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Abstract Data perturbation is a popular technique in privacy-preserving data mining.
A major challenge in data perturbation is to balance privacy protection and data utility,
which are normally considered as a pair of conflicting factors. We argue that selectively pre-
serving the task/model specific information in perturbation will help achieve better privacy
guarantee and better data utility. One type of such information is the multidimensional geo-
metric information, which is implicitly utilized by many data-mining models. To preserve this
information in data perturbation, we propose the Geometric Data Perturbation (GDP) method.
In this paper, we describe several aspects of the GDP method. First, we show that several
types of well-known data-mining models will deliver a comparable level of model quality
over the geometrically perturbed data set as over the original data set. Second, we discuss the
intuition behind the GDP method and compare it with other multidimensional perturbation
methods such as random projection perturbation. Third, we propose a multi-column privacy
evaluation framework for evaluating the effectiveness of geometric data perturbation with
respect to different level of attacks. Finally, we use this evaluation framework to study a few
attacks to geometrically perturbed data sets. Our experimental study also shows that geomet-
ric data perturbation can not only provide satisfactory privacy guarantee but also preserve
modeling accuracy well.
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1 Introduction

With the rise of cloud computing, service-based computing is becoming the major paradigm
[4,17]. Either to use the cloud platform services [5], or to use existing services hosted on
clouds, users will have to export their private data to the service provider. Since these service
providers are not within the trust boundary, the privacy of the outsourced data has become
one of the top-priority problems [5,7]. As data mining is one of the most popular data-inten-
sive tasks, privacy preserving data mining for the outsourced data has become an important
enabling technology for utilizing the public computing resources. Different from other set-
tings of privacy preserving data mining such as collaboratively mining private data sets from
multiple parties [29,32,39,40], this paper will focus on the following setting: the data owner
exports data to and then receives a model (with the quality description such as the accuracy
for a classifier) from the service provider. This setting also applies to the situation that the
data owner uses the public cloud resources for large-scale scalable mining, where the service
provider just provides computing infrastructure.

We present a new data perturbation technique for privacy preserving outsourced data min-
ing [1,8] in this paper. A data perturbation procedure can be simply described as follows.
Before the data owners publish their data, they change the data in certain ways to disguise the
sensitive information while preserving the particular data property that is critical for building
meaningful data-mining models. Perturbation techniques have to handle the intrinsic trade-
off between preserving data privacy and preserving data utility, as perturbing data usually
reduces data utility. Several perturbation techniques have been proposed for mining purpose
recently, but these two factors are not satisfactorily balanced. For example, random noise
addition approach [3,13] is weak to data reconstruction attacks and only good for very few
specific data-mining models. The condensation approach [1] cannot effectively protect data
privacy from naive estimation. The rotation perturbation [8,35] and random projection pertur-
bation [31] are all threatened by prior-knowledge enabled Independent Component Analysis
[22]. Multidimensional k-anonymization [27] is only designed for general-purpose utility
preservation and may result in low-quality data-mining models. In this paper, we propose a
new multidimensional data perturbation technique: geometric data perturbation that can be
applied for several categories of popular data-mining models with better utility preservation
and privacy preservation.

1.1 Data privacy vs. data utility

Perturbation techniques are often evaluated with two basic metrics: the level of preserved pri-
vacy guarantee and the level of preserved data utility. Data utility is often task/model-specific
and measured by the quality of learned models. An ultimate goal for all data perturbation
algorithms is to maximize both data privacy and data utility, although these two are typically
representing conflicting goals in most existing perturbation techniques.

Level of Privacy Guarantee Data privacy is commonly measured by the difficulty level in
estimating the original data from the perturbed data. Given a data perturbation technique, the
more difficult the original values can be estimated from the perturbed data, the higher level
of data privacy this technique provides. In [3], the variance of the added random noise is used
as the level of difficulty for estimating the original values. However, recent research [2,12]
reveals that variance of added noise only is not an effective indicator of privacy guarantee.
More research [21,26] has shown that privacy guarantee is subject to the attacks that can
reconstruct the original data (or some records) from the perturbed data. Thus, attack analysis

123



Geometric data perturbation 659

has to be integrated into privacy evaluation. Furthermore, since the amount of attacker’s
prior knowledge on the original data determines the type of attacks and its effectiveness, we
should also study privacy guarantee according to the level of prior knowledge the attacker
may have. With this study, the data owner can decide whether the perturbed data can be
released under the assumption of certain level of prior knowledge. In this paper, we will
study the proposed geometric data perturbation under a new privacy evaluation framework
that incorporates attack analysis and calculates multi-level privacy guarantees according to
the level of attacker’s prior knowledge.

Level of Data Utility The level of data utility typically refers to the amount of critical infor-
mation preserved after perturbation. More specifically, the critical information should be task
or model oriented. For example, decision tree and k-Nearest-Neighbor (kNN) classifier for
classification modeling typically utilize different sets of information about the data sets: deci-
sion tree construction primarily concerns the related column distributions; the kNN model
relies on the distance relationship which involves all columns. Most of existing perturbation
techniques do not explicitly address that the critical information is actually task/model-spe-
cific. We argue that by narrowing down to preserve only the task/model-specific information,
we are able to provide better quality guarantee on both privacy and model accuracy. The pro-
posed geometric data perturbation aims to approximately preserve the geometric properties
that many data-mining models are based on.

It is interesting to note that privacy guarantee and data utility have exhibited contradictive
relationship in most data perturbation techniques. Typically, data perturbation algorithms
that aim at maximizing the level of privacy guarantee often have to bear with reduced data
utility. The intrinsic correlation between the two factors makes it challenging to find a right
balance for them in developing a data perturbation technique.

1.2 Contributions and scope

Bearing the above issues in mind, we have developed the geometric data perturbation
approach to privacy preserving data mining. In contrast to other perturbation approaches
[1,3,8,31], our method exploits the task and model specific multidimensional information
about the data sets and produces a robust data perturbation method that not only preserves
such critical information well but also provides a better balance between the level of privacy
guarantee and the level of data utility. The contributions of this paper can be summarized
into three aspects.

First, we articulate that the multidimensional geometric properties of data sets are the
critical information for many data-mining models. We define a data-mining model to be
“perturbation invariant”, if the model built on the geometrically perturbed data set presents
a quality to that over the original data set. With geometric data perturbation, the perturbed
data can be exported to the public platform, where these perturbation-invariant data-mining
models are applied to obtain equivalent models. We have proved that a batch of data-mining
models, including kernel methods, SVM classifiers with the three popular kernels, linear
classifiers, linear regression, regression trees, and all Euclidean distance– based clustering
algorithms, are invariant to geometric data perturbation with the rotation and translation com-
ponents only, and we have also studied the effect of the distance perturbation component to
the model invariance property.

Second, we also study whether random projection perturbation [31] can be an alternative
component in geometric data perturbation, based on the formal analysis of the effect of mul-
tiplicative perturbation to model quality. We use the Gaussian mixture model [33] to show in
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which situations the multiplicative component can affect the model quality. It helps us under-
stand why the rotation component is a better choice than other multiplicative components in
terms of preserving model accuracy.

Third, since a random geometric transformation–based perturbation is a multidimensional
perturbation, the privacy guarantee of the multiple dimensions (attributes) should be evalu-
ated collectively, not separately. We use a unified privacy evaluation metric for all dimensions
and a generic framework to incorporate attack analysis in privacy evaluation. We also analyze
a set of attacks according to different levels of knowledge an attacker may have. A random-
ized perturbation optimization algorithm is presented to incorporate the evaluation of attack
resilience into the perturbation algorithm design.

The rest of paper is organized as follows. Section 2 briefly reviews the related work in data
perturbation. Section 3 defines some notations and gives the background knowledge about
geometric data perturbation. Then, in Sects. 4 and 5, we define the geometric data perturba-
tion and prove that many major models in classification, regression and clustering modeling
are invariant to rotation and translation perturbation. In Sect. 5, we also extend the discus-
sion to the effect of noise component and other choices of multiplicative components such as
random projection to model quality. In Sect. 6, we first introduce a generic privacy evaluation
model and define a unified privacy metric for multidimensional data perturbation. Then, a few
inference attacks are analyzed under the proposed privacy evaluation model, which results in
a randomized perturbation optimization algorithm. Finally, we present experimental results
in Sect. 7.

2 Related work

A considerable amount of work on privacy preserving data-mining methods have been
reported in recent years [1–3,10,13,40]. The most relevant work about perturbation tech-
niques for data mining includes the random noise addition methods [3,13], the condensa-
tion-based perturbation [1], rotation perturbation [8,35] and projection perturbation [31].
In addition, k-anonymization [38] can also be regarded as a perturbation technique, and
there are a large body of literatures focusing on the k-anonymity model [15]. Since our
work is less relevant to the k-anonymity model, we will focus on other perturbation tech-
niques.

Noise Additive Perturbation The typical additive perturbation technique [3] is column-based
additive randomization. This type of techniques relies on the facts that (1) Data owners may
not want to equally protect all values in a record; thus, a column-based value distortion can
be applied to perturb some sensitive columns. (2) Data classification models to be used do not
necessarily require the individual records, but only the column value distributions [3] with
the assumption of independent columns. The basic method is to disguise the original values
by injecting certain amount of additive random noise, while the specific information, such
as the column distribution, can still be effectively reconstructed from the perturbed data.

A typical random noise addition model [3] can be precisely described as follows. We treat
the original values (x1, x2, . . . , xn) from a column to be randomly drawn from a random var-
iable X, which has some kind of distribution. The randomization process changes the original
data by adding random noises R to the original data values, and generates a perturbed data
column Y, Y = X +R. The resulting record (x1 + r1, x2 + r2, . . . , xn + rn) and the distribu-
tion of R are published. The key of random noise addition is the distribution reconstruction
algorithm [2,3] that recovers the column distribution of X based on the perturbed data and
the distribution of R.
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Fig. 1 Condensation approach
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While the randomization approach is simple, several researchers have recently identi-
fied that reconstruction-based attacks are the major weakness of the randomization approach
[21,26]. In particular, the spectral properties of the randomized data can be utilized to separate
noise from the private data. Furthermore, only the mining algorithms that meet the assump-
tion of independent columns and work on column distributions only, such as decision-tree
algorithms [3], and association-rule mining algorithms [13], can be revised to utilize the
reconstructed column distributions from perturbed data sets. As a result, it is inconvenient to
apply this method for data mining in practice.

