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Abstract Many applications of social networks require relationship anonymity due
to the sensitive, stigmatizing, or confidential nature of relationship. Recent work showed
that the simple technique of anonymizing graphs by replacing the identifying information
of the nodes with random IDs does not guarantee privacy since the identification of the
nodes can be seriously jeopardized by applying subgraph queries. In this paper, we investi-
gate how well an edge-based graph randomization approach can protect sensitive links. We
show via theoretical studies and empirical evaluations that various similarity measures can
be exploited by attackers to significantly improve their confidence and accuracy of predicted
sensitive links between nodes with high similarity values. We also compare our similarity
measure-based prediction methods with the low-rank approximation-based prediction in this
paper.

Keywords Link privacy · Randomization · Social networks · Similarity measures

1 Introduction

Social networks are of significant importance in various application domains such as market-
ing, psychology, epidemiology, and homeland security. Many applications of social networks
such as anonymous Web browsing require relationship anonymity due to the sensitive, stig-
matizing, or confidential nature of relationship. For example, most people prefer to conceal
the truth regarding their illegal or unethical behaviors which are customarily disapproved of
by society.

One natural approach is to publishing a node-anonymized version of the network that
permits useful analysis without disclosing the identity of the individuals represented by
the nodes. The recent work [4,11] pointed out that this simple technique of anonymizing
graphs by replacing the identifying information of the nodes with random IDs does not
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guarantee privacy since the identification of the vertices can be seriously jeopardized by
applying subgraph queries. Another approach is to randomizing edges to protect sensitive
links [10,11,17,25,29]. For example, we can remove some true edges and/or add some false
edges. After the edge randomization, the randomized graph is expected to be different from
the original one. As a result, the true sensitive or confidential relationship will not be much
disclosed even if the identification of the vertices is achieved by attackers.

We will explore how well the edge randomization can protect those sensitive links. In
Ref. [25], the authors preliminarily investigated the relationship between the amount of
randomization and the attacker’s ability to infer the presence of a link and presented a ran-
domization strategy that can preserve the spectral properties (and utility) of the graph. In
Ref. [24], the authors investigated how well an edge-based graph randomization approach
can protect node identities and sensitive links when adversaries have one specific type of
background knowledge (i.e., knowing the degrees of target individuals). However, the effect
on privacy due to randomization in [24], [25] was quantified by considering only the mag-
nitude information of randomization. It has been well known that graph topological features
have close relations with the existence of links and various proximity measures have been
exploited to predict the existence of a future link [16]. In this paper, we will investigate
formally how attackers may exploit proximity measure values (derived from the released
randomized graph) to breach link privacy. We exclude identity privacy from the scope of this
paper.

Privacy of a sensitive link is jeopardized if attackers’ confidence of prediction is higher
than some tolerated threshold or is significantly greater than the prior belief (without the
exploit of the released randomized data). Hence it is of great importance for data own-
ers to be aware of potential attacks and quantify the magnitude of perturbation to better
protect sensitive links. We would point out that our problem of attacking methods on a ran-
domized graph is different from the classic link prediction problem investigated in [16].
The classic link prediction focuses on network evolution models and is to predict the exis-
tence of a future link between two nodes given a snapshot of a current social network. The
change due to randomization is different with that due to network evolutions. Neverthe-
less, various graph proximity measures used in the classic link prediction could be used by
attackers.

2 Related work

Social network analysis has increasing interest in the database, data mining, and theory
communities. The privacy concerns associated with data analysis over social networks have
incurred recent research works [4,5,10,11,17,25,26,28–30].

In Ref. [4], the authors described a family of attacks such that an adversary can learn
whether edges exist or not between specific targeted pairs of nodes from node-anonymized
social networks. Similarly in Refs. [10,11], the authors further observed that the structure of
the graph itself (e.g., the degree of the nodes or the degree of the node’s neighbors) determines
the extent to which an individual in the network can be distinguished.

In Ref. [17], the authors investigated how to modify a graph via a set of edge addition
(or deletion) operations in order to construct a new K -degree anonymous graph, in which
every node has the same degree with at least K −1 other nodes. In Ref. [29], the authors anon-
ymized the graph by generalizing node labels and inserting edges until each neighborhood
is indistinguishable to at least K − 1 others. In Ref. [30], the authors proposed a system-
atic model, called K -automorphic network, to protect against multiple structural attacks and
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developed an algorithm that ensures K -automorphism. In Refs. [5,28], the authors applied
a structural anonymization approach called edge generalization that consists of collapsing
clusters together with their component nodes’ structure, rather than add or delete edges from
the social network data set. Although the above proposed approaches would preserve privacy
to some extent, however, it is not clear how useful the anonymized graph is since many
topological features may be lost.

In Refs. [9,26], the authors studied the problem of how to generate a synthetic graph
matching various properties of a real social network in addition to a given degree sequence.
They investigated a switching-based algorithm for generating synthetic graphs whose feature
values are within a precise range of those of the original graph. In Ref. [26], the authors also
studied how adversaries exploit the released graph as well as feature constraints to breach
link privacy. The adversary can calculate the posterior probability of existence of a link by
exploiting the ensemble of graphs with the given degree sequence and the prescribed feature
constraints. However, the attacking model in [26] was based on the probability of existence
of a link across all possible graphs in the graph space. In this paper, the attacking model is
to exploit the relationship between existence of a link and the similarity measure values of
node pairs in one released randomized graph.

