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Abstract Instance selection in the supervised machine learning, often referred to as the
data reduction, aims at deciding which instances from the training set should be retained for
further use during the learning process. Instance selection can result in increased capabilities
and generalization properties of the learning model, shorter time of the learning process, or
it can help in scaling up to large data sources. The paper proposes a cluster-based instance
selection approach with the learning process executed by the team of agents and discusses its
four variants. The basic assumption is that instance selection is carried out after the training
data have been grouped into clusters. To validate the proposed approach and to investigate the
influence of the clustering method used on the quality of the classification, the computational
experiment has been carried out.

Keywords Machine learning - Data mining - Instance selection - Multi-agent system

1 Introduction

Learning from examples remains the most important paradigm of the machine learning. The
problem of learning from data, according to [7], can be formulated as follows: Given a data-
set D, a set of hypotheses H, a performance criterion P, the learning algorithm L outputs a
hypothesis & € H that optimizes P. The data D consists of N training examples, also called
instances. Each example is described by a set A of n attributes. The goal of learning is to
produce a hypothesis that optimizes the performance criterion. In the pattern classification
application, 4 is a classifier (i.e. decision tree, artificial neural network, naive Bayes, k-nearest
neighbor, etc.) that has been induced based on the training set D.

Research works in the field of machine learning have resulted in the development of numer-
ous approaches and algorithms for classification problems [46,51]. One of the recent focuses
of such research includes methods of selecting relevant information to be used within the
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learning process. It is obvious that removing some instances from the training set reduces time
and memory complexity of the learning process [48,54]. Data reduction is especially con-
sidered as an approach to increasing effectiveness of the learning process when the available
datasets are large, such as those encountered in data mining, text categorization, financial fore-
casting, mining of multimedia databases and meteorological, financial, industrial and science
repositories, analyzing huge string data like genome sequences, Web documents and log data
analysis, mining of photos and videos, or information filtering in E-commerce [23,44,54].
Finding a small set of representative instances for large datasets can result in a classification
model superior to the one constructed from the whole massive data building and can help to
avoid working on the whole original dataset all the time [55].

Data reduction is perceived as an important step in the knowledge discovery in databases
(KDD). KDD is defined in [15] as a nontrivial process of identifying valid, novel, potentially
useful, and ultimately understandable patterns in data. KDD assumes that the process of data
selection by data reduction plays a pivotal role in successful data mining and should not
be overlooked. Much of the current research works, from the KDD domain, concentrate on
scaling up data mining algorithms or scaling down the data. In the later case, the major issue
is to select the relevant data and then to present it to a data mining algorithm [28]. When the
mining of extremely large datasets is a difficult task, one possible solution to this problem is
to reduce the number of instances [23].

The selection of the relevant data is also one of the approaches to data mining, in case the
data are stored in separated and physically distributed repositories. Moving all of the data to
a central site and building a single global learning model may not be feasible due to restricted
communication bandwidth among the sites or high expenses involved. The selection of the
relevant data in distributed locations and then moving only the local patterns can eliminate
or reduce the above restrictions and speed up the distributed learning process [11].

The ultimate goal of data reduction is to reduce the size of training dataset without losing
any extractable information and while simultaneously insisting that a classifier built on the
reduced design data is a good or nearly as good, as a classifier built on the original dataset.
The idea of data reduction has been explored and studied by many researches with the main
aim to give an answer to the question why learning from the reduced data gives good results
(see, for example [25,48,55]).

Data reduction can be achieved by selecting instances, features, instances and features, or
discrediting features values [6]. This paper focuses on data reduction by means of instance
selection, often referred to as the selection of reference vectors, instance reduction or proto-
type selection. The instance reduction problem is defined as a task of removing a number of
instances from the original dataset D, thus producing the reduced training set S that retains
essentially extractable knowledge while preserving the learning process quality. In such case,
the task of learner L is to output the hypothesis 2 € H that optimizes performance criterion
P using dataset S as a subset of the set D such that § < D. Ideally S << D.

Although a variety of instance selection methods have been so far proposed in the litera-
ture (see, for example [36,43,47,48]), no single approach can be considered as superior or
guaranteeing satisfactory results in terms of the learning error reduction or increased effi-
ciency of the learning process. While there are “zillions!” of methods for finding prototypes
(see note in [5]) a method superior in certain domains is inferior in another domains [23].
Hence, searching for robust and efficient approaches to data reduction is still a lively field of
research.

The contribution of the paper is twofold. First, the paper investigates a family of four novel
algorithms for instance selection. The approach is based on the assumption that agent-based
population learning algorithms select prototypes from clusters. Clusters are produced at the
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first stage of instance selection using four different approaches. Secondly, the paper shows
through computational experiment how the choice of clustering procedure and the quality of
the produced clusters influence the learning performance.

The paper is organized as follows. Section 2 reviews briefly instance selection algorithms.
The agent-based instance selection algorithm and the description of the proposed cluster-
ing procedures are presented in Sect. 3. Section 4 contains the results of the computational
experiment. Finally, in the last section, the conclusions are drawn and directions of future
research are suggested.

2 Instance selection
2.1 Related work

Instance selection is one of many data reduction techniques [27]. It has been pointed out that
instance selection can result in [6,9,28,48,54]:

— Increasing capabilities and generalization properties of the classification model.

— Reducing space complexity of the classification problem.

— Decreasing the required computational time.

— Diminishing the size of formulas obtained by an induction algorithm on the reduced
datasets.

— Speeding up the knowledge extraction process.

