
Knowl Inf Syst (2011) 28:423–447
DOI 10.1007/s10115-010-0376-y

REGULAR PAPER

An efficient graph-mining method for complicated
and noisy data with real-world applications

Yi Jia · Jintao Zhang · Jun Huan

Received: 29 January 2010 / Revised: 10 November 2010 / Accepted: 20 November 2010 /
Published online: 2 February 2011
© Springer-Verlag London Limited 2011

Abstract In this paper, we present a novel graph database-mining method called APGM
(APproximate Graph Mining) to mine useful patterns from noisy graph database. In our
method, we designed a general framework for modeling noisy distribution using a prob-
ability matrix and devised an efficient algorithm to identify approximate matched frequent
subgraphs. We have used APGM to both synthetic data set and real-world data sets on protein
structure pattern identification and structure classification. Our experimental study demon-
strates the efficiency and efficacy of the proposed method.

Keywords Graph mining · Approximate subgraph isomorphism

1 Introduction

Frequent subgraph mining is an active research topic in the data-mining community. The
graph-mining techniques have been extensively applied in a wide range of applications
domains, such as bioinformatics [9,13], chemoinformatics [8,24], social network analysis
[20,27], and many others.

Many current frequent subgraph-mining algorithms share a common strategy in deter-
mining the support value of a subgraph pattern and hence deciding whether the subgraph is
frequent. In this strategy, in matching a subgraph pattern to a graph, we require that node

Y. Jia · J. Huan (B)
Department of Electrical Engineering & Computer Science,
University of Kansas, Lawrence, KS 66045, USA
e-mail: jhuan@ittc.ku.edu

Y. Jia
e-mail: jiayi@ittc.ku.edu

J. Zhang
Center for Bioinformatics, Department of Molecular Biosciences,
The University of Kansas, Lawrence, KS 66046, USA
e-mail: jtzhang@ku.edu

123

424 Y. Jia et al.

labels, edge relationships, and edge labels should be the same between the subgraph pattern
and the matching graph [10]. We call this strategy it exact matching.1

Although exact matching is widely used, in applying frequent subgraph mining to real-
world applications, we observe that exact matching may not always produce the optimal
results in all applications. The situation becomes worse in those graph databases that have
a large volume of noises (in terms of node or edge label changes) and distortions (in terms
of edge relationship changes). For example, in the application of protein structure compar-
ison and structure motif identification, which we are specifically interested in within this
paper, graphs corresponding to protein structures often contain a large volume of noises and
distortions. In this application, noise and distortion come from a multidimensional source:
amino acid changes in proteins (which are called it mutations in biology), slightly different
geometric shape of similar proteins, and imperfect experimental measurements, just to name
a few examples. As a consequence, using exact matching posts an unrealistical constraint in
algorithm design and may miss a lot of important patterns in practice.

The goal of our research is to devise frequent subgraph-mining algorithms that are capable
of identifying salient patterns in large graph database that are otherwise overlooked by using
exact matching due to the presence of noises and distortions in the graph databases. We call
this new strategy it approximate graph mining.

Although approximate graph-mining offers provisions for noise and distortion handling,
designing an approximate graph-mining algorithm certainly presents a non-trivial effort.
There are two major challenges for the new algorithm design:

• We want to incorporate noise and distortion handling capability in a general framework
such that we could adapt the algorithm to different practical problems. This follows the
philosophy of “build once, use many times”. The challenge is how to provide a general
model to cover many application domains.

• It is known that frequent subgraphs mining may suffer from intensive computation due to
two reasons: (1) subgraph matching is known as an NP-complete problem, and hence it
is unlikely that we will have a polynomial running time solution in general context with
the exception of planar graphs and (2) the total number of frequent patterns may grow
exponentially in the number of graphs in a database and in the average size of the graphs
in the database. Approximate subgraph mining certainly will face the same two problems
and the challenge is how to design a practical algorithm that scales to large graphs and
large graph databases.

Here, we present a new approximate subgraph-mining method called APGM (APproxi-
mate Graph Mining) to address these two challenges. To handle the first challenge, we have
developed a general framework that uses a probability matrix to score label mismatches in
matching a subgraph pattern to a graph. The advantage of the strategy is that it holds a solid
probabilistic ground for a whole class of applications. Utilizing this scoring scheme, we have
renewed important definitions, such as isomorphism, subgraph isomorphism, and redesigned
the conventional support measures in this new context.

To target at the second challenge, we have designed a depth-first search strategy with a
set of pruning strategies. We have applied our algorithm to both synthetic and real data sets.
The experimental results demonstrate that our algorithm identifies important subgraphs that
cannot be identified by exact matching algorithms with a pattern discovery speed (number of

1 Technically, we should use subgraph isomorphism to define exact matching. The definition of subgraph iso-
morphism is deliberately delayed to a later section. An intuitive description is provided here to avoid excessive
details in the introduction.

123

An efficient graph-mining method for complicated and noisy data 425

patterns divided by the running time) close to, and sometime better than, conventional exact
matching algorithms.

In addition, our probability-based method provides a very important property called
evolvement, that is, the observed subgraphs in a set of noisy and distorted graphs could
evolve from the underlying true patterns. In the biological domain, it is called the evolution-
ary process.

The rest of the paper is organized in the following way. In Sect. 2, we present an over-
view of related work on subgraph mining. In Sect. 3, we present our model for approximate
subgraph mining. In Sect. 4, we present the details of our algorithm, including its extension
and its optimization. In Sect. 5, we present our empirical study of the proposed algorithm
using both synthetic and real data sets. Finally, in Sect. 6, we conclude our paper with a short
discussion of our work. In the appendix, we show two important extensions of APGM.

2 Related work

Graph database mining is an active research field in data-mining research. The goal of graph
database mining is to locate useful and interpretable patterns in a large volume of graph
data. Current exact matching graph-mining algorithms can be roughly divided into three
categories. The first category uses a level-wise search strategy including AGM (Apriori-
based Graph Mining) [16] and FSG (Frequent Subgraphs) [18]. The second category takes a
depth-first search strategy including gSpan (Graph-based Substructure PAtterN mining) [28]
and FFSM (Fast Frequent Subgraph Mining) [11]. The third category works by mining fre-
quent trees, in which SPIN (SPanning tree-based maximal graph mINing) [15] and GASTON
(GrAph/Sequence/Tree extractiON) [21] are the representative. Recently, researchers extend
the graph-mining problem from static networks into temporal dynamic networks [19] or
involving networks [4]. We refer to [7] for a recent survey.

Frequent subgraph mining with approximate matching capability has also been inves-
tigated. Chen et al. proposed a method called gapprox [5], which discovers approximate
matched patterns in a single large network. Yan et al. designed a graph query algorithm
Grafil (Graph Similarity Filtering) for approximate structure data search [29]. The algo-
rithm SUBDUE [8] considers the situation of inexact matching and includes a distortion
cost function as a solution. Zhang et al. provided a method called Monkey [31] to identify
maximal approximately frequent trees. Further, the same group introduced a randomized
algorithm called RAM to find approximate subsequent subgraphs by using feature retrieval
to avoid canonical form calculation [30]. Zou et al. proposed an approximation algorithm
MUSE (Mining Uncertain Subgraph pattErns) focusing on uncertain graph database [32].
This method calculated the expected support values of patterns by considering both the
occurrences in the uncertain graph databases and the probabilities of the uncertain graph
databases.

