
Knowl Inf Syst (2011) 29:55–80
DOI 10.1007/s10115-010-0329-5

REGULAR PAPER

Efficient mining of all margin-closed itemsets
with applications in temporal knowledge discovery
and classification by compression

Fabian Moerchen · Michael Thies · Alfred Ultsch

Received: 26 September 2009 / Revised: 5 June 2010 / Accepted: 8 July 2010 /
Published online: 22 July 2010
© Springer-Verlag London Limited 2010

Abstract Margin-closed itemsets have previously been proposed as a subset of the closed
itemsets with a minimum margin constraint on the difference in support to supersets. The
constraint reduces redundancy in the set of reported patterns favoring longer, more specific
patterns. A variety of patterns ranging from rare specific itemsets to frequent general itemsets
is reported to support exploratory data analysis and understandable classification models. We
present DCI_Margin, a new efficient algorithm that mines the complete set of margin-closed
itemsets. We modified the DCI_Closed algorithm that has low memory requirements and
can be parallelized. The margin constraint is checked on-the-fly reusing information already
computed by DCI_Closed. We thoroughly analyzed the behavior on many datasets and show
how other data mining algorithms can benefit from the redundancy reduction.

Keywords Closed itemsets · Constrained itemsets · Condensed representation ·
Temporal data mining · Compression

1 Introduction

Itemset mining has long advanced over the initial concept of market basket analysis [2] and
is used to tackle many data mining problems such as frequent pattern mining, association
rule generation [36], clustering [5,26,49,74], classification [19,29,42,43,55,71,73,80] and
temporal data mining [3,52]. The mining of itemsets is a core step in these methods that
often dominates the overall complexity of the problem. The mining of frequent itemsets is
a challenging task because the possible number of patterns can be extremely large even for

F. Moerchen (B)
Siemens Corporate Research, 755 College Road East,
Princeton, NJ 08540, USA
e-mail: fabian.moerchen@siemens.com

M. Thies · A. Ultsch
Databionic Research Group, Philipps-University Marburg,
Hans-Meerwein-Str, 35032 Marburg, Germany

123

56 F. Moerchen et al.

moderately sized datasets complicating a manual analysis or further automated processing
steps [76].

Researchers have proposed many solutions to reduce the number of patterns depending
on the context in which the patterns are used, for example, condensed representations [18],
constrained itemsets [58] and combinations thereof [8,24]. For association rule generation,
closed itemsets [56,10] are commonly used to avoid redundant rules [81] favoring longer
patterns to generate specific rules. For frequency queries non-derivable itemsets [16] pro-
vide a compact lossless representation favoring shorter patterns to keep the summary small.
Margin-closed itemsets have been previously proposed by the authors for exploratory knowl-
edge discovery tasks in the context of temporal data mining [51,52] and independently as
δ-tolerance itemsets for frequency estimation in [22]. Margin-closed patterns are a special-
ization of closed itemsets with a constraint to limit the redundancy among reported patterns.
An itemset is closed if no superset with the same frequency exists. An itemset is margin-
closed if no superset with almost the same frequency exists, where ‘almost’ is defined by a
threshold α on the relative (or absolute) difference of the frequencies. The threshold ensures
a frequency margin among the reported patterns.

Note that margin-closed itemsets are not an error-tolerant approach and not an approxi-
mation to closedness. In contrast to pattern summarization, error-tolerant, and approximation
only actually observed itemsets with their exact frequencies are reported. In contrast to non-
derivable itemsets, the goal is not to support frequency queries with a compact summary
but to provide long patterns with low redundancy to support exploratory data analysis tasks.
Frequent patterns (per class) can help a human analyst understand the structure of a dataset.
Less patterns with less redundancy are easier to comprehend. The bias toward longer patterns
provides more explanation for each pattern to the user. When used as features in a classi-
fication model removing redundancy translates to faster training times and more concise
models. In [22], the authors explore margin-closed itemsets as a condensed representation
for frequency estimation. The frequency of non-margin-closed itemsets is approximated by
the average frequency of the items in the common superset, again motivating the need for
favoring longer itemsets.

In this paper, we study the problem of efficiently mining of all frequent margin-closed
itemsets from a database of itemset transactions. The margin-closed itemsets are a subset of
all closed itemsets and a superset of all maximal itemsets and the mining of closed and maxi-
mal itemsets has been well studied. The naive approach would be to mine all closed itemsets
and check the margin constraint for each one. This can be done by comparing the support of
a closed itemset to the support of all extensions with one additional item. Obviously this is
computationally expensive in particular for low minimum support values that generate large
numbers of closed itemsets. Incorporating the pruning from closed to margin-closed itemsets
into the mining algorithms can be expected to be more efficient. We propose DCI_Margin,
a new algorithm based on DCI_Closed [46] that efficiently mines all margin-closed item-
sets. Several pruning techniques are introduced and the correctness and completeness of the
algorithm is shown. Our solution checks the margin constraint on-the-fly reusing informa-
tion already computed by DCI_Closed. Previous work has adapted the FP-Growth [34] and
CHARM [82] algorithms for closed itemset mining. The former does not guarantee com-
pleteness due to greedy pruning heuristics [22], and the latter is less efficient due to required
subsumption check [51]. We show that DCI_Margin can significantly reduce the number of
reported patterns if there is redundancy with comparable or faster run time. The discovered
redundancy at various minimum margin and support thresholds provides interesting insights
into datasets from different domains. Our main contributions are:

123

Efficient mining of all margin-closed itemsets 57

– The efficient DCI_Margin algorithm that mines the complete set of margin-closed
itemsets. Previous work used a variation of CHARM that has much higher memory
requirements [51] and an adaption of FP-Growth [22] that used greedy pruning heuristics
leading to incomplete results as demonstrated by our experiments.

– A thorough evaluation of both the pattern class and the algorithm with 60 datasets from
various domains. Previous work has concentrated on the special case of temporal data
mining [51] or used only few itemset datasets [22].

– A discussion of different applications of margin-closed itemsets.

In addition, we provide several examples of data mining applications using margin-closed
patterns.

In the remainder of this paper, we motivate and define margin-closed itemsets in Sect. 2
and describe an efficient algorithm for their discovery in Sect. 3. Section 4 demonstrates how
we can reduce the number of reported itemsets significantly and efficiently. Applications are
described in Sect. 5. The results and related work are discussed in Sections 6-7.

2 Margin-closed itemsets

2.1 Basic notation

Given a finite set of items I and a finite set of transactions I ⊆ I, represented by unique
identifiers T , a dataset can be described as the relation D ⊆ I × T . The function g(I) =
{t ∈ T |∀i ∈ I : (i, t) ∈ D} returns the transactions in which all items of itemset I are
included. The function f (T) = {i ∈ I|∀t ∈ T : (i, t) ∈ D} returns all items that are present
in all transactions of T . The composite function c = f ◦ g is a closure operator (e.g., [46]).
Let the support of an itemset I be the fraction of transactions in which the itemset occurs:
supp(I) = |g(I)|

|T | .

Definition 2.1 An itemset I is called frequent w.r.t. a minimum support threshold 1 ≥ θ ≥ 0,
if supp(I) ≥ θ . Let the set of all frequent itemsets be FI.

Definition 2.2 An itemset I ∈ FI is maximal if and only if ∀I ⊂ I ′ ⇒ supp(I ′) < θ , i.e.,
if there is no frequent superset. Let the set of all maximal frequent itemsets be MFI.

Definition 2.3 An itemset I ∈ FI is (frequent-)closed, if and only if ∀I ′ ⊆ I : I ⊂ I ′ ⇒
supp(I ′)
= supp(I), i.e., if there is no superset with the same support. Let the set of all
closed frequent itemsets be CFI.

The closure operator c partitions the lattice of the power sets of I into equivalence classes
regarding the support. The unique suprema regarding the subset relation of those classes are
the closed itemsets.

Definition 2.4 An itemset G ⊆ I with G = C ∪ {i} 1 and C ∈ CFI and i ∈ I \ C is called
a generator.
Note, that this definition of a generator does not require minimality. A generator represents
a seed itemset obtained by extending a closed itemsets with a new item, thus entering a new
equivalence class. A generator can be used to obtain the closed itemset representing the class
by adding all items that do not decrease the support.

1 For the sake of brevity we write C ∪ i for C ∪ {i}.

123

58 F. Moerchen et al.

(a) (b)

Fig. 1 Itemset lattices for data from Table 1 and θ = 0.09: a Frequent itemsets annotated with absolute

support. b Closed itemsets and edges annotated with supp(I ′)
supp(I) for I ⊂ I ′

Table 1 Example data: four
itemsets with the number of
transactions composed of exactly
these items

Itemset B D ABC D AC D C (Total)

Transactions 1 9 61 29 100

2.2 Margin-closedness

Definition 2.5 An itemset I ∈ FI is margin-closed w.r.t. a threshold α ∈ [0, 1] if and only
if ∀I ′ ∈ FI : I ⊂ I ′ ⇒ supp(I ′)

supp(I) < 1 − α, i.e., if there is no superset with almost the same
support. Let the set of all margin-closed frequent itemsets w.r.t. to a threshold α be CFIα .

Example 2.6 Consider the example database in Table 1. There are four itemsets composed of
the four items A, B, C , and D. For each itemset the dataset contains the indicated number of
transactions with exactly these itemsets. Figure 1a shows the lattice of all frequent itemsets
for θ = 0.09 with itemsets connected by the subset relation. The empty set at the bottom is
present in all 100 transactions, the set of all items at the top has an absolute support of 9. The
rectangles indicate closed itemsets. No items can be added to these sets without decreasing
the support. Figure 1b shows only the closed itemsets and the subset relations annotated
with supp(I ′)

supp(I) for I ⊂ I ′. If we set α = 0.1, i.e., we require a relative support margin of at
least 10%, the itemsets ∅, D and B D would not be considered margin-closed and removed
from Fig. 1b. For example, the superset AC D of D has 98.6% of the support of D, so D is
considered redundant. In contrast, if the minimum support was set to θ = 0.1 the itemset
B D would be margin-closed because the superset ABC D would not be frequent anymore,
making B D a maximal itemset.