Condensation-based Perturbation The condensation approach [1] is a typical
multi-dimensional perturbation technique, which aims at preserving the covariance matrix
for multiple columns. Thus, some geometric properties such as the shape of decision bound-
ary are well preserved. Different from the randomization approach, it perturbs multiple
columns as a whole to generate the entire “perturbed data set”. As the perturbed data set
preserves the covariance matrix, many existing data mining algorithms can be applied
directly to the perturbed data set without requiring any change or new development of
algorithms.

The condensation approach can be briefly described as follows. It starts by partitioning the
original data into k-record groups. Each group is formed by two steps—randomly selecting
a record from the existing records as the center of group, and then finding the (k − 1) nearest
neighbors of the center to be the other (k − 1) members. The selected k records are removed
from the original data set before forming the next group. Since each group has small locality,
it is possible to regenerate a set of k records to approximately preserve the distribution and
covariance. The record regeneration algorithm tries to preserve the eigenvectors and eigen-
values of each group, as shown in Fig. 1. The authors demonstrated that the condensation
approach can well preserve the accuracy of classification models if the models are trained
with the perturbed data.

However, we have observed that the condensation approach is weak in protecting data
privacy. As stated by the authors, the smaller the size of the locality is in each group, the
better the quality of preserving the covariance with the regenerated k records is. However,
the regenerated k records are confined in the small spatial locality as shown in Fig. 1. Our
result (Sect. 7) shows that the differences between the regenerated records and the nearest
neighbor in original data are very small on average, and thus, the original data records can
be estimated from the perturbed data with high confidence.
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Rotation Perturbation Rotation perturbation was initially proposed for privacy preserving
data clustering [34]. As one of the major components in geometric perturbation, we first
applied rotation perturbation to privacy-preserving data classification in our paper [8] and
addressed the general problem of privacy evaluation for multiplicative data perturbations.
Rotation perturbation is simply defined as G(X) = R X where Rd×d is a randomly gener-
ated rotation matrix and Xd×n is the original data. The unique benefit and also the major
weakness is distance preservation, which ensures many modeling methods are perturbation
invariant while bringing distance-inference attacks. Distance-inference attacks have been
addressed by recent study [9,18,30]. In [9], we discussed some possible ways to improve
its attack resilience, which results in our proposed geometric data perturbation. To be self-
contained, we will include some attack analysis in this paper under the privacy evaluation
framework. In [35], the scaling transformation, in addition to the rotation perturbation, is also
used in privacy preserving clustering. Scaling changes the distances; however, the geometric
decision boundary is still preserved.

Random Projection Perturbation Random projection perturbation [31] refers to the tech-
nique of projecting a set of data points from the original multidimensional space to another
randomly chosen space. Let Pk×d be a random projection matrix, where P’s rows are ortho-

normal [41]. G(X) =
√

d
k P X is applied to perturb the data set X . The rationale of projection

perturbation is based on its approximate distance preservation, which is supported by the
Johnson-Lindenstrauss Lemma [25]. This lemma shows that any data set in Euclidean space
could be embedded into another space, such that the pair-wise distance of any two points are
maintained with small error. As a result, model quality can be approximately preserved. We
will compare random projection perturbation to the proposed geometric data perturbation.

3 Preliminaries

In this section, we first give the notations and then define the components in geometric per-
turbations. Since geometric perturbation works only for numerical data classification, by
default, the data sets discussed in this paper are all numerical data.

3.1 Training data set

Training data set is the part of data that has to be exported/published in privacy-preserving
data classification or clustering. A classifier learns the classification model from the train-
ing data and then is applied to classify the unclassified data. Suppose that X is a training
data set consisting of N data rows (records) and d columns (attributes, or dimensions). For
the convenience of mathematical manipulation, we use Xd×N to denote the data set, i.e.,
X = [x1 . . . xN ], where xi is a data tuple, representing a vector in the real space R

d . Each
data tuple xi belongs to a predefined class if the data is for classification modeling, which is
indicated by the class label attribute yi . The data for clustering do not have labels. The class
label can be nominal (or continuous for regression), which is public, i.e., privacy-insensitive.
All other attributes containing private information needs to be protected. Unclassified data
set could also be exported/published with privacy-protection if necessary.

If we consider X is a sample data set from the d-dimension random vector [X1, X2,

. . . , Xd ]T , we use bold Xi to represent the random variable for the column i . In general, we
will use bold lower case to represent vectors, bold upper case to represent random variables,
and regular upper case to represent matrices.
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Fig. 2 Applying geometric data perturbation to outsourced data

3.2 Framework and threat model for applying geometric data perturbation

We study geometric data perturbation under the following framework (Fig. 2). The data
owner wants to use the data-mining service provider (or the public cloud service provider).
The outsourced data needs to be perturbed first and then sent to the service provider. Then,
the service provider develops a model based on the perturbed data and returns it to the data
owner, who can use the model either by transforming it back to the original space or perturb
new data to use the model. In the middle of developing models at the service provider, there
is no additional interaction happening between the two parties. Therefore, the major costs
for the data owner incur in optimizing perturbation parameters that can use a sample set of
the data and perturbing the entire data set.

We take the popular and reasonable honest-but-curious service provider approach for our
threat model. That is, we assume the service provider will honestly provide the data-mining
services. However, we also assume that the provider might look at the data stored and pro-
cessed on their platforms. Therefore, only well-protected data can be processed and stored
on such an untrusted environment.

4 Definition of geometric data perturbation

Geometric data perturbation consists of a sequence of random geometric transformations,
including multiplicative transformation (R) , translation transformation (�), and distance
perturbation �.

G(X) = R X + � + � (1)

We briefly define these transformations and describe their properties.

4.1 Multiplicative transformation

The component R can be rotation matrix [8] or random projection matrix [31]. Rotation matrix
exactly preserves distances, while random projection matrix only approximately preserve
distances. We will compare the advantages and disadvantages of the two choices.

It is intuitive to understand a rotation transformation in two-dimensional or
three-dimensional (2D or 3D, for short) space. We extend it to represent all kind of
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orthonormal transformation in multi-dimensional space. A rotation perturbation is defined
as follows: G(X) = R X . The matrix Rd×d is an orthonormal matrix [36], which has some
important properties. Let RT represent the transpose of R, ri j represent the (i, j) element
of R, and I be the identity matrix. Both rows and columns of R are orthonormal: for any
column j,

∑d
i=1 r2

i j = 1, and for any two columns j and k, j �= k,
∑d

i=1 ri j rik = 0; a similar

property is held for rows. This definition infers that RT R = R RT = I . It also implies that
by changing the order of the rows or columns of an orthogonal matrix, the resulting matrix is
still orthonormal. A random orthonormal matrix can be efficiently generated following the
Haar distribution [37], which preserves some important statistical properties [24].

A key feature of rotation transformation is preserving the Euclidean distance. Let xT

represent the transpose of vector x, and ‖x‖ = xT x represent the length of a vector x. By
the definition of rotation matrix, we have ‖Rx‖ = ‖x‖. Similarly, inner product is also
invariant to rotation. Let 〈x, y〉 = xT y represent the inner product of x and y. We have
〈Rx, Ry〉 = xT RT Ry = 〈x, y〉. In general, rotation transformation also completely pre-
serves the geometric shapes such as hyperplane and manifold in the multidimensional space.
Thus, many modeling methods are “rotation-invariant” as we will see. Rotation perturbation
is a key component of geometric perturbation, which provides the primary protection to the
perturbed data from naive estimation attacks. Other components of geometric perturbation
are used to protect rotation perturbation from more complicated attacks.

A random projection matrix [41] Rk×d is defined as R =
√

d
k R0. R0 is randomly generated

and its row vectors are orthonormal (note there is no such requirement on column vectors).
The Johnson-Lindenstrauss Lemma [25] proves that random projection can approximately
preserve Euclidean distances if certain conditions are satisfied. Concretely, let x and y be any
original data vectors. Given 0 < ε < 1 and k = O(ln(N )/ε2), there is a random projection
f : Rd → Rk , so that (1 − ε)‖x − y‖ ≤ ‖ f (x) − f (y)‖ ≤ (1 + ε)‖x − y‖. ε defines the
accuracy of distance preservation. Therefore, in order to precisely preserve distances, k has
to be large. For large data set (N is large), it would be difficult to well preserve distances with
computationally acceptable k. We will discuss the effect of random projection and rotation
transformation to the result of perturbation.

4.2 Translation transformation

It is easy to understand a translation in low-dimensional (< 4D) space. We extend the defini-
tion to any d-dimensional spaces as follows. � is a translation matrix if � = [t, t, . . . , t]d×n ,
i.e., �d×n = td×11T

N×1, where 1 is a vector of one in all elements. A translation transfor-
mation is simply: G(X) = X + �. For any two points x and y in the original space, with
translation, we have the distance ‖(x− t)−(y− t)‖ ≡ ‖x−x‖. Therefore, translation always
preserves distances. However, it does not preserve inner product according to the definition
of inner product.

Translation perturbation only does not provide protection to the data. The � component
can be simply canceled if the attacker knows only translation perturbation is applied. How-
ever, when combined with rotation perturbation, translation perturbation can increase the
overall resilience to attacks.

4.3 Distance perturbation

The above two components preserve the distance relationship. By preserving distances, a
bunch of important classification models will be “perturbation-invariant”, which is the core
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of geometric perturbation. However, distance preserving perturbation may be under dis-
tance-inference attacks in some situations (Sect. 6.2). The goal of distance perturbation is
to preserve distances approximately, while effectively increasing the resilience to distance-
inference attacks. We define the third component as a random matrix �d×n , where each
entry is an independent sample drawn from the same distribution with zero mean and small
variance. By adding this component, the distance between a pair of points is disturbed slightly.

Again, solely applying distance perturbation without the other two components will not
preserve privacy, since the noise intensity is low. However, a low-intensity noise compo-
nent will provide sufficient resilience to attacks to rotation and translation perturbation. The
major issue brought by distance perturbation is the tradeoff between the reduction of model
accuracy and the increase of privacy guarantee. In most cases, if we can assume the original
data items are secure and the attacker knows no information about the original data, the
distance-inference attacks cannot happen and thus the distance perturbation component can
be removed. The data owner can decide to remove or keep this component according to their
security assessment.

4.4 Cost analysis

The major cost of perturbation is determined by the Eq. 1 and a randomized perturbation
optimization process that applies to a sample set of data set. The perturbation can be applied
to data records in a streaming manner. Based on the Eq. 1, it will cost O(d2) to perturb each
d-dimensional data record. Note that this is a one-time cost, and no further cost incurs with
the service provider.