The differences between existing algorithms and our proposed one are below. Yan’s work
focuses on proximity measures between graphs and Chen’s work concentrates on pattern
discovery in a single large graph, which are out of the scope of our current paper. SUBDUE
did not provide a complete general frame to address the approximate match issue. It is only
applied to small databases and generates an incomplete set of characteristic subgraphs. By
using a feature set instead of the canonical form to distinguish patterns, RAM may not pro-
vide a complete pattern set. Hence, the algorithm’s efficacy highly depends on the quality
of user-defined feature set. Different from our method and other methods, instead of the
deterministic data, MUSE addressed the uncertain data with inherent statistical properties in

123

426 Y. Jia et al.

nature [1,2,26]. It only handles the uncertain edges and quantifies the uncertainty with the
probability distributions.

Different from these existing works, we use a parametric model to determine the proba-
bility that a pattern belongs to a graph. We developed a general framework to fully utilize
a probability matrix for approximate matching, which we can apply to a number of differ-
ent applications. And our theoretic framework promises the completeness of the pattern set.
Finally, we offered a practical implementation, applied it on both synthetic and real data sets,
and evaluated our method rigorously.

3 Theoretic framework

We demonstrate our method called APGM (APproximate Graph Mining) with two steps.
In this section, we introduce the theoretic model. In the next section, we show our algorithm
in details.

Definition 1 A labeled graph G is a 5-tuple G = {V, E, �V , �E , λ} where V is the set of
vertices of G and E ⊆ V × V is the set of undirected edges of G.�V and �E are (disjoint)
sets of labels and labeling function λ : V → �V ∪ E → �E maps vertices and edges in G
to their labels. A graph database D is a set of graphs.

We also use V [G] to denote the node set of a graph G and E[G] to denote the edge set
of G. We also use �V [G] to denote the node labels, �E[G] to denote edge labels, and λG to
denote the labeling function for a graph G. Before, we introduce approximate matching, we
define the exact subgraph isomorphic and the compatibility matrix.

Definition 2 A graph G is subgraph isomorphic to another graph G ′, denoted by G ⊆ G ′
if there exists an injection f : V → V ′, such that

• ∀ u ∈ V, λ(u) = λ′(f (u))

• ∀ u, v ∈ V, (u, v) ∈ E ⇒ (f (u), f (v)) ∈ E ′, and
• ∀ (u, v) ∈ E, λ(u, v) = λ(f (u), f (v))

Definition 3 A compatibility matrix M = (mi, j) is an n × n matrix indexed by symbols
from a label set � (n = |�|). An entry mi, j (0 ≤ mi, j ≤ 1,

∑
j mi, j = 1) in M is the

probability that the label i is replaced by the label j .

The compatibility matrix offers a probability framework for approximate subgraph min-
ing. A compatibility matrix M is it stable if the diagonal entry is the largest one in the row
(i.e. Mi,i > Mi, j , for all j
= i). In a stable compatibility matrix, for any label i , it is likely
to be replaced by itself rather than by any other symbols.

Most compatibility matrices in real-world applications are stable or almost-stable ones,
and hence for the rest of this section, we only deal with the stable compatibility matrices.

Example 1 We show a graph database D with three labeled graphs P, Q, R on the left side
of Fig. 1. In this database, the node label set is {a, b, c} and the edge label set is {x, y}. On
the right part of Fig. 1, we show a compatibility matrix M , which is a 2D matrix indexed
by the set of node labels in D. The probability that the vertex label a is substituted by b is
ma,b = 0.3. In M , we use probability 0 to simplify the matrix. In reality, these probabilities
are never 0.

Definition 4 A labeled graph G = {V, E, �V , �E , λ} is approximately subgraph isomor-
phic to another graph G ′ = {V ′, E ′, �′V , �′E , λ′} if there exists an injection f : V → V ′
such that

123

An efficient graph-mining method for complicated and noisy data 427

a

a
a

y

y

x

a

a
b

y

y

x

a

a
c

y
x

(P) (Q) (R)

p1

p2

p3

q1

q2

q3

r1

r2

r3

a b
a 0.5
b 0 1

M

c
0.2

0

c 0 0 1

0.3

y

Fig. 1 Example of a graph database D and a compatibility matrix M

• ∏
u∈V

Mλ(u),λ′(f (u))

Mλ(u),λ(u)
≥ τ , and

• ∏
(u,v)∈E

M ′
λ(u,v),λ′(f (u), f (v))

M ′
λ(u,v),λ(u,v)

≥ τ ′

The injection f is an it approximate subgraph isomorphism between G and G ′.M is a
compatibility matrix for node label sets �V ∪�′V . M ′ is a compatibility matrix for edge label
sets �E ∪�′E . In an edge compatibility matrix, �E and �′E both contain a special label called
empty edge. In this way, we handle both topology distortion (missing edges) and edge label
mismatches in the same unified way through an edge compatibility matrix. τ (0 < τ ≤ 1) is
the threshold for node mismatch and τ ′ (0 < τ ′ ≤ 1) is the threshold for edge mismatch.

For simplicity in the following discussion, we restrict our algorithmic study to cases that
we only need to handle node label mismatches (i.e. corresponding edge relations and corre-
sponding edge labels should exactly match each other in matching two graphs). One of such
cases is protein structure pattern identification where edges encode geometric information.

With the assumption, the new definition of approximate subgraph isomorphism is:

Definition 5 A graph G is approximate subgraph isomorphic to another graph G ′, denoted
by G ⊆a G ′ if there exists an injection f : V → V ′, such that

• ∏
u∈V

Mλ(u),λ′(f (u))

Mλ(u),λ(u)
≥ τ,

• ∀ u, v ∈ V, (u, v) ∈ E ⇒ (f (u), f (v)) ∈ E ′, and
• ∀ (u, v) ∈ E, λ(u, v) = λ(f (u), f (v))

Given a node injection f from graph G to G ′, the co-domain of f is an it embedding of
G in G ′. The it approximate subgraph isomorphism score of f , denoted by S f (G, G ′), is

the product of normalized probabilities: S f (G, G ′) = ∏ Mλ(u),λ′(f (u))

Mλ(u),λ(u)
. For a pair of graphs,

there may be many different ways of mapping nodes from one graph to another and hence
may have different approximate isomorphism scores. The it approximate matching score
(score for simplicity) between two graphs, denoted by S(G, G ′), is the largest approximate
subgraph isomorphism score, or

S(G, G ′) = max
f
{S f (G, G ′)}.

Example 2 In Fig. 1, we show a graph database D = {P, Q, R} and a compatibility matrix
M . We set isomorphism threshold τ = 0.4 and with this threshold, graph P is approxi-
mate subgraph isomorphic to graph Q with the approximate subgraph isomorphic score is
0.5×0.3×0.5
0.5×0.5×0.5 = 0.6. To see this, there are a total of 6 different ways to map nodes of P to those
of Q. The only two that satisfy edge label constraints are f1 = p1 → q1 p2 → q2 p3 → q3

and f2 = p1 → q2 p2 → q1 p3 → q3. The approximate subgraph isomorphism score of f1

equals that of f2.

123

428 Y. Jia et al.

Definition 6 Given a graph database D, an isomorphism threshold τ , a support threshold
σ(0 < σ ≤ 1), the support value of a graph G, denoted by supG , is the average score of the
graph to graphs in the database, which G is approximately subgraph isomorphic to:

supG =
∑

G ′∈D,G⊆a G ′
S(G, G ′)/|D| (1)

G is a it frequent approximate subgraph if its support value is at least σ . With this def-
inition, we only use those graphs that a subgraph G is approximate subgraph isomorphic
to (controlled by the parameter τ) to compute the support value of G. We do this to filter
out low-quality (but potentially many) graph matchings in counting the support value of a
subgraph. For a moderate sized graph database (100–1,000), according our experience, the
number of frequent subgraphs identified is usually not sensitive to the isomorphism thresh-
old, which makes sense since low-quality graph matching has low “weight” in the support
computation nevertheless.

