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Abstract This paper presents a general framework for designing a fuzzy rule-based classi-
fier. Structure and parameters of the classifier are evolved through a two-stage genetic search.
To reduce the search space, the classifier structure is constrained by a tree created using the
evolving SOM tree algorithm. Salient input variables are specific for each fuzzy rule and are
found during the genetic search process. It is shown through computer simulations of four
real world problems that a large number of rules and input variables can be eliminated from
the model without deteriorating the classification accuracy. By contrast, the classification
accuracy of unseen data is increased due to the elimination.

Keywords Classifier · Fuzzy rule · Genetic algorithm · Knowledge extraction ·
Variable selection · Evolving SOM tree

1 Introduction

Support vector machines (SVM) [1], neural networks [2], and relevance vector machines
(RVM) [3] are probably the most popular data classification techniques. An SVM and RVM
can provide near optimal performance. The advantages of SVM and RVM are the following:
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the ability to find the global minimum of the objective function, no assumptions made about
the data, the complexity of a classifier depends on the number of support vectors, but not on
the dimensionality of the input space. However, in spite of the attempts to explain decisions
of such techniques [4,5], classifiers based on these techniques are not transparent enough and
are often considered as “black boxes”. The transparency is very important in some application
areas, such as medical decision support or quality control.

By contrast, fuzzy rule-based systems and fuzzy decision trees [6,7] are known for their
transparency and ability of accounting for uncertainty. Fuzzy rule-based classification meth-
ods can support rapid incremental learning from new instances without performance degra-
dation on previous training data. ANFIS [8], fuzzy ARTMAP [9], and the fuzzy min–max
classifier [10,11] are examples of the most prominent fuzzy logic-based systems. Fuzzy rule-
based systems have been used in a variety of fields such as pattern recognition [12], image
segmentation [13], data mining [14], process control [15], resource service selection [16],
and system identification [8,17]. It is well known that designing of fuzzy rule-based systems
in high-dimensional spaces is rather problematic. However, there are many problems charac-
terized by a small or moderate number of variables. Moreover, quite often high-dimensional
data vary in a much lower number of dimensions if compared to the dimensionality of the
input space. System structure identification and parameter optimization are two main issues
to consider when designing a fuzzy rule-based system [8,18]. Fuzzy partitioning, variable
selection, and fuzzy reasoning are the tasks to be solved for identifying the system struc-
ture. Parameter optimization usually deals with tuning of parameters of fuzzy membership
functions.

Various approaches have been used for dealing with the two main fuzzy rule-based system
design issues. The initial system structure, often termed as fuzzy partitioning, is usually iden-
tified through K-Means [19], Fuzzy C-Means [20], Learning Vector Quantization (LVQ) [21]
or SOM-based clustering [22–28] as well as incremental clustering [29,30] or by constructing
a decision tree [31–33].

Variable selection techniques based on the output sensitivity to the input change [25,34],
the output sensitivity combined with the correlation between variables [24], Fisher’s inter-
class separability measure [35], variable correlation with the output [36] are the most popular
and are applied. However, quite often, variable selection is not considered at all [23,26,27].

It seems that the simple gradient decent [23–25,27,37,38], error correction [39], and
genetic search [26,31,35] are the most popular parameter optimization techniques utilized
in various studies. The combined optimization of both structure and parameters has also
been considered by applying genetic algorithms (GA) [40–44], unsupervised and reinforce-
ment learning [45], or simple heuristics [36]. To reduce the evolution time in the GA-based
technique, Chen et al. [46] proposed gathering similar chromosomes into k clusters and then
using a representative chromosome in the evaluation process. In [42,43] the genetic search
process focusses on “hard” data points by assigning a higher weight to such points. Such
an approach has also been adopted for learning weights zq

j of fuzzy rules [47]. In [48,49],
genetic search-based multi-objective optimization was applied to design a fuzzy rule-based
system. The task was to maximize f1(S), minimize f2(S), and minimize f3(S), where S is a
set of fuzzy rules, f1(S) stands for correctly classified training samples, f2(S) is the number
of fuzzy rules in S, and f3(S) is the total number of antecedent conditions in S. Thus, f3(S)

can be considered as the total rule length. The optimization starts with all possible rules in
the search space defined by the training patterns. In [50], it was proposed to combine several
fuzzy rule-based classification systems into a committee through voting or weighted voting.