Corollary 2.7 CFIα ⊆ CFI, i.e., margin-closed frequent itemsets are a subset of the closed
frequent itemsets.

Proof Let I ∈ CFIα , then ∀I ′ ∈ FI with I ⊂ I ′: supp(I ′)
supp(I) < 1 − α ⇒ supp(I ′) <

(1− α)supp(I) ≤ supp(I)⇒ supp(I ′) < supp(I)⇒ I ∈ CFI

123

Efficient mining of all margin-closed itemsets 59

For α > 0 the margin-closedness condition is stricter than the closedness condition. We
ensure a margin of support between a reported itemset and any frequent superset. For α = 0
the set of margin-closed itemsets is equal to the set of all closed itemsets.

Corollary 2.8 MFI ⊆ CFIα , i.e., maximal frequent itemsets are a subset of the margin-
closed itemsets.

Proof Let I ∈ MFI ⇒
 ∃I ′ ∈ FI with I ⊂ I ′ ⇒
 ∃I ′ ∈ FI with supp(I ′)
supp(I) < 1 − α and

I ⊂ I ′ ⇒ I ∈ CFIα

The margin-closedness condition is surely met if there are no frequent supersets at all,
as is the case for maximal itemsets. For α = 1 the set of margin-closed itemsets is equal
to the set of maximal frequent itemsets, since the margin extends all the way to a support
of 0. The equality might also hold for some values α < 1 depending on the minimum
support θ and the particular item frequencies in the data. If the relative minimum support
threshold θ

supp(∅) exceeds the margin threshold 1 − α, the margin condition can only be
met by maximal frequent itemsets due to the following inequality for a frequent itemset I :
θ ≤ supp(I) = supp(I)

supp(∅) < (1− α) ∗ supp(∅).
The threshold α of margin-closedness prunes itemsets with very similar support to a super-

set. Our reasoning behind this is that larger itemsets are more specific descriptions of patterns
but that patterns that occur in almost the same transactions are redundant. The number of
reported patterns is thus reduced without having to raise the minimum support threshold or
retreating to maximal frequent itemsets keeping a variety of frequent general and rare specific
patterns.

We want to emphasize that the goal is not to approximate the frequency of patterns that
are not reported, though this might be possible based on margin-closed itemsets [22], but
rather to understand the structure of transaction datasets. Approaches that aim at frequency
estimation usually favor shorter patterns to achieve higher compression ratios.

3 Mining margin-closed itemsets

In this section, we describe our proposed DCI_Margin algorithm that modifies DCI_Closed

to only report margin-closed itemsets given a threshold α. We first describe the post-
processing Algorithm 1 that can be combined with any algorithm for closed itemsets min-
ing. It demonstrates the basic principle used to determine the margin-closedness of a closed
itemset. Then, we integrate the margin-check into the variant of DCI_Closed algorithm for
dense datasets and add several pruning steps to obtain the final Algorithm 2.

Algorithm 1 tests the margin condition for each closed frequent itemsets C ∈ CFI using
the TestMargin function (Line 3). For all items j ∈ I \C the support of the superset C ∪ j
is calculated. If any superset is frequent and violates the margin condition (Line 8), the closed
itemset is ignored, otherwise it can be reported as a margin-closed itemset (Line 12). Due to
the monotonicity of support we only need to check supersets with one additional item.

Algorithm 2 is based on the DCI_Closed [46] algorithm that uses closure climbing and a
vertical representation of the database. We first describe the inherited algorithmic steps briefly
skipping the lines that deal with margin-closedness. The algorithm starts with C initialized
to the bottom closure, i.e., the set of items present in all transactions (possibly the empty set).
P initially contains all remaining frequent items and D and M are empty. The loop starting
in Line 2 iterates over all items according to the total order≺ (Line 3). Each item is removed
from P (Line 4) and added to the current closed itemset C to obtain a closure generator Ci of

123

60 F. Moerchen et al.

an equivalence class. Line 6 checks whether the generator and thus the complete equivalence
class is frequent and whether an equivalence class is entered that has already been visited
by the algorithm (IsDuplicate). The duplicate check is performed by keeping track of two
disjunct sets of items during the recursion (D and P): those that would generate equivalence
classes that were already visited and those that would generate previously unseen equiva-
lence classes. We refer the interested reader to [46] for more explanations and proofs of the
duplicate check and pruning technique.

Algorithm 1 PostMargin

(Mining all margin-closed frequent itemsets from all closed frequent itemsets.)

1: PROCEDURE postMargin(CFI)
2: for all C ∈ CFI do
3: TestMargin(C);
4: end for
5: END PROCEDURE
6: PROCEDURE TestMargin(C)
7: for all j ∈ I \ C do
8: if supp(C ∪ j) ≥ θ ∧ supp(C ∪ j)

supp(C)
≥ (1− α) then

9: return
10: end if
11: end for
12: print C;
13: END PROCEDURE

If the itemset Ci passed the two tests in Line 6, the unique supremum Ĉ of the equivalence
class generated by Ci is found by adding all items that do not decrease the support (Line
13–14). All other items are collected in Pi (Line 16) and passed in the recursive function
call in Line 20, as those items that will create generators of new equivalence classes when
added to Ĉ . All items i that were used to generate a new equivalence class are recorded
in D, the so-called pre-set [46], to support the duplicate check (Line 24). All closed itemsets
could be reported after line 18. All margin-closed itemsets could be reported by calling the
TestMargin function of Algorithm 1. A better performance can be achieved by integrating
the pruning strategies described below.

Delay pruning If we test the margin condition of closed itemsets immediately upon their
discovery after Line 18 we have to generate the transaction list of Ĉ ∪ j for all j ∈ I \ Ĉ .
Some of these itemsets are also used in the recursive call in Line 20 to obtain generators of C
(instantiated with Ĉ) in Line 5. By delaying the margin test until after the recursion (Line 22),
we can utilize these results. We keep track of all items that generate supersets of C which
violate the margin condition in the set M (Lines 7–9). When returning from the recursive
call in Line 20, these items are available in M̂ . If any generator violated the margin condition
(Line 21) we do not need to call TestMargin. Not all items in Pi passed to the recursive
call are tested in Line 7 because of the conditions in Line 6. A generator excluded by the
first condition is infrequent and can therefore not violate the margin condition. A generator
excluded by the second condition is a duplicate, i.e., the corresponding transaction list is
a subset of the transaction list of a previously tested generator. If the previous test did not
violate the margin condition, this generator does not need to be tested because it has a smaller
or equal support. The margin test is thus performed for all necessary items in Pi during the
recursion. If M̂ is empty after the recursion we still need to check the margin condition for
all items in D that generate equivalence classes derivable from the current closed itemset.

123

Efficient mining of all margin-closed itemsets 61

Algorithm 2 DCIMargin

(Mining all margin-closed frequent itemsets.)

1: FUNCTION DCIMargin(C, D, P, M)
2: while P
= ∅ do
3: i ← min≺(P);
4: P ← P \ i;
5: Ci ← C ∪ i;
6: if (supp(Ci) ≥ θ) ∧ (¬I s Duplicate(Ci , D)) then

7: if supp(Ci)
supp(C)

≥ 1− α then
8: M ← M ∪ i;
9: end if
10: Ĉ ← Ci ;
11: Pi ← ∅;
12: for all j ∈ P do
13: if g(Ci) ⊆ g(j) then
14: Ĉ ← Ĉ ∪ j;
15: else
16: Pi ← Pi ∪ j;
17: end if
18: end for
19: M̂ ← ∅;
20: DCIMargin(Ĉ, D, Pi , M̂);
21: if M̂ = ∅ then
22: TestMargin(Ĉ, D);
23: end if
24: D ← D ∪ i;
25: end if
26: end while
27: END PROCEDURE
28: FUNCTION IsDuplicate(Ci , D)
29: for all j ∈ D do
30: if g(Ci) ⊆ g(j) then
31: return true;
32: end if
33: end for
34: return false;
35: END FUNCTION
36: PROCEDURE TestMargin(Ĉ, D)
37: for all j ∈ D do

38: if supp(Ĉ ∪ j) ≥ θ ∧ supp(Ĉ ∪ j)
supp(Ĉ)

≥ (1− α) then

39: return ;
40: end if
41: end for
42: print Ĉ;
43: END PROCEDURE

Preset pruning After calling DCI_Margin recursively we only need to consider items
from the current D for the margin test in Line 22. Since M̂ is empty we already know that none
of the items in Pi generate violating supersets. The items in P \ Pi are already included in Ĉ ,
the current closed itemset under study. This leaves any items that were removed from P in
Line 4 but not added to D in Line 24. We will now explain why these items can be omitted from
the margin test as well. We are only concerned with the case where none of the items in D has
already violated the margin condition, i.e., ∀ j ∈ D supp(C ∪ i ∪ j) < (1−α)supp(C ∪ i).
We can further ignore items that produce infrequent generators and are filtered by the first
condition in Line 6 for this computed closure. These would also be ignored in the margin

123

62 F. Moerchen et al.

test in Line 38. This leaves items that produce a frequent generator but have been excluded
by the duplicate check. Those can be omitted since those generators are covered by items
from D.

Support order pruning Recall that any total order≺of the items can be used. DCI_Closed

works with any fixed order of the items, sorting the items by decreasing support was used
in [46]. When used with DCI_Margin it increases the probability that the intersection of
transaction lists for the support calculation of Ĉ ∪ j in Line 38 results in a violation of the
margin condition avoiding further checks. This is especially helpful in dense datasets. Note
that this optimization will improve the post-processing algorithm as well.

We refer to [46] for the proof that all returned itemsets are closed. We only need to show
that the additional pruning steps do not remove any margin-closed itemsets from the results.

