implementation

Implementation of the CASE framework is done on a laptop as shown in the setup in Fig. 3.
In this figure, three Berkeley mica2 motes and one Berkeley mica2dot equipped with sensor
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Fig. 2 Relationship between context_tags, actions and operations

Fig. 3 CASE implementation setup

boards are connected wirelessly to the laptop through the MIB510 programming board. The
Intel Core Duo laptop is loaded with the Mac OSX 10.5.4 operating system and runs Java
1.5 while the nesC implementation runs on the motes. When packets arrive from the motes
on the laptop, it is first processed by the Java module that listens for sensor data packets from
the programming board’s serial port. The data packets are then forwarded by the listener to
the CASE components to be processed.

More specifically, the CASE implementation can be divided into two parts, i.e. Java mod-
ules that run on the base station (which we term CASE-PC) and TinyOS modules that run on
the motes (which we term CASE-mote, for CASE enabled motes). The Java modules provide
the functionalities for the base station to receive as well as process data packets, while the
TinyOS modules provide the functionalities for motes to understand triggers that are later
issued by the base station. Figure 1 provides a more detailed view of the CASE framework’s
implementation. It depicts the main components of the CASE framework implementation
and the detailed dataflows between these components. In essence, the CASE modules imple-
mented consist of:

1. CASE-PC, which is the Java implementation of CASE modules that run on the server.
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2. TOSBase, which is the TinyOS CASE module implementation for the base station node
in order to provide a communication bridge between the serial and wireless channel.
This implementation is provided as part of TinyOS installation and readers are referred
to [5] for more detailed technical specifications regarding TOSBase.

3. CASE-mote, which is the TinyOS CASE module implementation that runs on sensor
nodes, provides the functionality to communicate sensed data readings to a central base
station as well as to receive and activate trigger messages from the central base station.
The CASE-mote uses existing library components from TinyOS such as ADCC, Temp
and Photo to support sensing capabilities, while components such as CC1000RadioIntM
and HPLPowerManagementM are used to drive energy-saving functionalities.

These modules are described in greater detail in Appendix 2. The implementation of the
CASE framework caters to a centralised processing environment. In this implementation, a
resource-abundant base station is assumed in which sensor data readings are aggregated. In
cases where sensors have to be deployed remotely without such a resource-rich base station,
the use of the CASE framework is then not possible. In order for sensors to be deployed
remotely without the need of a base station and adapt to context dynamically, a framework
designed to work autonomously on the sensor node platform has been proposed in the form
of CASE Compact. Furthermore, this entails a need to learn rules autonomously on sensor
nodes in a resource-optimised manner, which can then be applied as adaptive triggers in
remote sensing environments.

4 CASE Compact framework

As an extension of the CASE framework, we propose the CASE Compact framework to
target energy conservation at the node level. Using CASE Compact, the data are processed
locally at sensor nodes that collect sensed readings through their sensing capabilities and
from neighbouring sensor nodes. CASE is infeasible to be used directly on sensor nodes due
to its use of heavy-weight learning and triggering components. Conversely, CASE Compact
uses a lightweight rule-learning algorithm that we have first presented in [8]. It is designed
to operate in both homogeneous and heterogeneous WSNs.

As illustrated in Fig. 4a, CASE Compact is made up of two core components, namely
the mining component and the triggering component. These two components are further
described below:

(1) Mining Component: The mining component is designed to parse and learn from sensor
data arriving at central nodes. This is a node centralised model in which it is assumed that
the central node has relatively higher resource capabilities than the other sensor nodes
that send data to it. The notion that the central node has greater resource capabilities is
necessary because by running CASE Compact, it will require additional resources to
mine for patterns and do triggering. This data processing model is illustrated in Fig. 4b.
For a homogeneous WSN, the node M can be periodically nominated through a physi-
cal clustering protocol such as HEED [39] and LEACH [17] while for a heterogeneous
WSN, node M can be either a sensor node with greater residual energy or a PDA. The
output of the mining component is rules, useful for triggering in a WSN application.
These rules are generated via a novel rule-mining algorithm, termed HiCoRE (Highly
Correlated Rules for Energy Conservation), that we have developed to work on sen-
sor nodes. The novelty of HiCoRE is in its ability to extract only rules for frequent
transactions that contain highly correlated sensor attributes; a high correlation between
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CASE Compact Framework
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Fig. 4 CASE Compact framework and setup. a CASE Compact framework. b Homogeneous network with
a central node

attributes is desirable because it signifies a strong relationship between attributed sensor
nodes and in effect, increases the relevance of the rule generated. We have demonstrated
the effectiveness of using HiCoRE to conserve energy in [8] (referred to as ARTS).

(2) Triggering Component: The triggering component is designed to allow central nodes
to use the generated rules from the mining component to control sensor nodes in its
group. Using the obtained rules with the triggering component, the central node can
then send messages to power-save sensors while the rules applied infer their values. This
component is useful to conserve energy for the node sensing process in applications
such as query processing and event detection.

4.1 CASE Compact implementation

This implementation serves to evaluate the performance of the CASE Compact framework
that we have described in chapter 4. To recapitulate, CASE Compact involves the use of a
light-weight mining algorithm to mine for highly correlated rules on the sensor node in a
light-weight fashion for energy conservation in WSN applications such as triggering, phys-
ical clustering and data querying. In general, in these applications, selected nodes are used
to run HiCoRE on data streams coming from neighbourhood sensor nodes to yield rules that
conserve energy in specific processes for these applications (for e.g. reclustering process in
physical clustering). As such, to evaluate HiCoRE on the sensor node platform, the imple-
mentation of CASE Compact has been performed for a homogeneous network of Berkeley
motes, similar to Fig. 4b. This setup involves three Berkeley mica2 motes and one Berkeley
mica2dot equipped with sensor-boards, which communicate readings to one another wire-
lessly.

For the CASE Compact framework to operate in a homogeneous network, there is a need
for representative nodes to be temporarily nominated in order to mine for rules from sensor
data collectively and coordinate triggers. As an example, a mica2dot may be designated as
the node to collect and process data coming from all 3 mica2 motes. It is noteworthy that this
nominated node is yet another node in the network and does not need to be a resource-rich
base station or central base station. To enable the selection of such nodes in an autonomous
manner dynamically, this implementation uses the state-of-the-art physical clustering algo-
rithm, HEED (Hybrid Energy-Efficient Distributed Clustering) [39]. HEED has been chosen
for this implementation because it has shown favourable results compared to current exist-
ing physical clustering algorithms such as LEACH [17], which only selects random cluster
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Fig. 5 Sensor data arrival

heads. Furthermore, HEED has a real sensor node implementation, for which the source code
is available online [38]. This makes HEED ideal as a case study in our experiments. Details
of the implementation of CASE Compact on top of HEED can be found in Appendix 3.