With the above definition, we have the support Apriori property as claimed by the follow-
ing Theorem 1.

Theorem 1 Given a graph database D and two graphs G ⊆ G ′, we have sup(G) ≥ sup(G ′).

Proof In order to prove the theorem, it is sufficient to show that for all graphs P in a graph
database, we have S(G, P) ≥ S(G ′, P) for all graphs G ⊆ G ′. This is true if the compat-
ibility matrix is stable (mi,i > mi, j for all j
= i). The rest of the proof are trivial and are
left to interested readers.

Problem Statement. Given a graph database D, an isomorphism threshold τ , a compat-
ibility matrix M , and a support threshold σ , the it approximate subgraph-mining problem is
to find all the frequent approximate subgraphs in D.

It is easy to adapt the frequent approximate subgraph-mining algorithm to the approxi-
mate clique subgraph mining by adding the full-connection constraint. In order to keep the
consistency with our real-world applications, The subgraphs shown in all the examples below
are clique subgraphs instead of subgraphs.

In Fig. 2, we show all the frequent approximate subgraphs in the graph database D shown
in Fig. 1. By comparison with the frequent subgraphs acquired by exact graph mining, the
approximate mining method identifies meaningful patterns that cannot be identified by exact
graph-mining methods. Since the support value of approximate subgraph mining and that of

a a
x

a

(E1) (E2)

(A1)

a a y a

(A3)

a a

(A2)

x

a

a
a

y
x

(A4)

y

Fig. 2 Example of frequent subgraphs and approximate frequent subgraphs. Given the graph database D in
Fig. 1 and the support threshold σ = 2/3, the left side shows the frequent subgraphs mined by the general
exact graph mining. Given the compatibility matrix M in Fig. 1, isomorphism threshold τ = 0.4, and support
threshold σ = 2/3. The right side presents the frequent approximate subgraphs in D

123

An efficient graph-mining method for complicated and noisy data 429

frequent subgraph mining have different meaning, it is generally hard to do a comparison
of approximate subgraph mining and that of frequent subgraph mining. Fortunately, with
the assumption of stable compatibility matrix, we show that frequent subgraph mining is a
special case of approximate subgraph mining with the following theorem.

Example 3 Given a graph database D, a compatibility matrix M in Fig. 1, the support thresh-
old σ = 2/3 and isomorphism threshold τ = 0.4, we show how to calculate the isomorphism
score and support value for the approximate frequent patterns in Fig. 2.

S(A1, P) = 1, S(A1, Q) = 1, S(A1, R) = 1, Sup(A1) = 3/3;
S(A2, P) = 1, S(A2, Q) = 1, S(A2, R) = 1, Sup(A2) = 3/3;
S(A3, P) = 1, S(A3, Q) = 0.6, S(A3, R) = 0.4, Sup(A3) = 2/3;
S(A4, P) = 1, S(A4, Q) = 0.6, S(A4, R) = 0.4, Sup(A4) = 2/3.

Theorem 2 Given a graph database D, an isomorphism threshold τ = 1, a compatibility
matrix M, and a support threshold σ , the set of approximate frequent subgraph patterns Pa

is exactly the set of frequent subgraph patterns Pf or Pa = Pf . If τ < 1, Pf ⊆ Pa.

Proof This is the direct consequence of the support value definition 6.

4 Algorithm design

Here, we demonstrate a new algorithm APGM for approximate subgraph mining. APGM
starts with frequent single-node subgraphs. At a subsequent step, it adds a node to an exist-
ing pattern to create new subgraph patterns and identify their support value. If none of the
resulting subgraphs are frequent, APGM backtracks. APGM stops when no more patterns
need to be searched. Before we proceed to the algorithmic details, we introduce the following
definitions to facilitate the demonstration of the APGM algorithm.

Definition 7 Given a graph T , one of the embeddings e = v1, v2, . . . , vk of T in a graph G,
a node v is a neighbor of e if ∃u ∈ e, (u, v) ∈ E[G].

In other words, a neighbor node of a embedding e is any node that connects to at least one
node in e. The it neighbor set of an embedding e, denoted by N (e), is the set of e’s neighbors.

Definition 8 Given a graph T , one of the embeddings e = (v1, v2, . . . , vk) of T in a graph
G, an injection f from T to e, an isomorphism threshold τ , a compatibility matrix M , a node
v ∈ N (e), and a node label l, the approximate subgraph pattern candidate, denoted by
G|T,e,v,l , is a graph (V ′, E ′, �V ′ , �E ′ , λ′) such that

• λ′(v) = l
• V ′ = {v1, v2, . . . , vk} ∪ v

• E ′ ⊆ V ′ × V ′ ∩ E[G]
• �V ′ = �V [T]
• �E ′ = �E[T]
• ∀ u, v ∈ V ′ : λ′((u, v)) = λG(f (u, v))

• ∏
u∈V ′

Mλ′(u),λG (f (u))

Mλ′(u),λ′(u)
≥ τ

123

430 Y. Jia et al.

a

a
x

a

a
b

y

y

x

(T) (Q)

t1

t2

q1

q2

q3

a b
a 0.5

b 0 1

M

c
0.2

0

c 0 0 1

0.3
a

a
a

y

y

x

(G’)

g‘1

g’2

g’3

Fig. 3 A pattern T , a graph Q and an approximate subgraph candidate G′

Example 4 In Fig. 3, we show a pattern T and one of its embedding e = (q1, q2) in a graph
Q. Node q3 is a it neighbor node of e since it connects to at least one node of e (in fact
both). Given a node label l=“a”, we obtain an approximate subgraph G ′ = Q|T,e,v,l of Q
shown in the same Figure. The G ′ has an embedding e′ = (q1, q2, q3) in Q and the score
of the embedding is M(a,a)

M(a,a)
M(a,a)
M(a,a)

M(a,b)
M(a,a)

= M(a,b)
M(a,a)

= 0.6 (Recall the score of an embedding is
the multiplication of the probability of the observed node label replacement, normalized by
the probability of the node label self-replacement).

With the definitions, we present the pseudocode of APGM below.

APGM_MAIN(D, M, τ, σ)
1: Begin
2: C ← { frequent single node }
3: F ← C
4: for each T ∈ C do
5: APG M_SE ARC H(T, τ, σ, F)

6: end for
7: return F
8: End

APGM_SEARCH(T, τ, σ, F)
1: Begin
2: C ← ∅
3: for each (e, v), e is an embedding of T in a graph G, v ∈ N (e) do
4: C L ← approximateLabelSet(T, G, e, v)
5: for each l ∈ C L do
6: X ← G|T,e,v,l
7: C ← C ∪ {X}
8: H(X) = H(X) ∪ (e, v)

9: end for
10: end for
11: remove infrequent T from C
12: F ← F ∪ C
13: for each T ∈ C do
14: APG M_SE ARC H(T, τ, σ, F)

15: end for
16: End

H is a hash function to store candidate subgraphs and their embeddings. The hash key of
the function in our implementation is a canonical code of the subgraph X , which is a unique
string representation of a graph. We use the Canonical Adjacency Matrix (CAM) and the
Canonical Adjacency Matrix code, developed in [10], to compute the canonical code of a
graph.

123

An efficient graph-mining method for complicated and noisy data 431

approximateLabelSet(T, G, e, v)
1: Begin
2: R← ∅
3: l0 ← λG (v)

4: for each l ∈ �V [G] do

5: if S(e, T)× M(l0,l)
M(l0,l0)

≥ τ then
6: R← R ∪ l
7: end if
8: end for
9: return R
10: End

APGM enumerates the subgraph candidates from the new proposed embeddings. The pro-
cedure to find new embeddings are described in Definition 8. The information of neighbors
are collected at the beginning of Algorithm APGM_MAIN. When all the new embedding are
enumerated based on the embeddings of an existing subgraph, APGM has the new subgraph
candidates and each candidate has all its embeddings. The support value of a new subgraph
candidate is calculated by following Definition 4, 5 and 6. We gave one example below to
show the enumeration procedure of patterns and their embeddings.