To prove the correctness and completeness of DCI_Margin, we need to check whether
the delayed pruning decisions for items in Pi for the subsequent call of DCI_Margin are
correct. Since Pi ∪ Ĉ ∪ D = I is not guaranteed, we also need to show that all items pruned
by DCI_Closed will not affect the margin decision for subsequent calls. We omitted the
proof that there is no need to test infrequent generators for the sake of brevity.

Lemma 3.1 Given a closed itemset C ∈ CFI and items i, j ∈ I with i, j /∈ C, if g(C ∪ i) ⊆
g(j)⇒ supp(C∪i)

supp(C)
≤ supp(C∪ j)

supp(C)
.

Proof g(C ∪ i) ⊆ g(j) ⇒ g(C ∪ i) = g(C ∪ i ∪ j) ⇒ g(C ∪ i) ⊆ g(C ∪ j) since
g(C ∪ i ∪ j) ⊆ g(C ∪ j)⇒ supp(C ∪ i) ≤ supp(C ∪ j)⇒ supp(C∪i)

supp(C)
≤ supp(C∪ j)

supp(C)
.

The Lemma states, that given a generator C ∪ i and an additional item j with g(C ∪ i) ⊆
g(j) , we can assume that either the generator C ∪ j violates the margin condition or if not
neither will C ∪ i . This allows us to skip the check in line 8 for generators which return true
for the duplicate check as long as we use the generator C∪ j for testing the margin-closedness
of C . Note that this only covers items in Pi .

Lemma 3.2 Given an infrequent generator C∪ i with supp(C∪ i) < θ , where C is a closed
itemset and i ∈ I with i /∈ C and another closed itemset C ′ with C ⊂ C ′ which is frequent,
i.e., supp(C ′) ≥ θ , then supp(C ′ ∪ i) < θ .

Proof supp(C ∪ i) < θ ⇒ supp(C ∪C ′ ∪ i) < θ ⇒ supp(C ′ ∪ i) < θ since C ∪C ′ = C ′.

This allows us to omit all generators C ∪ i for TestMargin which were derived from
a closed itemset C if C ∪ i is not frequent. Therefore we do not need to check the margin
condition and can ignore item i for all closed itemsets that are generated by adding items
to C . In particular, we can avoid adding item i to D for subsequent tests in Line 24 if the
generator C ∪ i is not frequent (Line 6).

Lemma 3.3 Given closed itemsets C, C ′ ∈ CFI with C ⊂ C ′ and items i, h ∈ I with
i, h /∈ C ′ then: g(C ∪ i) ⊆ g(h)⇒ supp(C ′∪i)

supp(C ′) ≤ supp(C ′∪h)
supp(C ′)

Proof g(C ∪ i) ⊆ g(h)⇒ g(C ′ ∪ i) ⊆ g(h) since g(C ′ ∪ i) ⊆ g(C ∪ i)⇒2 supp(C ′∪i)
supp(C ′) ≤

supp(C ′∪h)
supp(C ′)

2 Using Lemma 3.1.

123

Efficient mining of all margin-closed itemsets 63

The Lemma states that pruning item i will not change the result for subsequent margin-
checks, since the missing margin-calculation is still covered by item h. This allows us to
avoid adding i to D in line 24 if the IsDuplicate check returns true and therefore using the
pruning technique from DCI_Closed will not lead to incorrect results.

Altogether, Lemma 3.1 allows us to check only those items in Pi that pass the duplicate
check if we check all items in D. Exploiting Lemma 3.2, we need to check only those items
for a closed itemset which did not produce an infrequent generator for a closed subset. Finally,
Lemma 3.3 states that the pruning technique used in DCI_Closed will not exclude items
necessary for subsequent calculations.

For the proof of correctness and completeness of DCI_Margin we assume that exactly the
set of all closed itemsets is presented to the modifications after line 18 due to completeness
and correctness of DCI_Closed. We will therefore restrict the proof to itemsets in CFI.

Corollary 3.4 DCI_Margin is correct: only margin-closed itemsets are reported.

Proof (by contradiction)
Let be C ∈ CFI \ CFIα . Suppose there exists an item i , s.t. C ∪ i ∈ FI and supp(C∪i)

supp(C)
≥

1− α and C is reported as margin-closed. This leaves two possibilities:

(a) If i ∈ Pi ∪ D, we can conclude that i ∈ Pi , since for all j ∈ D the margin condition
is tested in Line 38. Furthermore there must be an item h ∈ D, s.t. g(C ∪ i) ⊆ g(h),
otherwise C would be checked in Line 8 and M̂ would not be empty. This is a con-
tradiction to Lemma 3.1, since C would be checked in TestMargin for item h and
therefore not be reported.

(b) i ∈ I \ (Pi ∪ D) Since the algorithm is initiated with the bottom closure as closed
itemset and the remaining items as P , i was pruned before by either (i) producing an
infrequent generator or (ii) the duplicate check returned true for the produced generator.

(i) Since the generator for which item i was pruned was infrequent, so is C ∪ i
(according to Lemma 3.2). This is a contradiction to our assumptions.

(ii) i was not included in D for a closed itemset C ′ ⊂ C due to the duplicate detec-
tion, which means there exists an item h ∈ D, s.t. g(C ′ ∪ i) ⊆ g(h). Then the
closed but not margin-closed itemset would not be reported due to the check in
TestMargin in Line 38, since C ∪ i will violate the margin condition according
to Lemma 3.3.

Corollary 3.5 DCI_Margin is complete: all margin-closed itemsets are reported.

Proof Let be C ∈ CFIα . Then we know that ∀i ∈ I \C with C ∪ i ∈ FI: supp(C∪i)
supp(C)

< 1−α.
Since Pi ∪ D ⊂ I, we can deduce that (a) ∀ j ∈ Pi with C ∪ j ∈ FI the generator C ∪ j is
tested and M̂ will be empty in line 21 and (b) ∀ j ∈ D with C ∪ j ∈ FI the test in line 38
will lead to write out C . Given that all closed itemsets are traversed we can conclude that all
margin-closed itemsets are reported.

3.1 Example

For our example, we choose a minimal support θ = 0.1 and α = 0.1 as the margin value. To
avoid confusion, we use lower case letters to represent the items.

Starting with the example of Fig. 1a and following a lexicographic order, the algorithm
is initiated with the empty set as bottom closure. The first item to add is a. It is removed
from the set of items P , which will be processed in subsequent branches of the recursion.

123

64 F. Moerchen et al.

Since it is frequent and no item is in the list D, it passes the duplicate check in line 6. In
line 7 the margin condition is not violated regarding the previously found closed itemset ∅.
In the loop in line 12 only c and d can be added to the working set Ĉ since an addition of
b would decrease the support. The algorithm has reached the closed itemset acd invoking a
recursive function call of DCI_Margin. Within this function call only b could be added, but
since abcd is infrequent no further processing is necessary after line 6. Since D is empty and
no frequent closed superset in this branch exists, we can print out acd as a margin-closed
itemset by calling TestMargin. Returning to the subsequent branch of the recursion, a is
added to the duplicate list D.

Starting again with the empty set, b is added to the working set Ci . Since it is frequent
and not a subset of a (line 6), d can be added to climb to the closure bd . In line 7, the margin
condition for the bottom closure ∅ regarding b is checked. After another call of DCI_Margin

the newly created working set Ci = bcd does not pass the frequency check. b is added to the
duplicate list D in line 24 when returning to the next branch.

Again, calling DCI_Margin with the empty set, c is processed and found to be a closed
itemset. Since the relative difference between supp(∅) and supp(c) violates the margin con-
dition, c is added to M indicating that the bottom closure is not margin-closed. The algorithm
continues with processing the only item left d . Since g(cd) is a subset of the first element in
D, namely a, cd is correctly identified as an itemset of a previously visited equivalence class
and therefore not added to D before pursuing the last branch. For c the TestMargin proce-
dure is called and it is found to be margin-closed, because none of the items in D = {a, b}
would result in violating the margin condition.

Finally, d is added in the last branch. Since no other item is left to add in line 12, the
TestMargin procedure is called to test the margin condition for the closed itemset d .
Adding the first item a in D to the closed itemset d passes the frequency check but vio-
lates the margin condition in line 38. d is correctly identified as not margin-closed.

The algorithm correctly determines acd , bd and c as margin-closed. abcd is infrequent
and neither ∅ or d are margin-closed due to c and cd , respectively.

4 Experiments

We performed experiments to analyze the class of margin-closed itemsets in detail and to
compare the proposed DCI_Margin algorithm with a naive extension of DCI_Closed. We
do not compare experimentally with our own previous work [51] that used a variation of
CHARM because this algorithm needs to keep all closed itemsets in memory for the sub-
sumption check. This is a severe disadvantage in particular for low minimum support values.
We performed a comparison with FP-Growth variant [22] to demonstrate that the greedy
heuristics lead to incorrect results that can vary greatly from the exact result generated by
our algorithm.

The implementation was done in Java using bitmap data structures and the correctness
was checked using brute force algorithms on small datasets. The experiments were run on a
64-bit dual core Intel Xeon with 2.66 GHz and 8 GB of main memory.

4.1 Data sets

We used datasets from three repositories. The FIMI[31] datasets listed in Table 2 include
large transaction datasets derived from traffic data, census data, weblogs [38] and retail data.
The last two datasets are synthetically generated to simulate market basket data. The datasets

123

Efficient mining of all margin-closed itemsets 65

Table 2 FIMI datasets Name Items Transactions

Accidents 468 340,183

BMS-WebView-1 59,602 149,639

BMS-WebView-2 77,512 358,278

BMS-POS 515,597 3,367,020

Chess 75 3,196

Connect 129 67,557

Kosarak 41,270 990,002

Mushroom 119 8,124

Pumsb 2,113 49,046

Pumsb∗ 2,088 49,046

Retail 16,470 88,162

T10I4D100K 870 100,000

T40I10D100K 942 100,000

from the UCI Machine Learning Repository [4] listed in Table 3 represent classification
problems from a wide variety of domains. We used the itemset representations of the datasets
taken from the LUCS repository [23]. The text datasets listed in Table 4 are shipped with the
Cluto clustering toolkit [83] and were converted to itemsets using a binary representation of
words in documents discarding the term frequencies.