Usually, instance selection algorithms are based on distance calculation between instances
in the training set [47]. Methods based on other approaches, known as instance-based meth-
ods, remove an instance if it has the same output class as its k nearest neighbors, assuming that
all neighborhood instances will be, later on, correctly classified [47]. Both approaches have
several weaknesses. They often use distance functions that are inappropriate or inadequate for
linear and nominal attributes [8,47]. Besides, there is a need to store all the available training
examples in the model. To eliminate the above, several approaches have been proposed, inclu-
ding, for example the condensed nearest neighbor (CNN) algorithm [20], the instance-based
learning algorithm 2 (IB2) [1], the instance-based learning algorithm 3 (IB3) [1], the selective
nearest neighbor (SNN) algorithm [36], the edited nearest neighbor (ENN) algorithm [48],
the family of decremental reduction optimization procedures (DROP1-DROPS) [48], and the
instance weighting approach [54]. The other group of methods (e.g. for example: the family
of four instance reduction algorithms denoted respectively IRA1-IRA4 [9], the All k-NN
method [43]) try to eliminate unwanted training examples using some removal criteria that
need to be fulfilled. The same principle has been mentioned in [52]. The authors of [52]
conclude that if many instances of the same class are found in an area, and when the area
does not include instances from the other classes, then an unknown instance can be correctly
classified when only selected prototypes from such area is used.

The above reasoning also results in approaches, where the instance situated close to the
center of a cluster of similar instances should be selected as a prototype (see, for exam-
ple [2,47]). Such approach requires using some clustering algorithms like, for example,
k-means or fuzzy k-means algorithm [14,30]. These algorithms generate cluster centers that
are later considered to be the centroids, and the reduced dataset is produced. In such approach,
a good reduced dataset can be obtained if the centroids are “good” representatives of clusters
in the data [25]. It must be also noted that the quality of the selected centroids depends on the
structure of such clusters and it is the best when they have Gaussian distribution. Furthermore,

@ Springer



116 1. Czarnowski

another constraint of clustering approaches is dimensionality of a dataset. When the number
of features is large, the quality of the selected centroids can be poor. It means that the approach
for instance selection based on the clustering must be robust independently of the structure
and dimensionality of data [25,31,47,48,54]. It can be also noted that the above-discussed
approaches more often are proposed as techniques for prototype extraction i.e. techniques
that construct entirely new set of instances smaller, in respect to its dimensionality, than the
original dataset [25].

In the IRA family of algorithms, prototypes are selected from clusters of instances and
each instance has a chance to be selected as the prototype [9]. Another approach is to consider
the so-called candidate instances situated close to the center of clusters and then to select the
prototypes using the classification accuracy as a criterion [17].

Instance selection can also be carried out through sampling of data [49]. Sampling is a
well-known statistical technique “that selects a part from a whole to make inferences about
the whole” [18]. Different versions of sampling-based prototype selection, including random
sampling, stratified sampling, clustering sampling, inverse sampling and others, are proposed
and discussed in [26,28,32]. In [6], the so-called stratified strategy, as a variant of sampling
technique, was proposed. In this case, prototypes are selected from strata using evolutionary
algorithm, assuming that data are divided into disjoint strata with equal class distribution.

It was proved that the instance selection belongs to the class of NP-hard problems [19].
Thus, local search heuristics and metaheuristics like for example tabu search, simulated
annealing, genetic algorithms, evolutionary algorithms, etc. seem to be the practical approach
to solving the instance selection problem (see, for example [25,38,39,52]).

In [13], the selection of the relevant data is seen as the process of looking for prototypes
that can be used to construct prototype-based rules.

In the literature, various hybrid data reduction methods have been also proposed. Such
methods are expected to boost the effectiveness of the instance selection processes. Examples
include a combination of CNN and ENN, and boosting or bootstrap approach [32]. Learning
vector quantization (LVQ), a supervised learning algorithm [24], is yet another approach
to improve instance selection algorithms. LVQ is used to create new prototypes rather then
to select some of the existing instances as prototypes. In [21], the conjunction of the LVQ
with some instance selection algorithms is discussed. The hybrid approach can be also help-
ful when the imbalanced datasets are observed. In such case, the class imbalance problem
involved by the modifying the data distribution can help real data mining applications [45].

2.2 Taxonomies of instance selection algorithms

The instance selection methods can be classified on the basis of several different criteria.
Raman and loerger in [35] point out that the instance selection methods can be grouped
into three classes—filter methods, wrapper methods, and embedded methods. The filter-
ing is based on random search, random sampling, or genetic algorithms. In this case, the
selected instances are tested whether they come from the same distribution as the original
entry dataset and whether the current reduced dataset is sufficient. The wrapper methods
include boosting, where the distribution of the data is modified [35,45]. The windowing
technique [34] belongs also to the wrapper group methods. Lazy learners, like the k near-
est neighbors’ method, belong to the embedded methods. This category of methods has the
example selection strategy embedded in their learning scheme [35].

Wilson and Martinez [47] suggested that the instance selection methods can be catego-
rized into incremental search, decremental search, and batch search. The incremental search
begins with an empty set of prototypes S and adds each instance to S if it fulfills some criteria
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(example approaches include: CNN, the IB family, SNN). The decremental search begins
with § = D, and successfully removes instances from S (example approaches include: ENN,
the DROP family). In [18], the decremental search methods are referred to as the conden-
sation algorithms. Finally, in the batch search mode instances fulfilling the removal criteria
are removed at one go (example approaches include: kNN-based methods, the IRA family,
random mutation hill climbing [38]).

The instance selection algorithms can also be classified as deterministic or non-determin-
istic. In deterministic ones, the final number of prototypes is controlled and determined by
the user [23].

3 An approach to instance selection
3.1 Agent-based population learning algorithm for instance selection

Since instance selection belongs to the class of computationally difficult combinatorial opti-
mization problems [12,29,41], it is proposed to apply one of metaheuristics known as the
population-based algorithm [22] with optimization procedures implemented as agents within
an asynchronous team of agents (A-Team). The approach is an extension of the algorithm
proposed in the earlier papers of the author [9, 10].

Agents working in the A-Team achieve an implicit cooperation by sharing a population
of solutions to the problem at hand, called individuals. An A-Team can be defined as a set of
agents and a set of memories, forming a network in which every agent remains in a closed
loop [41]. All agents can work asynchronously and in parallel. Agents cooperate to construct,
find and improve solutions that are read from the shared, common memory.

In our case, the shared memory is used to store a population of solutions to the instance
selection problem. Each solution is represented by the set of prototypes i.e. by the compact
representations of the original dataset. A feasible solution is encoded as a string consisting
of numbers of selected reference vectors.