5 Perturbation-invariant data-mining models

In this section, first, we give the definition of perturbation invariant data-mining models that
would be appropriate for our setting of mining on outsourced data. Then, we prove that sev-
eral categories of data-mining models are invariant to rotation and translation perturbation.
We also formally analyze the effect of the noise components and arbitrary multiplicative
perturbations (including random projection) to the quality of data-mining models, using the
Gaussian mixture model.

5.1 A general definition of perturbation invariance

We say a data-mining model is invariant to a transformation, if the model mined with the
transformed data has a similar model quality as that mined with the original data. We formally
define this concept as follows.

Let M represent a type of data-mining model (or modeling method) and MX be a specific
model mined from the data set X , and Q(MX , Y ) be the model quality evaluated on a data
set Y , e.g., the accuracy of classification model. Let T () be any perturbation function, which
transforms the data set X to another data set T (X). Given a small real number ε, 0 < ε < 1,

Definition 5.1 The model MX is invariant to the perturbation T () if and only if |Q(MX , Y )−
Q(MT (X), T (Y ))| < ε for any training data set X and testing data set Y .

If Q(MX , Y ) ≡ Q(MT (X), T (Y )), we call the model is strictly invariant to the perturba-
tion T (). In the following subsections, we will prove some of the data-mining models are
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strictly invariant to the rotation and translation components of geometric data perturbation
and discuss how the invariance property is affected by the distance perturbation component.

5.2 Perturbation-invariant classification models

In this section, we show some of the classification models that are invariant to geometric data
perturbation (with only rotation and translation components). The model quality Q(MX , Y )

is the classification accuracy of the trained model tested on the test data set.

kNN Classifiers and Kernel Methods A k-Nearest-Neighbor (kNN) classifier determines
the class label of a point by looking at the labels of its k nearest neighbors in the training
data set and classifies the point to the class that most of its neighbors belong to. Since the
distance between any pair of points is not changed with rotation and translation, the k nearest
neighbors are not changed and thus the classification result is not changed either.

Theorem 1 kNN classifiers are strictly invariant to rotation and translation perturbations.

kNN classifier is a special case of kernel methods. We assert that any kernel methods will
be invariant to rotation, too. Same as the kNN classifier, a typical kernel method 1 is a local
classification method, which classifies the new data record only based on the information of
its neighbors in the training data.

Theorem 2 Kernel methods are strictly invariant to rotation and translation.

Proof Let us define kernel methods first. Like kNN classifiers, a kernel method also estimates
the class label of a point x with the class labels of its neighbors. Let Kλ(x, xi ) be the kernel
function used for weighting any point xi in x’s neighborhood, and let λ define the geometric
width of the neighborhood. We assume {x1, x2, . . . , xn} be the points in the x’s neighborhood
determined by λ. A kernel classifier for continuous class labels2 is defined as

f̂ X (x) =
∑n

i=1 Kλ(x, xi )yi∑n
i=1 Kλ(x, xi )

(2)

Specifically, the kernel Kλ(x, xi ) is defined as

Kλ(x, xi ) = D

(‖x − xi‖
λ

)
(3)

D(t) is a function, e.g., the Gaussian kernel D(t) = 1√
2π

exp{−t2/2}. Since ‖Rx − Rxi‖ =
‖x−xi‖ for rotation perturbation and λ is constant, D(t) is not changed after rotation, and thus
Kλ(Rx, Rxi ) = Kλ(x, xi ). Since the geometric area around the point is also not changed,
the point set in the neighborhood of Rx are still the rotation of those in the neighborhood
of x, i.e., {Rx1, Rx2, . . . , Rxn} and these n points are used in training MR X , which makes
Q(MR X , (Rx) = f̂ X (x). It is similar to prove that kernel methods are invariant to translation
perturbation. 
�
Support Vector Machines Support Vector Machine (SVM) classifiers also utilize kernel func-
tions in training and classification. However, it has an explicit training procedure to generate
a global model, while kernel methods are local methods that use training samples in classi-
fying new instances. Let yi be the class label to a tuple xi in the training set, αi and β0 be the

1 SVM is also a kind of kernel method, but its training process is different from the kernel methods we discuss
here.
2 It has different form for discrete class labels, but the proof will be similar.
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parameters determined by training. A SVM classifier calculates the classification result of x
using the following function.

f̂ X (x) =
N∑

i=1

αi yi K (x, xi ) + β0 (4)

First, we prove that SVM classifiers are invariant to rotation with two key steps: (1)
training with the rotated data set generates the same set of parameters αi and β0; (2) the
kernel function K () is invariant to rotation. Second, we prove that some SVM classifiers are
also invariant to translation (empirically, SVM classifiers with the discussed kernels are all
invariant to translation).

Theorem 3 SVM classifiers using polynomial, radial basis, and neural network kernels are
strictly invariant to rotation, and SVM classifiers using radial basis are also strictly invariant
to translation.

Proof The SVM training problem is an optimization problem, which finds the parameters
αi and β0 to maximize the Lagrangian (Wolfe) dual objective function [20]

L D =
N∑

i=1

αi − 1/2
N∑

i, j=1

αiα j yi y j K (xi , x j ),

subject to:

0 < αi < γ,

N∑

i=1

αi yi = 0,

where γ is a parameter chosen by the user to control the allowed errors around the deci-
sion boundary. The training result of αi is only determined by the form of kernel function
K (xi , x j ). With the determined αi , β0 can be determined by solving yi f̂X (xi ) = 1 for any xi

[20], which is again determined by the kernel function. It is clear that if K (T (x), T (xi )) =
K (x, xi ) is held, the training procedure generates the same set of parameters.

Three popular choices for kernels have been discussed in the SVM literature [11,20].

dth degree polynomial: K (x, x′) = (1 + <x, x′>)d ,

radial basis: K (x, x′) = exp(−‖x − x′‖/c),

neural network: K (x, x′) = tanh(κ1<x, x′> + κ2)

Note that the three kernels only involve distance and inner product calculation. As we
discussed in Sect. 4, the two operations keep invariant to the rotation transformation. Thus,
K (Rx, Rx′) = K (x, x′) is held for the three kernels, and, thus, training with the rotated
data will not change the parameters for the SVM classifiers using the three popular kernels.
However, with this method, we can only prove that the radial basis kernel is invariant to
translation, while the other two are not.

It is easy to verify that the classification function (Eq. 4) is invariant to rotation,
which involves only the invariant parameters and the invariant kernel functions. Similarly,
we can prove that the classification function with radial basis kernel is also invariant to
translation. 
�

Although we cannot prove that polynomial and neural network kernels are also invariant
to translation with this method, we use experiments to show that they are also invariant to
translation.
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Fig. 3 Hyperplane and its
parameters
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Linear Classifiers A linear classifier uses a hyperplane to separate the training data. Let the
weight vector be wT = [w1, . . . , wd ] and the bias be β0. The weight and bias parameters
are determined by the training procedure [20]. A trained classifier is represented as follows.

f̂ X (x) = wT x + β0

Theorem 4 Linear classifiers are strictly invariant to rotation and translation.

Proof First, it is important to understand the relationship between the parameters and the
hyperplane. As Fig. 3 shows, the hyperplane can be represented as wT (x − xt) = 0, where
w is the perpendicular axis to the hyperplane, and xt represents the deviation of the plane
from the origin (i.e., β0 = −wT xt ).

Intuitively, rotation will rotate the classification hyperplane and feature vectors. The per-
pendicular axis w is changed to Rw and the deviation xt becomes Rxt after rotation. Let
xr represent the data in the rotated space. Then, the rotated hyperplane is represented as
(Rw)T (xr − Rxt ) = 0, and the classifier is transformed to f̂ R X (xr ) = wT RT (xr − Rxt ).
Since xr = Rx and RT R = I, f̂ R X (xr ) = wT RT R(x − xt) = wT (x − xt) = f̂ X (x). The
two classifiers are equivalent.

It is also easy to prove that linear classifiers are invariant to translation. We will ignore
the proof. 
�
5.3 Perturbation invariant regression methods

Regression modeling [20] is very similar to classification modeling. The only difference is
that the class label is changed from discrete to continuous, which requires the change of the
criterion for model evaluation. A regression model is often evaluated by the loss function
L( f (X), y), where f (X) is the response vector of applying the regression function f () to the
training instances X , and y is the original target vector (i.e., the class labels in classification
modeling). A typical loss function is mean square error (MSE).

L( f (X), y) =
n∑

i=1

( f (xi ) − yi )
2

As the definition of model quality is instantiated by the loss function L , we give the following
definition of perturbation invariant regression model.
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Definition 5.2 A regression method is invariant to a transformation T if and only if
|L( fX (Y ), yY ) − L( fT (X)(T (Y )), yY )| < ε for any training data set X , and any testing
data set Y . 0 < ε < 1 and yY is the target vector of the testing data Y .

Similarly, the strictly invariant condition becomes L( fX (Y ), yY ) ≡ L( fT (X)(T (Y )), yY ).
We prove that

Theorem 5 The linear regression model using MSE as the loss function is strictly invariant
to rotation and translation.

Proof The linear regression model based on the MSE loss function can be represented as
y = X T β + ε, where ε is a vector of random Gaussian noise with mean zero and vari-
ance σ 2. The estimate of β is β̂ = (X X T )−1 XyX . Thus, for any testing data Y , the esti-
mated model is ŷY = Y T β̂. Since the loss function for the testing data Y is L( fX (Y ), y) =
‖Y T (X X T )−1 XyX − yY ‖. After rotation, it becomes

L( fX T RT (Y T RT ), y) = ‖Y T RT (R X (R X)T )−1 R XyX − yY ‖
= ‖Y T RT (R X X T RT )−1 R XyX − yY ‖
= ‖Y T RT (RT )−1(X X T )−1 R−1 R XyX − yY ‖
= ‖Y T (X X T )−1 XyX − yY ‖ ≡ L( fX (Y ), y) (5)

The linear regression model can also be represented as y = β̂0 + ∑d
i=1 β̂i xi , where xi is

the value of dimension i for the vector x. It is clear that if x is translated to x′ = x + t, we can
reuse the model parameters except ˆbeta0 is replaced with ˆbeta0 − dt. Thus, the new model
does not change MSE as well. 
�

Other regression models, such as regression tree–based methods [14], which partitions the
global space based on Euclidean distance, are also strictly invariant to rotation and translation.
We skip the details here.