In this implementation, nominated HEED cluster heads are utilised to learn rules from
sensor data streams that arrive from cluster members. The resulting benefit is energy con-
served at the node level in a physical clustering application. As a whole, this implementation
serves the core purpose of evaluating the energy conserved while using CASE Compact in
an in-network processing environment. To further explain how CASE Compact operates, we
provide the HiCoRE algorithm in the next section and use a homogeneous network with a
head node similar to HEED as reference.

4.2 CASE Compact: HiCoRE algorithm

4.2.1 Definition

Let us consider the homogeneous network in Fig. 4b where the nominated node M is assigned
to receive data readings from a group of sensor nodes. Let S = {S0, S1, . . . , Sn} be the set
of sensor nodes in this group and let A = {a0, a1, . . . , am} be the set of attributes for any
sensor Si ∈ S, Si �= S j for 0 ≤ i, j ≤ n, ax �= ay for 0 ≤ x, y ≤ m. Any attribute ax can
represent sound, temperature, light or any other such sensing attributes for which the data
may be gathered. Also let Si A = {Si a0, Si a1, . . . , Si am} denote all attribute values of any
sensor Si ∈ S. Thus, S A denotes the set of all attributes for sensor nodes in the WSN. Let
S A = {x0, x1, . . . , xt } where xi represents any Si a j ; xi �= x j where 0 ≤ i, j ≤ t .

With reference to Fig. 5, the data sensed for any attribute ax of Si are continuous data
that would arrive in a random manner at sensor node M . As sensor nodes are resource-
constrained with limited processing capabilities, it is infeasible for sensor nodes to perform
intensive computations on raw sensor data. To reduce the data processing involved to gen-
erate rules, we propose to consider only discretised sensor values in which the range can be
predefined by the user/application. For example, for a light reading in [0, 1,000], the user
can assign the discrete label ‘L’ for readings in range [0, 299], ‘M’ for readings in range
[300, 699] and ‘H ’ for readings in range [700, 1,000]. Similarly, for temperature readings,
the representation can be ‘L’ for a temperature below 16 degrees, ‘H ’ for temperature above
25 degrees and ‘M’ for anything in between.

Transactions are processed in batches b0, b1, . . . , bl , where bi (0 ≤ i ≤ l) must be suf-
ficiently large so that the transactions in bi cannot occur with equal probabilities. Let T =
{t0, t1, . . . , tp} be the set of transactions that any bi has, where any transaction tk , where
0 ≤ k ≤ p, has the form {S0 A, S1 A, . . . , Sn A; count (tk)} and count is the frequency in time
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units (e.g. seconds) in which any attribute ax of any sensor Si has remain unchanged. Let
Tmatch(Si ax ) = {tm0, tm1, . . . , tms} ∈ T , where 0 ≤ s ≤ p be the set of transactions in
bi that contain the attribute Si ax . Also let Tmatch(Si ax = X) = {tmv0, tmv1, . . . , tmvr } ∈
Tmatch(Si ax ), where 0 ≤ r ≤ s be the set of transactions in bi having the attribute Si ax with
the value of X . For a batch bi , the support of any transaction tk ∈ T is simply:

support (tk) := count (tk)
∑p

i=0 count (ti )
. (1)

support (Si ax = X) :=
∑r

i=0 count (tmvi )
∑s

j=0 count (tm j )
. (2)

Subsequently, the confidence of a rule, for instance, (S1temperature = X → S1light = Y )
i.e., (Si ax = X)→ (Si ay = Y ), generated from a transaction over a user-defined support is
given by:

con f idence := support (Si ax = X, Si ay = Y )

support (Si ax = X)

where support (Si ax = X, Si ay = Y ) := |Tmatch(Si ax = X)| + |Tmatch(Si ay = Y )|
|Tmatch(Si ax )| + |Tmatch(Si ay)|

(3)

The support measure can be used to describe how frequent a transaction is among all the
transactions that have been collected. In the Mining Component of CASE Compact, the most
frequent transaction is used to directly generate these rules. This is contrary to work by [21]
in which rules are generated from all permutations of frequent itemsets from all transactions.
This approach does not selectively generate rules that would be useful for energy conserva-
tion. As a consequence, their approach for rule generation cannot be directly applied for our
purpose. Thus, the following sections further discuss our algorithm that selectively generates
rules for energy conservation. It focuses on highly correlated sensor data attributes and only
on transactions that are frequent in a batch.

4.2.2 Case Compact: mining component

The HiCoRE can then be applied to mine rules from sensor data packets arriving at node M .
The rules discovered can then be used by node M to infer readings of M ′s neighbours and
control their operations by the CASE Compact triggering component. The HiCoRE algorithm
is shown as Algorithm 1.

The rules obtained by applying the algorithm can then be filtered by confidence and
support. The filtered rules are then handled by the Triggering Component.

4.2.3 CASE Compact: triggering component

The Triggering Component is designed to apply generated rules from the Mining Compo-
nent to enhance node sensing by energy-efficient control. This involves applying the rules
generated to control the sensor nodes in a group. Consider again the network setup in Fig. 4b
where sensors S1 and S2 communicate their readings periodically to M , and that rules have
been learnt and filtered/selected using HiCoRE (Fig. 4b). To apply a rule stating that the
attribute ax of sensor S1 implies attribute ay of sensor S2 (i.e. S1ax → S2ay), the Triggering
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Algorithm 1 HiCoRE Algorithm: Miner
Require: Transaction batch b j
1: BEGIN DECLARATION
2: Set f requentT ransactionsList as the frequent transactions list, f requentT ransactionsCount list to

store counts for each respective frequent transaction in the list.
3: Set f requentT ransactionsCount (ti ) to represent the count for any frequent transaction ti and

most FrequentT ransaction denote the most frequent transaction in f requentT ransactions, where
2 ≤ | f requentT ransactions| ≤ t, t is the maximum number of attributes in S A and two is the minimum
required for triggering.

4: Set max Support as the current maximum support at any time in the algorithm, highest Support as the sup-
port for the most frequent transaction in f requentT ransactions, and threshold Support as the user-set
threshold support.

5: END DECLARATION
Ensure: Rule list R
6: Obtain energy levels of sensors in S and sort them in ascending order of energy levels, sorted energy lists

EnergyS = e0, e1, ..., eq .
7: Generate the covariance matrix, Cmatri x .
8: Using a bitmap, initialise two sensors in S with greatest probability measure from Cmatri x and EnergyS .
9: Transpose continuous transaction values in b j to discrete values.
10: for i = 1 to | f requentT ransactions| do
11: current Support = f requentT ransactionsCount (ti )|b j |
12: if current Support > max Support then
13: max Support = current Support
14: end if
15: end for
16: if highest Support >= threshold Support then
17: R = get Rules(most FrequentT ransaction)

18: else if Number of bits set > 2 then
19: if all bits set then
20: Reset all bits to 0
21: else
22: Remove one bit reflecting current highest correlation in matrix
23: end if
24: end if
25: Return R.

Component enables node M to command S2 to power save while the reading ax remains
true. The types of power-save operations that can be sent from M to S2 include:

Trigger T1 This trigger reduces the transmission overhead, i.e. transmit only a subset of
attribute values A belonging to Si i.e. ax , . . . , ay , where 0 ≤ x, y ≤ m.