Example 5 Given a graph database with two graphs T and Q in Fig. 3, τ = 0.6, and σ = 1.5,
the enumeration procedure of subgraph candidates and embeddings are showed as the fol-
lowing. APGM first finds single-node pattern candidates: the frequent pattern a (Sup=2)
with its embeddings (t1) (S = 1) and (t2) (S = 1) in graph T , and (q1) (S = 1), (q2) (S = 1),
and (q3) (S = 0.6) in graph T ; the infrequent pattern b (Sup = 1) with its embeddings (q3)

(S = 1) in graph Q. By adding one neighbor in the embeddings of frequent single-node
pattern a, APGM enumerates a single edge pattern candidates: the frequent pattern a − a
with the embeddings (t1, t2) (S = 1), (t2, t1) (S = 1) in T and (q1, q2) (S = 1), (q2, q1)

(S = 1)in Q; the infrequent pattern a − b (Sup=1) with the embeddings (q1, q3) (S = 0.6)
and (q2, q3) (S = 0.6). APGM stops here since there is no more candidate patterns to explore.

4.1 Extensions

It is easy to adapt the above algorithm for mining other types of approximate subgraph such as
approximate cliques, approximate quasi-cliques, approximate paths, and approximate trees.
See “Appendix” for details about two extensions: that of approximate cliques and that of
approximate quasi-cliques.

4.2 Optimization techniques

The key operations in the APGM algorithm are the operations at lines 4, 6, and 7 in Algo-
rithm APGM_SEARCH. The function approximateLabelSet returns a set of labels at line 4,
candidate subgraphs are created at line 6, and the embeddings of the candidates are stored
at line 7. The performance of the APGM algorithm improves as the number of returned
labels decreases, as the number of created candidate decreases, and as the number of stored
embeddings decreases. This observation helps us devise the following optimizations. Our
experimental results show that both optimization techniques do not affect the output approx-
imate subgraph pattern sets.

123

432 Y. Jia et al.

4.2.1 Optimization 1. (focusing on line 4)

In order to reduce the symbols returned by the function approximateLabelSet, we designed
the following rules regarding optimization in addition to that already implemented in the
function approximateLabelSet:

• No infrequent labels may be returned. Infrequent labels are labels of single node whose
support values are less than σ .

• Since our depth-searching paths start with single nodes that are sorted in canonical form,
the new paths never include single nodes’ label searched in previous paths.

We also set a rule that if a candidate pattern X is not in its canonical form, as defined in [10],
we prune the candidate.

Theorem 3 With the pruning technique in Optimization 1, APGM does not miss the frequent
patterns.

Proof (1) Prune the infrequent labels.
Suppose we have an infrequent single-node pattern X with the label l1 and an existing

frequent subgraph pattern Y . We propose a new pattern candidate Z by adding an extra node
with the label l1 to Y and have X ⊆a Z . With Theorem 1, we have sup(X) ≥ sup(Z).
With the infrequent X, Z is infrequent pattern. Hence, to prune l1 label does not change the
frequent pattern output.

(2) Sort node labels in canonical form and exclude the labels in previous paths.
Suppose we have an ordered node label set (l1, . . . , ln). Starting with the frequent sin-

gle-node graph with the label l1, APGM finds all the patterns containing the label l1 when
it reaches its depth search limit of depth-first search (DFS) Tree. Since all the patterns con-
taining the label l1 are found, there is no need to include l1 in the new pattern candidates. In
the further search, with the new ordered label set (l2, . . . , ln), APGM applies the same rule.
Hence, to exclude the previous searched node label from a sorted node label set in the further
search, APGM does not miss frequent patterns.

As evaluated by our experimental study, Optimization 1 helps us significantly. We list the
optimization here since it helps us to explain the next optimization.

4.2.2 Optimization 2. (focusing on lines 6 and 7)

Given a candidate graph X constructed from a pattern T , if we could estimate an upper-bound
of the support value for X and the estimated upper-bound is less than the required support
threshold σ , we can prune X and stop accumulating its embeddings. This strategy, which
we call it early termination, certainly improves the computational efficiency of the APGM
algorithm, given that we have a (tight) upper-bound estimation of a candidate graph pattern.

Toward that end, we have devised an efficient way to provide an upper-bound estimation
of a candidate pattern. Our strategy is based on the following observation: given two graphs
T ⊆ X and a graph G, we have S(T, G) ≥ S(X, G) where S(X, Y) is the matching score
for a graph X to Y . In other words, the score of a supergraph X to a graph G is always less
than or equal to that of its subgraph T with G (This observation is discussed in proving the
support monotonicity in Theorem 1).

Within the context of depth-first search, when a candidate “grows” (T ⊆ X), the score
value of the candidate to a fixed graph (and hence to a graph database) never increase
(S(X, G) ≤ S(T, G)).

123

An efficient graph-mining method for complicated and noisy data 433

With the observation in enumerating the embeddings of a graph T at line 3 of Algorithm
APGM_SEARCH, we divide graphs in the graph database into two groups. The first group
are those graphs that have been scanned and hence the (partial) support value of a candidate
graph X in those graphs is known. The second group are those graphs that have not been
scanned yet, and we estimate the (partial) support value of X in those graphs by the support
value of T in those graphs (which is a known value). The overall support of X in a graph
database is upper-bounded by the sum of the two partial support values. If the sum is below
the support threshold, we know the candidate X cannot be frequent and can stop storing its
embedding values.

Formally, given a candidate X that is proposed in processing the embeddings of a pat-
tern T , we assume that G j1 , G j2 , . . . , G jm are the graphs that have been processed and
G ′i1

, G ′i2
, . . . , G ′in

are the remaining graphs. We estimate the support value of X by the
following formula:

˜sup(X) =
∑

k

S(X, Gk)+
∑

k

S(T, G ′k) (2)

We claim that ˜sup(X) is a upper-bound estimation of the real support value of X .

Theorem 4 With the pruning technique in Optimization 2, APGM does not miss the frequent
patterns.

Proof With Theorem 1, we have∑
k S(X, Gk)+∑

k S(X, G ′k) ≤
∑

k S(X, Gk)+∑
k S(T, G ′k).

If
∑

k S(X, Gk)+∑
k S(T, G ′k) < σ ,

then
∑

k S(X, Gk)+∑
k S(X, G ′k) < σ .

Hence, to prune the pattern candidates by using the upper boundary does not change the
frequent pattern output.

Practically in implementing this early termination strategy, for a pattern T , we sort graphs
in the related graph database according to the score values of T to the graphs from high to
low. We then estimate the support value of any candidate X according to Eq. (2) and perform
early termination if X is not frequent.

A tighter estimation can be obtained if we have information about other subgraph(s) of X .
Intuitively, if we have score values of another subgraph T ′ ⊆ X in the unprocessed graphs
G ′i1, G ′i2, . . . , G ′in , we have a tighter upper-bound estimation as the following:

ˆsup(X) =
∑

k

S(X, Gk)+
∑

k

min{S(T, G ′k), S(T ′, G ′k)}

We notice that with the depth-first search algorithm APGM_SEARCH, it is not always
possible that we have score information for two subgraphs of a given candidate. For exam-
ple, if the candidate X is a path with length 2, due to depth-first search, we only have score
information for one of its two subgraphs. However, for many candidates X we do have score
information for two of subgraphs of X . Whether we have two subgraphs of a candidate graph
X has been extensively discussed in the Fast Frequent Subgraph-Mining algorithm [10].