All the required steps of the proposed approach are carried out by program agents of the
two types - optimizing ones and the solution manager agent. The solution manager role is to
manage the population of solutions, which, at the initial phase, is generated randomly and
stored in the shared memory. It is assumed that each initial solution is produced through
random selection of the solitary instance from each of the earlier generated clusters.

After the initialization phase, the solution manager reads individuals from the common
memory, sends them to one or more optimizing agents, and stores them back after an attempted
improvement, until a stopping criterion is met. Each optimizing agent tries to improve quality
of the received solutions and afterward sends them back to the solution manager, which, in
turn, updates common memory by replacing a randomly selected or the worst individual
(depending on the user defined evolution strategy) with the improved one. Within the pro-
posed approach, two kinds of optimizing agents representing the tabu search and the simple
local search procedures have been implemented. Pseudo-codes of both procedures are shown
as Algorithms 3.1 and 3.2.

Algorithm 3.1 Local search with tabu list for instance selection.

Input: s-individual representing a solution encoded as a string consisting of numbers
of selected reference instances; L-list of the instance numbers not in s; -number of
clusters of potential reference instances in s; 7 = (}-tabu list; i#-number of iterations
an instance number stays on the tabu list.
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Output: solution-the improved individual.

1. Seti by drawing it at random from {1, 2, ..., t}.

2. Identify j which is an instance number representing the ith cluster.

3. If(j C T)thengoto9.

4. Set j' by drawing it at random from L.

5. Replace an instance numbered j by an instance numbered j’ within the ith cluster
of s thus producing individual s’.

6. Calculate fitness of s’.

7. If (s’ is better then s) then (s := 5" AND j replaces j’ in L AND j is added to T).

8. Remove from T instances staying there for i iterations.

9. If (terminating_condition) then go to 1.

10. solution :=s.

Algorithm 3.2 Local search for instance selection.

Input: s-individual representing a solution encoded as a string consisting of numbers
of selected reference instances; L-list of the instance numbers not in s; -number of
clusters of potential reference instances in s.
Output: solution-the improved individual.

Set i by drawing it at random from {1, 2, ..., t}.

Identify j which is an instance number representing the ith cluster.

Set j’ by drawing it at random from L.

Replace an instance numbered j by an instance numbered j’ within the ith cluster
of s thus producing individual s’.

Calculate fitness of s'.

If (s is better then s) then (s := s” AND | replaces j’ in L).

If (Iterminating_condition) then go to 1.

solution :=s.

bl el o

® N

In each case, the modified solution replaces the original one if the value of its fitness has
been improved. Evaluation of the solution is carried out by estimating classification accuracy
of the classifier constructed, taking into account the selected instances. If, during its search,
an agent has successfully improved the received solution, then it stops and the improved
solution is transmitted to the solution manager. Otherwise, the agent stops searching for an
improvement after having completed the prescribed number of iterations.

Application of the above agent-based population learning algorithm is preceded by group-
ing instances of each class into clusters. In the reported research, the following approaches
to instance selection from clusters are considered:

— Selection based on the similarity coefficient.

— Selection based on the stratification strategy.

— Selection based on the modified stratification strategy,
— Selection based on the k-means clustering algorithm.

3.2 Prototype selection based on similarity coefficient
The prototype selection based on the similarity coefficient identifies clusters of instances

using the approach proposed by Czarnowski and Jedrzejowicz in [9] for two-classes clas-
sification problems. In this case, at first, for each instance from the original dataset, the
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value of its similarity coefficient is calculated. Next, the instances with identical values of
this coefficient are grouped into clusters and such procedure is carried out for instances
each class independently. Finally, prototypes are selected from clusters using the population
learning algorithm [22].

To show the proposed approach in a formal manner, the following notation needs to be
introduced. Let x denote a training example, N denotes the number of instances in the original
training set 7 (where T C D and itis a set of instances available for learning), and n denotes
the number of attributes. Total length of each instance (i.e. training example) is equal ton +1,
where element numbered n + 1 contains the class label. The class label of each example can
take any value from a finite set of decision classes C = {¢; : [ = 1, ..., k}, which has car-
dinality k. Also,let X = {x;; :i =1,...,N; j=1,...,n+ 1} denote the matrix of n + 1
columns and N rows containing values of all instances from 7. The detailed pseudo-code of
the procedure producing clusters of instances is shown below.

Algorithm 3.3 The instance grouping based on the similarity coefficient values.

Input: X—the matrix containing values of all instances from 7.
Qutput: clusters from which prototypes can be selected.

1. Transform data instances: each {x;;} for i=1,...,N and j = 1,...,n is
normalized into interval [0, 1] and then rounded to the nearest integer, that is 0
orl.

2. Calculate values:

N
sj= > xij, where j=1,...n (1)
i=1
3. For instances from X, belonging to the class ¢; (where l = 1, ..., k), calculate the

value of its similarity coefficient /;:

n
VXZXI;;H]:C[IZ‘ =inij, where [ = 1,...,N. (2)
j=1

4. Map input vectors from X with the same value of similarity coefficient /; into

clusters.

5. LetYy,..., Y, denotethe obtained clusters suchthat 7 = U§:1 YiandVxj.i j=1,...YiN
Y, =0.

Next, from subsets Y1, ..., Y; the prototypes could be selected and the reduced training

set S could be produced, where initially S = ¢. The selection is based on the following rules:

— If|Y;|=1then S :=SUY;,wherei =1,...,¢t.

— If|Y;| > 1 then S := S U {x;}, where x; is a reference instance selected from the cluster
Y;. the reported research this reference vector is selected by the agent-based population
learning algorithm as described in Sect. 3.1.

3.3 Prototype selection based on stratification strategy

The stratification strategy has been used to prototype selection by Cano et al. in [6], where
the combination of stratified strategy and evolutionary algorithm was proposed. The exper-
iment results, presented in [6], show that the evolutionary selection of the prototypes from
the strata sets can result in good generalization of the classification model. The basic idea
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of the stratified strategy is to divide the initial dataset into disjoint strata of equal size with
equal class distribution. Using the proper number of strata can reduce significantly the size
of sets from which the selection is carried out.