Beyond the ongoing privacy preserving social network analysis which mainly focus on
un-weighted social networks, in Refs. [6,18], the authors studied the situations in which the
network edges as well as the corresponding weights are considered to be private. The authors
in Ref. [18] developed privacy preserving strategies that can not only keep a close shortest
path length and exactly the same shortest path for certain selected paths but also maximize
the weight privacy preservation while the authors in Ref. [6] proposed an edge weight anon-
ymization approach via linear programming, which preserves properties of the graph that are
expressible as linear functions of the edge weights.

A large amount of work on privacy preserving data mining for numerical data has been
reported in recent years. The random noise addition methods have been well investigated
to prevent the disclosure of confidential individual values while preserving general patterns
and rules for numerical data (e.g., [2,3]). Most recently, the authors in Ref. [22] proposed a
hybrid multi-group approach for privacy preserving data mining. They combined the random-
ization approach and the secure multi-party computation approach to balance the accuracy
and efficiency constraints. The authors in Ref. [7] investigated the problem of the sensitive
knowledge hiding in large transactional databases without hiding of nonsensitive patterns
in the sanitized data. The authors in Ref. [20] presented an approach for privacy preserv-
ing distributed model-based classifier training to support customizable privacy modeling
and protection. Point-wise reconstruction methods in numerical settings have also been well
developed in privacy preserving data mining community. A spectral filtering-based recon-
struction method was first proposed by Kargupta et al. [13,14] to reconstruct original data
values from the perturbed data. Similar methods (e.g., PCA-based reconstruction method
[12], SVD-based reconstruction method [8]) were also investigated. All methods exploited
spectral properties of the correlated data to remove the noise from the perturbed one. One
natural idea is to implement a similar low-rank approximation-based prediction method on
networked data. We also compare our similarity measure–based prediction methods with the
low-rank approximation-based prediction in this paper.

3 Link privacy analysis

A network G(n, m) is a set of n nodes connected by a set of m links. The network consid-
ered here is binary, symmetric, connected, and without self-loops. Let A = (ai j )n×n be its
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adjacency matrix, ai j = 1 if node i and j are connected and ai j = 0 otherwise. ˜G is the
randomized graph obtained by randomly adding k false edges followed by deleting k true
edges. This strategy keeps the total number of edges in the original graph unchanged. We
denote Ã = (

ãi j
)

n×n be the adjacency matrix of ˜G.
When it comes to link privacy, it is usually ai j = 1 that people want to hide, not ai j = 0

and attackers are capable of calculating posterior probabilities. Formally, we use P(ai j = 1)

to denote the users’ prior belief about the event of ai j = 1 and use P(ai j = 1|˜G) to denote its

posterior belief about ai j = 1. The released graph ˜G is regarded as jeopardizing the privacy
if P(ai j = 1|˜G) > P(ai j = 1).

In [25], we preliminarily investigated the relationship between the amount of randomiza-
tion and the attacker’s ability to infer the presence of a link. The results are shown as follows.
When the attacker knows only parameter m and n, the prior belief is

P(ai j = 1) = 2m

n(n − 1)
. (1)

With the released graph and perturbation parameter k, the posterior belief is

P(ai j = 1|ãi j = 1) = m − k

m
, P(ai j = 1|ãi j = 0) = k

(

n
2

)

− m
(2)

Equation (2) is based on the Addition/Deletion without replacement.1

In this paper, we further investigate whether topological features of the released network
can be exploited by attackers to breach the link privacy. More specifically, we focus on to
what extent a given sensitive relationship can be breached by attackers who exploit proximity
measure values of node pairs. Proximity measures have been shown to be effective in the
classic link prediction problem (i.e., predicting the future existence of links among nodes
given a snapshot of a current graph). However, link prediction in our context is to predict
the likelihood of existence of original links from the randomized graph. This is challenging
since the proximity measure values calculated from the randomized graph can be varied from
those of the original graph. In Sect. 3.1, we empirically show the close relationship between
various similarity measures of node pairs and probability of link existence between them. In
Sect. 3.2, we conduct theoretical studies and quantify how much the posterior belief can be
enhanced by exploiting those similarity measures.

3.1 Existence of a link versus similarity measure

Let mi j be a similarity measure on node pair (i, j) in graph G (a larger value of mi j indicates
that nodes i and j are more similar). We apply four similarity measures in this paper. The
first one is the number of common neighbors:

C Ni j =
n

∑

k=1

aikak j .

1 Refer to [25] for the Addition/Deletion with replacement. For large graphs, the difference between the above
is small.
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The second one is the Adamic/Adar measure [1], which is the weighted number of common
neighbors. The weights are assigned based on the information theory:

Adi j =
n

∑

k=1

1

log dk
aikak j ,

where dk is the degree of node k. The third one is the Katz measure, which is a weighted
sum of the number of paths in the graph that connect two nodes. Shorter paths are given the
larger weight with parameter β [15]:

Ki j =
∞
∑

k=1

βk P(k)
i j ,

where P(k)
i j denotes the number of paths from i to j with length equal to k while β is a

damping factor. In this paper, we take β = 0.1. The fourth one is the commute time CTi j ,
which is the expected steps of random walks from i to j and back to i . The commute
time is a dissimilarity measure: dissimilar nodes have large CT values. The commute time
can be calculated through the eigenvalues and eigenvectors of the graph’s normal matrix

[19]. Let N = D− 1
2 AD− 1

2 where D = diag{d1, d2, . . . , dn}.N has n real eigenvalues:
ν1 ≥ ν2 ≥ ν3 · · · νn with corresponding eigenvectors z1, z2, . . . , zn , and let zki denote the
k’th entry of zi . Then

CTi j = 2m
n

∑

k=2

1

1 − νk

(

zki√
di

− zk j
√

d j

)2

.