5.4 Perturbation invariant clustering algorithms

There are several metrics used to evaluate the quality of clustering result, all of which are
based on cluster membership, i.e., record i belongs to cluster C j . Suppose the number of
cluster is fixed as K . The same clustering algorithm applied to the original data and the per-
turbed data will generate two clustering results. Since the record ID does not change before
and after perturbation, we can compare the difference between two sets of clustering results
to evaluate the invariance property. We use the confusion matrix method [23] to evaluate this
difference, where each element ci j 1 ≤ i, j ≤ K represents the number of points from the
cluster j in the original data set assigned to cluster i by the clustering result on the perturbed
data. Since cluster labels may represent different clusters in two clustering results. Let {(1),
(2),…, (K)} be any permutation of the sequence of cluster labels {1, 2, …, K}. There is a
permutation that best matches the clustering results of before and after data perturbation and
maximizes the number of consistent points mC for clustering algorithm C .

mC = max

{
K∑

i=1

ci(i), for any {(1), (2), . . . , (K )}
}

We define the error rate as DQC (X, T (X)) = 1− mC
N , where N is the total number of points.

DQC is the quality difference between the two clustering results. Then, the criterion for
perturbation invariant clustering algorithm can be defined as
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Fig. 4 Analyzing the points
being perturbed out of boundary

xi

Definition 5.3 A clustering algorithm is invariant to a transformation T if and only if
DQC (X, T (X)) < ε for any data set X , and a small value 0 < ε < 1.

For strict invariance, DQC (X, T (X)) = 0.

Theorem 6 Any clustering algorithms or cluster visualization algorithms that are based on
Euclidean distance are strictly invariant to rotation and translation.

Since geometric data perturbation aims at preserving the Euclidean distance relationship,
the cluster membership does not change before and after perturbation. Thus, it is easy to
prove that the above theorem is true and we skip the proof.

5.5 Effect of noise perturbation to the invariance property

Intuitively, the noise component will affect the quality of data- mining model. In this section,
we give a formal analysis on how the noisy intensity affects the model quality for classification
(or clustering) modeling.

Assume the boundary for the data perturbed without the noise component is shown in
Fig. 4 and the noises are drawn from the normal distribution N (0, σ 2). Let’s look at the
small band with δ distance (one side) around the classification or clustering boundary. The
increased error rate is determined by the number of points that are original properly classified
or clustered but now are perturbed to the other side of the boundary. Out of the band, the
points are less likely perturbed to the other side of the boundary. For a d-dimension point
x = (x1, x2, . . . , xd), its perturbed version (with only the noise component) is represented as
x′ = (x1 +ε1, x2 +ε2, . . . , xd +εd), where εi is drawn from the same distribution N (0, σ 2).
To further simplify the analysis, assume a decision boundary is perpendicular to one of the
dimensions (we can always rotate the data set to meet this setting), say xi , and there are n
points uniformly distributed in the δ band.

According to normal distribution, for δ > 2σ , the points located out of the δ band, will
have small probability (< 0.025) to be perturbed to the other side of the boundary. Therefore,
we consider only the points within the δ = 2σ band. Let p(y) be the probability of a point
that has distance y to the boundary perturbed out of the boundary, then the average number
of points perturbed out of the boundary is

2σ∫

0

p(y)
n

2σ
dy =

2σ∫

0

∞∫

y

1√
2πσ

exp− x2

2σ2 dx
n

2σ
dy.
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Expanding exp− x2

2σ2 with Taylor series [16] for the first three terms we obtain exp− x2

2σ2 ≈
1 − x2

2σ 2 + x4

8σ 4 . With the fact
∫ ∞

y
1√

2πσ
exp− x2

2σ2 dx = 1/2 − ∫ y
0

1√
2πσ

exp− x2

2σ2 dx , we solve

the equation and get the number of out-of-the-boundary points ≈
(

1
2 − 4

5
√

2π

)
n ≈ 0.18n.

The other side of the boundary has the similar amount of points perturbed out of the bound-
ary. Depending on the data distribution and σ , the amount of affected data points can vary.
Borrowing the concept of “margin” from SVM literature, we understand that if the margin
is greater than 2δ, the model accuracy is not affected at all; if the margin is less than 2δ, the
model quality is affected by the amount of points in the 2δ region.

5.6 Effect of general multiplicative perturbation to model quality

In geometric data perturbation, the rotation and translation components strictly preserve dis-
tance, which is then slightly perturbed by distance perturbation. If we relax the condition of
strictly preserving distance, what will happen to the discussed mining models? This relaxation
may use any linear transformation matrix to replace the rotation component, e.g., projection
perturbation [31]. In this section, we will discuss the effect of a general multiplicative pertur-
bation with G(x) = Ax to classification model quality, where A is a k × d matrix and k may
not equal to d . We analyze why arbitrary projection perturbations do not generally preserve
geometric decision boundaries and what are the alternative ways to rotation perturbation to
generate decision-boundary (or approximately) preserving multiplicative perturbations.

This analysis is based on a simplified model of data distribution—multidimensional
Gaussian mixture model. Assume the data set can be modeled with multiple data clouds,
each of which has approximately normal (Gaussian) distribution N (μi , �i ), where μi is the
mean vector and �i is the covariance matrix. Since such a general multiplicative perturba-
tion does not necessarily preserve all of the geometric properties for the data set, it is not
guaranteed that the discussed data-mining models will be invariant to these transformations.
Let us first consider a more general case that does not put a constraint on k. The rationale
of projection perturbation is based on approximate distance preservation supported by the
Johnson-Lindenstrauss Lemma [25].

Theorem 7 For any 0 < ε < 1 and any integer n, let k be a positive integer such that
k ≥ 4 log n

ε2/2−ε3/3
. Then, for any set S of n data points in d dimensional space R

d , there is a

mapping function f : R
d → R

k such that, for all x ∈ S,

(1 − ε)‖x − x‖2 ≤ ‖ f (x) − f (x)‖2 ≤ (1 + ε)‖x − x‖2

where ‖ · ‖ denotes the vector 2-norm.

This lemma shows that any set of n points in d-dimensional Euclidean space could be

embedded into a O
(

log n
ε2

)
—dimensional space with some linear transformation f , such that

the pair-wise distance of any two points are maintained with a controlled error. However,
there is a cost to achieve high precision in distance preserving. For example, a setting of
n = 1000, a quite small data set, and ε = 0.01, will require k ≈ 0.5 million dimensions,
which makes the transformation impossible to perform. Increasing ε to 0.1, we still need
about k ≈ 6, 000. In order to further reduce k, we have to increase ε more, which brings
larger errors, however. In the case of increased distance error, the decision boundary may not
be well preserved.
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We also analyze the effect of transformation from a more intuitive perspective. In order to
see the connections between the general linear transformation and data-mining models, we
use classifiers that are based on geometric decision boundaries for example.

Below we name a dense area (a set of points are similar to each other) as cluster, while the
points with the same class label are in the same class. We can approximately model the whole
data set with Gaussian mixtures based on its density property. Without loss of generality, we
suppose that a geometrically separable class consists of one or more Gaussian clusters as
shown in Fig. 5. Let μ be the density center, and � be the covariance matrix of one Gaussian
cluster. A cluster Ci can be represented with the following distribution.

N i
d(μ,�) = 1

(2π)d/2|�|1/2 exp{−(x − μ)′�−1(x − μ)/2}

μ describes the position of the cluster and � describes the hyper-elliptic shape of the dense
area. After the transformation with invertible A, the center of the cluster is moved to Aμ and
the covariance matrix (corresponding to the shape of dense area) is changed to A� AT .

Let x and y be any two points. After the transformation, the distance between the two
becomes D′ = ||A(x − y)|| = (x − y)T AT A(x − y). If we compare this distance to the
original distance D, we get their difference as

D′ − D = (x − y)T (AT A − I )(x − y) (6)

We study the property of AT A − I to find how the distance changes. First, for a random
invertible and diagonalizable [6] matrix A that preserves dimensions, i.e., k = d , we will
have AT A positive definite for the following reason. Since A is diagonalizable, A can be
eigen-decomposed to U T �U , where U is an orthogonal matrix, � is the diagonal matrix
of eigenvalues, and all eigenvalues are non-zero for the invertibility of A. Then, we have
AT A = U T �UU T �U = U T �2U , where all eigenvalues of �2 are positive. Therefore,
AT A is positive definite. If all eigenvalues of AT A are greater than 1, then AT A − I will be
positive definite and D′ − D > 0 for all distances. Similarly, if all eigenvalues of AT A are
less than 1, then AT A − I will be negative definite and D′ − D < 0 for all distances. For
any case else, we are unable to determine how distances change—it can be lengthened or
shortened. Because of the possibly arbitrary change of distances for an arbitrary A, the points
belonging to one cluster may possibly become members of another cluster. Since we define
classes based on clusters, the change of clustering structure may also perturb the decision
boundary.
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Then, what kind of perturbations will preserve clustering structures? Besides the distance
preserving perturbations, we may also use a family of distance-ordering preserving pertur-
bations. Assume x, y, u, v are any four points in the original space, and ||x − y|| ≤ ||u − v||,
i.e.,

∑d
i=1(xi − yi )

2 ≤ ∑d
i=1(ui −vi )

2, which defines the order of distances, where xi , yi , ui ,
and vi are dimensional values. It is easy to verify that if distance ordering is preserved after
transformation, i.e., ||G(x)− G(y)|| ≤ ||G(u)− G(v)||, the clustering structure is preserved
as well and thus the decision boundary is preserved. Therefore, distance ordering preserving
perturbation is an alternative choice to rotation perturbation.

In the following, we discuss how to find a distance ordering preserving perturbation. Let
λ2

i , i = 1, . . . , d , be the eigenvalues of AT A. Then, the distance ordering preserving prop-

erty requires
∑d

i=1 λ2
i (xi − yi )

2 ≤ ∑d
i=1 λ2

i (ui − vi )
2. Apparently, for arbitrary A, this

condition cannot be satisfied. One simple setting will guarantee to preserve distance order-
ing that is λi = λ, where λ is some constant. This results in distance ordering preserving
matrices A = λR where R is a rotation matrix and λ is an arbitrary constant − we name
it scaling of the rotation matrix. Based on this analysis, we can also derive approximate
distance ordering preserving by perturbing λi to λ+ δi , where δi is a small value drawn from
a distribution. In fact, scaling is also discussed in transformation-based data perturbation for
privacy preserving clustering [35].