In this paper, the stratification is considered as a variant of clustering and from obtained
sets (strata), the prototypes are selected using the agent-based population learning algorithm.
The detailed pseudo-code of the procedure is shown below.

Algorithm 3.4 The instance grouping based on stratification.

Input: 7—the original training set; t—predefined number of strata.
QOutput: clusters from which prototypes can be selected.

1. Map input vectors from 7 into ¢ disjoint sets, strata with equal size and with equal
class distribution.

2. LetYy,...,Y;denote the obtained sets such that 7 = U;:] YiandVi+j, j=1
ny i = ?.

+Yi

.....

3.4 Prototype selection based on the modified stratification strategy

The proposed modification of the Cano et al. [6] approach assumes random division of the
dataset into disjoint strata independently for each class.

Assuming that one prototype is selected from each cluster, the number of strata has a direct
influence on the final number of prototypes. Since the stratification strategy is expected to
produce the final prototype set with the property of having identical class distribution as the
original dataset, a procedure deciding on the number of clusters for each class is proposed.
The detailed pseudo-code of such procedure, denoted NCC (Number of Clusters Calculation),
is shown below.

Algorithm 3.5 NCC procedure.

Input: T—the original training set; 7—predefined number of strata.
Output: p—the vector that contains number of clusters for each class.

1. Map input vectors from T belonging to the class ¢;(I = 1,...,k) into disjoint
subsets 77.

2. Calculate card(T;), where card(T;) is the cardinality of 7;.

3. Set M := maxcard(Ty).

4. Setp:[pl:l:l,...,k],whereplzcarj‘f/lw-t.

5. Round elements of p to the nearest integer.

6. Return p.

To select strata from which prototypes will be selected, it is proposed to use the agent-
based population learning algorithm. The prototype selection procedure based on the modified
stratification is shown below as Algorithm 3.6.

Algorithm 3.6 Strata selection procedure.

Input: T—the original training set; 7—predefined number of strata.
Output: subset of strata from which prototypes will be selected.

1. Set p = NCC(T,1t), where p is a vector that contains number of strata for each
class.
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2. Map input vectors from T belonging to the class ¢;(I = 1,..., k) into disjoint
subsets 77.

3. Map randomly input vectors from 7; into p; disjoint strata.

4. Let Y,(,i) (I =1,...,k) denote the obtained clusters such that

.....

total number of clusters t* = Zf:l Di-

Next, from obtained sets Yl(l), e Y,([) the prototypes can be selected using the agent-
based population learning algorithm.

3.5 Prototype selection based on the k-means clustering algorithm

The basic idea of the proposed approach is to apply the k-means clustering algorithm [29,30]
to the original training dataset. Next, prototypes are selected from thus obtained clusters.
The main assumption is that the clusters of data instances are produced separately for each
class. It means that the number of clusters for each class must be calculated in advance. The
algorithm calculating the number of clusters uses the NCC procedure.

The prototype selection based on the k-means clustering algorithm uses the agent-based
population learning algorithm for the selection of prototypes. Steps 1-2 and 4 are identical as
in Algorithm 3.6. Step 3 is defined as mapping input vectors from Tj into p; disjoint subsets
(clusters) using k-means algorithm. Finally, the prototypes are selected from the obtained
clusters.

To sum up, the first presented algorithm can be considered as nondeterministic. In this case,
the number of prototypes is determined by the number of clusters produced. The number of
clusters depends upon the data. The next three algorithms can be classified as deterministic.
Furthermore, all algorithms work in batch mode and have a feature of filter methods.

4 Computational experiment

The aim of the computational experiment was to investigate whether the clustering preceding
inducement of the classifier contributes toward increasing classification accuracy. The exper-
iment was also expected to give some insight into how the choice of clustering procedure
and the quality of the produced clusters influence the classification accuracy.

4.1 Experimental data and parameter setting

To validate the proposed approach, several benchmark classification problems have been
solved. Datasets for each problem have been obtained from the UCI Machine Learning
Repository [3]. They include: Cleveland heart disease, credit approval, Wisconsin breast
cancer, sonar problem, adult and Intelligence Customer [42]. Characteristics of these data-
sets are shown in Table 1.

Each benchmarking problem has been solved 30 times, and the reported values of the
quality measures have been averaged over all runs. The quality measure in all cases was the
correct classification ratio calculated using the 10-cross-validation approach, where at first,
the available dataset was randomly partitioned into training and test sets. In the second step,
each training dataset was reduced using the proposed approaches.

For the algorithm based on the modified stratification and the k-means clustering algo-
rithm, the reduction was carried out for several different numbers of clusters. These values
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Table 1 Instances used in the reported experiment

Size of the dataset Dataset name Number of Number of Number of Reported
instances attributes classes classification
accuracy
small heart 303 13 2 90.00% [12]
sonar 2082 60 2 97.1% [1]
medium credit 690 15 2 86.9% [12]
cancer 699 9 2 97.5% [2]
large adult 30162 14 2 84.46% [2]
customer 24000 36 2 75.53% [38]

4 The data set consists of 104 training and test instances

Table 2 Average number of clusters calculated by the NCC procedure for different values of the input
parameter

Dataset Number of clusters and the respective number of prototypes

NCC parameter 10 20 30 40 50

heart 18.4 (18) 36.9 (36) 55.2(55) 73.6 (73) 92.1(92)
sonar 19 (19) 38 (38) 57 (57) 76 (76) 95 (95)
NCC parameter 20 40 60 80 100

credit 36.1 (36) 72.1 (72) 108.2 (108) 144.3 (144) 180.2 (180)
cancer 30.6 (30) 61.1(61) 91.7.91) 122.1 (122) 152.8 (152)
NCC parameter 50 100 150 200 250
customer 94.3 (94) 192.1 (192) 287.6 (283) 382.5 (382) 456.8 (456)
adult 73.3 (73) 134.3 (134) 211.4 (211) 272.1 (272) 351.4 (351)

The respective number of prototypes is shown in brackets

Table 3 Number of clusters for

the stratification algorithm Dataset The number of clusters
heart, sonar 20, 40, 60, 80, 100
credit, cancer 35, 65, 95, 135, 165
customer, adult 80, 150, 230, 300, 400

influenced the total number of clusters calculated by the NCC procedure and hence also
the final number of the selected prototypes. The values of the initial parameter of the NCC
procedure and the total numbers of produced clusters with respective final number of the
selected prototypes are presented, for each type of dataset, in Table 2.