123

434 Y. Jia et al.

5 Results

5.1 Experimental setup

We performed all the experiments on a cluster with 256 Intel Xeon 3.2 Ghz EM64T proces-
sors with 4 GB memory each. The approximate graph-mining algorithm was implemented
in the C++ language and compiled by using the g++ compiler in Linux environment with
-O3 optimization.

5.2 Data sets

We generated synthetic data set by the same synthetic graph generator as [18]. We downloaded
all protein structures from Protein Data Bank (PDB). We followed [3] to use the same software
as [14] to calculate Almost-Delaunay (AD) for graph representation of protein geometry. We
took BLOSUM62 [22] as the compatibility matrix and back-calculated the conditional prob-
ability matrix by following the procedure described in [6]. In the BLOSUM62 substitution
matrix, there is only one violation of the criterion of stable matrices—the row for methionine
(MET). We normalized the row of MET with the maximum entry inside it and other rows in
the matrix according to Definition 5.

5.2.1 Synthetic data sets

The synthetic graph generator takes the following set of parameters: D is the total num-
ber of graphs; T is the average size of graph; I is the average size of potentially frequent
subgraphs; L is the number of potentially frequent subgraphs; V is the number of ver-
tex labels; E is the number of edge labels. The default parameter values that we use are
D = 10000, T = 30, I = 11, L = 200, E = 20, and V = 20.

5.2.2 Real data sets

We investigated two immunologically relevant protein domain families: the Immunoglob-
ulin V set and the Immunoglobulin C1 set. Immunoglobulin domains are among the most
valuable to give insight into host-defense mechanisms, and insight that can help guide devel-
opment of therapies and vaccines against refractory organisms [17]. We collected proteins
from SCOP release 1.69. For each family we created a culled set of proteins with maximal
pairwise sequence identity percentage below 30% by using PISCES server [25]. The PDB ID
of Individual proteins for two sets are shown in Table 1. The graph properties of two protein
families are listed in Table 2. We denote Immunoglobulin domain proteins as positive sample
and random proteins as negative.

5.3 Computational performance

5.3.1 Performance measurement

Since the support value of approximate subgraph mining and that of frequent subgraph min-
ing have different meaning, it is generally hard to compare the performance of approximate
subgraph mining and that of frequent subgraph mining. As indicated in Theorem 2, if we set
the isomorphism threshold τ to 1, the set of frequent approximate subgraphs will be equal to
the set of frequent subgraphs. If τ is less than 1, approximate subgraph mining will obtain

123

An efficient graph-mining method for complicated and noisy data 435

Table 1 Immunoevasins protein lists for research

PDB ID of proteins in Immunoglobulin C1 set

Proteins for feature extraction (10): 1 f p5a 1onqa 1ogad 1pqza 1t7va

1l6xa 1 je6a 1mjul 1uvqb 1dn0b

Proteins for leave-one-out testing (11): 1n f da 1uvqa 1q0xl 1mjuh 1a6za

1k5na 1hdma 3 f rua 1ogae 1hdmb 1k5nb

PDB ID of proteins in Immunoglobulin V set

Proteins for feature extraction (10): 1pkoa 1ogad 1npua 1cdca 1 jmaa

1 f o0b 1nkoa 1mjuh 1n f db 1q f oa

Proteins for leave-one-out testing (9): 1zcza 1 f 97a 1eaja 1mjul 1cida

1neua 1cdya 1hk f a 1nezg

Table 2 Graph properties of
immunoevasins proteins

Immunoglobulin Immunoglobulin
C1 set V set

Avg. node size 220 158

Avg. edge size 3,107 2,263

Max. node size 276 159

Min. node size 100 96

Max. edge size 4,000 4,030

Min. edge size 1,350 713

Avg. density 14 14

Node label size 20 20

Edge label size 27 30

a superset than that of frequent subgraph mining. Compared with the exact matching, the
approximate matching finds more patterns by enumerating more pattern candidates and takes
more computational cost. Hence, the measurement of the time cost may not be a fair metric
to evaluate the computational performance. We decided to use it pattern discovery rate (rate
for simplicity) discussed in [12], which is computed as the number of discovered patterns N
divided by the running time t . We use the rate rather than the running time as the criteria to
compare computational efficiencies of different algorithms.

5.3.2 Performance testing with synthetic data sets

We created a synthetic data using the default parameters indicated in Sect. 5.2 for the graph
generator. We compared the computational efficiency of APGM with an exact induced min-
ing method MGM and showed the results in Fig. 4. For APGM, we have implemented O1
and O2 defined in Sect. 4.2. The experimental results in Fig. 4 show that O1 gave the most
performance improvement. We notice that although O2 separately didn’t show significant
effect on APGM, when combined with O1, O2 improved the performance significantly.
Our explanation is that O2 could not help prune repetitively enumerated frequent patterns
since those patterns are frequent ones. When combined with O1, O2 does show a signifi-
cant improvement. We see that APGM has similar performance with MGM if we use exact

123

436 Y. Jia et al.

Fig. 4 Computational performance comparison between MGM and APGM with different optimization poli-
cies on synthetic data (D10000 E20 I 11 L200 T 30 V 20). APGM used isomorphism threshold τ = 1.0. Here
APGM + 1 means APGM with O1

matching (τ = 1). For subsequent experiments, we used APGM with both optimization O1
and O2.

We further compared the performance rate between APGM and MGM, with different iso-
morphism threshold values (and hence introduce different level of approximate matching)
on the same synthetic data. From the upper part of Fig. 5, we find that with the change of iso-
morphism threshold, the performance rate change of APGM differ narrowly. Even if APGM
takes approximate matching, its performance is very similar with MGM. In some range of
support threshold, APGM with low isomorphism threshold (σ = 0.6) even has much higher
rates.

Besides scalability test with varying support value, the scalability of APGM was also
tested on the synthetic data sets with varying database size (D) or average size of graphs in
a database (T), while other parameters keep default value as indicated in the experimental
setup. In the middle of Fig. 5, we show the trend by increasing the value of D. We notice that
even if the performance rate of APGM decreased rapidly at the beginning, it slowed down
flat finally, which means APGM at least promised a minimum performance gain. And in the
lower of Fig. 5, we also show the trend by increasing the value of T . The performance rate
decreased approximately linearly. Our explanation is that the number of potential patterns
in the graph database was a constant because the parameter (L) was not changed. With the
increasing of the average size of graphs, the search space was expanded, which meant more
running time. As the ratio of the number of patterns and the running time, the rate shows the
trend of decreasing. But APGM still scales linearly with average size of graphs T . Both fig-
ures demonstrate the good scalability for APGM. In addition, compared with MGM, APGM
showed the similar trend and isomorphism threshold τ did not affect the scalability.

5.4 Domain relevance

During this experimental research, we mined frequent clique subgraphs [12] in order to
enforce biological constraints on the patterns. We compared APGM with the exact graph
mining methods MGM. We chose MGM as the counterpart for the comparison because
it is an available clique pattern-mining algorithm (any exact matching method with clique
constraint should provide the same number of patterns from a graph database).

123

An efficient graph-mining method for complicated and noisy data 437

Fig. 5 Computational performance comparison between MGM and APGM using synthetic data sets. APGM
used isomorphism threshold τ = 1.0, 0.8, 0.7, 0.6. Given the patterns’ number N and running time t (s),
rate = N/t . Left The trend of performance rate with the increasing support threshold σ . Middle The trend
of performance rate with the increasing size of graph database (D). APGM used support threshold σ = 1%.
Right The trend of performance rate with the increasing average size of graphs in database (T). APGM used
support threshold σ = 1%

5.4.1 Experimental protocol

We created our experimental protocol as the following:

• We randomly chose 10 proteins from each family as group I to serve as sources for feature
extraction.