Generalization ability is an important issue to consider when designing a fuzzy rule-based
classifier. The most popular technique applied to improve the generalization ability is rule
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pruning based on similarity of fuzzy sets [24,31,35,51]. Other approaches utilized are the
following: GA [28], simulated annealing [52], similarity of fuzzy sets combined with GA [26],
through forgetting by decaying the grade of certainty of fuzzy rules [39], and pruning of rarely
used rules [36].

1.1 Fuzzy rule-based and nearest neighbor techniques

The fuzzy rule-based classification techniques are closely related to nearest neighbor
(NN)-based classification approaches. NN-based classification has a sound basis, since there
is a considerable body of evidence from the literature that classification and recognition of pat-
terns by humans are best explained as a form of interpolation between similar patterns [53].
NN methods are frequently criticized as requiring much greater use of memory than, for
example, neural network algorithms. However, NN learning algorithms can reduce their
memory usage by only retaining the full density of exemplars near to classification bound-
aries and thinning them in other regions [54–57]. As discussed above, various approaches
to designing a fuzzy rule-based classifier exploit such techniques for determining an initial
system structure through clustering. The location of fuzzy sets, reference patterns in the NN
approach, can be further optimized by applying the LVQ techniques.

LVQ has been widely used to learn reference patterns for classification based on the NN
approach. Each class C j is described by several reference patterns ml

j (fuzzy sets in the
rule-based approach), which are properly placed within each class region. An unknown x is
then determined to belong to the class k, if:

k = arg min
j

[min
l

d(x, ml
j ), l = 1, . . . , N j , j = 1, . . . , Q] (1)

where Q is the number of classes, N j is the number of reference patterns representing the
class j and d(x, ml

j ) is the distance between x and ml
j .

One more drawback of classical NN and fuzzy rule-based methods is the often exhibited
poor generalization performance when compared to neural networks, for example. Neural
networks suffer from the “curse of dimensionality” to significantly less extent, since they are
able to select useful input features from high-dimensional input vectors. In NN methods, by
contrast, the degradation in performance often accompanies the addition of new unimpor-
tant features. However, there are many problems where different features are important in
different regions of the input space. Figure 1 provides an example illustrating such a situation.

Fig. 1 Four decision classes in
the two-dimensional space
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The four data clusters illustrated in Fig. 1 represent four decision classes. It is obvious that
the feature q is unimportant for discriminating the classes A and B, likewise the feature k is
unimportant for discriminating the classes C and D. Thus, a subset of features used should
be reference pattern or fuzzy rule dependent. However, in most of the known fuzzy rule-
based classification algorithms, the feature selection problem is considered independently
of the input space region or not considered at all. The objective of this work is to develop a
fuzzy modeling framework capable of automatically generating a rule base for classification
of numeric data, finding the optimal number of rules and input variables for each rule, and
finding the optimal parameter values of fuzzy rules. The remainder of the paper is organized
as follows. In the next section, the fuzzy model is described. The approach proposed is out-
lined in Sect. 3. Section 4 discusses the results of the experimental investigations. Section 5
presents the conclusions of the work.

2 The fuzzy model

We use the Mamdani model [58], which is the most popular fuzzy model applied in var-
ious studies for fuzzy reasoning [23–26,59]. Concerning the classification, the model is a
collection of fuzzy rules R j of the following form:

R j : IF x1 is A j1 AND . . . AND xn is A jn THEN class Cq with zq
j (2)

where A ji (i = 1, . . . , n) are fuzzy sets defined over the input variables xi ; Cq is a class label
and zq

j is a rule weight. Each fuzzy set is represented by a membership function. A triangular
or a Gaussian function of the form

μ j i = exp

(
− (xi − c ji )

2

σ 2
j i

)
(3)

where c ji and σ j i are the center and the width of the Gaussian function, respectively, are
common choices. We use Gaussian membership functions in this study. There are various
ways to determine the rule weights zq

j . In this work, the weight zq
j is given by:

zq
j = max

(∑
xp∈Cq

μA j (xp) − ∑
xp /∈Cq

μA j (xp)∑N
p=1 μA j (xp)

, 0

)
(4)

where N is the number of training patterns and the matching degree of the input pattern xp

with the antecedent part A j = (A j1, . . . , A jn) is calculated using a T -norm

μA j (xp) = T (μA j1(x p1), . . . , μA jn (x pn)) (5)

We use the min T -norm operator in this work. Weights zq
j of this type were studied in [48].