In the case of the stratification algorithm, numbers of the considered strata are shown in
Table 3. Recall that, in this algorithm, the number of strata (clusters) also defines the number
of prototypes in the final reduced training set.

All the above input parameters have been set in a way assuring comparability with respect
to the number of the selected prototypes. In the case of the clustering algorithm using the
similarity coefficient, the resulting number of clusters is shown in Table 4.

All optimization agents were running for 100 iterations. The common memory size was
set to 100 individuals. The number of iterations and the size of the common memory was
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Table 4 Average number of clusters produced by the algorithm using the similarity coefficient

Dataset heart sonar credit cancer customer adult

Average number of clusters  162.5 (162) 94 (94) 184.5(184) 133.9(133) 172.3(172) 431.3 (431)

The average number of the selected prototypes is shown in brackets

Table 5 Experiment results for the heart dataset (in %)

Reduction method Label 1NN 10NN  Bayes network WLSVM C4.5 |S|/ID|  Average

Full dataset (a) 77.23 80.86  83.50 80.53 77.89  100% 80.00
SC (b) 84.00 85.67 87.33 87.00 91.21 53% 87.04
SS,t=20 (c) 7532 82.10 81.43 84.21 80.66 7% 80.74
SS,t =40 (d) 79.66 78.43  83.50 80.30 82.66 13% 80.91
SS,t=60 (e) 82.54 77.32 81.46 80.14 84.10 20% 81.11
SS, =280 ) 80.18 81.02 82.54 82.66 88.00 26% 82.88
SS,t =100 (8) 82.43 80.40 84.21 82.86 85.33 33% 83.05
MSS, =10 (h) 91.00 83.32 90.67 83.33 80.91 6% 85.85
MSS, =20 1) 90.00 81.33  88.67 80.30 85.33 12% 85.13
MSS, =30 G) 89.67 82.00 89.67 86.00 87.67 18% 87.00
MSS, r=40 (k) 87.33 8332 88.00 84.67 88.00 24% 86.26
MSS, =50 (0] 84.67 85.67 86.00 82.33 91.11 30% 85.96
kCA,t=10 (m) 87.67 8252  88.00 84.67 82.00 6% 84.97
kCA, =20 (n) 88.33 82.67 88.00 88.33 85.67 12% 86.60
kCA, t =30 (0) 90.00 8443 87.33 81.67 87.67 18% 86.22
kCA, t =40 (p) 88.33 85.00 88.33 85.00 88.00 24% 86.93
kCA, t =50 (r) 87.33 8233 87.00 87.33 90.00 30% 86.80

Source: own computations

set arbitrary. The process of searching for the best solution stopped earlier than after 100
iterations in case there was no improvement of the best solution during the 3 minutes of
computation. The values of these parameters have been set out experimentally at the fine-
tuning phase. The starting points of k-means have been chosen randomly. The number of
iterations of k-means was set arbitrary to 100. The source code was developed using the
JADE framework [4] and compiled with a JAVA SE 1.6 compiler.

4.2 Computational experiment results

To evaluate the presented agent-based prototype selection algorithms, at first, the prototypes
from training sets were selected. Subsequently, the reduced training set was used for inducing
classifier. The following machine learning algorithms for creating classifiers have been used:
C4.5 classifier with pruned leaves [34], support vector machine (WLSVM) [53] and 1NN,
10NN, Bayes Network implemented in the WEKA library [50].

Experiment results in terms of the correct classification ratio for each of the considered
case are shown in Tables 5, 6, 7, 8, 9 and 10 where the following cases are covered:

— Results obtained using full dataset.
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Table 6 Experiment results for the sonar dataset (in %)

Reduction method Label 1NN 10NN  Bayes network WLSVM  C4.5 |S|/|D]  Average
Full dataset (a) 94.23  75.00 73.08 72.12 74.04  100% 77.69
SC (b) 94.23  75.00 75.00 40.38 83.65 90% 73.65
SS,t=20 (c) 90.32 7243  70.54 49.32 80.43 19% 72.61
SS, t =40 (d) 87.64 74.67 72.23 50.46 77.43  38% 72.49
SS, 1 =60 (e) 89.65 7232 73.08 52.34 76.32  58% 72.74
SS, 1 =280 () 89.06 74.08 72.41 40.15 79.04  77% 70.95
SS, t=100 (2) 91.20 71.07 72.48 40.15 80.30 96% 71.04
MSS, =10 (h) 89.42 71.85 80.62 54.65 78.02  18% 74.91
MSS, r=20 (1) 92.15 73.88 79.73 58.45 7720 37% 76.28
MSS, t=30 G) 91.08 73.04 76.92 58.45 73.49  55% 74.60
MSS, t =40 (k) 93.12 7488 71.15 60.06 76.37  73% 75.12
MSS, t =50 ) 91.15 7596 75.96 62.54 6891 91% 74.91
kCA, =10 (m) 80.77 70.19  80.77 58.43 79.17  18% 73.87
kCA, =20 (n) 86.06 77.64 79.81 60.67 7724 37% 76.28
kCA, r=30 (0) 91.35 79.09 80.69 59.40 75.96  55% 77.30
kCA, =40 (p) 95.67 73.04 80.77 65.90 82.69 73% 79.61
kCA, =50 (r) 9432 7253  77.09 61.34 83.54 91% 77.76
Source: own computations

Table 7 Experiment results for the credit dataset (in %)