Let ρ(�) denote the proportion of true edges in the set of node pairs �:

ρ(�) = 1

|�|
∑

(i, j)∈�

ai j ,

where |�| denotes the number of elements in set �. Let Sx = {(i, j) : mi j = x} denote
the set of all node pairs with the similarity measure mi j = x . Hence, ρ(Sx ) denotes the
proportion of true edges in the Sx , which can be considered as the probability of existence
of a link between node pair (i, j) in Sx . Next, we empirically show how ρ(Sx ) varies with x
in real social networks.

Figure 1 shows how the proportions of true edges in Sx are varied with measure values
x in terms of three similarity measures (Common neighbors, Katz, and Adamic/Adar) and one
dissimilarity measure (Commute time) in the US political books network (polbooks). The
polbooks network2 contains 105 nodes and 441 edges, and nodes represent books about
US politics sold by the online bookseller Amazon.com while edges represent frequent
co-purchasing of books by the same buyers on Amazon. We can observe that ρ(Sx ) increases
with the similarity measure value x and decreases with the dissimilarity measure x . In other
words, the probability that ai j = 1 is positively correlated with similarity measures (e.g.,
Common neighbors) and is negatively correlated with dissimilarity measures (e.g., Commute
time).

We then perturbed the polbooks network by adding 200 false edges and deleting 200 true
edges. From the perturbed graph ˜G, we define ˜Sx = {(i, j) : m̃i j = x} as the set of node
pairs with similarity measure m̃i j = x . Figure 2 shows how the proportions of true edges

2 http://www-personal.umich.edu/~mejn/netdata/.
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Fig. 1 Similarity/dissimilarity measure versus the prob. of true edges in the original graph (ρ(Sx )) for
polbooks. Common neighbors, Katz, and Adamic/Adar are similarity measures whereas Commute time is
a dissimilarity measure. a Common neighbors; b Katz; c Adamic/Adar; d Commute time

in ˜Sx (i.e., the probability of existence of a link) are varied with similarity (or dissimilarity)
measure values x in the randomized polbooks network. We can observe that the same pattern
still holds even if the randomized graph itself is quite different from the original one (200
false edges out of 441 edges). In the next section, we will show how attackers exploit m̃i j in
the perturbed graph ˜G to improve their posterior belief on existence of a true link between
nodes (i, j) in the original graph.

In Ref. [16], the authors compute the similarity measures of all the node pairs, and regard
the node pair with high similarity has greater probability to be connected in the future. The
strategy is consistent with our observation.

3.2 Link prediction by exploiting similarity measure

In this section, we quantify how much the posterior belief can be enhanced by exploiting
similarity measure between two node (i, j) in the randomized graph. We present our quan-
tification in a series of results and leave detailed proofs in Appendix.

Recall the randomization strategy is to randomly add k false edges followed by deleting k
true edges. In other words, every true link is to be deleted independently with probability p1

and every non-existing link is to be added independently with probability p2. We can easily

derive p1 = k/m and p2 = k/

[(

n
2

)

− m

]

.

Let m̃i j denote the similarity measure of node i and j in ˜G. We define ˜Sx = {(i, j) :
m̃i j = x} as the set of node pairs with m̃i j = x in the perturbed graph. Then we have
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Fig. 2 Similarity/dissimilarity measure versus the prob. of true edges in the randomized graph (ρ(˜Sx )) for
polbooks. Common neighbors, Katz, and Adamic/Adar are similarity measures whereas Commute time is a
dissimilarity measure. a Common neighbors; b Katz; c Adamic/Adar; d Commute time

P(ai j = 1|m̃i j = x) = ρ(˜Sx ), and P(ai j = 0|m̃i j = x) = 1 − ρ(˜Sx ). Recall that ρ(˜Sx )

denotes the proportion of true edges in the set ˜Sx derived from the perturbed graph. Also
notice that P(ãi j = 1|ai j = 1) = 1 − p1 and P(ãi j = 1|ai j = 0) = p2. With the Bayes’
theorem, the posterior belief is then given by

P(ai j = 1|ãi j = 1, m̃i j = x) = (1−p1)ρ(˜Sx )

(1−p1)ρ(˜Sx )+p2[1−ρ(˜Sx )]
, (3)

P(ai j = 1|ãi j = 0, m̃i j = x) = p1ρ(˜Sx )

p1ρ(˜Sx )+(1−p2)[1−ρ(˜Sx )]
. (4)

Equation (3) (Eq. (4)) shows the enhanced posterior belief that an observed (missing)
edge (i, j) in the G̃ is a true edge in G. The following property shows that the event of an
observed link ãi j = 1 usually has more indications to be a true link than that of ãi j = 0.