Trigger T2 This trigger sleeps and wakes sensor nodes, i.e. allowing the sensor to sleep
if all its attributes can be inferred.

Trigger T3 This trigger reduces the data transmission frequency.

The above categories of trigger commands are not dependent on the sensor platform used.
In other words, they can be applied to most sensor technologies such as Mulle, SunSpots
and Berkeley Motes, in which the information for triggering can be fully provided by the
rules that have been discovered. The generic process to apply the rules using the Triggering
Component is as follows:

As illustrated in Fig. 6, the rule that is obtained from HiCoRE is composed of two inte-
gral parts: rule antecedents and rule consequents. Rule antecedents are the sensors and their
values, from which we infer consequent sensors’ values when the antecedents’ monitoring
values are present. To enable triggering, the monitorList is used to store antecedent sensors
and their values, while consequent sensors and their values are stored in the triggerList. The
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Algorithm 2 Triggering Component
Require: Rule r
Ensure: Rule Trigger
1: Divide rule into two parts with same rule id.
2: Update monitorList with antecedent sensors.
3: Update triggerList with consequent sensors.
4: Set rule to ACTIVE state for trigger on next timer fire.

Fig. 6 Trigger lists

attribute, STAT, is used to track the status of a rule trigger i.e. whether attributes should still
be monitored by labelling it as ACTIVE or INACTIVE. To reference the rule being used, the
values stored in both lists are tagged by an identical rule id. During operation, using these
two lists, trigger messages are sent to command consequent sensors in triggerList to perform
one of the trigger operations T1, T2 or T3.

5 Using CASE and CASE Compact in a WSN

This section describes how both CASE and CASE Compact can be used together in a WSN
for energy conservation. In particular, it details the network characteristics that would be
present when both CASE and CASE Compact operate in the same sensing environment as
well as the potential benefits and drawbacks in using both frameworks together in the same
WSN application.

To begin, for CASE and CASE Compact to operate in the same sensing environment, the
application in which the two frameworks are used together should embody the following
characteristics:

Presence of a central server: a central server with a constant power input is required to
run CASE in a WSN. This server is a high-resource device such as a laptop or a PC. It
should act as a central repository for sensed data so that contextual input from sensors can
be processed and contextual patterns be learnt. The central server should also be able to
send trigger messages to sensor nodes within its radio range.
Presence of central processing nodes: CASE Compact can be used in a sensor network
either in a heterogeneous network with a static setup consisting of higher resource nodes
and regular sensor nodes or in a homogeneous network with a dynamic setup by using
a mechanism to subgroup nodes in the sensor network and create temporary in-network
group head nodes to control their respective subgroupings.
Utilisation of a communication hierarchy: a sensor network using both CASE and CASE
Compact follows the communication hierarchy as illustrated in Fig. 7a. The hierarchy
depicts regular sensing nodes that are responsible for sending real sensory values to the
intermediate nodes which run CASE Compact and the results from these intermediate
nodes are approximated values to be forwarded to the server that runs CASE.
Coarse-granularity sensing applications: coarse-granularity applications are targeted for
WSNs running both CASE and CASE Compact. Some applications that we have discussed
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Fig. 7 CASE and CASE Compact operating environment. a Communication Hierarchy. b CASE and CASE
Compact in a WSN

include event detection applications [15,16,32] and data aggregation [19]. Only coarse-
granularity applications are applicable because sensor nodes running CASE Compact can
only produce approximate values when triggering is used.

A WSN application that embodies the aforementioned characteristics can operate in the
network arrangement that is shown in Fig. 7b. In this arrangement, CASE Compact runs
on selected central nodes (green dots), while CASE runs on the server connected serially
to the base node M . The central nodes that run CASE Compact is responsible for energy
conservation at the node level for local nodes under their control, while the server the runs
CASE is responsible for energy conservation at the group level for the sensor groups formed.
For instance, in Fig. 7b, sensor nodes S0, S1 and S2 belong to the single sensor group G1.
CASE controls the sensor group G1, while S2 running CASE Compact controls nodes S0

and S1. The triggers coming from CASE can apply to any of the sensor groupings that have
been formed in this network.

To enable power savings in this setup, two requirements are imposed on the central node.
First, the central node needs to run CASE Compact and in doing so, execute the HiCoRE
algorithm to process real values coming from the nodes in its group and perform triggering
to power-save-controlled nodes. The approximated values collected by any central nodes are
then forwarded to the server, enroute node M . Secondly, a central node needs to respond to
any trigger messages coming from the CASE server. Specifically, this response depends on
the type of trigger commands the central node has received from the node M :

(1) Sleep trigger: if the trigger message is to sleep the central node and any other nodes
that it is controlling, the central node would first need to sleep the nodes under its
control before sleeping itself on a timer finally. When the central node has awaken, it
would first broadcast wakeup messages to the sensor nodes that it has slept previously
and reinitiate transmissions from those nodes. The transmission to node M from the
central node then resumes to its default operation.

(2) Reduce activity trigger: the trigger message to reduce the activity level of a sensor
group entails either lowering the transmission frequency or reducing the load of data
transmissions. In both cases, reducing the activity level would entail the central node
sending messages to the nodes in its group to inform the nodes of the intended trans-
mission frequency or load (i.e. the message packet structures to send next) while the
central node itself would send data less frequently or less data to node M .

123



Energy conservation in wireless sensor networks 595

(3) Default sensing trigger: the process to revert sensor groups to default operation fol-
lows the same process that described to reduce the sensing activity. This resumes the
central node and its members to the default state programmed.

It can be anticipated that using both CASE and CASE Compact in this WSN arrangement
allows more energy to be conserved, relative to only using either frameworks individually.
This is because utilising both CASE and CASE Compact enables energy conservation at
both node levels and application levels. At the sensor node level, patterns are learnt locally at
central node to coordinate sensor operations in local groups and at the application level, more
general network behaviours can be captured to drive operations for larger groups of sensors.

6 Evaluation

In this section, we evaluate the performance of CASE and CASE Compact implementations
where the results obtained are presented and analysed. The aim of the experiments conducted
with CASE is to evaluate energy conserved through using discovered contextual informa-
tion at the network level to control sensor node operations. This objective has been achieved
through using our CASE implementation in a pig sty scenario. It needs to be noted that though
these results have appeared in [9] and [8], this is the only work that has given a complete
explanation of the integration of the two frameworks and has expressed our results in greater
detail and in that context.

6.1 CASE evaluation

The aim of the experiments conducted with CASE is to measure the energy saved when
CASE has been utilised to drive sensor node operations in a pig sty scenario. It needs to be
noted that the purpose of the experiments performed is to demonstrate that energy can be
conserved (through applying triggers such as sampling rate adjustment) when a WSN system
adapts to various types of context and not simply to show the effects of varying sampling
rates on a WSN system. Thus, we have not presented any formal procedures for determining
the exact sampling rate required but rather this has been left to the application designer.