123

438 Y. Jia et al.

Select a subset of graphs Select other proteins

APGM processing

Approximate
Isomorphism

SVM Leave-one-out cross validation

Translate protein structures to graphs

A Set of Protein
Structures

in a Protein Family

Graph Represented
Protein Structures in

the family

Data Set for Feature
Extraction

Training and Testing
Sets for Classification

Protein Data
Bank(PDB)

Select equivalent
number of random proteins

Structure Pattern Set

Object Feature Matrix for
Training and Testing Sets

Classification Results

Fig. 6 The procedure of experimental research

• We used the remainder (positive sample) as group II for training and testing in “leave-
one-out” cross validation.

• A negative sample set of the same size as the positive samples in group II was ran-
domly chosen from PDB. The negative sample was used along with the positive sample
in training and testing.

The complete flowchart of our experiment procedure is shown in Fig. 6.

• In order to eliminate the effect of randomness on our classification results, we chose the
optimal parameters to repeat the procedure shown in Fig. 6, 100 times for each data set.

5.4.2 Number of patterns identified

We identified frequent approximate subgraph patterns from 10 positive proteins in each
family. There are two parameters that may have significant influence on the set of mined pat-
terns. The first is the support threshold (σ), and the second is the isomorphism threshold (τ).

123

An efficient graph-mining method for complicated and noisy data 439

Table 3 Number of patterns for
Immunoglobulin C1 set acquired
by APGM

τ = 3.5 τ = 4.5 τ = 5.5

σ = 4 811 774 750

σ = 5 141 140 136

σ = 6 17 17 17

Table 4 Number of patterns by
APGM (τ = 0.35) and MGM on
Immunoglobulin C1

Support threshold (σ)

6 5.5 5 4.5 4

APGM (τ = 0.35) 17 24 141 202 841

MGM 16 16 126 126 660

Table 5 Number of patterns by
APGM (τ = 0.75) and MGM on
Immunoglobulin V

Support threshold (σ)

6 5.5 5 4.5 4

APGM (τ = 0.75) 0 0 0 160 14,686

MGM 0 0 0 0 13,911

For simplicity, in the following experiments in this section we use the new support threshold
σ ′ = σ × |D|, where |D| is the size of the graph database, and applied the same change in
support value. In Table 3, we run APGM with different combinations of τ and σ and collect
the total number of identified patterns. Our results show that the total number of patterns is
not sensitive to the isomorphism threshold, and depends on the support threshold heavily.
Such fact eases the worry that the parameter τ may be too strong for deciding the number of
patterns.

For the purpose of comparison, the patterns mined by two mining methods are shown
in Tables 4 and 5, and the patterns acquired by APGM from Immunoglobulin C1 proteins
are also shown in Table 3. In our experiment, we treat a pattern set with the number more
than 10,000 as a meaningless one because our sample space is comparatively small and the
isomorphism check is computationally expensive. From Table 5, we see that exact matching
fails to provide useful patterns on the Immunoglobulin V proteins, which is the typical data
set with very noisy background. In comparison, APGM does find some pattern set with a
reasonable size in such situation (We only use rough parameter combination grids to do the
pattern search. If we increase the precision of τ and σ , more patterns will be found). In
order to evaluate the quality of these patterns, we use the identified frequent subgraphs in
classification tests as discussed below.

5.4.3 Classification performance

In this experimental section, we used libsvm SVM package (http://www.csie.ntu.edu.tw/
thicksimcjlin/libsvm) for protein structure classification. We treat each mined pattern as a
feature and a protein is represented as a feature vector V = (vi) where 1 ≤ i ≤ n and n is
the total number of identified features. vi is 1, if the related feature occurs in the protein and
otherwise vi is 0. We used the linear kernel and default parameters for SVM leave-one-out
cross validation, where Accuracy = (T N+T P)/(T N+T P+F N+F P) (TP, true positive;
FP, false positive; TN, true negative; FN, false negative).

123

http://www.csie.ntu.edu.tw/thicksimcjlin/libsvm
http://www.csie.ntu.edu.tw/thicksimcjlin/libsvm

440 Y. Jia et al.

Table 6 Classification accuracy
of APGM (τ = 0.35) and MGM
on Immunoglobulin C1 set

Support threshold (σ)

6 5.5 5 4.5 4

APGM 68.18% 77.27% 86.36% 90.91% 81.82%

MGM 72.73% 72.73% 72.73% 72.73% 72.73%

Table 7 Classification accuracy of APGM (τ = 0.75) and MGM on Immunoglobulin V Set

Support threshold (σ)

6 5.5 5 4.5

APGM − − − 77.78%

MGM − − − −
TP true positive, FP false positive, TN true negative, FN false negative
Accuracy= (TN + TP)/(TN + TP + FN + FP)
− means accuracies are unavailable

We followed the procedure in Fig. 6 to create one data set for feature extraction and another
for training and testing on both Immunoglobulin C1 and V proteins. The classification results
are summarized in Tables 6 and 7. For some parameter combinations, there are no accura-
cies—an event that happens under two circumstances. First, there are no patterns found.
Second, the pattern set is too big to be useful. From the tables, we see that the classification
with APGM-based feature highly outperforms those based on exact matching. For Immuno-
globulin C1 set, the classification based on feature identified by MGM only reaches 73%,
while APGM is between 69 and 91%. For Immunoglobulin V set, since the exact matching
method cannot mine any meaningful patterns, it fails in classification, while by using APGM,
we have the accuracy about 78%. It shows that our APGM has more capability to mine useful
structure information from very noisy background than general exact matching graph-mining
algorithms.

We repeated the experimental procedure 100 times for both protein families. We showed
the results of average Accuracy and its variance in Figs. 7 and 8, and the results of aver-
age Precision and Recall and their variance in Tables 6 and 7. In all of three classification
measures, APGM outperformed the exact matching method MGM, which demonstrates our
previous finding in the previous single experiment (Tables 8, 9).

5.4.4 Significance of patterns

In order to further demonstrate the quality of the patterns mined by APGM, we chose the
parameter combination with the best accuracy for the Immunoglobulin C1 proteins and the
Immunoglobulin V proteins to check the distribution and significance of patterns. Figure 9
shows the number of the patterns that the 11 Immunoglobulin C1 proteins contain and the
significance scores. Figure 10 shows those for the 9 Immunoglobulin V proteins. Proteins in
Figs. 9 and 10 are numbered according to their appearance order in Table 1. For example,
protein “10” in Fig. 9 is protein 1nfa (chain A). The proteins in Figs. 9 and 10 are sorted
according to the number of patterns contained in the proteins. The significance score P of a
pattern is defined as follows.