Property 1 Let r denote the sparse ratio of the graph, r = m/

(

n
2

)

. If k ≤ (1 − r)m, given

a fixed x, we have the following inequality stands:

P(ai j = 1|ãi j = 1, m̃i j = x) ≥ P(ai j = 1|ãi j = 0, m̃i j = x). (5)

Many real-world social networks are very sparse (r ≈ 0). Hence, k ≤ (1 − r)m is usually
satisfied. We thus focus on the risk of the released links, P(ai j = 1|ãi j = 1, m̃i j = x).

One issue here is that attackers cannot know the proportion of true edges in ˜Sx from the
perturbed graph. What they can know actually is the proportion of observed edges in ˜Sx .
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Our next result shows the maximum likelihood estimate of ρ(˜Sx ) can be derived from the
proportion of observed edges in ˜Sx .

Result 1 Given the perturbed graph and a fixed x , define ˜S1
x = ˜Sx ∩ ˜E = {(i, j) : ãi j =

1, m̃i j = x}. Assume p1 + p2 	= 1, then the maximum likelihood estimator (MLE) of ρ(˜Sx )

is given by

ρ̂
(

˜Sx
) = |˜S1

x |/|˜Sx | − p2

1 − p1 − p2
, (6)

and the MLE is unbiased.

By replacing ρ(˜Sx ) in Eq. (3) with ρ̂(˜Sx ) (shown in Eq. (6)), we have derived our enhanced
posterior belief P(ai j = 1|ãi j = 1, m̃i j = x). Attackers may simply calculate the poster-
ior belief of all node pairs in the perturbed graph and choose top-t node pairs as predicted
candidate links.

For those similarity measures with continuous ranges (e.g., commute time), the num-
ber of node pairs with similarity measure equal exactly to x is usually small. In practice,
we can apply histogram approximation by partitioning the value of the similarity measure:
x0 ≤ x1 ≤ · · · ≤ xi ≤ · · ·, and for x ∈ [xi−1, xi )

|˜S1
x |

|˜Sx |
= |{(i, j) : ãi j = 1, m̃i j = x ∈ [xi−1, xi )}|

|{(i, j) : m̃i j = x ∈ [xi−1, xi )}| .

A probably more statistically preferred method is to use the kernel estimator:

|˜S1
x |

|˜Sx |
=

∑

i< j ãi j K [(x − mi j )/h]
∑

i< j K [(x − mi j )/h] ,

where K (x) is the p.d.f. of the standard normal distribution and h is the parameter controlling
the smoothness.

We would emphasize that our enhanced posterior belief P(ai j = 1|ãi j = 1, m̃i j = x)

more accurately reflect the existence of a true link than the posterior belief P(ai j = 1|ãi j = 1)

without exploiting the similarity measure derived in previous work [25]. We can see that
P(ai j = 1|ãi j = 1) (shown in Eq. (2)) is the same for all observed links. On the contrary, our
enhanced posterior belief P(ai j = 1|ãi j = 1, m̃i j = x) tends to be larger for those observed
links with higher similarity values and tends to be smaller for links with lower similarity
values. Hence, it can more accurately reflect the existence of true links. We show our the-
oretical explanations in Results 2 and 3 and will compare the precisions of top-t predicted
links derived from these two posterior beliefs in our empirical evaluations.

Result 2 P(ai j = 1|ãi j = 1, m̃i j = x) is an increasing function of ρ(˜Sx ), and when
ρ(˜Sx ) ≥ p2

p1+p2
, we have the following inequality stands:

P(ai j = 1|ãi j = 1, m̃i j = x) ≥ P(ai j = 1|ãi j = 1). (7)

Our next result shows more clearly the relationship between a priori belief (Eq. (1)), pos-
terior belief without exploiting similarity measures (Eq. (2)), and our enhanced posterior
belief with exploiting similarity measures (Eqs. (3, 4)).

Result 3 Both the sum of a priori belief over all node pairs and the sum of posterior belief
(without exploiting similarity measures) overall all node pairs are equal to the number of
edges:
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Fig. 3 Posterior belief for polbooks network. a Posterior belief versus common neighbors; b posterior belief
distribution

∑

i< j

P(ai j = 1) =
∑

i< j

P(ai j = 1|ãi j ) = m.

The expectation of the sum of our enhanced posterior belief (with exploiting similarity mea-
sures) is equal to the number of edges:

E

⎡

⎣

∑

i< j

P(ai j = 1|ãi j , m̃i j )

⎤

⎦ = m.

Figure 3 shows the relationship between the two posterior beliefs and the common neigh-
bors for the polbooks data. We set k = 200. We can observe that the posterior belief without
exploiting the similarity measure, P(ai j = 1|ãi j = 1), is 0.55 for all observed links. How-
ever, our enhanced posterior belief P(ai j = 1|ãi j = 1, m̃i j ) are greater than 0.55 for those
links with more than 2 common neighbors as shown in Fig. 3a. Figure 3b shows the distri-
bution of the calculated posterior belief values. We can observe that 33.5% of released links
have their posterior beliefs enhanced with similarity measures.