In this scenario, we envisage a pig sty with deployed mica2 sensor nodes to collect sensory
information about the living environment of pigs. This sensory information includes light,
temperature and voltage readings. As illustrated in Fig. 8, the setup involves deploying a static
node S1 within the pig sty, a mobile node S4 attached to pig A and a base node S0 attached to the
base station. It has been assumed that both S1 and S4 are within communication range of S0.
The objective is to use contextual information discovered to enable the energy-efficient con-
trol of sensor S1 installed inside the pig sty. The contextual information in this case is primarily
derived from data readings communicated to the base station by sensor nodes S0, S1 and S4.
More specifically, the contextual information pertains to the movement/location of the pigs.

In these experiments, we consider the following context_tags used within CASE:

1. Normal. This represents the default context of the sensors.
2. Pigs_Out. This represents the context whereby pig A with sensor S4 attached is outside

the pig sty.
3. Pigs_In. This represents the context whereby pig A is inside the pig sty.
4. Daytime. This represents the context that it is daytime and pig A is outside the pig sty

for an extended period of time.
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Fig. 8 Pig sty scenario

5. Nighttime. This represents the context that pig A will be inside for an extended period
of time.

Results from the experiments performed using various types of triggers are recorded from
actual runs (given in Fig. 9d) as well as simulations using PowerTOSSIM [31] for each
experiment individually. The PowerTOSSIM results are shown in Fig. 9. The purpose of the
actual runs is to collect results pertaining to the total number of packets sent and received
at the base station, whereas the simulations serve to measure the energy consumption of the
sensor node that has been contextually controlled by CASE (in this case, sensor S1). The
data collected from running PowerTOSSIM are filtered using Perl scripts and presented as a
graph using gnuplot. These experiments and the analysis of the results obtained are further
discussed as follows:

6.1.1 Experiment 1: control experiment

This experiment serves to measure the energy consumption of a sensor node when CASE is
not utilised to drive sensing operations. This experiment is used as a reference comparison in
terms of energy savings for subsequent experiments. In this control experiment, sensor nodes
S0 (mote 0), S1 (mote 1)and S4 (mote 4) are placed in room temperature and under moderate
lighting conditions. As CASE is not running, no context changes are detected to occur over
a duration of the 20- min run. Motes 0, 1 and 4 collect light, temperature and battery voltage
readings at every 1,000 ms and transmit the collected data packets to the base station. The
default context_tag in CASE is ‘Normal’. In total, 608 data packets were sent out to the base
station by all sensor nodes. Figure 9a shows the cumulative energy consumption of sensor
node S0 over time. Sensor nodes S1 and S4 exhibit the same behaviour with respect to energy
consumption. As a whole, the graph result demonstrates that the energy consumption of a
sensor node is directly proportional to the duration of runtime when no other context_tags
have been detected in this experiment.

6.1.2 Experiment 2: sampling rates experiment

In experiment 2, CASE is used to control sensor node S1 by dynamically adjusting its sam-
pling rate upon detection of a suitable context_tag. In this experiment, we first assume that
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Fig. 9 Pig sty experimental results a Control experiment: overall energy versus time. b Sampling rates experi-
ment: overall energy versus time. c Sleep node experiment: overall energy versus time. d Table of experimental
results

S1 can sample at three different rates within CASE, i.e. at 1,000 ms, at 10,000 ms and at
100,000 ms. Let us also assume that the current context_tag in CASE is ‘Pigs_In’ and S1 is
sampling at the rate of 1,000 ms. When pig A with S4 attached moves out of the sty, high
light readings detected by S4 outside enables the detection of the context_tag ‘Pigs_Out’
by CASE. As a consequence, CASE sends the trigger to reduce the sensing rate of S1 in
the sty to 10,000 ms. Subsequently, the sensing rate of S1 is returned to 1,000 ms when the
pigs return to sty and the context_tag is ‘Pigs_In’. The results shown in Fig. 9b illustrate
the energy consumed by S1 during the course of triggering by CASE to react to the current
context_tag detected. In both figures, this correspond to the context_tag ‘Normal’ during the
time period from between 0 and 360 s, the context_tag ‘Pigs_Out’ between 360 and 640 s,
and context_tag ‘Pigs_In’ between 640 and 1,200 s.

A total of 406 data messages were sent out from all sensor nodes in this experiment. In
empirical terms, the results obtained show a reduction in the total number of messages sent in
the network of 33.2% ((608−406)/608)*100 when compared to the control experiment, with
12 packets written out to node S1 from the base station to change its sampling rate. It also
demonstrates an energy saving of around 22.9% (77,800−60,000)/77,800 when we compare
the final energy consumed at the time=1,200 s in Fig. 9a (i.e. 77,800) and b (i.e. 60,000).
Despite the energy conserved, it can be noted that some additional energy is expended when
S1 needs to readjust its operations to the trigger resulting from a new context_tag, also termed
context switch. These context switches occur at times 340 and 580 s, incurring time lags of
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20 and 60 s, respectively. From this observation, it is likely that if context switches occur
too frequently, a significant amount of energy may be expended. A possible solution is to
set appropriate thresholds within CASE to limit the number of context switches, which is a
possible direction for future work.

6.1.3 Experiment 3: message size experiment

This experiment serves to measure possible energy savings from using triggers in CASE to
reduce the size of data messages transmitted by sensor nodes. In this experiment, we assume
that two possible message structures may be set, i.e. a 24-byte data packet that encapsulates
light and temperature data (packet type A) versus a 16-byte data packet that excludes the
light data (packet type B). Let us also assume that the current context_tag is ‘Daytime’ and
all light readings currently need to be recorded. However, when the lights inside the sty
are switched off (at night) resulting in the context_tag ‘Nighttime’, light readings are then
no longer required at S1. This results in the trigger by CASE to temporarily disable light
readings, i.e. the preference to choose the packet type B over the packet type A.

Figure 9d shows the results from our experimental run of 7 min when this situation hap-
pens. As message size changes are not observed in PowerTOSSIM simulations, corresponding
graphs are not presented. Nevertheless, the results from the actual runs may be observed. In
this run, the context_tag detected for the first 2 min is ‘Daytime’, switching to ‘Nighttime’
in the next 3 min and back to ‘Daytime’ until the end of the experiment. During ‘Nighttime’,
S1 transmits data packets without light readings at the rate of 1,000 ms to the base station.
In total, 207 packets were received from sensor nodes at the base station during this period.
Out of the 207 packets recorded, 41 packets had the packet type in listing 6.2 of 16 bytes
and 166 have the packet type in listing 6.1 of 24 bytes. This equates to a total of 4,640 bytes
received at the base station using this trigger. In comparison, if all 207 packets sent were of
the packet type in listing 6.1 of 24 bytes, 4968 bytes would have been sent from the sensor
nodes, implying an additional 328 (4,968–4,640) bytes which is not required, based on the
current contextual information. This achieves a 6.6% reduction in data transmitted. This is a
conservative estimate as the payload only omits the light readings. It is anticipated that more
data transmissions can be reduced if more elements of the readings are omitted, for instance,
both light and temperature readings. Furthermore, this is with respect to one sensor. A typical
WSN consists of a large number of sensor nodes, to the scale of thousands. Finally, it must also
be considered that that the time duration of the experimental runs is lesser than a real-world
deployment where sensors would continuously monitor for several days. The implications
for such scenarios clearly indicate that the CASE approach can have significant benefits.