4.2 Numerosity reduction

A parameter study was performed on all datasets to investigate the redundancy reduction
under various minimum support values and minimum margin between 0.005 and 1.0 depend-
ing on the dataset. Obviously redundancy can only be removed if there is any. In the interest
of space we only show typical examples of datasets where our approach is beneficial and
examples for dataset where only few redundancy exists among the closed itemsets.

Figure 2 shows the number of reported itemsets on a log scale vs. the minimum support
threshold for some FIMI datasets. The solid line corresponds to all closed itemsets found by
DCI_Closed (or equivalently α = 0). The dashed lines represent DCI_Margin with dif-
ferent minimum margin thresholds. The lowest dashed line represents all maximal itemsets
(α = 1.0).

For all datasets the margin condition can reduce the number of reported itemsets
significantly without necessarily reporting only maximal itemsets. In many cases we
observe a smooth transition of the curves showing a decreasing number of patterns with
increasing α.

For Accidents and Pumsb very small margins of 0.01 and 0.005, respectively, already
largely reduce the number of itemsets indicating a large number of closed itemsets with
very similar frequencies in these datasets. Since these datasets have relatively high minimum
support levels, the number of margin-closed itemsets approaches the number of maximal
itemsets for values of α = 0.05 or larger. For Accidents margins of 0.01 − 0.05 seem ade-
quate because smaller values do not decrease the number of reported patterns and larger
values are equivalent to the maximal itemsets. For Pumsb smaller thresholds up to 0.01
represent a good compromise.

123

66 F. Moerchen et al.

Table 3 UCI datasets Name Items Transactions

Adult 97 48,842

Anneal 73 898

Auto 137 205

Breast 20 699

ChessKRvK 58 28,056

Congres 34 435

Connect4 129 67,557

CylBands 124 540

Dematology 49 366

E. coli 34 1,389

Flare 39 48,842

Glass 48 214

Heart 52 303

Hepatitis 56 155

HorseColic 85 368

Ionosphere 157 351

Iris 19 150

Led7 24 3,200

LetRecog 106 20,000

Mushroom 90 8,124

Nursery 32 12,960

PageBlocks 46 5,473

PenDigits 89 10,992

Pima 38 768

Soybean-large 118 683

TicTacToe 29 958

Waveform 101 5,000

Wine 68 178

Zoo 42 101

For Mushroom, BMS-WebView-2, and T10I4D100K the margins of 0.01 and 0.05 lead
to a significant reduction. Larger margins continue to reduce the number of patterns in a
relatively smooth transition.

T40I10D100k, Retail, and BMS-WebView-1 show a different behavior. For the Retail
data margins up to 0.25 reduce the number of reported itemsets but by far not as clearly as
for the other datasets. There does not seem to be a lot of redundancy which could be caused
by the large number of distinct items. Margins between 0.1 and 0.5 would be useful to reduce
the size of the result. For the T40I10D100k data the number of margin-closed itemsets is
very close to the number of maximal itemsets for α ≥ 0.05 and small minimum supports.
For larger minimum support thresholds the number of closed and maximal itemsets are much
more similar with margin-closed itemsets providing a better transition.

Figure 3 shows the number of reported itemsets for some UCI datasets. Adult is an exam-
ple for cases where increasing the margin threshold leads to a gradual reduction of patterns.

123

Efficient mining of all margin-closed itemsets 67

Table 4 Text datasets Name Items Transactions

Cacmcisi 41,681 4,663

Classic 41,681 7,094

Cranmed 41,681 2,431

Fbis 2,000 2,462

Hitech 126,373 2,301

K1a 21,839 2,340

K1b 21,839 2,340

La1 31,472 3,204

La12 31,472 6,279

La2 31,472 3,075

Mm 126,373 2,521

New3 83,487 9,557

Ohscal 11,465 11,161

Re0 2,886 1,503

Re1 3,758 1,656

Reviews 7,454 4,069

Sports 8,261 8,580

Wap 8,460 1,559

Note that the interplay of support and margin can lead to non-monotone curves, but in general
the larger the minimum support and the larger the minimum margin, the less patterns are
reported. Hepatitis is an example where the redundancy removal is very effective for low
minimum supports but vanishes for larger values. Again, this is due to the large absolute
values of the minimum support of 60–70% that does not leave a lot of room for any margin of
support. For ChessKRvK using a margin constraint does not change the result significantly
because no redundancy could be detected.

Figure 4 shows the number of reported itemsets for some text datasets. The first two
datasets are examples for document collections where the margin constraint can successfully
remove redundancy in the word combination patterns. The last dataset is an example for very
concise sets of patterns where even large margins do not reduce the number of patterns.

4.3 Computational complexity

We compare DCI_Margin with a naive version of mining margin-closed patterns that adds
a post-processing check to DCI_Closed to evaluate the efficiency of our pruning steps. The
post-processing extends each closed pattern by all items not in the pattern and checks the
margin condition. This post-processing takes advantage of the support order pruning, but not
delay or preset pruning.

The algorithms can be implemented efficiently using bitmaps to store the transactions for
each item. The high level operations on the bitmaps include logical AND (when adding an
item to an itemset), subset (checking if an item can be added to an itemset without decreasing
the support) and cardinality (determining the support of an itemset). In order to be indepen-
dent of influences of operating system, programming language, and just-in-time compilers

123

68 F. Moerchen et al.

40.00 50.00 60.00 70.00 80.00 90.00
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Min. Support (%)

lo
g(

Ite
m

se
ts

)

DCI Closed
DCI Margin 0.010
DCI Margin 0.050
DCI Margin 0.100
DCI Margin 0.250
DCI Margin 0.500
DCI Margin 1.000

(a) Accidents

55.00 60.00 65.00 70.00 75.00 80.00 85.00 90.00 95.00
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

Min. Support (%)

lo
g(

Ite
m

se
ts

)

(b) Pumsb

25.00 35.00 45.00 55.00 65.00 75.00 85.00 95.00
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Min. Support (%)

lo
g(

Ite
m

se
ts

)

(c) Connect

0.10 0.50 1.00 5.00 10.00 15.0020.0025.00
2

2.5

3

3.5

4

4.5

5

5.5

Min. Support (%)

lo
g(

Ite
m

se
ts

)

(d) Mushroom

0.02 0.04 0.08 0.16 0.32 0.64 1.00
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Min. Support (%)

lo
g(

Ite
m

se
ts

)

(e) BMS-WebView-2

0.04 0.08 0.16 0.32
3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

Min. Support (%)

lo
g(

Ite
m

se
ts

)

(f) T10I4D100K

0.80 1.20 1.60 1.80 2.00
3

3.5

4

4.5

5

5.5

6

Min. Support (%)

lo
g(

Ite
m

se
ts

)

(g) T40I10D100K

0.20 0.40 0.80 1.60 2.00 3.00 4.00
0.5

1

1.5

2

2.5

3

3.5

Min. Support (%)

lo
g(

Ite
m

se
ts

)

(h) Retail

0.08 0.16 0.32 0.64 1.00 5.00
0.5

1

1.5

2

2.5

3

3.5

4

Min. Support (%)

lo
g(

Ite
m

se
ts

)

(i) BMS-WebView-1

DCI Closed
DCI Margin 0.010
DCI Margin 0.050
DCI Margin 0.100
DCI Margin 0.250
DCI Margin 0.500
DCI Margin 1.000

DCI Closed
DCI Margin 0.010
DCI Margin 0.050
DCI Margin 0.100
DCI Margin 0.250
DCI Margin 0.500
DCI Margin 1.000

DCI Closed
DCI Margin 0.010
DCI Margin 0.050
DCI Margin 0.100
DCI Margin 0.250
DCI Margin 0.500
DCI Margin 1.000

DCI Closed
DCI Margin 0.010
DCI Margin 0.050
DCI Margin 0.100
DCI Margin 0.250
DCI Margin 0.500
DCI Margin 1.000

DCI Closed
DCI Margin 0.010
DCI Margin 0.050
DCI Margin 0.100
DCI Margin 0.250
DCI Margin 0.500
DCI Margin 1.000

DCI Closed
DCI Margin 0.010
DCI Margin 0.050
DCI Margin 0.100
DCI Margin 0.250
DCI Margin 0.500
DCI Margin 1.000

DCI Closed
DCI Margin 0.010
DCI Margin 0.050
DCI Margin 0.100
DCI Margin 0.250
DCI Margin 0.500
DCI Margin 1.000

DCI Closed
DCI Margin 0.010
DCI Margin 0.050
DCI Margin 0.100
DCI Margin 0.250
DCI Margin 0.500
DCI Margin 1.000

Fig. 2 Number of (margin-)closed itemsets for different minimum support and minimum margin in FIMI
datasets

10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.0090.00
0

0.5

1

1.5

2

2.5

3

3.5

4

Min. Support (%)

lo
g

(I
te

m
se

ts
)

(a) adult

10.00 20.00 30.00 40.00 50.00 60.00 70.00
1

1.5

2

2.5

3

3.5

4

4.5

5

Min. Support (%)

lo
g

(I
te

m
se

ts
)

(b) hepatitis

1.00 5.00 10.00 20.00
0.5

1

1.5

2

2.5

3

Min. Support (%)

lo
g

(I
te

m
se

ts
)

(c) chessKRvK

DCI Closed
DCI Margin 0.010
DCI Margin 0.050
DCI Margin 0.100
DCI Margin 0.250
DCI Margin 0.500
DCI Margin 1.000

DCI Closed
DCI Margin 0.010
DCI Margin 0.050
DCI Margin 0.100
DCI Margin 0.250
DCI Margin 0.500
DCI Margin 1.000

DCI Closed
DCI Margin 0.010
DCI Margin 0.050
DCI Margin 0.100
DCI Margin 0.250
DCI Margin 0.500
DCI Margin 1.000

Fig. 3 Number of (margin-)closed itemsets for different minimum support and minimum margin in UCI
datasets

we evaluated the algorithms using counters for the bitmap operations that dominate the com-
putational effort. All bitmaps are accompanied by a pointer to the position of the last set
bit. All three high level operations use these pointer to return early. The subset operation is
further aborted early as soon as a violating bit is discovered. We counted all low-level 64-bit
word operations corresponding to these high level operations.