3.3 Privacy protection measure

In the privacy preserving data mining, one natural question from data owner is how many
perturbations we need such that we can guarantee the protection for all sensitive individual
edges are above some tolerated threshold. When attackers utilize the similarity measure, the
absolute measure of protection for an individual link (i, j) can be defined as

τa(i, j) = 1 − max
x

{

max
t = 0,1

P(ai j = 1|ãi j = t, m̃i j = x)

}

(8)

where the second term denotes the maximal suspicion of existing ai j = 1. Compared with
the protection under the attack without exploiting similarity measures, we define the relative
measure of protection as

τr (i, j) = τa(i, j)

1 − maxt = 0,1 P(ai j = 1|ãi j = t)
.

The measures of protection (τa and τr ) are defined in terms of one individual edge.
In the privacy preserving data mining, one natural question is how many perturbations

123



654 X. Ying, X. Wu

we need such that we can guarantee the protection for all individual edges are above
the threshold. Our next result shows the formula of the minimum number of perturba-
tions to achieve the protection of all individual links. It is of great importance to eval-
uate the relationship between the required minimum number of perturbations and the
utility loss of the perturbed graph. Due to space limitations, we leave this as our future
work.

Result 4 In the original graph, let Sx = {(i, j) : mi j = x}, ρmax = maxx ρ(Sx ), and sparse

ratio r = m/

(

n
2

)

. When the protection threshold ε <
1−ρmax

1−r , there exists the minimum k

such that τr (i, j) ≥ ε stands for all the node pair (i, j). kmin is given by:

kmin = [(1 − r)ερmax − r(1 − ρmax)]m
ε(ρmax − r)

. (9)

4 Empirical evaluation

We used four network data sets (polbooks, Enron, email, and polblogs) in our evaluation.
The Enron network was built from email corpus of a real organization over the course cov-
ering a 3-year period. We used a pre-processed version of the data set provided by Shetty
and Adibi [21]. This data set contains 252,759 emails from 151 Enron employees, mainly
senior managers. The email graph is the network of e-mail interchanges between mem-
bers of the Univeristy Rovira i Virgili (Tarragona).3 The polblogs compiles the data on the
links among US political blogs, containing over 1,000 vertices and 15,000 edges, which is
based on incoming and outgoing links and posts around the time of the 2004 presidential
election.4

For each graph G, we randomly add k false edges and delete k true edges. We set k =
0.3, 0.5, 0.7 m in this paper. We applied four similarity measures (Common neighbors, Katz,
Adamic/Adar, Commute time) to predict top-t candidate links. The prediction performance
was evaluated by the precision of the top-t predicted links. We varied t values from 0.1m to
0.5 m for all four data sets.

For each t , we calculated the precision of prediction links with different similarity mea-
sures. We also calculated the precision of prediction links using the posterior belief without
exploiting the similarity measure. Figure 4 plots our results on four data sets. We can observe
that for all four data sets, we can achieve very high accuracy (greater than 0.8) by using our
enhanced posterior belief for a subset (top 0.1 m) of released links, which indicates severe
privacy disclosures for those sensitive links. We can also see that our enhanced posterior
belief achieves higher precisions than the previous posterior belief without exploiting sim-
ilarity measures for most links (0.5 m) with high similarity measure values, indicating that
the network topology does indeed contain latent information from which to infer interac-
tions. From Fig. 4, we can also observe that we achieve different precisions using different
similarity measures: one measure that achieves the highest precision for one data set is not
necessarily the one for another data set. It is of great significance to explore what similarity
measures can be exploited by attackers to achieve the highest privacy disclosure for a given
social network. In addition to node similarity(dissimilarity) measures, the attackers may fur-
ther exploit the graph topology to enhance their confidence on predicting sensitive links.

3 http://deim.urv.cat/~aarenas/data/welcome.htm.
4 http://www-personal.umich.edu/~mejn/netdata/.
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Fig. 4 Precision of top t predictions by the posterior belief w/o similarity measures for four data sets,
k = 0.5 m. a Polbooks G(105, 441); b enron G(151, 1377); c email G(1133, 5451); d polblogs
G(1222, 16714)

For example, two node pairs (u, v) and (s, t) have the same number of common neighbors,
but the common neighbors of (u, v) are strongly connected to each other while the com-
mon neighbors of (s, t) do not connect to each other. In this case, (u, v) are more likely
to be connected than (s, t). Merely using the common neighbors measure in our current
method cannot capture the difference. We will investigate the potential privacy disclosure
risk when the attackers combine topology information with the node similarity/dissimilarity
measures.

In the next experiment, we vary the noise magnitude k from 0.3 to 0.7 m. Table 1 shows
the precisions of top t predictions using different similarity measures on four networks. We
can see that for every noise magnitude, predictions that utilize similarity measures achieve
a higher accuracy than those without exploiting similarity measures. We can also observe
that, for any t , the precision decreases as noise magnitude k increases. This is intuitively
reasonable, for large noises can greatly reduce the correlation between the similarity mea-
sures and existences of links, and thus decrease the prediction precision. We would point
out that k = 0.7 m corresponds to a large randomization (i.e., 70% original links have been
removed). The posterior belief without exploiting similarity measures P(ai j = 1|ãi j = 1)

is only 0.3. However, the posterior belief with exploiting similarity measures is significantly
improved. For example, the precision of top 0.1 m predictions using common neighbors is
0.87 for polblogs data.
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Table 1 Precision of top t predictions by the posterior belief w/o similarity measures for four data sets,
k = 0.3, 0.5, 0.7 m