6.1.4 Experiment 4: sleep node experiment

This experiment serves to measure energy savings from applying triggers to sleep sensor
nodes by CASE. This involves putting sensor nodes to sleep over an extended periods of
time to conserve energy when it is expected that sensing is not required. The adapted sce-
nario is similar to that of the message size experiment in which the context_tags ‘Daytime’
and ‘Nighttime’ are used. Contrary to that experiment, however, S1 is put to put sleep instead
to further conserve energy until readings from S4 indicate that it is ‘Daytime’ again. Figure 9c
shows the energy consumption of node S1 during the context switches, i.e. ‘Daytime’ between
0 and 240 s, ‘Nighttime’ between 250 and 630 s and ‘Daytime’ again from 640 s onwards.
Figure 9c shows the cumulative energy consumed in this period. In comparison with the
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Fig. 10 Muling scenarios. a A basic data muling approach. b Muling approach with CASE

control experiment, approximately 67.9% (77,800−25,000)/77,800 is conserved when we
compare the final energy consumed in Fig. 9a (i.e. 77,800) and c (i.e. 25,000). Although
this experiment demonstrates that significant amounts of energy are saved when the trigger
is to sleep a node, the resulting impact of the trigger to sensing operations within the WSN
needs to be considered. First, a slept sensor node would be completely unresponsive for some
defined time period. This is not feasible when the sensing task is mission-critical. Secondly,
a sensor node that has been put to sleep needs to be awakened either through an internal timer
or by a subsequent trigger due to another context_tag. In the latter case, the onus is on CASE
to ensure that the sensor node put on sleep will be awakened.

6.1.5 Data muling case study

Data muling [30] typically involves the use of mobile entities known as data mules to gather
data from statically deployed nodes in a network and deliver the gathered data to a base
station. Data mules are used in sparse sensor networks for minimising costly data transmis-
sions from nodes directly to base station and for balancing the load on intermediate nodes
that commonly relay sensor data over long distances. Some example for real-world applica-
tions of data muling includes using nodes mounted on gardening spades as data mules in a
vineyard [6] and using an AUV as a data mule to collect readings from underwater sensors
[35]. In order to evaluate the energy benefits in using CASE for data muling, we propose to
compare the two approaches to muling as below:

(1) A basic data muling approach. In this approach, static sensor nodes have to poll con-
tinuously for the mule in order to establish a connection. This approach is developed
for the experimental pig facility [24] to measure the effect of external stressors in a
shed (e.g. temperature) on the core body temperature of pigs. As illustrated in Fig. 10a,
this involves the use of data mules A, B, C in the shed, whereby the mule can be any
mica2dot mounted on a pig. The main purpose of a mule is for collecting data from the
static nodes in the network (shown as sensors 1, 2, 3 and 4 in Fig. 10a) and uploading
collected data to the base station outside the shed. The data communication between
mule and static nodes or mule and base station occurs when both entities are in close
proximity. Specifically, the data mules will collect data from the static sensor nodes
when they are inside the shed and uploads the collected data to the base station when
they are outside the shed.
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(2) Muling approach with CASE. For the same scenario, we now model the static sensors
(to be data muled) as “the sensors that are to be controlled by context triggers” and
additional sensors on the mule (i.e. the pig) as “sensors that can provide the contex-
tual information for control”. Other sensors in the farm can provide both contextual
information and be controlled. Illustrated in Fig. 10b, this setup includes sensors 1, 2,
3 and 4 as the static sensors that collect data (Berkeley motes), mules A, B and C as
the data mules (Berkeley motes with RFID tags) and RFID readers as the static sensors
that provide only location information to CASE on the laptop. CASE uses the location
context provided by the RFID readers to trigger mule detection. In this scenario, with
RFID tags attached to the data mules, once mule C enters the shed, the RFID readers
located at the entrance of the shed detect mule C on entry and send the detection infor-
mation to CASE. Acknowledgements are then sent from CASE to sensor 2 in order
to initiate and establish a data transfer connection with mule C. Basically, sensor 2
only sends logged readings to mule C upon a trigger sent from the base station. When
mule C is in safe distance of sensor 2, mule C receives data from sensor 2 and sends
acknowledgements to sensor 2. Mule C remains in listening mode even if there are no
more packets from sensor 2. When mule C leaves the shed again, CASE sends a trigger
to sensor 2, ceasing its current communication with sensor 2. This approach improves
over the basic mulling approach because the sensors are no longer required to poll for
the mule but is explicitly informed when they are near enough by CASE.

The implementation in both scenarios involves using an a/c-powered laptop as the base
station, mica2dots as the data mules and mica2s as the statically deployed sensor nodes
that regularly sample temperature and light readings in this environment. The motes are
programmed in nesC under the TinyOS[18] operating system to perform muling, while the
SerialForwarder application is used to provide the required serial interface between motes
and the base station. CASE runs on the base station.

The experiments conducted evaluate the performance aspect with regard to the process
of initially establishing a connection between the mule and sensor/base station. In order to
evaluate this performance aspect, the parameters measured in this experiment include the
minimal distance between a mule and a sensor when a packet from a sensor can successfully
be heard by a mule, the resulting number of packets sent from the sensor and received by the
mule while they are connected, the first recorded safe distance when there is 1 or less packets
lost during transmission.

Both experiments follow the same procedures as follows. Let us assume there is a static
sensor such that the mule moves in the direction of the sensor. As the mule approaches the
sensor, the distance of the mule from the sensor when it is first detected by the sensor is
recorded. After the mule is first detected, the connection maybe unstable until the mule is
closer to the sensor. The number of packets that have been received by the mule and sent by
the sensor during this period from the first detection is then recorded next. As the mule moves
closer to the sensor, packet loss between the two eventually reduces to only 1 or less (i.e.,
when readings stabilise and the mule synchronises with the sensor). The minimal distance
between the mule and the sensor when their readings stabilise (i.e. safe distance) is then
recorded with the packets that have been sent and received. In terms of using CASE, the
experiment is carried out in the same way but with the exception of a preset safe distance of
78 cm where RFID readers are placed. This safe distance is set on basis of results obtained
from the experimental runs in Fig. 11a which have shown that only one packet would be lost
when the safe distance is 88 cm or less. CASE is then expected to trigger the communication
between the mule and sensor. The results obtained have been illustrated in Fig. 11b, c and d.
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Fig. 11 Experiment results using CASE. a Experimental results using polling only. b Experimental results
using CASE. c Overall results for transmissions in unstable environment. d Overall results for transmissions
in stable environment

Fig. 12 CASE Compact experimental scenarios. a Query processing setup. b Physical clustering setup

6.2 CASE Compact evaluation

The aim of the experiments conducted in this section is to measure the amount of energy
saved when CASE Compact is used with a query processing application(such as TinyDB)
and a physical clustering application(such as HEED). First, we describe the experiments that
measure the energy that can be conserved in a scenario involving the querying of a node, as
shown in Fig. 12a.