In [60], weights based on ROC analysis are advocated.
A winning rule is used to make a decision. Thus, given a rule base S consisting of L rules,

an input pattern xp is assigned to the class q if

q = arg max
k

{T [μA j (xp), zk
j ], j = 1, . . . , L} (6)

where T is the product T -norm operator, in this work.
Having defined the membership functions, we formulate the fuzzy modeling problem in

the following way. Given N pairs of input-output patterns (x, y), create a minimal number
of fuzzy rules r with the optimal number of features ni for each rule and find the optimal
values of parameters (c, σ , z) of the fuzzy model F(c, σ , z, r, ni , i = 1, . . . , r).
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3 The approach

The procedure to construct the fuzzy rule-based classifier consists of the following steps.

1. Divide the data set into learning and test subsets.
2. Cluster the learning set data by applying the evolving SOM tree.
3. Based on the evolved tree, generate a population of sub-trees. Each sub-tree defines the

initial structure of one fuzzy rule-based classifier. The generation is accomplished by
randomly cutting branches of the tree grown in Step 2. The cutting occurs approximately
between 25 and 75% of the tree depth.

4. Represent each node in the sub-tree population by a set of fuzzy sets with the Gaussian
membership functions.

5. Take one sub-tree (classifier of a given structure) from the sub-tree population and
encode the structure, features (used/not used), and parameters of the membership func-
tions of the classifier into a chromosome. When encoding, enable feature selection
independently for each fuzzy rule.

6. Generate a population of chromosomes encoding individual classifiers of the given
structure. The individual classifiers differ in features and values of the parameters.

7. Apply the modified LVQ-3 algorithm to the individuals of the population.
8. Evaluate the fitness of the individuals.
9. Apply genetic operations (to features and parameters) and generate a new population.

10. Repeat Steps 7–9 until convergence.
11. Take the best individual of the given structure.
12. Repeat Steps 5–11 for the whole population of sub-trees.
13. Apply genetic operations (to structure of sub-trees) and generate a new population of

sub-trees.
14. Repeat Steps 5–13 for a given number of generations.

Next, we briefly describe the main topics of the technique.

3.1 The algorithm

1. create evolving SOM tree
2. generate and encode a population of sub-trees tp
3. for (given number of generations): structure evolution
4. for (each chromosome tc in tp): parameter evolution
5. generate a population pp encoding individual classifiers of the tc structure
6. repeat
7. for (each chromosome pc in pp)
8. apply the modified LVQ-3 algorithm to pc
9. evaluate the fitness of pc

10. end for
11. apply genetic operations to pp
12. until (convergence)
13. take the best individual of pp for tc in tp
14. end for
15. apply genetic operations to tp
16. end for
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3.2 The evolving SOM tree

Like SOM, the evolving SOM tree [61] exhibits the self-organization property. The evolving
tree structure enables the SOM tree to efficiently handle large-scale problems. Moreover,
there is no need of choosing the map size beforehand. Like in ordinary SOM, each node of
the SOM tree has a weight vector wi . When training the tree, for each training vector x, the
best matching unit (BMU) is found by a greedy tree search. BMU is always a leaf node.
Weight vectors of the BMU and its neighbors are then updated using the SOM adaptation
rule:

wi (t + 1) = wi (t) − hci (t)[x(t) − wi (t)] (7)

where hci (t) is the neighborhood function. We used the Gaussian neighborhood function

hci (t) = β(t) exp

(‖rc − ri‖2

2s2(t)

)
(8)

where s(t) is the width of the Gaussian function, rc and ri denote location of nodes c and
i , and β(t) is the learning rate. The meaning of s(t) and β(t) is the same as in SOM [62],
while the meaning of the norm ‖rc − ri‖ is quite different. The basic idea of calculating the
distance is to count how many “hops” are needed to get from the BMU to the considered
node along the shortest path [61]. The distance ‖rc − ri‖ is then given by the number of hops
minus one.

Figure 2 presents an example of the evolving SOM tree generated to represent the two-
dimensional data, where circles denote the center points of the SOM nodes. The deeper is
a node in the tree, the smaller circle and the thinner line are used in the visualization. The
same applies for the links. The leave nodes are denoted by triangles. Each parent node is
split into three child nodes, in the example. However, other number of child nodes can be
used. Each node is characterized by a center point and width computed from the data mapped
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3

Fig. 2 An example of the evolving SOM tree generated to represent the two-dimensional data
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onto the node. These parameters are used as initial values for the parameters of the Gaussian
membership functions.