P = log
f +/N+

f −/N−
, if f −
= 0 f +
= 0 (3)

123

An efficient graph-mining method for complicated and noisy data 441

APGM MGM
0

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

Fig. 7 The accuracy comparison between APGM and MGM on Immunoglobulin C1 set

APGM MGM
0

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

Fig. 8 The accuracy comparison between APGM and MGM on Immunoglobulin V set

N− is the number of negative samples; N+ is the positive samples; f − is the number of
negative samples that contain the pattern; f + is the number of positive samples that contain
the pattern. There are three special cases of P’s value. If f − = 0 and f +
= 0, we set

123

442 Y. Jia et al.

Table 8 Prediction comparison between APGM (τ = 0.35) and MGM on Immunoglobulin C1

Precision (avg.± variance)% Recall (avg.± variance)%

APGM 87.87± 7.96 62.50± 12.40

MGM 86.79± 13.35 48.21± 16.05

Table 9 Prediction comparison between APGM (τ = 0.75) and MGM on Immunoglobulin V

Precision (avg.± variance)% Recall (avg.± variance)%

APGM 92.90± 11.63 47.57± 13.24

MGM 86.26± 17.72 30.53± 13.67

Precision = TP/(TP + FP)
Recall = TP/(TP + FN)
For the C1 set, APGM chose two optimal parameter combinations (τ = 0.35, σ = 4.5) and (τ = 0.35, σ = 5),
and MGM chose two optimal parameters σ = 5, 6. In 200 mining times, APGM found 200 non-empty pattern
sets and MGM found 185. For the V set, APGM chose two optimal parameter combinations (τ = 0.75, σ =
4.5) and (τ = 0.75, σ = 5), and MGM chose two optimal parameters σ = 5, 6. In 200 mining times, APGM
found 192 non-empty pattern sets and MGM found 135

10 6 8 3 9 11 5 2 4 7 1
0

10

20

30

40

50

60

70

80

90

100

Immunoglobulin C1 Protein ID (11)

N
um

be
r

of
 F

ea
tu

re
s

0 50 100 150 200 250

−10

−5

0

5

10

Protein Feature List (202)

S
ig

ni
fii

ca
nc

e
S

co
re

Fig. 9 Upper Distribution of frequent subgraph features among Immunoglobulin C1 proteins. Lower Signif-
icance of frequent subgraph features among Immunoglobulin C1 proteins. Both figures are constructed for
the set for classification. There are 202 patterns that are mined with the support threshold σ = 4.5 and the
isomorphism threshold τ = 0.35

P = 10; if f −
= 0 and f + = 0, we set P = −10; and if f − = 0 and f + = 0, we set
P = 0.

123

An efficient graph-mining method for complicated and noisy data 443

3 2 8 4 7 9 6 1 5
0

20

40

60

80

100

120

Immunoglobulin V Protein ID (9)

N
um

be
r

of
 F

ea
tu

re
s

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

12

Protein Feature List(160)

S
ig

ni
fii

ca
nc

e
S

co
re

Fig. 10 Upper Distribution of frequent subgraph features among Immunoglobulin V proteins. Lower Sig-
nificance of frequent subgraph features among Immunoglobulin V proteins. Both figures are constructed for
the set for classification. There are 160 patterns that are mined with the support threshold σ = 4.5 and the
isomorphism threshold τ = 0.75

Although the patterns do not distribute uniformly among Immunoglobulin C1 proteins,
they cover all the positive proteins. The significance score of these patterns shows strong bias
toward the Immunoglobulin C1 proteins, and among 202 only 30 noise features (P = −10)
exist. For Immunoglobulin V proteins, the features miss two positive proteins, but these
features are highly correlated with positive samples with all P equaling 10.

6 Conclusion and future work

In this paper, we present a novel data-mining method APGM (APproximate Graph Mining).
Instead of using exact matching for graph comparison, we developed a graph-mining algo-
rithm with approximate matching policy. We took advantage of known substitution matrices
as the prior domain knowledge and incorporated them into a general framework to evaluate
qualified frequent induced graph patterns. We tested this method on the field of structure
motif identification in diverse proteins. In that application, we encoded structural motifs as
subgraphs of geometric graph of proteins and utilized biological mutation matrices as our
domain knowledge base. We also enforced the biological constraints on our structure pat-
terns. Through our experimental research, we found, compared with general graph-mining
algorithms, APGM not only offers more qualified patterns that achieves higher classification
accuracy, but also shows a reasonable pattern discovery rates.

123

444 Y. Jia et al.

In biological research, the compatibility matrices on amino acid mutation are widely used
and publicly available, such as PAM 30, PAM70, BLOSUM45, and BLOSUM62. Without
loss of generality, choice of appropriate compatibility matrices allows our method to be
employed in any domain where subgraph labels have some uncertainty. For example, in the
domain of social networks, networks of personal contacts “mutate” as people die or change
employment. Compatibility matrices assigning probabilities of ‘label substitution’ within
families or organizations may allow the essential natures of personal contact subgraphs to be
preserved nevertheless. Furthermore, without loss of generality, choice of appropriate com-
patibility matrices allows our method to be employed in any domain where subgraph labels
have some uncertainty. We believe that our method and framework can be easily scalable
into different domain applications.

Acknowledgments We thank Dr. Carayannopoulos from the School of Medicine in the University of
Washington for his help in our research. This work is supported by NSF IIS award 0845951.

Appendix: Extensions

Here, we show two extensions of APGM: that of approximate cliques and that of approximate
quasi-cliques below.

Approximate cliques

A pattern is a it frequent approximate clique if it is a frequent approximate subgraph and it is
a clique (i.e. fully connected graph). In order to adapt the above algorithm to identify approx-
imate cliques, we only need to modify the definition of neighbor node of an embedding by
requiring the neighbor node connects to each and every node in an embedding, or:

Definition 9 Given a clique C , one of the embeddings e = v1, v2, . . . , vk of C , a node v is
a clique neighbor of e if ∀u ∈ e, (u, v) ∈ E[G].
The it clique neighbor set of an embedding e, denoted by NC (e), is the set of e’s clique
neighbors. If we replace the neighbor set N (e) used at line 3 of Algorithm APGM_SEARCH
with that of clique neighbor set, we obtain frequent approximate cliques.

Approximate quasi-cliques

A pattern P is it quasi-clique if for all nodes u ∈ V [P]we have d(v) ≥ k(|P|−1) (0 < k ≤ 1)
[23]. We use d(v) to denote the degree of a node v (the number of node that connects to v

directly). As studied in [23], there is a connection between a quasi-clique and the diameter
of a graph. For example, for quasi-clique with k = 0.5 (every node is connected to at least
half of the rest of the nodes in a graph), the diameter of the graph is at most 2.

Definition 10 Given a clique C , one of the embeddings e = v1, v2, . . . , vk of C , a node
v is a quasi-clique neighbor of e with distance x if ∀u ∈ e, X (u, v) ∈ E[G] and ∃u ∈
e, (u, v) ∈ E[G].
where X (u, v) is the shortest distance between two nodes u and v. The it quasi-clique neigh-
bor set of distance x of an embedding e, denoted by NCx (e), is the set of e’s quasi-clique
neighbors with distance x .

If we replace the neighbor set N (e) used at line 3 of Algorithm APGM_SEARCH with
that of quasi-clique neighbor set, we obtain frequent approximate quasi-cliques.

123

An efficient graph-mining method for complicated and noisy data 445

References

1. Aggarwal CC (2009) Managing and mining uncertain data. Springer, Berlin
2. Aggarwal CC, Li Y, Wang J, Wang J (2009) Frequent pattern mining with uncertain data. In: Proceed-

ings of the 2009 ACM SIGKDD international conference on Knowledge discovery and data mining
(SIGKDD’09), pp 29–37

3. Bandyopadhyay D, Snoeyink J (2004) Almost-Delaunay simplices: nearest neighbor relations for impre-
cise points. In: ACM-SIAM symposium on distributed algorithms, pp 403–412

4. Chan J, Bailey J, Leckie C (2008) Discovering correlated spatio-temporal changes in evolving graphs.
Knowl Inf Syst 16(1):53–96

5. Chen C, Yan X, Zhu F, Han J (2007) Gapprox: mining frequent approximate patterns from a massive
network. In: Proceedings of the 2007 international conference on data mining (ICDM’07)

6. Eddy SR (2004) Where did the blosum62 alignment score matrix come from. Nat Biotechnol 22:1035–
1036

7. Han J, Cheng H, Xin D, Yan X (2007) Frequent pattern mining: current status and future directions. Data
Min Knowl Discov 14