As shown in Fig. 12a, this setup involves the base node M connected to a laptop and
other sensor nodes S0, S1 and S2 that transmit light, temperature and microphone readings to
node M . In this setup, let us assume that the user creates the query at the base station. In the
process of answering the user query, node M requests for sensory readings from sensor nodes
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S0, S1 and S2. Upon hearing data requests from node M , the sensor nodes then transmit their
sensory readings to M , en route to the base station. The transmissions from sensor nodes to
M continue for the lifetime of the query.

For the purpose of this evaluation, let us now consider that node M runs the HiCoRE algo-
rithm and has obtained rules relating to S0, S1 and S2 prior to running a query. The obtained
rules can then be used by M to only request sensory readings from sensor nodes when the
readings cannot be inferred by filtered rules, for instance, rules with high confidence values.
In theory, this should reduce the amount of data communications necessary to answer a query
and thus conserve energy. In order to demonstrate that energy can be conserved, the exper-
iments that follow study how much data transmissions can be reduced in this manner and
the compromise on the data quality obtained, if any, through measuring the accuracy of the
rules obtained. In order to measure rule accuracy and the actual number of bytes transmitted,
computer simulations are performed. This involves running a Perl script to determine the
amount of data transmitted in this scenario for the lifetime of a hypothetical query when our
C implementation HiCoRE is used/not used. For the run with HiCoRE, synthetic sensor data
transactions are first piped to the HiCoRE program so that rules may be learnt at prior. The
synthetic dataset used has the following properties:

1. S0 light readings and S1 light readings have a positive correlation of 0.8± 0.04.
2. S1 light readings and S1 temperature readings have a positive correlation of 0.8± 0.04.
3. S2 light readings and S2 temperature readings have a negative correlation of−0.8± 0.04.

This dataset is run on HiCoRE for a period of 8 min. It is noteworthy that this evaluation is
performed on a synthetic dataset as this is the way we can establish the accuracy of HiCoRE
by testing whether the rules predicted capture the known correlations. After 8 min, any rules
generated by HiCoRE are stored in M ′s memory. Before node M requests sensory readings
from sensors S0, S1 and S2, it will first look at all the rules that have been stored in memory.
If a rule in memory meets the confidence threshold, then the rule will be used. Specifically,
M will use the inferred consequent values of the rule rather than requesting the necessary
values from the sensors.

For both simulation runs, the query used is “SELECT * FROM sensors, SAMPLE PERIOD
1s FOR 7 min”. The results obtained from running this query in the simulations are presented
and analysed in the following sections, i.e. on the accuracy of rules generated and on the
resulting data throughput for query with/without rule adaptation.

6.2.1 Measuring accuracy of rules

Table 1 shows the rules obtained when HiCoRE is run on the aforementioned synthetic data-
set for 8 min with a set confidence threshold of 0.5. It also shows the resulting confidence
of the rule generated. In order to measure the accuracy of the rules generated, each of the
rule is then applied to perform prediction on the same dataset used for the query evaluation.
In this regard, a prediction is considered to be successful when the predicted value is the
same as the expected value in the dataset in discrete form. As an example, given the rule
R1, ‘S1L[H ] → S0 L[H ]’, if the light value of S0 is correctly predicted to be low when
S1 has a high value, then the prediction is successful. For rule R1, the prediction is suc-
cessful 34 times out of 41 times when S1 has a high light reading, giving a success rate of
approximately 82.9%.

Two observations can be made from the accuracy results shown:

1. The rules generated by HiCoRE are able to capture the correlations between data attri-
butes, if they are present in the dataset. This is demonstrated through the results showing
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Table 1 Table of rules
discovered by HiCoRE

Discovered rules

RuleID Rules Confidence Success rate in %

R1 S1 L[H ] → S0 L[H ] 0.83 82.9% (34/41)

R2 S0 L[H ] → S1 L[H ] 1.0 100% (34/34)

R3 S1 L[H ] → S0 L[H ] 0.83 82.9%

R4 S0 L[H ] → S1 L[H ] 1.0 100%

R5 S0 M[Y ] → S0 L[L] 0.5 45.3% (24/53)

R6 S0 L[L] → S0 M[Y ] 1.0 85.7% (24/28)

R7 S1T [L] → S0 L[H ] 1.0 100% (20/20)

R8 S0 L[H ] → S1T [L] 0.73 58.9% (20/34)

R9 S1T [L] → S0 L[H ] 1.0 100%

R10 S0 L[H ] → S1T [L] 0.64 58.9%
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Fig. 13 Query processing application results. a Rule confidence and resulting success rate. b Comparison
graphs for query Select * FROM sensors, SAMPLE PERIOD 1s FOR 7 min

that a majority of rules generated reflect the relationship between the light readings of
S0 and S1 as well as between the light readings of S1 and temperature readings of S1.

2. Rules with high confidence values generated by HiCoRE typically imply a high success
rate in prediction. This is further illustrated in Fig. 13a, whereby rules such as R5 having
a confidence value of 0.5 (normalised to 50% in Fig. 13a) have a resulting success rate
of 45.3%. Thus, confidence is a good measure of the predictive accuracy of the rule for
data querying application.

6.2.2 Measuring data transmitted

Figure 13b illustrates the amount of data transmitted in bytes by sensors to M when the query
is answered in three different situations:

1. No rules are used. In this situation, M requests sensors S0, S1 and S2 to send their
readings to M every second for 7 min.

2. Filtered rules are used. In this situation, M selects high confidence rules to be used in
answering the query. For the purpose of this evaluation, let us assume that rules R6 and
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R7 are used by M due to the fact that they have high confidence values, i.e. 1.0, and
that they are not in conflict with one another, i.e. the consequent of R6 rule is not the
antecedent of rule R7 and vice versa.

3. Randomly selected rules. In this situation, M just randomly selects two rules to be used
from all the rules stored in memory. Let us assume that, in the worst case scenario, low
confidence rules R5 and R8 have been selected.

From the results obtained in Fig. 13b, it can be observed that energy is conserved when
rules generated by HiCoRE have been used to answer the query, regardless of whether random
rules or filtered rules have been used. This is evidenced by a reduction in the overall amount
of data communicated which directly impacts on the overall energy consumption by the sen-
sor network [31]. Specifically, the adaptation to filtered rules reduces data transmission by
22.7% (1,450−1,120)/1,450, while the adaptation to random rules reduces data transmission
by 41.4% (1,450−850)/1,450. While it may appear that using random rules is better than
using rules filtered/selected using confidence levels, it needs to be highlighted that accuracy
is reduced with random rules. In particular, it needs to be noted that the resulting error rates
from prediction using random rules are much higher than using filtered rules. Empirically,
when filtered rules R6 and R7 are used, the combined success rate is 91.7% (i.e. referring to
Table 1, total combined errors of 4 divided by total combined results predicted of 48 from
using rules R6 and R7) while when random rules R5 and R8 are used, the combined success
rate is only 50.6% (i.e. referring to Table 1, total combined errors of 43 divided by total
combined results predicted of 87 (53+34) from using rules R5 and R8).