Reduction method Label INN 10NN  Bayes network WLSVM C4.5 |S|/|D]  Average
Full dataset (a) 82.46 86.38 75.36 85.22 84.93  100% 82.87
SC (b) 83.33 88.70 75.22 85.94 90.72 27% 84.78
SS,t=35 (c) 80.89 8321 79.45 78.89 80.12 5% 80.51
SS,t =065 (d) 83.45 8432 77.49 77.43 80.45 9% 80.63
SS,t=95 (e) 83.09 8398 76.60 80.43 82.60 14% 81.34
SS,t=135 (f) 84.15 84.56 72.34 81.43 82.31 20% 80.96
SS,t=165 (2) 83.87 86.07 77.56 80.77 81.68 24% 81.99
MSS, =20 (h) 83.55 88.99 79.71 82.26 84.67 5% 83.83
MSS, t =40 (1) 82.57 88.84 7594 84.23 88.47 10% 84.01
MSS, t =60 G) 82.16 89.42 76.62 83.80 89.46 16% 84.29
MSS, =80 (k) 84.72  90.72 77.39 82.51 88.89 21% 84.85
MSS, r =100 o) 85.84 89.71 76.88 85.51 90.12 26% 85.61
kCA, =20 (m) 86.99 87.83 84.64 89.71 87.12 5% 87.26
kCA, 1 =40 (n) 88.26 88.70  78.39 87.25 88.99 10% 86.32
kCA, t =60 (o) 86.52 88.41 86.38 85.65 90.14 16% 87.42
kCA, t =80 (p) 90.72 88.41 75.94 83.51 90.29 21% 85.77
kCA, r =100 (r) 87.55 88.26 85.36 82.93 89.57 26% 86.73

Source: own computations
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Table 8 Experiment results for the cancer dataset (in %)

Reduction method Label 1NN 10NN  Bayes network WLSVM  C4.5 |S|/|D]  Average
Full dataset (a) 95.71  96.71  96.00 95.57 94.57  100% 95.71
SC (b) 96.86 9743  96.87 90.59 97.44 19% 95.84
SS,t=35 (c) 96.32 9243  88.32 86.76 94.54 5% 91.67
SS,t=065 (d) 9521 9321 90.15 85.65 94.32 9% 91.71
SS,t=95 (e) 96.54 94.60 9243 89.88 96.21 14% 93.93
SS,t=135 () 95.32  93.53  94.20 87.57 93.80 19% 92.88
SS,t=165 (2) 95.87 9593 92.62 87.65 96.03 24% 93.62
MSS, r=20 (h) 98.01 95.09 93.44 90.01 94.95 4% 94.30
MSS, t =40 (1) 97.86 9572 92.15 87.29 95.72 9% 93.75
MSS, t =60 G) 98.43 96.29 91.01 87.01 96.44 13% 93.84
MSS, =80 (k) 98.43 96.01 94.15 87.15 95.44 17% 94.24
MSS, t =100 ) 98.29 96.58 93.01 87.44 96.61 22% 94.39
kCA, =20 (m) 97.32 94.83 94.54 88.30 95.71 4% 94.14
kCA, r =40 (n) 97.33  95.02 95.04 89.20 94.43 9% 94.20
kCA, t =60 (0) 97.77 9697 92.15 87.54 95.09 13% 93.90
kCA, =80 (p) 97.68 97.10 93.30 90.23 96.14 17% 94.89
kCA, t =100 (r) 98.33  96.51 94.54 89.65 95.57 22% 94.92
Source: own computations

Table 9 Experiment results for the customer dataset (in %)

Reduction method Label INN 10NN  Bayes network WLSVM C4.5 |S|/|D]  Average
Full dataset (a) 62.92 6430 50.96 59.83 73.32  100% 61.76
SC (b) 67.32  70.78  58.25 64.21 7243 0.72% 66.60
SS,t=280 (c) 58.29 59.21 58.42 50.19 57.32  0.33% 56.69
SS,t=150 (d) 58.00 59.46 57.63 52.34 60.32  0.63% 57.55
SS,r=230 (e) 58.38 60.79 59.71 52.78 5743  0.96% 57.82
SS, t =300 (f) 60.08 62.17 5892 52.50 61.54 1.25% 59.04
SS, t =400 (2) 60.83 63.08 61.13 54.05 63.54 1.67% 60.53
MSS, t =50 (h) 61.29 69.21 58.42 50.19 66.29  0.39% 61.08
MSS, t =100 (1) 68.00 69.46 57.63 52.34 69.25 0.80% 63.33
MSS, r =150 G) 68.38 68.79 59.71 52.78 70.29  1.20% 63.99
MSS, r =200 (k) 70.08 70.17 58.92 52.50 69.46  1.59% 64.23
MSS, r =250 o) 71.83 70.08 61.13 54.05 71.52  1.90% 65.72
kCA, =50 (m) 6245 68.32 6754 61.40 74.29  0.39% 66.80
kCA, t =100 (n) 68.32 7043  68.32 60.43 77.25 0.80% 68.95
kCA, t =150 (0) 7134  72.63  68.65 62.40 7429  1.20% 69.86
kCA, t =200 (p) 70.94 71.54 69.43 64.21 73.58 1.59% 69.94
kCA, r =250 (r) 72.50 73.05 68.05 64.06 75.17  1.90% 70.57

Source: own computations
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Table 10 Experiment results for the adult dataset (in %)