Polbooks Enron Email Polblogs

k: 0.3 m 0.5 m 0.7 m 0.3 m 0.5 m 0.7 m 0.3 m 0.5 m 0.7 m 0.3 m 0.5 m 0.7 m

(a) Without similarity measures

t : 0.1 m 0.69 0.52 0.28 0.70 0.51 0.30 0.71 0.50 0.30 0.69 0.49 0.29

0.2 m 0.70 0.49 0.33 0.70 0.51 0.30 0.69 0.49 0.30 0.70 0.49 0.29

0.3 m 0.69 0.53 0.30 0.71 0.48 0.30 0.70 0.49 0.31 0.69 0.50 0.30

0.4 m 0.71 0.50 0.30 0.70 0.51 0.28 0.70 0.50 0.30 0.71 0.50 0.29

0.5 m 0.72 0.50 0.28 0.69 0.51 0.31 0.70 0.50 0.29 0.70 0.51 0.30

(b) Commute time

t : 0.1 m 0.93 0.76 0.39 0.93 0.81 0.42 0.94 0.88 0.68 0.98 0.96 0.87

0.2 m 0.85 0.67 0.36 0.86 0.67 0.41 0.90 0.79 0.48 0.96 0.91 0.69

0.3 m 0.82 0.58 0.39 0.81 0.59 0.39 0.88 0.70 0.36 0.95 0.83 0.48

0.4 m 0.74 0.54 0.36 0.78 0.54 0.32 0.83 0.59 0.33 0.90 0.71 0.33

0.5 m 0.70 0.47 0.30 0.72 0.50 0.28 0.76 0.51 0.29 0.84 0.57 0.23

(c) Katz

t : 0.1 m 0.94 0.79 0.59 0.95 0.75 0.39 0.97 0.88 0.69 1.00 0.98 0.90

0.2 m 0.81 0.65 0.42 0.91 0.79 0.36 0.98 0.79 0.53 0.98 0.94 0.73

0.3 m 0.75 0.54 0.30 0.87 0.64 0.32 0.94 0.58 0.40 0.97 0.86 0.49

0.4 m 0.76 0.53 0.23 0.80 0.53 0.32 0.88 0.55 0.30 0.94 0.73 0.32

0.5 m 0.70 0.50 0.27 0.75 0.49 0.30 0.79 0.48 0.24 0.88 0.52 0.20

(d) Common neighbors

t : 0.1 m 0.97 0.85 0.45 0.97 0.86 0.41 0.99 0.96 0.70 0.99 0.98 0.87

0.2 m 0.94 0.72 0.35 0.96 0.76 0.34 0.98 0.86 0.49 0.98 0.94 0.58

0.3 m 0.90 0.64 0.33 0.93 0.66 0.32 0.96 0.70 0.44 0.97 0.86 0.39

0.4 m 0.84 0.59 0.26 0.89 0.60 0.31 0.91 0.60 0.34 0.95 0.70 0.26

0.5 m 0.82 0.43 0.28 0.83 0.49 0.28 0.82 0.49 0.27 0.90 0.50 0.22

(e) Adamic/Adar

t : 0.1 m 0.98 0.83 0.43 0.98 0.85 0.42 1.00 0.97 0.67 1.00 0.98 0.86

0.2 m 0.94 0.67 0.37 0.96 0.73 0.36 0.99 0.82 0.54 0.99 0.94 0.57

0.3 m 0.90 0.59 0.33 0.93 0.65 0.31 0.95 0.74 0.45 0.97 0.85 0.41

0.4 m 0.83 0.55 0.34 0.89 0.59 0.29 0.90 0.60 0.34 0.94 0.66 0.27

0.5 m 0.81 0.49 0.29 0.84 0.51 0.28 0.84 0.49 0.28 0.91 0.51 0.23

5 Comparison with low-rank approximation-based prediction

The authors in Refs. [8,12,13] have investigated point-wise reconstruction methods (spectral
filtering, PCA based, and SVD based), which may be exploited by attackers to breach indi-
vidual privacy in the numerical data setting. Those methods work well because real-world
data are usually highly correlated in a low-dimensional space while the additive noise is dis-
tributed (approximately) equally over all dimensions. Then, more accurate individual data
can be reconstructed by projecting the randomized data into a proper low-dimensional space
where the majority information of the original data is preserved. We implemented a similar
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Fig. 5 ‖ Â − A‖2
F as l varies for polblogs network, k = 0.5 m. when l is chosen properly, the low-rank

approximation-based prediction method can reduce the squared Frobenius norm

point-wise reconstruction method for graph data and reported our detailed findings in Wu
et al. [23]. In this section, we conduct comparison between the low-rank approximation-based
prediction and our similarity measures–based prediction.

The edge randomization process can be written in the matrix form Ã = A + E , where E
is the perturbation matrix. We set E(i, j) = E( j, i) = 1 if edge (i, j) is added, E(i, j) =
E( j, i) = −1 if edge (i, j) is deleted, and 0 otherwise. Let λ̃i be Ã’s i th largest eigenvalue
in magnitude: |λ̃1| ≥ |λ̃2| ≥ · · · ≥ |λ̃n |, and x̃i denotes the eigenvector of λ̃i . Then, the rank
l approximation of Ã are given by:

Ãl =
l

∑

i=1

λ̃i x̃i x̃T
i .