123

Efficient mining of all margin-closed itemsets 69

0.50 1.00 2.50 5.00 7.50 10.00
1

1.5

2

2.5

3

3.5

4

4.5

5

Min. Support (%)

lo
g

(I
te

m
se

ts
)

(a) classic

5.00 10.00 25.00 50.00
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Min. Support (%)

lo
g

(I
te

m
se

ts
)

(b) hitech

5.00 10.00 25.00 50.00
0

1

2

3

4

5

6

7

Min. Support (%)

lo
g

(I
te

m
se

ts
)

(c) new3

DCI Closed
DCI Margin 0.010
DCI Margin 0.050
DCI Margin 0.100
DCI Margin 0.250
DCI Margin 0.500
DCI Margin 1.000

DCI Closed
DCI Margin 0.010
DCI Margin 0.050
DCI Margin 0.100
DCI Margin 0.250
DCI Margin 0.500
DCI Margin 1.000

DCI Closed
DCI Margin 0.010
DCI Margin 0.050
DCI Margin 0.100
DCI Margin 0.250
DCI Margin 0.500
DCI Margin 1.000

Fig. 4 Number of (margin-)closed itemsets for different minimum support and minimum margin in text
datasets

0

5

10

15

20

25

30

35

40

45

50

B
itm

ap
 o

pe
ra

tio
ns

 (
%

)

pu
m

sb
 st

ar
ad

ult

co
nn

ec
t

so
yb

ea
n−

lar
ge

ch
es

s

co
nn

ec
t4

ac
cid

en
ts

fla
re

T40
I1

0D
10

0K

de
m

at
olo

gy

(a) Best

0

20

40

60

80

100

120

B
itm

ap
 o

pe
ra

tio
ns

 (
%

)

cr
an

m
ed

BM
S−P

OS
hit

ec
h

re
0

fb
is

re
vie

ws
m

m

ko
sa

ra
k

sp
or

ts
ne

w3

(b) Worst

10.00 20.00 30.00 40.00 50.00 60.00
10

20

30

40

50

60

70

80

90

100

110

Min. Support (%)
E

ffo
rt

 (
%

)

margin 0.005
margin 0.010
margin 0.050
margin 0.100
margin 0.250
margin 0.500

(c) Pumsb star

Fig. 5 Relative number of bit operations of DCI_Margin compared to naive post-processing

In Fig. 5, we show the relative effort required by DCI_Margin compared to DCI_Closed

with post-processing. Values below 100% thus indicate that the pruning methods increased
the efficiency for the particular choice of parameters and dataset. For each dataset we summed
up the effort over all minimum support levels used in Sect. 4.2 and minimum margins
0.01 through 0.25 as would be typically used in practice. The ten best performances of
DCI_Margin in Fig. 5a requires only 25–50% of the bit vector operations of DCI_Closed

with post-processing. The ten worst performances of DCI_Margin show the same or slightly
worse performance than the post-processing. More bit operations than post-processing can
be observed if many delay or preset pruning steps are performed unsuccessfully without
removing closed itemsets. For the best dataset the effort is shown for each minimum support
and minimum margin level in Fig. 5c.

The results indicate a clear benefit of the proposed pruning steps. The observed gains in
effort highly depend on the dataset. In the best cases a significant amount of computation is
saved and in the worst cases the performance is similar to post-processing.

The space and time complexity of DCI_Margin are inherited from DCI_Closed [46].
The space complexity is bounded by the size of the dataset and independent of the number of
patterns found. No explicit computational analysis was given in [46] but the runtimes com-
pared favorably with other efficient algorithms. Furthermore, our algorithm inherits important
scalability properties from DCI_Closed the possibility to parallelize the search space tra-
versal [48] and mine the data out of core [47]. In Fig. 6 we show the actual run times for the
largest datasets and several minimum support and margin thresholds. For very low minimum
supports on the large dataset BMS-WebView 2 the mining took about 15 min. As for all item-
set algorithms the runtime increases exponentially with lower minimum supports. Different
values of the margin have relatively small influence on the runtime.

123

70 F. Moerchen et al.

40.00 50.00 60.00 70.00 80.00 90.00
1

1.5

2

2.5

3

3.5

4

4.5

Min. Support (%)

lo
g(

T
im

e
in

 m
s)

(a) Accidents

0.08 0.16 0.32 0.64 1.00
2

2.5

3

3.5

4

4.5

5

5.5

6

Min. Support (%)

lo
g(

T
im

e
in

 m
s)

(b) BMS WebView 2

1.20 1.60 1.80 2.00
4.5

4.6

4.7

4.8

4.9

5

5.1

5.2

5.3

5.4

5.5

Min. Support (%)

lo
g(

T
im

e
in

 m
s)

(c) T40I10D100K

DCI Margin 0.010
DCI Margin 0.050
DCI Margin 0.100
DCI Margin 0.250
DCI Margin 0.500

DCI Margin 0.010
DCI Margin 0.050
DCI Margin 0.100
DCI Margin 0.250
DCI Margin 0.500

DCI Margin 0.010
DCI Margin 0.050
DCI Margin 0.100
DCI Margin 0.250
DCI Margin 0.500

Fig. 6 Runtime of DCI_Margin for selected large datasets. For the most complex problem under study the
mining took up to about 15 min

0.10 0.50 1.00 5.00 10.00 15.0020.0025.00
40

50

60

70

80

90

100

110

120

130

Min. Support (%)

Delta/Margin 0.010
Delta/Margin 0.050
Delta/Margin 0.100
Delta/Margin 0.250
Delta/Margin 0.500
Delta/Margin 1.000

(a) Mushroom

40.00 50.00 60.00 70.00 80.00 90.00
50

60

70

80

90

100

110

Min. Support (%)

(b) Accidents

10.00 20.00 30.00 40.00 50.00 60.00
40

50

60

70

80

90

100

110

120

130

Min. Support (%)

D
el

ta
 to

le
ra

nc
e

ite
m

se
ts

(%
 o

f m
ar

gi
n

cl
os

ed
 it

em
se

ts
)

D
el

ta
 to

le
ra

nc
e

ite
m

se
ts

(%
 o

f m
ar

gi
n

cl
os

ed
 it

em
se

ts
)

D
el

ta
 to

le
ra

nc
e

ite
m

se
ts

(%
 o

f m
ar

gi
n

cl
os

ed
 it

em
se

ts
)

(c) Pumsb

Delta/Margin 0.010
Delta/Margin 0.050
Delta/Margin 0.100
Delta/Margin 0.250
Delta/Margin 0.500
Delta/Margin 1.000

Delta/Margin 0.010
Delta/Margin 0.050
Delta/Margin 0.100
Delta/Margin 0.250
Delta/Margin 0.500
Delta/Margin 1.000

Fig. 7 Number of reported δ-tolerance itemsets as percentage of the correct number of δ-tolerance closed
(or equivalently margin-closed) itemsets

4.4 δ-tolerance itemsets

We obtained the binary version of the algorithm in [22] and compared the output with the
complete set of margin-closed itemsets given the same minimum support and threshold
(our margin and their δ). The results for three datasets evaluated are shown in Fig. 7. In many
cases the algorithm is observed to report a significant number of non-margin-closed itemsets
(greater than 100% on the x axis) or to report less than the true number of margin-closed
itemsets (less than 100%) ranging from under 50% to more than 120%. There is no clear
trend in the behavior of the algorithm with respect to minimum support or margin. While
for large minimum support thresholds the absolute difference in reported itemsets is small,
for more complex settings the difference can be huge: For the lowest minimum support and
margin on Pumsb∗ only 133490 of all 231882 margin-closed itemsets are reported. This
demonstrates the greedy heuristic can lead to results that vary significantly from the correct
result reported by our algorithm.

5 Applications

In this section, we demonstrate the usefulness of margin-closed itemsets in two applications.
In exploratory analysis of temporal patterns the removal of redundancy generates better inter-
pretable results. For compression-based data mining tasks better understandable codebooks
with comparable performance are generated.

123

Efficient mining of all margin-closed itemsets 71

Fig. 8 Simultaneous occurring
intervals (Tones) form Chords.
Phrases describe a partial order of
Chords

(a)

(b)

5.1 Temporal data mining

In [52], temporal patterns based on the Time Series Knowledge Representation (TSKR) are
mined from symbolic interval time series. The data model for this method consists of pos-
sibly overlapping time intervals with a label. Hierarchical patterns are defined as groups of
intervals simultaneously active on a subinterval (Chords) on the first level, and a partial order
of such groups (Phrases) on the second level. Figure 8a shows a series of observed intervals
with labels A, B, and C and intervals of Chord patterns such as ABC beneath. Figure 8b
shows a Phrase that represents a partial order of Chords matching both blocks of intervals
in Fig. 8a. The mining of TSKR patterns can be formulated as a combination of itemset
and sequential pattern mining in three phases: (1) Closed itemsets are mined interpreting the
interval labels as items and time units as transactions. (2) Sequential patterns are mined inter-
preting Chords as items and intervals between any Chord start and end point as transactions
in a sequence. (3) Closed itemsets are mined interpreting sequential patterns as items and
sequences as transactions. Finally, each closed group of sequential patterns is converted to a
partial order graph [28].

The support of a Chord is the total number of time units where the intervals are observed
simultaneously. Small differences in support are typically meaningless, such as the short
leading or trailing parts of observed intervals not described by a Chords in Fig. 8a. Margin-
closed itemsets can be used to mine a smaller set of Chords with less redundancy. Chords
with almost the same duration than more specific Chords are pruned. This leads to better
interpretable results and reduces the complexity of the sequential pattern mining algorithm.
Groups of simultaneous sequential pattern form a closed partial order [28]. Again, margin-
closedness leads to a reduction of the reported partial orders pruning less specific patterns
that are observed in only few additional sequences.