Reduction method Label 1NN 10NN  Bayes network WLSVM  C4.5 |S|/|D]  Average

Full dataset (a) 79.58 80.20 73.80 62.00 82.43  100% 75.60
SC (b) 82.43 85.00 76.67 69.43 8521 1.43% 79.75
SS,t=280 (c) 76.35 75.85 70.53 65.06 71.61  0.27% 73.08
SS,t=150 (d) 77.65 75779  71.15 65.44 77.40  0.50% 73.49
SS, =230 (e) 76.76  75.77 72.43 67.47 79.37  0.76% 74.36
SS, t =300 ® 7742 7542 7043 65.21 80.36 0.99% 73.71
SS, t =400 (g) 75.75 75.11  72.83 67.79 81.16 1.33% 74.53
MSS, r=50 (h) 78.92 7895 74.73 67.04 82.17 0.24% 76.36
MSS, =100 (1) 80.17 80.50  75.36 68.14 82.58 0.44% 77.35
MSS, =150 Q) 79.07 81.02 73.88 67.07 84.33  0.70% 71.07
MSS, =200 (k) 77.80 82.15 76.53 68.95 85.12  0.90% 78.11
MSS, =250 o) 79.89 7395 74.50 68.39 8592 1.16% 76.53
kCA, t =50 (m) 80.06 80.64 73.25 71.74 84.53  0.24% 78.04
kCA, t =100 (n) 79.43 8196 75.81 70.50 8532  0.44% 78.60
kCA, t =150 (0) 82.64 8333 7471 72.42 86.40 0.70% 79.90
kCA, t =200 p) 83.15 84.05 75.74 71.87 87.43 0.90% 80.45
kCA, t =250 ) 8529 8529 75.36 71.25 87.09 1.16% 80.86

Source: own computations

— SC—results obtained using the reduced training set produced through selection based on
the similarity coefficient.

— SS—results obtained using the set of prototypes produced through selection based on
the stratification strategy (these results are shown for several variants of the number of
strata).

— MSS—results obtained using the set of prototypes produced through selection based on
the modified stratification strategy (these results are shown for several variants of the
number of strata).

— kCA—results obtained using the set of prototypes produced through selection based on
the k-means clustering (these results are shown for several variants of the number of
clusters).

Additionally, Tables 5, 6, 7, 8, 9 and 10 include the average percentage of the retained
instances in the training set as well as the correct classification ratio averaged over all classifier
used in each case.

From Tables 5, 6,7, 8, 9 and 10, it is clear that the agent-based prototype selection assures
better classification accuracy when compared with the case when a classifier is induced using
an original, non-reduced dataset. It is also evident that the choice of the instance reduction
algorithm, and specifically the underlying clustering algorithm, has an impact on the classi-
fication accuracy. The above conclusion holds true for all the considered datasets apart from
the WLSVM classifier. In case of WLSVM, the data reduction results in the deterioration
of the classification accuracy. This can be observed in the case of two considered classifi-
cation problems. However, when the results for considered classifiers are compared, it can
be concluded that the data reduction increases their performances. When the parameters are
carefully selected, the performance of WLSVM is outperformed by all remaining classifiers.
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Table 11 The ANOVA analysis

Problem Main effect Main effect Interaction effect/
results

A/Ho accepted B/Ho accepted Ho accepted

heart - - -
sonar Yes - Yes
credit - - -
cancer Yes - Yes
customer - - -

adult - - -

The experiment results also indicate that there is no single winning classifier although the
C4.5 has been significantly better than others especially when the dataset is huge.

To confirm the above, the two-way analysis of variance (ANOVA) with the following null
hypotheses has been carried out:

I: The choice of prototype selection procedure does not influence the classifier perfor-
mance.
II: The choice of classifier does not influence the classification accuracy.
III: There are no interactions between both factors (i.e. the choice of the prototype selection
procedure and the choice of the classifier type).

The analysis has been carried out at the significance level of 0.05. In Table 11, the ANOVA
analysis results are shown. The summary results presented in Table 11 confirm that the choice
of the classifier has an influence on the classification. On the other hand, the reduction in the
training set through retaining prototype instances only increases, in a statistically significant
manner, the classifier performance. An interaction effect between both considered factors
cannot be excluded.

Taking into account the fact that the quality of the prototype selection can depend on the
choice of the cluster producing procedure, it has been decided to use the non-parametric
Friedman test [16] to check whether particular prototype selection procedures are equally
effective independently of the kind of problem being solved.

The above test is based on weights (points) assigned to prototype selection algorithms used
in the experiment. To assign weights, the 17-point scale has been used with 17 points for the
best and 1 point for the worst algorithm. The test aimed at deciding among the following
hypotheses:

— Hop——zero hypothesis: prototype selection algorithms are statistically equally effective
regardless of the kind of the problem being solved.
— Hj—alternative hypothesis: not all working strategies are equally effective.

The analysis has been carried out at the significance level of 0.5. The respective value x2
statistics with 17 algorithms and 6 instances of the considered problems is 72.8, and the value
of x?2 distribution is equal to 26.3 for 16 degrees of freedom. Thus, it can be observed that
not all algorithms are equally effective regardless of the kind of the problems being solved.
In Figs. 1, 2, and 3, average weights for each prototype selection algorithm are shown.

From Figs. 1, 2, and 3, one can observe that the best results have been obtained by proto-
type selection algorithm based on the k-means clustering (see cases labeled as: ‘m’, ‘n’, ‘o’,
‘p’, ‘1’), especially in case of large datasets and high-dimensional datasets like the ‘sonar’
one. The comparable results have been obtained by prototype selection algorithm based
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Fig. 1 The average Friedman test weights for a small-size datasets

16

14

12 —

10 A

average weight
[e¢]

el

@ b © @ @ O @ ® O 0 & O m 0 0 ® o
label of the reduction method

Fig. 2 The average Friedman test weights for a medium-size datasets

on the similarity coefficient (see case labeled as ‘b’). This algorithm is also very effective
independently of data size and dimensionality of dataset. Both algorithms outperform other
approaches and this observation also holds true for the case of classifiers induced from full
datasets. The worst results have been produced by the prototype selection algorithm based
on stratification strategy. However, the modified stratification strategy definitely improves
the results.

The proposed algorithms are also competitive in comparison with other approaches to
data reduction which can be concluded from the data shown in Table 12.