3.3 The modified LVQ-3 algorithm

Assume that di and d j are the Euclidean distances from the pattern x to the reference patterns
mi and m j , respectively. Then, x is defined to fall into a window of the relative width λ, if

min

(
di

d j
,

d j

di

)
>

1 − λ

1 + λ
(9)

For all x falling into the window adapt:

mi (t + 1) = mi (t) − α(t)[x(t) − mi (t)] (10)

m j (t + 1) = m j (t) + α(t)[x(t) − m j (t)] (11)

where α(t) decreases with time and 0 < α(t) < 1, mi and m j are two closest reference
patterns to x, whereby x belongs to the same class as m j , but not as mi . If x, mi and m j

belong to the same class:

mk(t + 1) = mk(t) + γα(t)[x(t) − mk(t)] (12)

for k ∈ {i, j}. If x belongs to a different class than mi and m j :

mk(t + 1) = mk(t) − γα(t)[x(t) − mk(t)] (13)

for k ∈ {i, j}. The optimal value of the parameter γ depends on the size of the window, the
value is smaller for narrower windows [21]. Values between 0.1 and 0.5 are suggested for
γ [21].

The algorithm performs fine tuning of the centers of membership functions and helps
reducing the time of genetic search. The last adaptation step is not used in the original ver-
sion of the LVQ-3 algorithm. We have found that the use of the step quite noticeably improved
the accuracy of the algorithm.

3.4 Encoding

Structure, features, and parameters of the membership functions are to be encoded. The struc-
ture is determined by a sub-tree and is encoded as a connected graph. Figure 3 presents an
example of the evolving SOM tree along with two chromosomes encoding two hypothetical
sub-trees. The hypothetical leaf nodes of the two sub-trees are shown connected by the bold
solid and the dashed line, respectively, in Fig. 3. There are as many sections in the chromo-
some, as there are leaf nodes in the corresponding sub-tree (the number of fuzzy rules in the
classifier).

Each chromosome section consists of three sub-sections: f, c, and s, encoding features
(“feature mask”), centers and widths of the membership functions μ, respectively. Figure 4
illustrates sub-sections of the j th node. There are n bits in the f j sub-section, where n is
the dimensionality of the input space. A bit in the f j sub-section set to 0/1 means that the
corresponding feature is used/not used in the rule encoded in the corresponding section of the
chromosome. Centers and widths of the membership functions μ are stored as real/integer
numbers in slots of the subsections c j and s j . For example, integer numbers can be used to
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Fig. 3 An example of the evolving SOM tree along with two chromosomes encoding two hypothetical
sub-trees, the leaf nodes of which are connected by the bold solid and dashed lines

Fig. 4 Three sub-sections
(f j , c j , and s j ) of the j th node
encoding features, centers and
width of the membership
functions, respectively
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Features Centers Widths

encode centers of the membership functions in the applications related to image analysis.
There are n slots in each, c j and s j , sub-section.

3.5 Genetic operations

Crossover and mutation are the genetic operations applied in both loops of genetic evolution:
the loop concerning structure evolution and the loop concerning features and parameters
of the membership functions. The crossover and mutation operations are executed with the
probability of crossover pc and the mutation probability pm , respectively.

3.5.1 Mutation of chromosomes encoding structure

Mutation in structure evolution amounts to taking one step up or down (the direction is
selected randomly) along a randomly selected branch of the tree. To select the direction, an
integer ϑ is selected randomly from the set {−1, 1} for each node. The node undergoing the
mutation is replaced with its parent node, if ϑ < 0 or is split into children, if ϑ > 0. Figure 5
illustrates the mutation operation in structure evolution.

Nodes being active before the mutation operation are shown in gray and connected by the
dashed line, in Fig. 5. A node is said to be active if it is used to define the classifier structure
at a current moment. Nodes being active after the mutation operation are shown connected
by the bold line, in Fig. 5. Arrows in Fig. 5 indicate the direction of mutation. As can be
seen, nodes 7, 10, and 14 mutate toward their children, node 15 mutates toward its parent,
while nodes 4 and 6 do not mutate.
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Fig. 5 A part of the evolving
SOM tree illustrating the
mutation operation in structure
evolution
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Fig. 6 A part of the evolving
SOM tree illustrating the
verification operation in structure
evolution
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3.5.2 Verifying the structure consistency

After the genetic operations, the sub-trees are verified for consistency. The redundant active
nodes are deactivated during the verification. Figure 6 illustrates the verification operation.
Nodes being active before the verification operation are shown in gray and connected by
the dashed line, in Fig. 6. Nodes being active after the verification operation are shown con-
nected by the bold line. As can be seen from Fig. 6, nodes 4, 6, 8, 9, 12, and 13 are left
unaffected, while nodes 16 and 17 are deactivated, since node 11, predecessor of nodes 16
and 17, was activated during the mutation operation. The deactivated nodes are labeled by
×, in Fig. 6.