In an application to sports medicine using a minimum margin of 0.1 reduced number of
Chords from 60 to 18 and the number of Phrases from 20 to 15. The absolute numbers are
small but they significantly eased the burden of the manual analysis by an expert. Having
to analyze many very similar patterns can easily result in frustration of the analysts. The
expert selected the Phrase in Fig. 9 as the most interesting pattern that describes the muscle
activation during inline speed skating. The Chord Push Gluteus is expanded to show the
corresponding items and for the item Gluteus is very high the represented value range in the
original numerical time series is shown.

123

72 F. Moerchen et al.

Fig. 9 Detailed Phrase of skating data with additional information on muscle activation

5.2 Mining by compression

Performing data mining tasks using compression as an approximation to Kolmogorov com-
plexity has recently gained popularity, see [25,37] and references therein. For itemsets the
Krimp algorithm has been proposed to find a codebook of itemsets that compresses a trans-
action database well [63]. The algorithm has subsequently been used to support classification
[71], change detection [70], and missing value replacement [72].

Krimp starts with a trivial code book of single items that is greedily improved considering
longer itemsets from a set of candidate patterns. The authors recommend to use closed item-
sets rather than frequent itemsets to avoid redundancy. We performed a set of experiments to
evaluate the use of margin-closed itemsets as candidates.

We ran the Krimp algorithm with closed and margin-closed itemsets as candidates and
compared the sizes of the compressed database. We used the smallest minimum support
values and the same minimum margin values as in Sect. 4.2. Only the UCI datasets were
used because compression is particularly relevant for classification and the available version
of the Krimp program had problems processing the high dimensional sparse text datasets.

Figure 10 plots the ratio of candidates vs. the ratio in achieved compression. The ratios are
calculated comparing the margin-closed itemsets with closed itemsets as the baseline. For
example, for the TicTacToe data using only 35% of the closed itemsets as candidates results
in a compressed database that is only 2.5% bigger. For the sake of presentation, we show
only the best result over all evaluated margin values for most datasets. The best result for
each dataset was determined using the minimum sum of the candidate ratio and compression
ratio, i.e., using the Manhattan distance from (0, 100).

For many datasets, a significant reduction in the number of candidates does not hurt the
compression. This directly translates into much improved runtime of the Krimp algorithms
that uses the candidate itemsets to build a codebook that compresses the data best. A larger
number of datasets has less than 10% increase in compression with fewer than 30% of the
closed itemsets. In some cases we can even improve the compression ratio. Most notably, for
the Zoo dataset we achieve a slightly better compression using less than 5% of the closed
itemsets. The dotted lines passing through the best results for Nursery, Iris, Led7, and Adult
show the candidate and compression ratios for multiple margin values applied to these data-
sets. This shows how different margin values provide a trade off between candidate size and
compression.

123

Efficient mining of all margin-closed itemsets 73

0 10 20 30 40 50 60 70
95

100

105

110

115

120

adult

anneal

auto

breast

chessKRv
congres

connect4

cylBands

dematology

ecoli

flare

glass

heart

hepatitis

horseColic

ionosphere

iris

led7

letRecog

mushroom

nursery

pageBlocks

penDigits

pima

soybean−large
ticTacToe

waveform
wine

zoo

Candidates (%)

C
om

pr
es

se
d

S
iz

e
(%

)

Fig. 10 Relative number of candidates vs. relative size of compressed database when using margin-closed
itemsets instead of closed itemsets as candidates for Krimp

The compression results show that a lot of redundancy can be removed without com-
promising the quality of the codebook. The reduced number of candidates speeds up the
codebook generation of Krimp and makes the codebook more interpretable. For example, to
understand why a certain instance has been labeled by the Krimp-based classifier in a partic-
ular way one can extract the codebook vectors that had the largest influence on the decision.
We expect that the performance of subsequent data mining tasks will not suffer significantly
because comparable compression ratio are obtained.

6 Discussion

Our experimental results show that with comparable run time our algorithm can mine the
more compact set of all margin-closed itemsets instead of reporting all closed itemsets. The
pruning is performed on-the-fly utilizing the data structures of DCI_Closed and saving IO
costs otherwise required to report all closed itemsets. The best value of α is application depen-
dent: which difference in support between similar patterns can be considered insignificant
enough to report only the longer pattern? In most cases, we assume that α would be small
but not very small (between 0.01 and 0.2). For very small α, one should expect increased
run time because less pruning can be performed. If the margin is chosen to be bigger than
1− θ only maximal itemsets are reported. In some applications, it might be more natural to
specify an absolute support margin. All our results hold and the algorithm can be used in the
same way.

In principle, the test for margin-closedness can also be integrated in the FP-Tree [35]
algorithms or the version of DCI_Closed for sparse datasets. We chose the DCI_Closed

algorithm for dense datasets as the basis of our work for several reasons. The vertical data
format used by DCI algorithms can be exploited with the SIMD architecture of modern pro-
cessors and even GPUs. In addition, the found patterns do not need to stay in memory and
the partition of the search space enables parallelization [48]. The vertical representation has

123

74 F. Moerchen et al.

further advantages for itemset problems that represent temporal data [52] which is typically
dense. Checking additional constraints on the duration of temporal patterns can be easily
done using bit vectors but would require tracking the transaction times in projected databases
[35].

A breadth-first approach might be more suitable for sparse datasets [77]. Since the num-
ber of closed itemsets is commonly much smaller in this case the margin condition can be
checked after the closed itemset computation.

The concept of a minimum margin could also be used to generalize the definition of min-
imal generators [41], the minimal elements of an equivalence class induced by the closure
operator. A minimal generator is an itemset where no item can be removed without increas-
ing the support. A margin minimal generator would be an itemset where no itemset can be
removed without increasing the support significantly (given a threshold parameter).

Our aim was to avoid redundancy of reported patterns to support exploratory analysis and
favor longer patterns with more explanatory power. The concept of margin-closedness is in
no way limited to itemsets, it can also be applied to sequential patterns [3], partial orders
[60,52] and graphs [40].

7 Related work

The two closest publications to our approach are δ-tolerance itemsets [22] and relaxed fre-
quent closed itemsets [64].

The δ-tolerance closed itemsets of [22] are equivalent in definition to margin-closed
itemsets and have been proposed independently. The motivation in [22] was to provide a
condensed itemset representation that provides an approximate frequency estimation for
itemsets. This is achieved with approximation formulas that use the support and the support
differences (margins) of the itemsets stored in an FP-tree [35]. The mining algorithm uses
several heuristics that try to avoid but do not guarantee false dismissals. The reported itemsets
are thus possibly a subset of all margin-closed itemsets. As demonstrated, this does not seem
to hurt the frequency estimation and enables fast performance. In contrast, we can guarantee
completeness, which is important for exploratory analysis. While not designed for frequency
estimation, the same techniques as proposed in [22] are applicable to our approach.

The relaxed frequent closed itemsets of [64] require the user to define a uniform partition
of the support range. Subsets whose supersets are in the same support interval are pruned
removing redundancy. The motivation is to reduce the number of patterns in memory when
mining data streams. The effectiveness and efficiency was demonstrated using synthetic data.
The a priori definition of several support thresholds might still generate redundant patterns if
the supports of the subset and superset are just below and above one of the support thresholds,
respectively. In contrast our pruning is data driven and removes any redundancy according
to the single threshold α.

In comparison with the two approaches outlined above, we performed much more exten-
sive experiments with a total of 60 datasets from many different domains whereas [22] and
[64] used only three and one FIMI datasets, respectively.

In our previous work, we have presented a modified CHARM [82] algorithm to mine
margin-closed itemsets [51]. This approach suffers from scalability problems because it
requires all closed (even the non-margin-closed) itemsets to be kept in memory for the sub-
sumption check.

We proceed to categorize less directly related approaches below by the purpose they have
been designed for to highlight the differences to our approach.

123

Efficient mining of all margin-closed itemsets 75

Condensed itemset representations [18] have been developed to derive the support of
all itemsets from a compact summary exactly [13,39,14,15,53,16,44] or approximately
[57,11,22]. Querying the support of an itemset from a data structure is a key step in gen-
erating association rules [36]. The basic idea of non-derivable itemsets [16] and related
approaches is to derive the support of a query itemset from the support of subsets stored in
the condensed representation [14,15]. If this is possible exactly or within error bounds, the
larger set does not need to be stored in the summary. [61] prunes all supersets with approxi-
mately the same support as a smaller itemset. Note that these approaches favor short itemsets
and prune longer itemsets, whereas we prune the shorter subsets with support similar to a
longer supersets. This favors more detailed patterns that are generally more interesting in
exploratory analysis.

Condensed representations are a special case of more general constraints on the
reported itemsets that are commonly categorized into several classes [65,54]: monotone,
anti-monotone, succinct, convertible and tough. The first three were integrated in early con-
straint-based itemset mining algorithms. Convertible constraints were later integrated for
depth first algorithms in [58] and for level-wise algorithms in [7], see [9] for more details.
[8] describes issues with combining closed itemsets (and other condensed representations)
with additional constraints. Our margin constraint does not cut closure equivalence classes
but simply merges them avoiding potential problems. Recently, [24] presented an elegant
way of mining constrained itemsets, including margin-closed itemsets, with constraint pro-
gramming.

A related line of work is motivated by the fact, that transaction data is often noisy. The
strict definition of support, requiring all items of an itemset to be present in a transaction, is
relaxed [59,79,62,1,78,45,20,69,17,21]. A recent comparison analyzed the efficiency and
effectiveness of approximate itemset mining [33]. These approaches can reveal important
structures in noisy data that might otherwise get lost in a huge amount of fragmented pat-
terns. One needs to be aware though that they report approximate support values and possibly
list itemsets that are not observed as such in the collection at all [1] or with much smaller
support. This might be misleading in exploratory applications. In our application of itemset
mining to temporal data mining [52] we filtered out noise in preprocessing steps using the
temporal structure of the data and found it beneficial to list exact patterns with exact support.
This corresponds to the Gricean maxim of quality [32] that states that only well supported
facts and no false descriptions should be reported and has been recommended as a guideline
for pattern discovery for data exploration [66]. Finally, we want to note that margin-closed
itemsets might be used instead of closed itemsets as seeds to the AC-Close algorithm for
approximate itemset mining [20] improving its efficiency that was criticized in [33].