The experiment results allow to observe that the number of produced clusters also influ-
ences the classifier performance. Hence, it is reasonable to assume that the number of pro-
totypes selected in the process of data reduction can influence the classifier performance.
This means that the choice of the input parameter # value is an important decision. This
observation holds true for selection methods SS, MSS, and kCA.
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Fig. 3 The average Friedman test weights for a large-size datasets

Table 12 Comparison of different data reduction approaches (I—instance selection only; [IF—instance and
feature selection)

Reduction method Type Accuracy of classification in %

heart sonar credit cancer customer adult
SC 1 91.25 94.23 90.72 97.44 72.43 85.21
kCA I 90.00 95.67 90.72 98.33 77.25 87.43
MSS 1 91.11 93.12 90.72 98.43 71.83 85.92
SS 1 85.33 91.20 86.07 96.54 63.54 81.16
CNN [48] 1 73.95 74.12 77.68 95.71 60.43* 71.72%
SNN [48] 1 76.25 79.81 81.31 93.85 — —
ENN [48] I 81.11 81.79 84.49 97.00 70.65* 82.09*
3STAR [55] I - 73.84 86.32 — - -
DROP 5 [48] I 79.84 79.88 83.91 95.71 — -
IB3+RELIEF [35] IF 79.94 — 71.75 73.25 — —
RMHC [38] IF 82.3 - — 70.9 — —
GA-KIJ [37] IF 74.7 55.3 — 95.5 - —
PSO [33] 1 - - — 96.6 — —
GA [33] I - - - 95.4 - —

* Source: own computations

The above observations lead to the following two questions:

— How does the number of clusters influence the classification accuracy?
— How does the quality of the clusters influence the quality of the selected prototypes and,
in consequence, the classifier performance?

Based on the computational experiment results, it can be observed that there is an inter-
dependence between the number of selected prototypes (i.e. the reduction rate) and the
classification accuracy. Its nature seems to vary depending on the dataset size. For instance,
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Table 13 Silhouette width and average accuracy of classification (in %) shown with respect to comparable
number of clusters)

Algorithm heart sonar credit cancer customer adult
SC Silhouette width —0.19 —0.11 —0.07 0.11 —0.13 —0.08
Average accuracy 87.04 73.65 84.78 95.84 66.60 79.75
SS Silhouette width —0.42 —0.31 —0.43 —0.34 —0.28 —0.52
Average accuracy 83.04 71.04 81.99 92.88 57.55 74.53
MSS Silhouette width —0.34 —0.25 —0.18 —0.32 —0.27 —0.47
Average accuracy 85.96 74.91 85.61 94.24 63.33 76.53
kCA Silhouette width —0.11 —0.24 —0.08 —0.16 —0.12 —0.27
Average accuracy 86.80 77.76 86.73 94.89 68.95 80.86

Source: own computations

for the small- and middle-size datasets, when the number of selected prototypes increases, the
accuracy remains at certain level or can even fall. In case of the large datasets, the accuracy
increases together with the increasing number of the selected prototypes. On the other hand,
this may suggest that the relationship between the accuracy and the number of prototypes
selected by a data reduction algorithm depends on the problem domain. Such conclusion was
also formulated in the study dedicated to other prototype selection methods [23].

To identify the influence of the quality of clusters on the classifier performance, the
silhouette technique has been used. The silhouette validation technique [40] calculates the
silhouette width for each instance, average silhouette width for each cluster, and overall aver-
age silhouette width for a total dataset. Using this approach, each cluster can be represented
by the silhouette width, which is based on the comparison of its tightness and separation. The
average silhouette width, also called the silhouette coefficient, could be used for evaluation of
the clustering quality. The silhouette value lies between —1 and 1. The higher the coefficient
value the better the quality of the cluster has been obtained.

To analyze the relationships between the number of clusters, the quality of clustering and
the classifier performance, the values of the silhouette coefficient versus values of the input
parameter ¢ have been observed. Based on the observation, it can be concluded that the clus-
ters produced by applying selection method based on the k-means clustering have the highest
value of the silhouette coefficient. This coincides with the fact that classifiers induced from
prototypes obtained by applying selection method based on the k-means clustering (kCA)
are best performers among SS, MSS, and kCA approaches.

It has also been observed that also the reduction technique based on the similarity coef-
ficient (SC) produces very good results independently of the dataset. For the compara-
ble instance reduction rate, SC seems better in terms of classification accuracy than other
approaches. This again coincides with a high value of the silhouette coefficient character-
izing clusters produced within the SC approach as shown in Table 13. The above supports
the claim that the value of the similarity coefficient can be used as an important indicator in
searching for a partition of instances into clusters from which prototypes are to be selected.

5 Conclusions

The paper proposes a cluster-based instance selection approach with the learning process
executed by the team of agents and discusses its four variants with four different clustering
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procedures. It has been shown that the proposed agent-based population algorithm combined
with clustering procedures is an effective instance reduction tool contributing to achieving
higher quality of machine classification. The approach has been validated experimentally.
Validating experiment results allow to draw the following conclusions:

— Learning from prototypes obtained within the data reduction process can produce better
results than learning from full dataset.

— Agent-based approach to prototype selection extends the family of data reduction tech-
niques adding an effective and useful alternative.

— In the data reduction based on clustering, the choice of clustering procedure is a critical
factor from the point of view of the classification accuracy.

— In the data reduction based on clustering using stratification and k-means approaches,
selection of the number of clusters has an influence on classification accuracy and data
reduction rate. In case of the small- and middle-size datasets, it was observed that when
the number of clusters increases, the accuracy remains at certain level or can even fall. In
case of the large datasets, it was observed that the accuracy increases together with the
increasing number of the selected prototypes.

— Instance selection based on the clustering method using the similarity coefficient approach
assures better quality of learning in comparison with cases where instances are selected
based on clustering using stratification or k-means approaches. It is also competitive in
comparison with other data reduction approaches, so far proposed in the literature, with
respect to the benchmark classification datasets.

— Clustering quality measured by the silhouette coefficient is positively correlated with the
quality of classifier learning from the reduced dataset produced through data selection
from clusters.

The proposed agent-based approach extends the existing range of the available techniques
of data reduction. Properties of the approach should be further studied with the view of find-
ing more effective strategies of data reduction. Future research should also be extended to
implementation of the agent approach to data reduction through simultaneous instance and
feature selection.
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