In general, the results obtained demonstrate that the data transmissions required to answer
a query is reduced (and in effect, energy is conserved) when CASE Compact is used in data
querying. The best strategy to select rules for use within a query application is not necessarily
selecting rules that conserve the most energy, but rather using a strategy that can achieve the
best compromise among criteria such as the overall energy conserved, error rate that can
be tolerated by the application (for instance, if the application is mission-critical, then the
success rate/confidence threshold should be high) and appropriateness to the current query
(for instance, using rules relating to sensors that are relevant to the query).

6.2.3 Physical clustering experiments

The experiments performed here measure the overall energy that is conserved in that scenario
and also the performance of the HiCoRE algorithm operating on HEED cluster heads with
respect to its overhead and scalability. The experimental setup is illustrated in Fig. 12b.

As shown in Fig. 12b, this setup involves running CASE Compact on HEED nodes. Spe-
cifically, the cluster heads formed when HEED is run (represented by red coloured nodes in
Fig. 12b) are made to run HiCoRE in conjunction to learn rules about cluster members. These
rules are then applied as triggers by the cluster heads to control cluster members’ operations
and thereby conserve energy. The trigger used in our experiments is to command a node not
to send its light information.

The experiments are performed using TOSSIM simulations of the HEED implementation
with HiCoRE. Each experiment runs with individual simulation settings depending on the
performance aspect evaluated. The common unit of measurement used to measure overall
network energy consumption is the Credit-Point System (CREP), as used by HEED in [39].
This system measures the overall network residual energy of sensor nodes by weighing the
cost of the total number of intra-cluster and inter-cluster communications performed during
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runtime. The resultant cost value provides an estimate to the total energy consumed for the
sensor network.

With respect to Fig. 14c, the experiment measures the overall energy conserved when
HEED is used with CASE Compact (CC in graphs) for different confidence levels. The sim-
ulations for this experiment are performed using 50 nodes, a seed value of 124,755 for a
duration of 25 min. The simulations are performed to determine the residual energy of the
network when:

(1) HEED is run alone.
(2) HEED is run with CASE Compact, whereby generated rules having a confidence value

above 0.5 are used for triggering.
(3) HEED is run with CASE Compact, whereby generated rules having a confidence value

above 0.7 are used for triggering.
(4) HEED is run with CASE Compact, whereby generated rules having a confidence value

above 0.9 are used for triggering.

In general, the results show that HEED cluster heads running CASE Compact outperforms
the nodes that run with HEED only with respect to energy conservation. For a more specific
comparison, let us consider the residual energy for all runs when the simulation time is 140.
At this time, the residual energies are 14,833, 17,167, 17,500 and 16,500 (×103) for runs
(1), (2), (3) and (4), respectively. This corresponds to energy savings of 15.7, 18.0 and 11.2%
relative to the HEED run when the confidence threshold is 0.5, 0.7 and 0.9, respectively.
However, given the trend observed in Fig. 14c i.e. the graph showing the use of HEED and
the graphs with CASE Compact diverges as time passes, it can be expected that for a long
enough time, further significant energy savings can be achieved.

In contrast, Fig. 14a shows the energy conserved when HiCoRE is run with a higher num-
ber of nodes. This is for the purpose of testing the scalability of HiCoRE. The simulations
for this experiment are performed using 100 nodes, a seed value of 124,755 and a confidence
value of 0.75 for a duration of 25 min. Comparing the results from Fig. 14a, c, it can be
observed that as the number of nodes used increases from 50 to 100, there is a corresponding
linear increase in the amount of energy conserved. The results also demonstrate that it is
feasible to implement HiCoRE for higher numbers of nodes.

Figure 14b illustrates the energy overhead of the system when HiCoRE is run with HEED
(no triggering applied) and when HEED is run alone. The simulations for this experiment
are performed using 50 nodes, a seed value of 124,755 and a confidence value of 0.75 for a
duration of 25 min. The results show that HiCoRE runs with marginal energy overhead when
compared to the energy overhead to run HEED. To measure this explicitly, let us consider
the respective residual energies at time=140. At this time, the residual energies are 1,750
and 1,850 (×103) for HEED and HEED with HiCoRE, respectively. This yields an addi-
tional overhead of 0.06% (100/1,750) for HiCoRE. This overhead is very small relative to
the amount of energy that can be conserved, i.e. 18.0%, as shown in Fig. 14c.

Lastly, Fig. 14d illustrates the overall energy conserved by HEED cluster heads when
HEED is run alone, when HEED is run with CASE Compact and when HEED is run with
CASE Compact, with the inclusion of rule-based cluster head selection. In rule-based cluster
head selection, the reclustering frequency of CASE Compact is set as a function of the total
cluster size for the cluster group, Reclusteringprob ← cluster Si ze−number O f Consequents

cluster Si ze , to
adapt the reclustering frequency to the level required by HiCoRE. Four simulation runs are
conducted for each of the three cases with 50 nodes and a confidence value of 0.7 for a
duration of 25 min in each run (seed values 124,755, 20,000, 25,000, 30,000 for runs 1, 2, 3
and 4, respectively). The results demonstrate that by using rule-based cluster head selection

123



606 S. K. Chong et al.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 25000 30000 35000 40000 45000 50000

S
im

ul
at

io
n 

tim
e 

x1
00

00
m

s

Residual energy in x10^3 credit points

Residual energy plot for running HEED 

HEED only
HEED with CC, conf=0.75

(a)

 0

 500

 1000

 1500

 2000

 2500

 0  20  40  60  80  100  120  140  160R
es

id
ua

l e
ne

rg
y 

in
 x

10
^3

 c
re

di
t p

oi
nt

s

Simulation time x10000ms

Overhead for running HiCoRE with HEED,

HEED only
HEED with HiCoRE, conf=0.75

(b)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 12000 14000 16000 18000 20000 22000 24000

S
im

ul
at

io
n 

tim
e 

x1
00

00
m

s

Residual energy in x10^3 credit points

Residual energy plot for running HEED 

HEED only
HEED with CC, conf=0.5
HEED with CC, conf=0.7
HEED with CC, conf=0.9

(c)

(d)

with CASE Compact, 100 nodes  50 nodes

with CASE Compact, 50 nodes

Fig. 14 Experimental results for running HEED with CASE Compact. a Running CASE Compact (HiCoRE)
with 100 nodes. b Overhead of running HiCoRE. c Overall energy conserved for 50 nodes at different confi-
dence threshold. d Overall cluster heads’ energy consumption

with CASE Compact, the overall cluster head energy levels can be improved up to 42.5%
(5,700−4,000/4,000) in run 2 when compared to running with CASE Compact without the
selection. These savings are a consequence of the on-demand nature of reclustering that is
now imposed for CASE Compact to further extend network lifetime.