Other approaches try to reduce the number of patterns after they are mined [1,76,50]. By
this time a lot of computational resources have been spent on mining and storing the results.
Our algorithm integrates the mining with the pruning on-the-fly and never stores or further
processes the superfluous patterns.

For post-processing techniques such as [12] or [63] that use closed itemsets as their input
and remove redundancy in the pattern set, margin-closed itemsets can be used as an alter-
native input reducing their runtime without sacrificing performance. This was demonstrated
for [63] in Sect. 5.2. In [12] a small subset of patterns is selected that preserves much of
the transaction partition collectively induced by presence and absence of a set of patterns.
Patterns are selected according to a user defined ordering such as by size or by support.

In [30], the number of reported closed itemsets is reduced to the top-k patterns optimizing
the coverage of the database with the transactions and items of the patterns. This is likely to
remove redundancy in the output but our constraint is more explicit. It would be interesting

123

76 F. Moerchen et al.

to investigate the top-k least redundant pattern mining problem. In [6] the number of frequent
(but not closed) itemsets given a minimum support is estimated using random walks on the
itemset lattice.

In addition to the margin constraint, statistical measures for interestingness, significance,
and surprise [49,67,27,75,68] could be used to rank or further reduce the number of reported
margin-closed itemsets.

In summary, margin-closedness is a stricter constraint than closedness that leads to a lossy,
concise, exact itemset representation designed for exploratory and explanatory data mining
tasks.

8 Summary

Margin-closed itemsets provide a compromise between closed and maximal itemsets
designed for exploratory data analysis favoring longer itemsets that provide the users with
more specific information and reporting exact information. We have presented DCI_Margin,
a new efficient algorithm that mines all margin-closed itemsets on-the-fly and proved its cor-
rectness and completeness. Compared to closed itemset mining the algorithm can largely
reduce the number of reported itemsets depending on the redundancy structure of the data-
set under study. The algorithm achieves this with small computational overhead and was
experimentally shown to have comparable or better speed than DCI_Closed. We show the
usefulness of the patterns in two applications: exploratory mining for temporal patterns [52]
and finding compressing datasets [63] that are useful for classification, change detection, or
missing value replacement.

Acknowledgments We thank Matthijs van Leeuwen and James Cheng for sharing their software and Philipp
Hussels for helping to run it. We acknowledge Blue Martini Software for contributing the KDD Cup 2000
data.

References

1. Afrati F, Gionis A, Mannila H (2004) Approximating a collection of frequent sets, In: Proceedings of
10th ACM SIGKDD international conference on Knowledge Discovery and Data Mining. ACM Press,
pp 12–19

2. Agrawal R, Imielinski T, Swami AN (1993) Mining association rules between sets of items in large
databases. In: Proceedings of ACM SIGMOD international conference on Management of Data. ACM
Press, pp 207–216.

3. Agrawal R, Srikant R (1995) Mining sequential patterns. In: Yu PS and Chen ASP (eds) Proceedings of
11th international conference on data engineering. pp 3–14

4. Asuncion A, Newman D (2007) UCI machine learning repository. http://www.ics.uci.edu/~mlearn/
MLRepository.html

5. Beil F, Ester M, Xu X (2002) Frequent term-based text clustering, In: Proceedings of 8th international
conference on knowledge discovery and data mining. pp 436–442

6. Boley M, Grosskreutz H (2009) Approximating the number of frequent sets in dense data. Knowl Inf
Syst 21(1):65–89

7. Bonchi F, Lucchese C (2005) Pushing tougher constraints in frequent pattern mining, In: Proceedings of
Pacific-Asia conference on knowledge discovery and data Mining. pp 114–124

8. Bonchi F, Lucchese C (2006) On condensed representations of constrained frequent patterns. Knowl Inf
Syst 9(2):180–201

9. Bonchi F, Lucchese C (2007) Extending the state-of-the-art of constraint-based pattern discovery. Data
Min Knowl Discov 60(2):377–399

123

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html

Efficient mining of all margin-closed itemsets 77

10. Boulicaut J-F, Bykowski A (2000) Frequent closures as a concise representation for binary data mining.
In: Proceedings of Pacific-Asia conference on knowledge discovery and data mining. pp 62–73

11. Boulicaut J-F, Bykowski A, Rigotti C (2003) Free-sets: a condensed representation of boolean data for
the approximation of frequency queries. Data Min Knowl Discov 7(1):5–22

12. Bringmann B, Zimmermann A (2009) One in a million: picking the right patterns. Knowl Inf Syst
18(1):61–81

13. Bykowski A, Rigotti C (2001) A condensed representation to find frequent patterns. In: Proceedings
of 20th ACM SIGMOD-SIGACT-SIGART symposium on principles of database systems. ACM Press,
pp 267–273

14. Calders T, Goethals B (2002) Mining all non-derivable frequent itemsets. In: Proceedings of 6th European
conference on principles of data mining and knowledge discovery. Springer, pp 74–85

15. Calders T, Goethals B (2003) Minimal k-free representations of frequent sets, In: Proceedings of 7th
European conference on principles and practice of knowledge discovery in databases. Springer, pp 71–82

16. Calders T, Goethals B (2007) Non-derivable itemset mining. Data Min Knowl Discov 14(1):171–206
17. Calders T, Goethals B, Mampaey M (2007) Mining itemsets in the presence of missing values. In:

Proceedings of international symposium on applied computing. ACM, pp 404–408
18. Calders T, Rigotti C, Boulicaut J-F (2006) A survey on condensed representations for frequent sets. In:

Constraint-based mining and inductive databases. pp 64–80
19. Cheng H, Yan X, Han J, Hsu C (2007) Discriminative frequent pattern analysis for effective classification.

In: Proceedings of IEEE international conference on data engineering. pp 716–725
20. Cheng H, Yu PS, Han J (2006) AC-Close: efficiently mining approximate closed itemsets by core pattern

recovery. In: Proceedings of IEEE international conference on data mining. IEEE pp 839–844
21. Cheng H, Yu PS, Han J (2008) Approximate frequent itemset mining in the presence of random noise.

In: Soft computing for knowledge discovery and data Mining. Springer, pp 363–389
22. Cheng J, Ke Y, Ng W (2006) δ-tolerance closed frequent itemsets. In: Proceedings of 6th IEEE interna-

tional conference on data mining. IEEE Press, pp 139–148
23. Coenen F (2003) The LUCS-KDD discretised/normalised ARM and CARM data library. http://www.csc.

liv.ac.uk/~frans/KDD/Software/LUCS_KDD_DN/
24. De Raedt L, Guns T, Nijssen S (2008) Constraint programming for itemset mining. In: Proceedings of 14th

ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 204–212
25. Faloutsos C, Megalooikonomou V (2007) On data mining, compression, and kolmogorov complexity.

Data Min Knowl Discov 15(1):3–20
26. Fung B, Wang K, Ester M (2003) Hierarchical document clustering using frequent itemsets, In: Proceed-

ings of SIAM international conference on data mining
27. Gallo A, De Bie T, Cristianini N (2007) Mini: Mining informative non-redundant itemsets, In: Proceedings

of European symposium on principles of data mining and knowledge Discovery. pp 438–445
28. Garriga G (2005) Summarizing sequential data with closed partial orders. In: Proceedings of 5th SIAM

international conference on data mining. SIAM, pp 380–391
29. Garriga G, Kralj P, Lavrac N (2006) Closed sets for labeled data. In: Proceedings of European conference

on principles and practice of knowledge discovery in databases. pp 163–174
30. Geerts F, Goethals B, Mielikäinen T (2004) Tiling databases. In: Proceedings of discovery science.

pp 278–289
31. Goethals B, Zaki M (2003) FIMI ’03, frequent itemset mining implementations, In: Proceedings of ICDM

2003 workshop on frequent itemset mining implementations
32. Grice H (1989) Studies in the way of Words. Harvard University Press, Cambridge
33. Gupta R, Fang G, Field B, Steinbach M, Kumar V (2008) Quantitative evaluation of approximate fre-

quent pattern mining algorithms. In: Proceedings of 14th ACM SIGKDD international conference on
knowledge discovery and data Mining. ACM, pp 301–309

34. Han J, Pei J (2001) Pattern growth methods for sequential pattern mining: Principles and extensions, In:
Workshop on temporal data mining, 7th ACM SIGKDD international conference on knowledge discovery
and data mining. ACM Press

35. Han J, Pei J, Yin Y (2000) Mining frequent patterns without candidate generation. In: Proceedings of
ACM SIGMOD international conference on management of data. ACM Press, pp 1–12

36. Hipp J, Güntzer U, Nakhaeizadeh G (2000) Algorithms for association rule mining—a general survey
and comparison. SIGKDD Explor 2(1): 58–64

37. Keogh E, Lonardi S, Ratanamahatana C, Wei L, Lee S, Handley J (2007) Compression-based data mining
of sequential data. Data Min Knowl Discov 14(1):99–129

38. Kohavi R, Brodley C, Frasca B, Mason L, Zheng Z (2000) ‘KDD-Cup 2000 organizers’ report: Peeling
the onion. SIGKDD Explor 2(2): 86–98. http://www.ecn.purdue.edu/KDDCUP

123

http://www.csc.liv.ac.uk/~frans/KDD/Software/LUCS_KDD_DN/
http://www.csc.liv.ac.uk/~frans/KDD/Software/LUCS_KDD_DN/
http://www.ecn.purdue.edu/KDDCUP

78 F. Moerchen et al.

39. Kryszkiewicz M (2001) Concise representation of frequent patterns based on disjunction-free generators,
In: Proceedings of 1st IEEE international conference on data mining. IEEE Press, pp 305–312