6 Attack analysis and Privacy guarantee of geometric data perturbation

The goal of random geometric perturbation is twofold: preserving the data utility and pre-
serving the data privacy. The discussion about the transformation-invariant classifiers has
proven that geometric transformations theoretically guarantee preserving the model accu-
racy for many models. As a result, numerous such geometric perturbations can present the
same model accuracy, and we only need to find one that maximizes the privacy guarantee in
terms of various potential attacks.

We dedicate this section to discuss how good the geometric perturbation approach is in
terms of preserving privacy. The first critical step is to define a multi-column privacy mea-
sure for evaluating the privacy guarantee of a geometric perturbation to a given data set. It
should be distinct from that used for additive perturbation [3], which assumes each column
is independently perturbed, since geometric perturbation changes the data on all columns
(dimensions) together. We will use this multi-column privacy metric to evaluate several
attacks and optimize the perturbation in terms of attack resilience.

6.1 A conceptual privacy model for multidimensional perturbation

Unlike the existing random noise addition methods, where multiple columns are perturbed
independently, random geometric perturbation needs to perturb all columns together. There-
fore, the privacy quality of all columns is correlated under one single transformation and
should be evaluated under a unified metric. We first present a conceptual model for privacy
evaluation in this section, and then we will discuss the design of the unified privacy metric
and a framework for incorporating attack evaluation.

In practice, since different columns (attributes) may have different privacy concern, we
consider that the general-purpose privacy metric � for entire data set should be based on
column privacy metric. A conceptual privacy evaluation model is defined as follows. Let p
be the column privacy metric vector p = (p1, p2, . . . , pd), and there are privacy weights
associated with the d columns, respectively, denoted as w = (w1, w2, . . . , wd). Without
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loss of generality, we assume that the weights are normalized, i.e.,
∑d

i=1 wi = 1. Then,
� = �(p, w) defines the privacy guarantee. In summary, the design of the specific privacy
model should consider the three factors p, w, and the function �.

We will leave the concrete discussion about the design of p in the next section, and define
the other two factors first. We notice that different columns may have different importance in
terms of the level of privacy sensitivity. The first design idea is to take the column importance
into consideration. Intuitively, the more important the column is, the higher level of privacy
guarantee will be required for the perturbed data, corresponding to that column. If we use
wi to denote the importance of column i in terms of preserving privacy, pi/wi can be used
to represent the weighted column privacy for column i .

The second intuition is the concept of minimum privacy guarantee among all columns.
Normally, when we measure the privacy quality of a multi-column perturbation, we need to
pay special attention to the column that has the lowest weighted column privacy, because such
a column could become the breaking point of privacy. Hence, we design the first composition
function �1 = mind

i=1{pi/wi } and call it the minimum privacy guarantee. Similarly, the aver-

age privacy guarantee of the multi-column perturbation, defined by �2 = 1
d

∑d
i=1 pi/wi ,

could be another interesting measure.
With the definition of privacy guarantee, we can evaluate the privacy quality of a pertur-

bation to a specific data set, and most importantly, we can use it to find a multi-dimensional
perturbation that locally maximizes the privacy guarantees. With random geometric pertur-
bation, we demonstrate that it is convenient to adjust the perturbation method to obtain high
privacy guarantees, without the concern of preserving the model accuracy for the discussed
classifiers.

6.1.1 A unified column privacy metric

Intuitively, for a data perturbation approach, the quality of preserved privacy can be under-
stood as the difficulty level of estimating the original data from the perturbed data. We name
such estimation methods as “inference attacks”. A unified metric should be a generic metric
that can be used to evaluate as many types of inference attacks as possible. In the following,
we first derive a unified privacy metric from the mean-square-error method, and then discuss
how to apply the metric to evaluate the attacks to geometric perturbation.

We compare the original value and the estimated value to determine the uncertainty
brought by the perturbation. This uncertainty is the privacy guarantee that protects the orig-
inal value. Let the difference between the original column data Y and the perturbed/recon-
structed data Ŷ be a random variable D. We use the root of mean square error (RMSE) to
estimate this difference. Assume the original data samples are y1, y2, . . . , yN . Correspond-
ingly, the estimated values are ŷ1, ŷ2, . . . , ŷN . The root of mean square error of estimation, r ,
is defines as

r =
√√√√ 1

N

N∑

i=1

(yi − ŷi )2

As we have discussed, to evaluate the privacy quality of multi-dimensional perturbation,
we need to evaluate the privacy of all perturbed columns together. Unfortunately, the
single-column metric is subject to the specific column distribution, i.e., the same amount
is not equally effective for different value scales. For example, the same amount of RMSE
for the “age” column has much stronger protection than for “salary” due to the dramatically
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Fig. 6 The intuition behind the
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different value ranges. One effective way to unify the different value ranges is via nor-
malization, e.g., max– min normalization or standardization. We employ the standardization
procedure, which is simply described as a transformation to the original value y′ = y−μ

σ
,

where μ is the mean of the column and σ is the standard deviation. By using this proce-
dure, all columns are approximately unified into the same data range. The rationale behind
the standardization procedure is that for large sampleset (e.g. hundreds of samples) normal
distribution would be a good approximation for most distributions [28]. The standardization
procedure normalizes all distributions to standard normal distribution (with mean zero and
variance one). According to normal distribution, the range [μ − 2σ,μ + 2σ ] covers more
than 95% points in the population. Let’s use this range, i.e., 4σ to approximately represent
the value range. We use the normalized values, the definition of RMSE, and the normalized
value range to represent the unified privacy metric.

Priv(ŷ, y′) = 2r

4σ
= 1

2σ

√√√√ 1

N

N∑

i=1

(
yi − μ

σ
− ŷi

)2

This definition3 can be explained with Fig. 6. The normalized RMSE

r =
√

1
N

∑N
i=1(

y−μ
σ

− ŷi )2 represents the average error on value estimation. The real value

can be in the range of [ŷi − r, ŷi + r ]. The rate of this range 2r to the value range 4σ rep-
resents the normalized uncertainty of estimation. This rate can be possibly higher than 1,
which means extremely large uncertainty. If the original data is standardized (σ = 1), this
metric is reduced to p = r/2.

3 Note that this definition is improved from the one we gave in the SDM paper [9].
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6.1.2 Incorporating attack analysis into privacy evaluation

The proposed metric should compare the difference between two datasets: the original data
set and the observed or estimated data set. With different level of knowledge, the attacker
observes the perturbed data set differently. The attacks we know so far can be summarized
into the following three categories: (1) the basic statistical methods that estimate the original
data directly from the perturbed data [2,3], without any other knowledge about the data (as
known as “naive inference”); (2) data reconstruction methods that reconstruct data from the
perturbed data with any released information about the data and the perturbation, and then
use the reconstructed data to estimate the original data [21,26] (as known as “reconstruction-
based inference”); and (3) if some particular original records and their image in the perturbed
data can be identified, e.g., outliers of the data sets, based on the preserved distance informa-
tion, the mapping between these points can be used to discover the perturbation (as known
as distance-based inference).

Let X be the normalized original data set, P be the perturbed data set, and O be the
observed data set. We calculate �(X, O), instead of �(X, P), in terms of different attacks.
Using rotation perturbation G(X) = R X for example, we can summarize the evaluation of
privacy in terms of attacks.

1. Naive inference: O = P , there is no more accurate estimation than the released perturbed
data;

2. Reconstruction-based inference: methods like Independent Component Analysis (ICA)
are used to estimate R. Let R̂ be the estimate of R, and O = R̂−1 P;

3. Distance-based inference: the attacker knows a small set of special points in X that can
be mapped to certain set of points in P , so that the mapping helps to estimate R, and
then O = R̂−1 P .

4. Subset-based inference: the attacker knows a significant number of original points that
can be used to estimate R and then O = R̂−1 P .

The higher the inference level is, the more knowledge about the original data set the
attacker needs to break the perturbation. In the following sections, we analyze some infer-
ence attacks and see how geometric perturbation provides resilience to these attacks.

Note that the proposed privacy evaluation method is a generic method that can be used to
evaluate the effectiveness of a general perturbation, where nothing but the perturbed data is
released to the attacker. It is important to remember that this metric should be evaluated on
the original data and the estimated data. We cannot simply assume the perturbed data is the
estimated data as the original additive perturbation does [3], which makes the assumption
that the attacker has no knowledge about the original data.

6.2 Attack analysis and perturbation optimization

In this section, we will use the unified multi-column privacy metric to analyze a few attacks.
The similar methodology can be used to analyze any new attacks. Based on the analysis, we
develop a randomized perturbation optimization algorithm.

6.2.1 Privacy analysis on naive estimation attack

We start with the analysis on multiplicative perturbation, which is the key component in
geometric perturbation. With the proposed metric over the normalized data, we can formally
analyze the privacy quality of random rotation perturbation. Let X be the normalized data
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set, X ′ = R X be the rotation of X , and Id be the d-dimensional identity matrix. Thus, the
difference matrix X ′ − X can be used to calculate the privacy metric, and the columnwise
metric is based on the element (i, i) in K = (X ′ − X)(X ′ − X)T (note that X and X ′ are
column vector matrices as we defined), i.e.,

√
K(i,i)/2, where K(i,i) is represented as

K(i,i) = ((R − Id)X X T (R − Id)T )(i,i) (7)

Since X is normalized, XXT is also the covariance matrix, where the diagonal elements
are the column variances. Let ri j represent the element (i, j) in the matrix R, and ci j be the
element (i, j) in the matrix of XX. K(i,i) is transformed to

K(i,i) =
d∑

j=1

d∑

k=1

ri j rikck j − 2
d∑

j=1

ri j ci j + cii (8)

When the random rotation matrix is generated following the Haar distribution, a consider-
able number of matrix entries are approximately independent normal distribution N (0, 1/d)

[24]. The full discussion about the numerical characteristics of the random rotation matrix
is out of the scope of this paper. For simplicity and easy understanding, we assume that
all entries in random rotation matrix approximately follow independent normal distribution
N (0, 1/d). Therefore, sample randomly rotations should make K(i,i) changing around the
mean value cii as shown in the following result.