By choosing a proper l, we expect that Ãl can still preserve the major information of the
original graph and filter out noises added in the rest dimensions. In Ãl , those entries whose
values are close to 1 are more likely to have true edges while those entries whose values
are close to 0 are less likely to have edges. We can simply get the reconstructed graph Â by
setting the 2 m largest off-diagonal entries in Ãl as 1, and 0 otherwise.

Figure 5 plots ‖ Â − A‖2
F (denoted by “re-constructed graph”) and ‖ Ã − A‖2

F (denoted
by “randomized graph”) as l varies for the polblogs network, setting k = 0.5 m. Notice that
the squared Frobenius norm is exactly four times the number of different links between two
graphs. We can observe that when l is too small (or too large), the reconstructed graph Â is
no better than the randomized graph Ã. This is because Ãl contains too little information of
the original graph (or too much noise). However, when l = 110 (which is circled in Fig. 5),
the accuracy of the low-rank approximation-based prediction reaches the maximum, which
is significantly better than the prediction accuracy based on the randomized graph.

One problem here is how to determine the optimal l. In Refs. [8,13], the authors proposed
strategies to determine the l by comparing λ̃l with the largest eigenvalue ε1 of the noise
matrix. Those strategies work well in the numerical data setting since the added noises have
the independent identical distribution. However, the randomization mechanism in social
networks (based on the positions of randomly chosen edges) is much different from the
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Fig. 6 Precision of top t predictions via common neighbors and the low-rank approximation, k = 0.5 m.
a Polbooks G(105, 441); b enron G(151, 1377); c email G(1133, 5451); d polblogs G(1222, 16714)

additive noise randomization (based on random values for all entries). When the magnitude
of noise k is large, ε1 can be even greater than λ̃1 or λ1. Hence, those strategies fail here.
We would emphasize that it is a challenging problem to determine the optimal l in the graph
randomization setting. In Ref. [23], the authors presented some heuristic method to determine
the l by comparing some feature values of the reconstructed graphs with the original/esti-
mated feature values of the original graph. In this paper, we simply assume that attackers
know the optimal l. Please note that this is the worst case of link privacy disclosure.

Next, we compare our similarity measure–based prediction methods with the above low-
rank approximation-based prediction method. Figure 6 plots the precisions of top t predicted
links of the low-rank approximation prediction and our similarity measure–based predic-
tion using common neighbors for the four networks (k = 0.5 m). We can observe that for
polbooks and Enron networks, the common neighbors measure-based prediction achieves
much higher precisions than the low-rank approximation-based prediction while there is no
significant difference between these two methods for email and polblogs networks. Note
that in our experiments, the low-rank approximation-based prediction method adopted the
optimal l values in the reconstruction. In practice, it is difficult for attackers to derive the
optimal l since they have no access to the original graph. Hence, we tend to conclude that
the similarity measure–based prediction methods can incur larger link disclosures. We also
conducted evaluations using other similarity measures with other k values on these four
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networks. We skip those results in this paper due to space limitations. The skipped results
have similar observations.

6 Conclusion and future work

In this paper, we have investigated how well the edge randomization approach via addi-
tion/deletion can protect privacy of sensitive links. We have conducted theoretical analysis
and empirical evaluations to show that node proximity measures can be exploited by attack-
ers to enhance the posterior belief and prediction accuracy of the existence of sensitive links
among nodes with high similarity values. We have also compared our similarity measure–
based prediction methods with the low-rank approximation-based prediction method.

There are some other aspects of this work that merit further research. Among them, we
will continue the line of this research by investigating other edge randomization approaches
(e.g., edge switches) and other proximity measures. Since how to preserve utility (in terms of
various structural features) and privacy in the released graph is an important issue in privacy
preserving social network analysis, we will study the tradeoff between privacy and utility for
various randomization strategies. In this paper, we limit our scope as link disclosure. In our
future work, we will investigate how well anonymization and randomization together can
protect identity and link privacy when attackers exploit various complex background knowl-
edge (e.g., attributes of vertices, vertex degrees, neighborhoods of some target individuals,
embedded subgraphs) in their attacks. We will also study the scalability issue and conduct
empirical evaluations on large social networks.
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Appendix: Proofs

Proof of Property 1

It is easy to verify that when 1 − p1 − p2 ≥ 0, Inequality (5) stands if and only if

(1 − p1 − p2)[1 − ρ(˜Sx )] ≥ 0.

We need only guarantee 1 − p1 − p2 ≥ 0. Notice that p1 = k
m , and p2 = k

(n
2
)−m

, then we

have

1 − p1 − p2 ≥ 0 ⇔ 1 − k

m
− k

(

n
2

)

− m
≥ 0 ⇔

(

n
2

)

k ≤ m

[(

n
2

)

− m

]

⇔ k ≤
[

1 − m/

(

n
2

)]

m = (1 − r)m.

�
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Proof of Result 1 Let N = |˜Sx |, N1 = |˜S1
x | and ρ = ρ(˜Sx ). Then, for a randomly selected

node pair (i, j), ãi j is a Bernoulli random variable:

P(ãi j = 1|m̃i j = x) = (1 − p1)ρ + p2(1 − ρ)

P(ãi j = 0|m̃i j = x) = p1ρ + (1 − p2)(1 − ρ)

Then the likelihood function of ˜Sx is

L = [(1 − p1)ρ + p2(1 − ρ)]N1 [p1ρ + (1 − p2)(1 − ρ)]N−N1 .