8. Holder LB, Cook DJ, Djoko S (1994) Substructures discovery in the subdue system. In: Proceedings of
AAAI’94 workshop knowledge discovery in databases, pp 169–180

9. Hu H, Yan X, Huang Y, Han J, Zhou XJ (2005) Mining coherent dense subgraphs across massive biologi-
cal networks for functional discovery. In: Proceedings of the 2005 international conference on intelligent
systems for molecular biology (ISMB’05)

10. Huan J, Wang W, Prins J (2003) Efficient mining of frequent subgraph in the presence of isomorphism.
In: Proceedings of the 2003 IEEE international conference on data mining (ICDM’03), pp 549–552

11. Huan J, Wang W, Prins J (2003) Efficient mining of frequent subgraphs in the presence of isomorphism.
In: Proceedings of the 2003 international conference on data mining (ICDM’03)

12. Huan J, Bandyopadhyay D, Snoeyink J, Prins J, Tropsha A, Wang W (2006) Distance-based identification
of spatial motifs in proteins using constrained frequent subgraph mining. In: Proceedings of the IEEE
computational systems bioinformatics

13. Huan J, Prins J, Wang W, Carter C, Dokholyan NV (2006) Coordinated evolution of protein sequences
and structures with structure entropy. In: Computer Science Department Technical Report

14. Huan J, Wang W, Bandyopadhyay D, Snoeyink J, Prins J, Tropsha A (2004) Mining family specific
residue packing patterns from protein structure graphs. In: Proceedings of the 8th annual international
conference on research in computational molecular biology (RECOMB), pp 308–315

15. Huan J, Wang W, Prins J, Yang J (2004) Spin: mining maximal frequent subgraphs from graph databases.
In: Proceedings of the 10th ACM SIGKDD international conference on knowledge discovery and data
mining, pp 581–586

16. Inokuchi A, Washio T, Motoda H (2000) An apriori-based algorithm for mining frequent substruc-
tures from graph data. In: Proceeding of 2000 practice of knowledge discovery in databases conference
(PKDD’00), pp 13–23

17. Judson KA, Lubinski JM, Jiang M, Chang Y, Eisenberg RJ, Cohen GH, Friedman HM (2003) Blocking
immune evasion as a novel approach for prevention and treatment of herpes simplex virus infection.
J Virol 77:12639–12645

18. Kuramochi M, Karypis G (2001) Frequent subgraph discovery. In: Proceedings of the 2001 international
conference on data mining (ICDM’01), pp 313–320

19. Lahiri M, Berger-Wolf TY (2009) Periodic subgraph mining in dynamic networks. Knowl Inf Syst (online
first 09/2009)

20. Lahiri M, Berger-Wolf TY (2007) Structure prediction in temporal networks using frequent subgraphs.
Computat Intell Data Min, pp. 35–42

21. Nijssen S, Kok JN (2004) A quickstart in frequent structure mining can make a difference. In: Proceed-
ings of the 10th ACM SIGKDD international conference on knowledge discovery and data mining, pp
647–652

22. Orengo CA, Michie AD, Jones S, Jones DT, Swindells MB, Thornton JM (1997) CATH—a hierarchic
classification of protein domain structures. Structure 5(8):1093–1108

23. Pei J, Jiang D, Zhang A (2005) Mining cross-graph quasi-cliques in gene expression and protein interac-
tion data. ICDE, pp 353–354

24. De Raedt L, Kramer S (2001) The levelwise version space algorithm and its application to molecular
fragment finding. In: IJCAI’01: seventeenth international joint conference on artificial intelligence, vol
2, pp 853–859

25. Wang G, Dunbrack RL Jr (2003) PISCES: a protein sequence culling server. Bioinformatics 19:1589–
1591

123

446 Y. Jia et al.

26. Weng C-H, Chen Y-L (2010) Mining fuzzy association rules from uncertain data. Knowl Inf Syst
23(2):129–152

27. Yada K, Motoda H, Washio T, Miyawaki A (2004) Consumer behavior analysis by graph mining tech-
nique. Lecture Notes in Computer Science, pp 800–806

28. Yan X, Han J (2002) gspan: graph-based substructure pattern mining. In: Procceeding of international
conference on data mining (ICDM’02), pp 721–724

29. Yan X, Zhu F, Yu PS, Han J (2006) Feature-based substructure similarity search. ACM Trans Database
Syst 31(4):1418–1453

30. Zhang S, Yang J (2008) Ram: randomized approximate graph mining export. Scientific and Statistical
Database Management

31. Zhang S, Yang J, Cheedella V (2007) Monkey: approximate graph mining based on spanning trees. In:
Proceeding of IEEE 23rd international conference data engineering (ICDE’07), pp 1247–1249

32. Zou Z, Li J, Gao H, Zhang S (2009) Frequent subgraph pattern mining on uncertain graph data. In: Pro-
ceedings of the 2009 conference on information and knowledge management (CIKM’09), pp 583–592

Author Biographies

Yi Jia received a B.S. in Mechanical Engineering from Shanghai Jiao
Tong University, Shanghai, China, in 1999, a M.S. degree in Computer
Science from Shanghai Jiao Tong University, Shanghai, China, in 2003,
and a M.S. degree in Information Science and Systems Engineering
from Ritsumeikan University, Kusatsu, Japan, in 2005. He is currently
working toward the Ph.D. degree in Computer Science at the University
of Kansas, Kansas, US. His research interests include graph mining,
probabilistic graphical models and their applications in protein func-
tional annotation and gene regulatory network structure inference.

Jintao Zhang has been a Ph.D. student in the Center for Bioinformatics
at University of Kansas since Fall 2006, and joined Dr. Huan’s research
group in summer 2007 as a teaching/research assistant, with research
interest on data mining in bioinformatics and chemical biology.
Mr. Jintao Zhang received his Bachelor degree in Chemical Physics
from the University of Science & Technology of China in 2001, and
a Master degree in Chemistry from University of California, Riverside
in 2005.

123

An efficient graph-mining method for complicated and noisy data 447

Jun Huan has been an assistant professor in the Electrical Engineer-
ing and Computer Science department at the University of Kansas
since 2006. He is an affiliated member of the Information and Tele-
communication Technology Center (ITTC), Bioinformatics Center,
Bioengineering Program, and the Center for Biostatistics and Advanced
Informatics–all KU research organizations. Dr. Huan received his Ph.D.
in Computer Science from the University of North Carolina at Chapel
Hill in 2006. Before joining KU, he worked at the Argonne National
Laboratory (with Ross Overbeek) and the GlaxoSmithKline plc (with
Nicolas Guex). Dr. Huan was a recipient of the NSF Faculty Early
Career Development (CAREER) Award in 2009. He serves on the pro-
gram committees of leading international conferences including ACM
SIGKDD, IEEE ICDE, ACM CIKM, IEEE ICDM.

123

	An efficient graph-mining method for complicated and noisy data with real-world applications
	Abstract
	1 Introduction
	2 Related work
	3 Theoretic framework
	4 Algorithm design
	4.1 Extensions
	4.2 Optimization techniques
	4.2.1 Optimization 1. (focusing on line 4)
	4.2.2 Optimization 2. (focusing on lines 6 and 7)

	5 Results
	5.1 Experimental setup
	5.2 Data sets
	5.2.1 Synthetic data sets
	5.2.2 Real data sets

	5.3 Computational performance
	5.3.1 Performance measurement
	5.3.2 Performance testing with synthetic data sets

	5.4 Domain relevance
	5.4.1 Experimental protocol
	5.4.2 Number of patterns identified
	5.4.3 Classification performance
	5.4.4 Significance of patterns

	6 Conclusion and future work
	Acknowledgments
	Appendix: Extensions
	Approximate cliques
	Approximate quasi-cliques

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