7 Conclusion and future work

Utilising the limited energy of the battery-powered sensor nodes in wireless sensor networks
is crucial to realise the great potential of using these networks in many significant applica-
tions. In this paper, we have presented our CASE and CASE compact frameworks to conserve
energy in wireless sensor networks. Implementation details, which will be of great interest to
both practitioners and researchers, are provided. The experimental results have provided an
evidence of the potential for energy savings that can be achieved through CASE and CASE
Compact.

Future directions include deployment in dense wireless sensor networks with a magnitude
of thousands of nodes and a thorough experimental study in the field for testing the scalability
of our techniques. Furthermore, we plan to use query-driven approach for further improving
the performance of the proposed techniques.
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8 Appendix 1: Code listing

1 t = new Timer ( ) ;
2 t . s c h e d u l e ( new TimerJob ( c o n t e x t t a g ) , t i m e To Tr i g g e r ) ;

Listing 1: Schedule context_tag

1 i n t add r = ( s h o r t ) I n t e g e r . p a r s e I n t ( a rgv [ a rgv . l e n g t h 1 ] , 1 6 ) ;
2 RecvMsg p a c k e t = new RecvMsg ( ) ;
3 p a c k e t . s e t s o u r c e ( 0 ) ;
4 p a c k e t . s e t a c t i o n (TRANSMIT RATE ) ;
5 p a c k e t . s e t a r g s s s a r g s i n t e r v a l ( 1 0 0 0 ) ;
6 MoteIF mote = new MoteIF ( P r i n t S t r e a m M e s s e n g e r . e r r ) ;
7 mote . send ( addr , p a c k e t ) ;

Listing 2: Trigger message

1 t a s k void c m d I n t e r p r e t ( ) {
2 s t r u c t RecvMsg ∗ cmd =
3 ( s t r u c t RecvMsg ∗ ) msgRecv−> d a t a ;
4 cmd−> s o u r c e = TOS LOCAL ADDRESS ;
5 s wi t ch ( cmd−> a c t i o n ) {
6 ca se LED ON :

;)(nOneerg.sdeLllac7
8 break ;
9 ca se LED OFF :

;)(ffOneerg.sdeLllac01
11 break ;
12 ca se TRANSMIT RATE :

etaRtimsnarTegnahc.dmCssecorPllac31
14 ( cmd−> a r g s . s s a r g s . i n t e r v a l ) ;
15 break ;
16 ca se PACKET TYPE :

cimota71 {
dmc=epyTp81 −> a r g s . s s a r g s . i n t e r v a l ;

;0=rebmuNgnidaeRtekcap91
20 }
21 break ;
22 ca se SLEEP :

dmc=tfeLemit32 −> a r g s . s s a r g s . i n t e r v a l ;
;)tfeLemit(etoMpeels.dmCssecorPllac42

25 break ;
26 }
27 pend ing = 0 ;
28 s i g n a l ProcessCmd . done ( msgRecv , SUCCESS ) ;
29 }

Listing 3: Command interpret module
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1 eve n t r e s u l t t I n t e r c e p t S u rg e M s g . i n t e r c e p t
2 ( msg , pay load , pay loadLen ) {
3 . . .
4 i f (TOS LOCAL ADDRESS != 0)
5 c a l l Mining . pu tDa taToBatch
6 ( msg−> addr , msg−> r e a d i n g ) ;
7 . . .
8 }

Listing 4: Batch transaction

1
2 / / l i g h t p a ck e t s e n t a t t i m e r f i r e
3 t a s k void SendData ( ) {
4
5 SurgeMsg ∗ pReading ;
6 / / c o n s t r u c t da ta p a ck e t
7 . . .
8 i f ( ( c a l l Send . send (&gMsgBuffer ,
9 s i z e o f ( SurgeMsg ) ) ) != SUCCESS)

10 a t om ic g fSendBusy = FALSE ;
11 }
12
13 / / s i g n a l ra d i o busy s t a t u s , p a ck e t n o t s e n t .
14 t a s k void t r i g g e r Ta s k ( ) {
15 a t omi c g fSendBusy = TRUE;
16 }

Listing 5: Packet send procedure

9 Appendix 2: CASE modules

9.1 CASE-PC modules

The CASE-PC modules are Java classes that run on the base station. The implementation has
been captured in the form of a class diagram. The class diagram in Fig. 15 shows the classes
used to implement main modules in Fig. 1.

To enable users of CASE to program new context_tags and monitor the triggers that have
been activated, a GUI front-end has been implemented as illustrated in Fig. 16. Upon start-up,
the front-end is initialised with sensory values shown in Fig. 16a. These sensory inputs are
then analysed to yield contextual information. When a context_tag has been discovered, the
triggering process begins as illustrated in Fig. 16b and the trigger results in commands sent
to related sensors to conserve their energy, as shown in Fig. 16c. Lastly, Fig. 16d shows
new commands sent upon getting new contextual data to return slept sensors to their default
operations. This front-end is implemented using Java 1.1.

9.2 CASE TinyOS modules

In order for a mote to respond to trigger messages sent from the base station node, the packet
types and modules to handle received packets are defined as follows:

– Message type In our implementation, a sensor node is programmed to respond to the
following types of trigger commands: (1) sleep; (2) reduce transmission load; (3) reduce
transmission frequency; and (4) default sensing. To handle these commands, the sensor
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Fig. 15 Class diagram

node is programmed to receive a generic packet trigger message from the base station.
This message type consists of:

• Source id This refers to the address of the base station node that has sent the packet
in integer form.

• Action This refers to the trigger command that needs to be executed. This can be
represented by an integer datatype, such as 5 for SLEEP.

• Parameters This refers to the parameters that follow the trigger command. For
instance, the TRANSMIT_RATE command would require the actual rate to trans-
mit in milliseconds, e.g. 1,000 ms.
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Fig. 16 CASE front-end a Initialisation. b Trigger in process. c Context_tag ‘Nighttime’ triggered. d Con-
text_tag ‘Daytime’ triggered

– Trigger handler The trigger command handler within the CASE-mote implementation
uses the action parameter in the trigger message to determine the type of operation that
is to be performed next on the mote. This can be implemented using a switch statement
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Fig. 17 HEED with CASE Compact code structure

(code fragment as listing 3 in appendix 1) to affect the current sensing and transmitting
operations that the sensor currently runs.

9.3 HiCoRE implementation with HEED

The implementation of CASE Compact is performed on top of the HEED implementation.
The HiCoRE algorithm is installed on all sensor nodes but is only executed on the cluster
heads when they have been nominated through HEED. In implementation terms, it occu-
pies an additional 9,446 bytes in nesC code when pre-programmed into all nodes that also
run HEED with Surge. The code structure for this implementation is shown in Fig. 17. The
modules pertaining to the implementation of HiCoRE have been highlighted by yellow (to
represent new modules installed) and light yellow (to represent existing module of HEED
with Surge that have been modified) in Fig. 17.
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