40. Kuramochi M, Karypis G (2001) Frequent subgraph discovery. In: Proceedings of IEEE international
conference on data mining, pp 313–320

41. Li J, Li H, Wong L, Pei J, Dong G (2006) Minimum description length principle: generators are preferable
to closed patterns. In: Proceedings of AAAI, pp 409–414

42. Li W, Han J, Pei J (2001) CMAR: Accurate and efficient classification based on multiple class-association
rules. In: Proceedings of IEEE international conference on data mining. pp 369–376

43. Liu B, Hsu W, Ma Y (1998) Integrating classification and association rule mining. In: Proceedings of
international conference on knowledge discovery and data mining. pp 80–86

44. Liu G, Li J, Wong L (2008) A new concise representation of frequent itemsets using generators and a
positive border. Knowl Inf Syst 17(1):35–56

45. Liu J, Paulsen S, Wang W, Nobel A, Prins J (2005) Mining approximate frequent itemsets from noisy
data. In: Proceedings of 5th international conference data mining. IEEE, pp 721–724

46. Lucchese C, Orlando S, Perego R (2006a) Fast and memory efficient mining of frequent closed itemsets.
IEEE Trans Knowl Data Eng 18(1):21–36

47. Lucchese C, Orlando S, Perego R (2006b) Mining frequent closed itemsets out of core, In: Proceedings
of the 6th SIAM international conference on data mining (SDM’06)

48. Lucchese C, Orlando S, Perego R (2007) Parallel mining of frequent closed patterns: harnessing modern
computer architectures. In: Proceedings IEEE international conference on data mining

49. Malik H, Kender J (2006) High quality, efficient hierarchical document clustering using closed interesting
itemsets. In: Proceedings of IEEE international conference on data mining. pp 991–996

50. Mielikäinen T. (2005) Summarization techniques for pattern collections in data mining, PhD thesis,
University of Helsinki, Finland

51. Mörchen F (2006) Algorithms for time series knowledge mining, In: Proceedings 12th ACM SIGKDD
international conference on knowledge discovery and data mining. ACM Press, pp 668–673

52. Mörchen F, Ultsch A (2007) Efficient mining of understandable patterns from multivariate interval time
series. Data Min Knowl Discov 15(2):181–215

53. Muhonen J, Toivonen H (2006) Closed non-derivable itemsets. In: Proceedings European symposium on
principles of data mining and knowledge discovery. pp 601–608

54. Ng R, Lakshmanan LV, Han J, Pang A (1998) Exploratory mining and pruning optimizations of con-
strained associations rules. In: Proceedings of ACM SIGMOD conference on management of Data.
ACM, pp 13–24

55. Nijssen S, Fromont E (2007) Mining optimal decision trees from itemset lattices. In: Proceedings of
international conference on knowledge discovery and data mining. ACM, pp 530–539

56. Pasquier N, Bastide Y, Taouil R, Lakhal L (1999) Discovering frequent closed itemsets for association
rules. In: Proceedings of 7th international conference on database theory. Springer, pp 398–416

57. Pei J, Dong G, Zou W, Han J (2002) On computing condensed frequent pattern bases. In: Proceedings of
2nd IEEE international conference on data mining. IEEE Press, pp 378–385

58. Pei J, Han J, Lakshmanan LVS (2001) Mining frequent itemsets with convertible constraints. In:
Proceedings of IEEE international conference on data Engineering. IEEE, pp 433–442

59. Pei J, Tung AK, Han J (2001) Fault-tolerant frequent pattern mining: problems and challenges. In: Work-
shop on research issues in data mining and knowledge discovery, 20th ACM SIGMOD-SIGACT-SIGART
symposium on principles of database systems

60. Pei J, Wang H, Liu J, Wang K, Wang J, Yu P (2006) Discovering frequent closed partial orders from
strings. IEEE Trans Knowl Data Eng 18(11):1467–1481

61. Pudi V, Haritsa J (2003) Generalized closed itemsets for association rule mining. In: Proceedings of 19th
international conference on data engineering. IEEE Press pp 714–716

62. Seppänen J, Mannila H (2004) Dense itemsets. In: Proceedings of 10th ACM SIGKDD international
conference on knowledge discovery and data mining. ACM Press, pp 683–688

63. Siebes A (2006) Item sets that compress. In: Proceedings of SIAM Conference on data mining. pp 393–404
64. Song G, Yang D, Cui B, Zheng B, Liu Y, Xie K (2007) CLAIM: An efficient method for relaxed frequent

closed itemsets mining over stream data. In: Proceedings of 12th international conference on database
systems for advanced applications. Springer, pp 664–675

65. Srikant R, Vu Q, Agrawal R (1997) Mining association rules with item constraints, In: Proceedings of
international conference on knowledge discovery and data mining. ACM, pp 67–73

66. Sripada SG, Reiter E, Hunter J (2003) Generating English summaries of time series data using the Gricean
maxims, In: Proceedings of 9th ACM SIGKDD international conference on knowledge discovery and
data mining. ACM Press, pp 187–196

123

Efficient mining of all margin-closed itemsets 79

67. Tatti N (2007) Maximum entropy based significance of itemsets. In: Proceedings of IEEE international
conference on data mining. pp 312–321

68. Tatti N (2008) Maximum entropy based significance of itemsets. Knowl Inf Syst 17(1):57–77
69. Uno T, Arimura H (2007) An efficient polynomial delay algorithm for pseudo frequent itemset mining.

In: Proceedings of 10th international conference discovery science. Springer, pp 219–230
70. Van Leeuwen M, Siebes A (2008) StreamKrimp: Detecting change in data streams. In: Proceedings of

European conference on machine learning and principles and practices of knowledge discovery in data.
pp 765–774

71. van Leeuwen M, Vreeken J, Siebes A (2006) Compression picks item sets that matter, In: Proceedings
of European conference on principles and practice of knowledge discovery in databases. pp 585–592

72. Vreeken J, Siebes A (2008) Filling in the blanks—Krimp minimisation for missing data. In: Proceedings
of 8th IEEE international conference on data mining. pp 1067–1072

73. Wang J, Karypis G (2006) On mining instance-centric classification rules. IEEE Trans Knowl Data Eng
18(11):1497–1511

74. Wang K, Xu C, Liu B (1999) Clustering transactions using large items. In: Conference on information
and knowledge management. pp 483–490

75. Webb GI (2007) Discovering significant patterns. Mach Learn 68(1):1–33
76. Xin D, Han J, Yan X, Cheng H (2005) Mining compressed frequent-pattern sets. In: Proceedings of 31st

international conference on very large data bases. pp 709–720
77. Yahia SB, Hamrouni T, Mephu Nguifo E (2006) Frequent closed itemset based algorithms: a thorough

structural and analytical survey. ACM SIGKDD Explor 8(1):93–104
78. Yan X, Cheng H, Han J, Xin D (2005) Summarizing itemset patterns: a profile-based approach, In:

Proceedings of 11th ACM SIGKDD international conference on knowledge discovery and data mining.
ACM Press, pp 314–323

79. Yang C, Fayyad U, Bradley P (2001) Efficient discovery of error-tolerant frequent itemsets in high dimen-
sions, In: Proceedings of 7th ACM SIGKDD international conference on knowledge discovery and data
mining. ACM Press, pp 194–203

80. Yin X, Han J (2003) CPAR: Classification based on predictive association rules. In: Proceedings of SIAM
international conference on data mining

81. Zaki M (2004) Mining non-redundant association rules. Data Min Knowl Discov 9(3):223–248
82. Zaki M, Hsiao C-J (2002) CHARM: An efficient algorithm for closed itemset mining. In: Proceedings of

2nd SIAM international conference on data mining SIAM. pp 457–473
83. Zhao Y, Karypis G (2002) Evaluation of hierarchical clustering algorithms for document datasets.

In: Proceedings of 11th Conference of information and knowledge management. pp 515–524

Author Biographies

Fabian Moerchen graduated with a Ph.D. in Feb 2006 from the
Philipps University of Marburg, Germany after just over 3 years with
summa cum laude. In his thesis he proposed a radically different
approach to temporal interval patterns that uses itemset and sequen-
tial pattern mining paradigms. Since 2006 he has been working at
Siemens Corporate Research, a division of Siemens Corporation, lead-
ing data mining projects with applications in predictive maintenance,
text mining, healthcare, and sustainable energy. He has continued the
study of temporal data mining in the context of industrial and scien-
tific problems and has served the community as a reviewer, organizer
of workshops, and presenter of tutorials.

123

80 F. Moerchen et al.

Michael Thies received his Master degree in Computer Science from
Philipps University of Marburg, Germany. He is currently working as a
self-employed software developer and data analyst. His research inter-
ests include data mining in general and temporal pattern mining in
particular. He further participated in the MusicMiner project that
deployed signal processing and data mining methods to groups recor-
ded musical pieces by perceived similarity.

Alfred Ultsch received his Ph.D. Degree in Computer Science from
ETH Zurich, Switzerland. He holds Master degrees in Computer
Science from TU Munich, Germany and Purdue University West
Lafayette Indiana, USA. He is currently a Professor in the Philipps
University of Marburg, Germany in the field of Databionics.
Prof. Ultsch has published in the areas of bio-inspired computing,
databionics, knowledge discovery recognition, bioinformatics and
financial analysis.

123

	Efficient mining of all margin-closed itemsets with applications in temporal knowledge discovery and classification by compression
	Abstract
	1 Introduction
	2 Margin-closed itemsets
	2.1 Basic notation
	2.2 Margin-closedness

	3 Mining margin-closed itemsets
	3.1 Example

	4 Experiments
	4.1 Data sets
	4.2 Numerosity reduction
	4.3 Computational complexity
	4.4 δ-tolerance itemsets

	5 Applications
	5.1 Temporal data mining
	5.2 Mining by compression

	6 Discussion
	7 Related work
	8 Summary
	Acknowledgments
	References