E[K(i,i)] ∼
d∑

j=1

d∑

k=1

E[ri j ]E[rik]ck j − 2
d∑

j=1

E[ri j ]ci j + cii = cii

It means that the original column variance could substantially influence the result of
random rotation. However, E[K(i,i)] is not the only factor determining the final privacy guar-
antee. We should also look at the variance of K(i,i). If the variance is considerably large, we
still have great chance to get a rotation with large K(i,i) in a set of sample random rotations,
and the larger the variance is, the more likely the randomly generated rotation matrices can
provide a high privacy level. With the simplicity assumption, we can also roughly estimate
the factors that contribute to the variance.

V ar(K(i,i)) ∼
d∑

i=1

d∑

j=1

V ar(ri j )V ar(rik)c
2
i j + 4

d∑

j=1

V ar(ri j )c
2
i j

∼ O

⎛
⎝1/d2

d∑

i=1

d∑

j=1

c2
i j + 4/d

d∑

j=1

c2
i j

⎞
⎠ . (9)

The above result shows that the variance is approximately related to the average of the squared
covariance entries, with more influence from the row i of covariance matrix.

A simple method is to select the best rotation matrix among a bunch of randomly gen-
erated rotation matrices. But we can do better or be more efficient in a limited number of
iterations. In Eq. 8, we also notice that the i th row vector of rotation matrix, i.e., the values
ri∗, plays a dominating role in calculating the metric. Hence, it is possible to simply swap
the rows of R to locally improve the overall privacy guarantee, which drives us to propose a
row-swapping based fast local optimization method for finding a better rotation from a given
rotation matrix. This method can significantly reduce the search space and thus provides bet-
ter efficiency. Our experiments show that, with the local optimization, the minimum privacy
level can be increased by about 10% or more. We formalize the swapping-maximization
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method as follows. Let {(1), (2), . . . , (d)} be a permutation of the sequence {1, 2, . . . , d}.
Let the importance level of privacy preserving for the columns be w = (w1, w2, . . . , wd).
The goal is to find the permutation of rows of a given rotation matrix that results in a new
rotation matrix that maximizes the minimum or average privacy guarantee.

argmax{(1),(2),...,(d)}

⎧
⎨
⎩ min

1≤i≤d

⎧
⎨
⎩

⎛
⎝

d∑

j=1

d∑

k=1

r(i) j r(i)kck j − 2
d∑

j=1

r(i) j ci j + cii

⎞
⎠ /wi

⎫
⎬
⎭

⎫
⎬
⎭

(10)

Since the matrix R′ generated by swapping the rows of R is still a rotation matrix, the above
local optimization step will not change the rotation-invariance property of the discussed
classifiers.

Attacks to Rotation Center The basic rotation perturbation uses the origin as the rotation
center. Therefore, the points closely around the origin are still around the origin after the
perturbation (as Fig. 7 shows), which leads to weaker privacy protection about these points.
We address this problem with random translation so that the weakly perturbed points around
the rotation center are not detectable due to the randomness of the rotation center. Attacks
to translation perturbation will depend on the success of the attack to rotation perturbation,
which will be described in later sections.

6.2.2 Privacy analysis on ICA-based attack

The unified privacy metric evaluates the privacy guarantee and the resilience against the first
type of privacy attack − the naive inference. Considering the reconstruction-based inference,
we identify that Independent Component Analysis (ICA) [22] could be the most powerful
one to estimate the original dataset X , if more column statistics are known by the attacker.
We dedicate this section to analyze the ICA-based attacks with the unified privacy metric.

Requirements of Effective ICA ICA is a fundamental problem in signal processing which
is highly effective in several applications such as blind source separation [22] of mixed
electro-encephalographic(EEG) signals, audio signals and the analysis of functional mag-
netic resonance imaging (fMRI) data. Let matrix X composed by source signals, where row
vectors represent source signals. Suppose we can observe the mixed signals X ′, which is
generated by linear transformation X ′ = AX . The ICA model can be applied to estimate the
independent components (the row vectors) of the original signals X , from the mixed signals
X ′, if the following conditions are satisfied:
1. The source signals are independent, i.e., the row vectors of X are independent;
2. All source signals must be non-Gaussian with possible exception of one signal;
3. The number of observed signals, i.e. the number of row vectors of X ′, must be at least

as large as the independent source signals.
4. The transformation matrix A must be of full column rank.

For rotation matrices and full rank random projection, the 3rd and 4th conditions are
always satisfied. However, the first two conditions, especially the independency condition,
although practical for signal processing, seem not very common in data mining. Concretely,
there are a few basic difficulties in applying the above ICA-based attack to the rotation-
based perturbation. First of all, if there is significant dependency between any attributes,
ICA fails to precisely reconstruct the original data, which thus cannot be used to effectively
detect the private information. Second, even if ICA can be done successfully, the order of
the original independent components cannot be preserved or determined through ICA [22].
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Formally, any permutation matrix P and its inverse P−1 can be substituted in the model
to give X ′ = AP−1 P X . ICA could possibly give the estimate for some permutated source
P X . Thus, we cannot identify the particular column if the original column distributions are
unknown. Finally, even if the ordering of columns can be identified, ICA reconstruction does
not guarantee to preserve the variance of the original signal − the estimated signal may scale
up the original one, but we do not know how much it scales, without knowing the statistical
property of the original column.

In summary, without the necessary knowledge about the original data set, the attacker
cannot simply use the ICA reconstruction. In case that attackers know enough distributional
information that includes the maximum/minimum values and the probability density func-
tions (PDFs) of the original columns, the effectiveness of ICA reconstruction will totally
depend on the independency condition of the original columns. We observed in experiments
that, since pure independency does not exist in the real data sets, we can still tune the rotation
perturbation so that we can find one resilient enough to ICA-based attacks, even though the
attacker knows the column statistics. In the following, we analyze how the sophisticated ICA-
based attacks can be done and develop a simulation-based method to evaluate the resilience
of a particular perturbation.

ICA Attacks with Known Column Statistics When the basic statistics, such as the max/ min
values and the PDF of each column are known, ICA data reconstruction can possibly be done
more effectively. We assume that ICA is quite effective to the data set (i.e., the four conditions
are approximately satisfied) and the column PDFs are distinctive. Then, the reconstructed
columns can be approximately matched to the original columns by comparing the PDFs of
the reconstructed columns and the original columns. When the maximum/minimum values
of columns are known, the reconstructed data can be scaled to the proper value ranges. We
define an enhanced attack with the following procedure.

1. Running ICA algorithm to get a reconstructed data;
2. Estimate column distributions for the reconstructed columns, and for each reconstructed

column find the closest match to the original column by comparing their column
distributions;

3. Scale the columns with the corresponding maximum/minimum values of the original
columns;

Note if the four conditions for effective ICA are exactly satisfied and the basic statistics
and PDFs are all known, the basic rotation perturbation approach will not work. However,
in practice, since the independency conditions are not all satisfied for most data sets in clas-
sification, we observed that different rotation perturbations may result in different quality of
privacy, and it is possible to find one rotation that is considerably resilient to the enhanced
ICA-based attacks. For this purpose, we can simulate the enhanced ICA attack to evaluate
the privacy guarantee of a rotation perturbation. Concretely, it can be done in the following
steps.

First step is called “PDF Alignment”. We need to calculate the similarity between the PDF
of the original column and that of the reconstructed data column to find the best matches
between the two sets of columns. A direct method is to calculate the difference between
the two PDF functions. Let f (x) and g(x) be the original PDF and the PDF of the recon-
structed column, respectively. A typical method to define the difference of PDFs employs
the following function.

�P DF =
∫

| f (x) − g(x)|dx (11)
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In practice, for easy calculation we discretize the PDF into bins. It is then equivalent to
use the discretized version:

∑n
i=1 | f (bi ) − g(bi )|, where bi is the discretized bin i . The dis-

cretized version is easy to implement by comparing the two histograms with a same number
of bins. However, the evaluation is not accurate if the values in the two columns are not in the
same range as shown in Fig. 8. Hence, the reconstructed PDF needs to be translated to match
the range, which requires to know the maximum/minimum values of the original column.
Since the original column is already scaled to [0, 1] in calculating unified privacy metric,
we can just scale the reconstructed data to [0, 1], making it consistent with the normalized
original data (Sect. 6.1.1). Meanwhile, this also scales the reconstructed data down so that
the variance range is consistent with the original column. As a result, after the step of PDF
Alignment, we can directly calculate the privacy metrics between the matched columns to
measure the privacy quality.

Without loss of generality, we suppose that the level of confidence for an attack is primarily
based on the PDF similarity between the two matched columns. Let O be the reconstruction
of the original data set X . �P DF(Oi , X j ) represents the PDF difference of the column i in X
and the column j in O . Let {(1), (2), . . . , (d)} be a permutation of the sequence {1, 2, . . . , d},
which means a match from the original column i to (i). Let an optimal match minimize the
sum of PDF differences of all pairs of matched columns. We define the minimum privacy
guarantee based on the optimal match as follows.

pmin = min

{
1

wk
priv(Xk , O(k)), 1 ≤ k ≤ d

}
(12)

where {(1), (2), . . . , (d)} = argmin{(1),(2),...,(d)}
∑d

i=1 �P DF(Xi , X(i)). Similarly, we can
define the average privacy guarantee based on an optimal match.

With the above multi-column metric, we are able to estimate how resilient a rotation per-
turbation is to the ICA-based attack equipped with the known column statistics. We observed
in experiments that, although the ICA method may effectively reduce the privacy guarantee
for certain rotation perturbations, we can always find some rotation matrices so that they can
provide satisfactory privacy guarantee to ICA-based attacks.
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6.2.3 Attacks to translation perturbation

Previously, we use random translation to address the weak protection on the points around
the rotation center. We will see how translation perturbation is attacked if the ICA-based
attack is applied.

Let each dimensional value of the random translation vector t is uniformly drawn from
the range [0, 1], so that the center hides in the normalized data space. The perturbation can
be represented as

f (X) = R X + � = R(X + R−1�)

It is easy to verify that T = R−1� is also a translation matrix. An effective attack to esti-
mate the translation component should be based on the ICA inference to R and then remove
the component R−1� based on the unknown distribution of X . Concretely, the process can
be described as follows.