3.5.3 Crossover of chromosomes encoding structure

When performing crossover for structure evolution, parts of two sub-trees are exchanged.
The crossover point is selected randomly. Figure 7 illustrates two sub-trees (Parent #1 and
Parent #2) before the crossover operation with the crossover points indicated by the dashed
lines. The active nodes of the trees encoded in the corresponding chromosomes are shown
connected by the bold lines. The resulting sub-trees after the crossover operation are labeled
as Unverified offspring #1 and Unverified offspring #2, in Fig. 7. The verification procedure is
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Fig. 7 A part of the evolving SOM tree illustrating the crossover operation in structure evolution

then applied to the unverified offsprings. The verification results into the verified offsprings
with one deactivated node, namely node 13 of the offspring #2.

3.5.4 Crossover and mutation of chromosomes encoding features and parameters

Crossover of two chromosomes encoding features and parameters of the membership func-
tions are performed at a randomly selected point by exchanging parts of the chromosomes,
as it is illustrated in Fig. 8. Two chromosomes selected for the crossover operation are to
encode the same number of nodes.
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Parent#1

Parent#2

Offspring#1

Offspring#2

Node 4
f c s

Node 6 Node 8 Node 9 Node 12 Node 13 Node 15

Node 4 Node 6 Node 8 Node 9 Node 12 Node 13 Node 15

Node 4 Node 6 Node 8 Node 9 Node 12 Node 13 Node 15

Node 4 Node 6 Node 8 Node 9 Node 12 Node 13 Node 15

f c s f c s f c s f c s f c s f c s

f c sf c sf c sf c sf c sf c sf c s

f c s f c s f c s f c s

f c sf c sf c sf c s

f c sf c sf c s

f c s f c s f c s

Fig. 8 Parameters of two parent chromosomes are exchanged at the crossover point

The mutation operation is accomplished by reversing the value of a bit in the “feature
mask” (f sub-section) and by adding a random value from a given, symmetric around zero,
interval to parameters stored in the slot (gene) selected for mutation in the c and s sub-sections.
Selection of genes for mutation is performed independently in the three sub-sections.

3.6 Fitness function

The fitness value of the i th chromosome fi is given by

fi = χi − η

∑ri
j=1 n j

r0 × n
(14)

where χi is the classification accuracy obtained from the classifier encoded in the i th chro-
mosome, η is a parameter determining the degree to which classifiers with a large number
of features are penalized, n is the total number of available features, n j is the number of
features used by the j th rule, r0 is the number of rules in the initial tree, and ri stands for the
number of rules used by the i th classifier. A value of η = 0.1 worked well in all the tests.

Chromosomes are selected for genetic operations with some probability. The selection
probability of the i th chromosome pi is given by

pi = fi∑M
j=1 f j

(15)

where M is the population size. The roulette selection principle was applied.

4 Experimental investigations

4.1 Data used

Four data sets have been used in the tests.
US congressional voting records problem. The United States Congressional voting

records data set consists of the voting records of 435 congressman on 16 major issues in
the 98th Congress. The votes are categorized into one of the three types of votes: (1) (Yea),
(2) (Nay), and (3) (Unknown). The task is to predict the correct political party affiliation of
each congressman. The 98th Congress consisted of 267 Democrats and 168 Republicans.

Wisconsin diagnostic breast cancer problem. There are 30 real-valued features. The
features are computed from a digitized image of a fine needle aspirate of a breast mass and
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Fig. 9 Examples of pavement tile surfaces: a quality surface on the left and three defective surfaces

describe characteristics of the cell nuclei present in the image. There are 569 instances, 357
benign and 212 malignant.