Take derivative to ln L with respect of ρ, we have

d ln L

dρ
= N1(1 − p1 − p2)

(1 − p1)ρ + p2(1 − ρ)
− (N − N1)(1 − p1 − p2)

p1ρ + (1 − p2)(1 − ρ)
.

Set d ln L
dρ

= 0, we have ρ̂ = N1/N−p2
1−p1−p2

, and the unbiasedness is then obvious. �

Proof of Result 2 Notice that P(ai j = 1|ãi j = 1) = m−k
m = 1 − p1, and with Eq. (3), it is

easy to verify this result. �
Proof of Result 3

∑

i< j P(ai j = 1) = m is obvious. Notice that the number of edges does
not change along the perturbation, then we have

∑

i< j

P(ai j = 1|ãi j ) =
∑

(i, j)∈˜E

P(ai j = 1|ãi j = 1) +
∑

(i, j)	∈˜E

P(ai j = 1|ãi j = 0)

= m · m − k

m
+

[(

n
2

)

− m

]

· k
(

n
2

)

− m
= m. (10)

Given a randomized graph ˜G, ãi j and m̃i j are fixed for any node pair (i, j). Let 
 denote
the set of m̃i j values in ˜G: x ∈ 
 iff there is at least one node pair (i, j) in ˜G such that
m̃i j = x . We have

E

⎡

⎣

∑

i< j

P(ai j = 1|ãi j , m̃i j )

⎤

⎦ =
∑

x∈


⎧

⎪

⎨

⎪

⎩

∑

(i, j)∈˜S1
x

E[P(ai j = 1|ãi j = 1, m̃i j = x)]

+
∑

(i, j)∈˜Sx −˜S1
x

E[P(ai j = 1|ãi j = 0, m̃i j = x)]

⎫

⎪

⎬

⎪

⎭

(11)

When attackers utilize the similarity measures with MLE, with the MLE in Eq. (6), we have

∑

(i, j)∈˜S1
x

E[P(ai j = 1|ãi j = 1, m̃i j = x)] = (1 − p1)ρ̂1(˜Sx )

(1 − p1)ρ̂1(˜Sx ) + p2[1 − ρ̂1(˜Sx )]
|˜S1

x |

= (1 − p1)|˜Sx | E[ρ̂1(˜Sx )] (substitute Equation (6))

= (1 − p1)|˜Sx |ρ(˜Sx )

= (1 − p1)
∑

(i, j)∈˜Sx

ai j (by the definition of ρ(·)) (12)
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Similarly, we have
∑

(i, j)∈˜Sx −˜S1
x

E[P(ai j = 1|ãi j = 0, m̃i j = x)] = p1

∑

(i, j)∈˜Sx

ai j (13)

Combining Eqs. (11), (12) and (13) together, we have

E

⎡

⎣

∑

i< j

P(ai j = 1|ãi j , m̃i j )

⎤

⎦ =
∑

x∈


∑

(i, j)∈˜Sx

ai j =
∑

i, j

ai j = m.

We prove the result. �

Proof of Result 4 When k ≤ (1 − r)m, with Result 1 and 2, we have that

max
x

{

max
t = 0,1

P(ai j = 1|ãi j = t, m̃i j = x)

}

= P(ai j = 1|ãi j = 1, m̃i j = x0),

where x0 is the value such that ρ(˜Sx ) is maximized: ρ(˜Sx0) = maxx ρ(˜Sx ). Let ρ̃max =
ρ(˜Sx0). Meanwhile,we can also conclude

max
t = 0,1

P(ai j = 1|ãi j = t) = P(ai j = 1|ãi j = 1).

Then we have

τr (i, j) = p2[1 − ρ̃max]
p1[(1 − p1)ρ̃max + p2(1 − ρ̃max)] . (14)

Substitute

p1 = k

m
= k

r N
and p2 = k

N − m
= k

(1 − r)N

into Eq. (14), we can verify that τr (i, j) is an increasing function of k, and the maximum
value is 1−ρ̃max

1−r when k = (1 − r)m.
When k ≥ (1 − r)m, we similarly have the following:

max
x

{

max
t = 0,1

P(ai j = 1|ãi j = t, m̃i j = x)

}

= P(ai j = 1|ãi j = 0, m̃i j = x0),

max
t = 0,1

P(ai j = 1|ãi j = t) = P(ai j = 1|ãi j = 0).

In this case, τr (i, j) is a decreasing function of k, and the maximum is also 1−ρ̃max
1−r when

k = (1 − r)m.
Therefore, kmin exists if and only if ε ≤ 1−ρ̃max

1−r , and kmin < (1 − r)m. Then, τr (i, j) is
given by Eq. (14). Solving the inequality τr (i, j) ≥ ε, we have that

k ≥ [(1 − r)ερ̃max − r(1 − ρ̃max)]m
ε(ρ̃max − r)

.

However, ρ̃max = maxx ρ(˜Sx ) varies from time to time due to the perturbation, and data
owner can substitute it with the true maximum value ρmax = maxx ρ(Sx ), then we get the
result. �
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