By applying ICA attack, the estimate to X + T is X̂ + T = R̂−1 P . Suppose that the
original column i has maximum and minimum values maxi and mini , respectively, and
R̂−1 P has max′

i and min′
i , respectively. Since translation does not change the shape of col-

umn PDFs, we can align the column PDFs first. As scaling is one of the major effect of ICA
estimation, we rescale the reconstructed column with some factor s, which can be estimated

by s ≈ max′
i − min′

i
maxi − mini

. Then, the column i of R̂−1 P is scaled down to the same span of X by the
factor s. Then, we can extract the translation ti for column i with

t̂i ≈ min′
i × s − mini

Since the quality of the estimation is totally dependent on that of ICA reconstruction to
rotation perturbation, a good rotation perturbation will protect translation perturbation as
well. We will show some experimental results to see how well we can protect the translation
component.

6.2.4 Privacy analysis on distance-inference attack

In the previous section, we have discussed naive-inference attacks and ICA-based attacks. In
the following discussion, we assume that, besides the information necessary to perform these
two kinds of attacks, the attacker manages to get more knowledge about the original data
set: s/he also knows at least d + 1 original data points, {x1, x2, . . . , xd+1}, d points of which
are also linearly independent. Since the basic geometric perturbation preserves the distances
between the points, the attacker can possibly find the mapping between these points and their
images in the perturbed data set, {o1, o2, . . . , od+1}, if the point distribution is peculiar, e.g.
the points are outliers (as Fig. 9 shows). With the known mapping the rotation component R
and translation component t can be calculated consequently. There is also discussion about
the scenario that the attacker knows less than d points [30].

The mapping might be identified precisely for low-dimensional small data sets (<4 dimen-
sions). With considerable cost, it is not impossible for higher dimensional larger data sets
by simple exhaustive search if the known points have special distribution. There may have
multiple matches, but the threat can be substantial.

So far we have assumed the attacker has obtained the right mapping between the known
points and their images. In order to protect from the distance-inference attack, we use the
noise component � to protect geometric perturbation − G(X) = R X + � + �. After we
append the distance perturbation component, we have the original points and their maps be
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{x1, x2, . . . , xd+1} → {o1, o2, . . . , od+1}, oi = Rxi + t + εi , where εi is the noise. The
attacker can perform a linear regression–based estimation method.

1. R is estimated with the known mapping. The translation vector t can be canceled from the
perturbation and we get d equations: oi −od+1 = R(xi −xd+1)+εi −εd+1, 1 ≤ i ≤ d . Let
Ō = [o1−od+1, o2−od+1, . . . , od −od+1], X̄ = [x1−xd+1, x2−xd+1, . . . , xd −xd+1],
and ε̄ = [ε1−εd+1, ε2−εd+1, . . . , εd −εd+1]. The equations are unified to Ō = R X̄ +ε̄,
and estimating R becomes a linear regression problem. The minimum variance unbiased
estimator for R is R̂ = Ō ′ X̄(X̄ ′ X)−1 [20].

2. With R̂, the translation vector t can also be estimated. Since oi − Rxi − εi = t and
εi has mean value 0, with R̂ the attacker has the estimate of t as t̂ = 1

d+1 {∑d+1
i=1 (oi −

R̂xi ) − ∑d+1
i=1 εi } ≈ 1

d+1

∑d+1
i=1 (oi − R̂xi ). t̂ will have certain variance brought by the

components R̂ and εi .
3. Finally, the original data X can be estimated as follows. As O = R X + � + �, using

the estimators R̂ and �̂ = [t̂, . . . , t̂], we get X̂ = R̂−1(O − �̂). Due to the variance
introduced by R̂, �̂, and �, the attacker may need to run several times to get the average
of estimated X̂ , in practice.

By simulating the above process, we are able to estimate the effectiveness of the added
noise. As we have discussed, as long as the geometric boundary is preserved, the geometric
perturbation with noise addition can preserve the model accuracy. We have formally ana-
lyzed the effect of the noise component to model quality in Sect. 5.5. We will further study
the relationship between the noise level, the privacy guarantee, and the model accuracy in
experiments.

6.2.5 Privacy analysis on other attacks

We have studied a few attacks, according to the different levels of knowledge that an attacker
may have. There are also studies about the extreme case that the attacker can know a con-
siderable number of points (�d)in the original data set. In this case, classical methods, such
as Principle Component Analysis (PCA) [30] and ICA [19], can be used to reconstruct the
original data set with the higher order statistical information derived from both the known
points and the perturbed data. In order to make these methods effective, the known points
should be representative for the original data distribution, so that higher order statistics can
be preserved, such as the covariance matrix of the original data set that both PCA- and
ICA-based methods depend on. As a result, what portion of samples are known by the
attacker and how different the known sample distribution is from the original one become
the important factor for the success of attacks. Most importantly, these attacks become less
meaningful in practice: when a large number of points have been cracked, it is too late to
protect data privacy and security. In addition, outliers in the data set may be easily under
attacks, if additional knowledge about the original outliers is available. Further study should
be performed on the outlier-based attacks. We will leave these issues for future study.

6.2.6 A randomized algorithm for finding a better perturbation

We have discussed the unified privacy metric for evaluating the quality of a random geo-
metric perturbation. Three kinds of inference attacks are analyzed under the framework of
multi-column privacy evaluation, based on which we design an algorithm to choose good
geometric perturbations that are resilient to the discussed attacks. In addition, the algorithm
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itself, even published, should not be a weak point in privacy protection. Since a deterministic
algorithm in optimizing the perturbation may also provide extra clues to privacy attackers,
we try to bring some randomization into the optimization process.

Algorithm 1 runs in a given number of iterations, aiming at maximizing the minimum
privacy guarantee. At the beginning, a random translation is selected. In each iteration, the
algorithm randomly generates a rotation matrix. Local maximization of variance through
swapping rows is then applied to find a better rotation matrix. And then, the candidate rota-
tion matrix is tested by the ICA-based attacks 6.2.2 assuming the attacker knows column
statistics. The rotation matrix is accepted as the currently best perturbation, if it provides
higher minimum privacy guarantee in terms of both naive estimation and ICA-based attacks
than the previous perturbations. Finally, the noise component is appended to the perturbation,
so that the distance-inference attack cannot reduce the privacy guarantee to a safety level φ,
e.g., φ = 0.2. Algorithm 1 outputs the rotation matrix Rt , the random translation matrix
�, the noise level σ 2, and the corresponding minimum privacy guarantee. If the privacy
guarantee is lower than the anticipated threshold, the data owner can choose not to release
the data. Note that this optimization process is applied to a sample set of the data. Therefore,
the cost will be manageable even for very large original data set.

Algorithm 1 Finding a Good Perturbation (Xd×N , w, m)
Input: Xd×N :the original data set, w: weights of attributes in privacy evaluation, m: the number of iterations.
Output: Rt : the selected rotation matrix, �: the random translation, σ 2: the noise level, p: privacy guarantee
calculate the covariance matrix C of X ;
p = 0, and randomly generate the translation �;
for Each iteration do

randomly generate a rotation matrix R;
swapping the rows of R to get R′, which maximizes min1≤i≤d { 1

wi
(Cov(R′ X − X)(i,i)};

p0 = the privacy guarantee of R′, p1 = 0;
if p0 > p then

generate X̂ with ICA;
{(1), (2), . . . , (d)} = argmin{(1),(2),...,(d)}

∑d
i=1 �P DF(Xi , O(i))

p1 = min1≤k≤d
1

wk
Priv(Xk , O(k))

end if
if p < min(p0, p1) then

p = min(p0, p1), Rt = R′;
end if

end for
p2 = the privacy guarantee to the distance-inference attack with the perturbation G(X) = Rt X + � + �.
Tune the noise level σ 2, so that p2 ≥ p if p < φ or p2 > φ if p < φ.

7 Experiments

We design four sets of experiments to evaluate the geometric perturbation approach.
The first set is designed to show that the discussed classifiers are invariant to rota-
tions and translations. In this set of experiments, general linear transformations, including
dimensionality-preserving transformation and projection transformation are also investigated
to see the advantage of distance preserving transformations. The second set shows the opti-
mization of the privacy guarantee in geometric perturbation without the noise component, in
terms of the naive-inference attack and the ICA-based attack. In the third set of experiments,
we explore the relationship between the intensity of the noise component, the privacy guar-
antee, and the model accuracy, in terms of distance-inference attack. Finally, we compare
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the overall privacy guarantee provided by our geometric perturbation and another multidi-
mensional perturbation—condensation approach. All datasets used in the experiments can
be found in UCI machine learning database.4

7.1 Classifiers invariant to rotation perturbation

In this experiment, we verify the invariance property of several classifiers discussed in
Sect. 5.1 to rotation perturbation. Three classifiers: kNN classifier, SVM classifier with RBF
kernel, and perceptron are used as the representatives. To show the advantage of distance
preserving transformations, we will test the invariance property of dimensionality-preserving
general linear transformation and projection perturbation.

Each data set is randomly rotated 10 times in the experiment. Each of the 10 resultant data
sets is used to train and cross-validate the classifiers. The reported numbers are the average of
the 10 rounds of tests. We calculate the difference of model accuracy, between the classifier
trained with the original data and those trained with the rotated data.

In the Table 1, ‘orig’ is the classifier accuracy to the original datasets, ‘R’ denotes the result
of the classifiers trained with rotated data, and the numbers in ‘R’ columns are the perfor-
mance difference between the classifiers trained with original and rotated data, for example,
“−1.0 ± 0.2” means that the classifiers trained with the rotated data have the accuracy rate
1.0% lower than the original classifier on average, and the standard deviation is 0.2%. We
use single-perceptron classifiers in the experiment. Therefore, the data sets having more than
two classes, such as “E.Coli”, “Iris” and “Wine” data sets, are not evaluated for perceptron
classifier. ‘A’ means arbitrarily generated nonsingular linear perturbations that preserves the
dimensionality of the original data set. From this result, we can see that rotation perturba-
tion almost fully preserves the model accuracy for all of the three classifiers, except that
perceptron might be sensitive to rotation perturbation for some data sets (e.g., “Breast-w”).
Arbitrarily generated linear perturbations may downgrade the model accuracy a lot for some
data sets, such as “Inonosphere” for kNN (−30.0%), and “Iris” for SVM (RBF) (−10.2%).

7.2 The effect of random projection to model accuracy

To see whether random projection can safely replace the rotation perturbation component in
geometric data perturbation, we perform a set of experiments to check how model accuracy is
affected by random projection. We implement the standard random projection method [41].
Random projection is defined as

G(x) =
√

k

d
RT x,

where R is a d×k matrix with orthonormal columns. R can be generated in multiple methods.
One simple method is to generate a random matrix with each element drawn from the standard
normal distribution N (0, 1) first, and then apply Gram-Schmidt process [6] to orthogonalize
the columns. From the Johnson-Lindenstrauss Lemma [25], we understand that the number
of projected dimensions is the major factor affecting the accuracy of models. We will look
at this relationship in the experiment. For clear presentation, we will pick three data sets
for each classifier that show great impact to accuracy. Similarly, each result is based on the
average of ten rounds of different random projections.