The diabetes diagnosis problem. The Pima Indians Diabetes data set contains 768 sam-
ples taken from patients who may show signs of diabetes. Each sample is described by eight
features: (1) Number of times pregnant, (2) Plasma glucose concentration, (3) Diastolic
blood pressure, (4) Triceps skin fold thickness , (5) Two-hour serum insulin, (6) Body mass
index, (7) Diabetes pedigree function, and (8) Age. There are 500 samples from patients who
do not have diabetes and 268 samples from patients who are known to have diabetes. These
three data sets are available at: http://archive.ics.uci.edu/ml/.

Pavement tiles surface inspection problem. A pavement tile surface is to be assigned
into a quality or defective class. Features for the classification are extracted from a camera
image. Five features characterizing the image texture and the gray level distribution [63] have
been used to design a classifier. Figure 9 presents four examples of pavement tile surfaces
used in the study. In total, 200 quality and 200 defective surfaces were available.

4.2 Experimental setup

We randomly assign the available data points into the learning DL and test DT data sets. The
data are normalized to have zero mean and unit variance. We run an experiment 30 times
with different random splits into the sets DL and DT . The results obtained are averaged over
the 30 runs.

4.3 Optimization parameters

The optimal size of the LVQ-3 window depends on the number of training samples. If a large
number of samples is available, a narrow window would guarantee the most accurate loca-
tion of the decision boundary. For good statistical accuracy, however, the number of samples
falling into the widow must be sufficient [21]. The optimal value of γ depends on the size
of the window, being smaller for narrower windows [21,64]. After some experiments, the
following values of the LVQ-3 parameters have been used: λ = 0.05, α = 0.02, and γ = 0.4.

There are two loops of genetic evolution: the outer loop concerning structure evolution
and the inner loop concerning features and parameters of the membership functions. The
genetic search lasted for 100 generations (for both loops) with the following parameters: the
population size was set to 50 and the number of offsprings produced for creating the next
population was equal to 50. The number of generations was determined experimentally by
monitoring changes of the fitness function value. The number chosen was such that no fitness
function value increase was observed in the last 10 generations. The values of crossover and
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mutation probabilities were found experimentally. The following values worked well in the
tests: pc = 0.95 and pm = 0.01. The appropriate value of the parameter η was found to be
η = 0.05.

4.4 Results

In the first set of experiments, the feature selection has not been applied and the classifica-
tion accuracy obtained from the fuzzy rule-based classifier was compared with the accuracy
achieved by other techniques. The multilayer perceptron (MLP), k-NN, and LVQ-3 classifiers
have been used for the comparison. The appropriate number of hidden nodes in the MLP
and the k value of the k-NN classifier were found experimentally. The leaf nodes created
by the evolving SOM tree were used as initial reference patterns for the LVQ-3 classifier.
Table 1 presents the average test data set classification accuracy (%) obtained from the dif-
ferent classifiers using all available features. As can be seen from Table 1, the proposed fuzzy
rule-based classifier provided the highest classification accuracy for all the problems studied.

In the next set of experiments, feature selection was activated and features specific for
each rule were found through the genetic search. Table 2 presents the average test data set
classification accuracy obtained from the approach proposed using the selected features. The
classification accuracy obtained using all the available features is also presented for the sake
of comparison. The obtained improvement in classification accuracy should be obvious from
Table 2. Assuming that the classification errors are log-normally distributed and applying
the t-test it was found that the difference between the classification accuracy obtained using
the selected and all features is significant with 95% confidence, except for the Breast cancer
data. In Table 2, we also provide the average test data set classification accuracy obtained
by other authors for the same public data sets in recent studies. In [65–67], evolutionary
techniques have also been used to design the classifiers. As can be seen from Table 2, the
proposed technique outperformed the other approaches on all the three data sets.

Table 3 presents information on the number of rules and features used to classify the data.
In the parentheses given are the number of initial rules and the number of available features.
Ranges in the “Features” column indicate the minimum and the maximum number of features
used by different rules. As can be seen from Table 3, the number of features used by different

Table 1 The average test data
set classification accuracy (%)
obtained from different classifiers
using all available features

Data set\classifier k-NN MLP LVQ-3 Proposed

Voting 91.24 93.78 77.41 94.68

Breast cancer 88.73 97.18 75.87 98.54

Diabetes 71.19 71.49 64.22 71.92

Surface inspection 77.30 81.63 78.13 84.13

Table 2 The average test data
set classification accuracy (%)
obtained from the approach
proposed using all and selected
features, along with the average
accuracy obtained by other
authors in recent studies

Data set\features All Selected Comparison
features features

Voting 94.68 98.68 96.98 [65], 95.31 [66]

Breast cancer 98.54 99.02 95.55 [67], 94.38 [47]

Diabetes 71.92 75.92 75.19 [67], 75.00 [60]

Surface inspection 84.13 99.63 –
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rules varies significantly. Observe that even if the number of features used by two different
rules is the same, the features used are often different. Thus, features used are rule specific,
indeed.