For clear presentation, for each classifier modeling, we select only three data sets that show
the most representative patterns. In Fig. 10, the x-axis is the difference between the projected

4 http://www.ics.uci.edu/~mlearn/Machine-Learning.html.
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Fig. 10 The effect of projection perturbation to kNN
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Fig. 11 The effect of projection perturbation to SVM

dimensions and the original dimensions and the y-axis is the difference between original
model accuracy and the perturbed model accuracy (perturbed accuracy—original accuracy).
Note that random projections that preserve dimensionality (dimension difference=0) is as
same as rotation perturbation. It shows that the kNN model accuracy for the three data sets
can decrease dramatically regardless of increased or decreased dimensionality. The numbers
are the average of ten runs for each dimensionality setting. In Fig. 11, SVM models also show
the model accuracy is significantly reduced with a dimensionality different to the original
one. The “Diabetes” data is less affected by changed dimensionality. Interestingly, the per-
ceptron models (Fig. 12) are less sensitive to changed dimensionality for some data sets such
as “Diabetes” and “Heart”, while very sensitive to others such as “BreastW”. In general, the
error caused by random projection perturbation that changes dimensionality is so large that
the resultant models are not useful.

7.3 Effectiveness of translation perturbation

The effectiveness of translation perturbation is two-fold. First, we show that translation per-
turbation cannot be effectively estimated based on the discussed techniques. Then, we give
complementary experimental results to show that the classifiers: SVMs with polynomial
kernel and sigmoid kernel indeed invariant to translation perturbation.
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Fig. 12 The effect of projection perturbation to Perceptron
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Fig. 13 Resilience to the attack to random translation

As we have mentioned, if the translation vector could be precisely estimated, the rotation
center would be exposed. We applied the ICA-based attack to rotation center that is described
in Sect. 6.2.3. The data in Fig. 13 shows SD (t̂ − t). Compared to the range of the elements
in t, i.e., [0, 1], the standard deviations are quite large, so we can conclude that random
translation is also hard to estimate if we have optimized rotation perturbation in terms of
ICA-based attacks.

SVMs with polynomial kernel, and sigmoid kernel, are also invariant to translation trans-
formation. Table 2 lists the experimental result on random translation for the 12 data sets.
We randomly translate each data set for ten times. The result is the average of the ten runs.
For most data sets, the result shows zero or tiny deviation from the standard model accuracy.

7.4 Perturbation optimization against naive estimation and ICA-based attack

We run the randomized optimization algorithm and show how effective it can generate resil-
ient perturbations5. Each column in the experimental data set is considered equally important
in privacy evaluation. Thus, the weights are not included in evaluation.

5 Since we slightly changed the definition of privacy guarantee from our SDM paper [9], we need to re-run
the experiments that use this metric for comparison. Therefore, the numbers in this section can be slightly
different from those in the paper [9].
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Table 2 Experimental result on random translation

Dataset SVM (polynomial) SVM (sigmoid)

Orig Tr Orig Tr

Breast-w 96.6 0 ± 0 65.5 0 ± 0

Credit-a 88.7 0 ± 0 55.5 0 ± 0

Credit-g 87.3 −0.4 ± 0.4 70 0 ± 0

Diabetes 78.5 0 ± 0.3 65.1 0 ± 0

E. coli 89.9 −0.1 ± 0.5 42.6 0 ± 0

Heart 91.1 −0.2 ± 0.2 55.6 0 ± 0

Hepatitis 96.7 −0.4 ± 0.3 79.4 0 ± 0

Ionosphere 98 +0.3 ± 0 63.5 +0.6 ± 0

Iris 97.3 0 ± 0 29.3 −1.8 ± 0.4

Tic-tac-toe 100 0 ± 0 65.3 0 ± 0

Votes 99.2 +0.2 ± 0.1 65.5 −4.7 ± 0.6

Wine 100 0 ± 0 39.9 0 ± 0
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Fig. 14 Minimum privacy guarantee generated by local optimization, combined optimization, and the per-
formance of ICA-based attack

Figures 14 and 15 summarize the evaluation of privacy quality on experimental data-
sets. The results are obtained in 50 iterations with the optimization algorithm described
in Sect. 6.2.6. “LocalOPT” represents the locally optimized minimum privacy guarantee
addressing naive estimation at a number of iterations. “Best ICA attack” is the worst pertur-
bation that gives the best ICA attack performance, i.e., getting the lowest privacy guarantee
among the perturbations tried in the rounds. “CombinedOPT”is the combined optimization
result given by Algorithm 1 after a number of iterations. The above values are calculated with
the proposed privacy metric based on the estimated data set and the original data set. The
LocalOPT values can often reach a relatively high level after 50 iterations, which means that
the swapping method is very efficient in locally optimizing the privacy quality in terms of
naive estimation. In contrast, the best ICA attacks often result in very low privacy guarantee,
which means some rotation perturbations are very weak to ICA-based attacks. Combined-
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Fig. 15 Average privacy guarantee generated by local optimization, combined optimization, and the perfor-
mance of ICA-based attack
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Fig. 16 Optimization of perturbation for diabetes data

OPT values are much higher than the corresponding ICA-based attacks, which supports our
conjecture that we can always find one perturbation that is sufficiently resilient to ICA-based
attacks in practice.

We also show the detail in the course of optimization for two data sets “Diabetes” and
“Votes” in Figs. 16 and 17, respectively. For both data sets, the combined optimal result is
between the curves of best ICA-attacks and the best local optimization result. Different data
sets or different randomization processes may cause different change patterns of privacy
guarantee in the course of optimization. However, we see after a few rounds the results are
quickly stabilized round satisfactory privacy guarantee, which means the proposed optimi-
zation method is very efficient.

7.5 Distance perturbation: the tradeoff between privacy and model accuracy

Now we extend the geometric perturbation with random noise component : G(X) = R X +
� + �, to address the potential distance-inference attacks. From the formal analysis, we
know that the noise component � can conveniently protect the perturbation from distance-
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Fig. 18 The change of minimum privacy guarantee vs. the increase of noise level for the three datasets

inference attack. Intuitively, the higher the noise level is, the better the privacy guarantee.
However, with the increasing noise level, the model accuracy could also be affected. In this
set of experiments, we first study the relationship between the noise level, represented by its
variance σ 2, and the privacy guarantee, and then the relationship between the noise level and
the model accuracy.

Each known I/O attack is simulated by randomly picking a number of records (e.g., 5% of
the total records) as the known records and then applying the estimation procedure discussed
in Sect. 6.2.4. After running 500 runs of simulated attacks for each noise level, we get the
average of minimum privacy guarantee. In addition, since the paper [21] showed that the
PCA-based noise filtering technique may help reduce the noise for some noise perturbed
data sets, we also simulate the PCA filtering method based on the described algorithm [21]
and checked its effectiveness. The results show that in most cases (except for some noise
levels for “Iris” data) when the number of principal components equals the number of the
original dimensions (i.e., no noise reduction is applied), the attack is most effective. Since
the PCA method cannot clearly distinguish the noise from other perturbation components,
removing the smallest principal components will inevitably change the non-noise part as
well. Figure 18 shows the best attacking results for different noise levels. Overall, the pri-
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Fig. 19 The change of accuracy of KNN classifier vs. the increase of noise level

0.05 0.06 0.07 0.08 0.09 0.1

Noise Level (sigma)

A
cc

u
ra

cy
 C

h
an

g
e 

(%
)

2

0

-2

-4

-6

-8

Diabetes Iris Votes

Fig. 20 The change of accuracy of SVM(RBF) classifier vs. the increase of noise level

vacy guarantee increases with the increase of noise level for all three data sets. At the noise
level σ = 0.1, the privacy guarantee is between the range 0.1–0.2. Figures 19 and 20 show
a trend of decreasing accuracy for KNN classifier and SVM (RBF kernel) classifier, respec-
tively. However, with the noise level lower than 0.1, the accuracy of both classifiers is only
reduced less than 6%, which is quite acceptable. Meanwhile, perceptron (Fig. 21) is less
sensitive to different levels of noise intensity. We perform experiments on all data sets at the
noise level σ = 0.1 to see how the model accuracy is affected by the noise component.

We summarize the privacy guarantees at the noise level 0.1 for all experimental data sets6

in Fig. 22, and also the change of model accuracy for KNN, SVM(RBF), and Perceptron in
Fig. 23. Among the three types of classifiers, KNN is the most stable one while perceptron
classifiers are most sensitive to distance perturbation. Overall, the distance perturbation com-
ponent may affect model accuracy, but it has much less impact on model accuracy. Last but
not least, it is worth noting that the noise component can be removed if the data owner makes
sure to securely store the original data. This important feature provides extra and valuable
flexibility in geometric perturbation for data mining.

6 “Ionosphere” is not included because the existence of nearly constant value in one column.
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Fig. 21 The change of accuracy of perceptron classifier vs. the increase of noise level
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8 Conclusion

We present a random geometric perturbation approach to privacy preserving data classifica-
tion. Random geometric perturbation, G(X) = R X + � + �, includes the linear combi-
nation of the three components: rotation perturbation, translation perturbation, and distance
perturbation. Geometric perturbation can preserve the important geometric properties; thus,
most data-mining models that search for geometric class boundaries are well preserved with
the perturbed data. We proved that many data-mining models, including classifier, regression
models, and clustering methods, are invariant to geometric perturbation.

Geometric perturbation perturbs multiple columns in one transformation, which intro-
duces new challenges in evaluating the privacy guarantee for multidimensional perturba-
tion. We propose a multi-column privacy evaluation model and design a unified privacy
metric to address these problems. We also thoroughly analyze the resilience of the rota-
tion perturbation approach against three types of inference attacks: naive-inference attacks,
ICA-based attacks, and distance-inference attacks. With the privacy model and the analysis
of attacks, we are able to construct a randomized optimization algorithm to efficiently find
a good geometric perturbation that is resilient to the attacks. Our experiments show that the
geometric perturbation approach not only preserves the accuracy of models, but also pro-
vides much higher privacy guarantee, compared to existing multidimensional perturbation
techniques.
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