Below given is an example of a fuzzy rule (one out of ten) generated by the proposed
technique for classification of the Diabetes set data.

R1 : IF x2 is ABOUT 119.0 AND x4 is ABOUT 38.1 THEN class Healthy with 0.84

where “ABOUT” is a fuzzy variable, 119.0 and 38.1 are the center points of the Gaussian
membership functions, x2 stands for “plasma glucose concentration”, and x4 means “triceps
skin fold thickness”. Knowing meaning of the variables x1, . . . , x8, the rules are easy to
interpret for a medical doctor.

One may wonder what classification accuracy would be achieved, if an ordinary GA-based
feature selection procedure—not specific for each fuzzy rule—were used. Table 4 presents
the results obtained from such an experiment. Comparing the results presented in Tables 2,
3 and 4 we can see that the fuzzy rule-specific feature selection procedure results into the
decreased average number of rules and features and the increased classification accuracy.
While the difference between the average number of rules and features utilized by the two
techniques is rather small, the difference between the classification accuracies is statistically
significant with 95% confidence for all the data sets.

Next, the influence of crossover and mutation probabilities, pc and pm , on classification
accuracy was studied. The same pc and pm values were used for both structure and param-
eter evolution. To reduce the computation time and to decouple the influence of pc and/or
pm , and feature selection on the classification accuracy, the studies were performed without
employing feature selection. A similar performance was observed for pm values raging from
0.005 to 0.05. A value of pm = 0.01 was selected. When studying the influence of pc, pm

was set to pm = 0. Table 5 presents the average test set classification accuracy obtained for
different pc values. The interval of pc = [0.8, 1.0] was studied additionally and was found
that the highest and similar classification accuracy is obtained for pc = 0.9 and pc = 0.95.
Thus, pc values close to unity are recommended.

One and the same loop can be used for both structure and parameter evolution of the
classifier, presumably at the expense of computation time. An experiment was performed to
compare these two implementations using the Diabetes data set. A very similar test data set

Table 3 The number of rules
and features used to classify data
from the different data sets

Data set # Rules # Features

Voting 15 (25) 05–09 (16)

Breast cancer 10 (14) 12–20 (30)

Diabetes 10 (16) 02–08 ( 8)

Surface inspection 09 (13) 03–04 ( 5)

Table 4 The average number of
rules and features used to classify
data from the different data sets
and the average test data set
classification accuracy (%)
obtained using an ordinary
GA-based feature selection
procedure

Data set # Rules # Features Accuracy

Voting 16 (25) 08 (16) 95.12

Breast cancer 10 (14) 17 (30) 96.91

Diabetes 11 (16) 06 ( 8) 73.23

Surface inspection 10 (13) 04 ( 5) 98.11
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Table 5 The average test set
classification accuracy (%)
obtained for different pc values

Data set pc = 0.25 pc = 0.50 pc = 0.75 pc = 1.0

Voting 92.89 93.01 93.21 94.68

Breast cancer 94.12 93.32 94.78 95.02

Diabetes 67.21 68.45 69.53 71.92

Surface inspection 82.01 82.10 83.02 84.13

classification accuracy was achieved in both implementations. However, the evolution based
on the two-loop implementation was about five times faster.

5 Conclusions

Proposed is a general framework for designing a fuzzy rule-based classification system. The
developed two-stage GA partitions the search space and enables evolving both structure and
parameters of the classifier. Salient input variables, specific for each fuzzy rule, are also found
during the search process.

Computer simulations of four real world problems have shown that the performance
obtained from the classifier is comparable or even higher than the best performance obtained
by other authors when using “black box” as well as fuzzy rule-based models. The proposed
variable selection tool allowed to significantly increase the classification accuracy if com-
pared to the case of using all the available input variables. It was shown through computer
simulations that a large number of rules and input variables can be eliminated from the model
without deteriorating the classification accuracy. Moreover, the classification accuracy of the
test set data increased due to the reduction.
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