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Abstract Nowadays, most data mining algorithms focus on clustering methods alone.
Also, there are a lot of approaches designed for outlier detection. We observe that, in many
situations, clusters and outliers are concepts whose meanings are inseparable to each other,
especially for those data sets with noise. Thus, it is necessary to treat both clusters and outliers
as concepts of the same importance in data analysis. In this paper, we present our continuous
work on the cluster–outlier iterative detection algorithm (Shi in SubCOID: exploring cluster-
outlier iterative detection approach to multi-dimensional data analysis in subspace. Auburn,
pp. 132–135, 2008; Shi and Zhang in Towards exploring interactive relationship between
clusters and outliers in multi-dimensional data analysis. IEEE Computer Society. Tokyo,
pp. 518–519, 2005) to detect the clusters and outliers in another perspective for noisy data
sets. In this algorithm, clusters are detected and adjusted according to the intra-relationship
within clusters and the inter-relationship between clusters and outliers, and vice versa. The
adjustment and modification of the clusters and outliers are performed iteratively until a
certain termination condition is reached. This data processing algorithm can be applied in
many fields, such as pattern recognition, data clustering, and signal processing. Experimental
results demonstrate the advantages of our approach.

Keywords Clustering · Outlier detection · Multi-dimensional data ·
Cluster and outlier diversity

1 Introduction

The generation of multi-dimensional data has proceeded at an explosive rate in many
disciplines with the advance in modern technology. Many new clustering, outlier detection,

Y. Shi (B)
Department of Computer Science and Information Systems,
Kennesaw State University, Kennesaw, GA 30144, USA
e-mail: yshi5@kennesaw.edu

L. Zhang
Department of Computer Science, Eastern Michigan University, Ypsilanti, MI, USA

123



710 Y. Shi et al.

and cluster evaluation approaches have been presented in the last few years. Currently, many
real data sets are noisy, which makes it more difficult to design and process algorithms
efficiently and effectively.

We observe that, in many situations, clusters and outliers are concepts whose meanings
are inseparable to each other, especially for those data sets with noise. Thus, it is necessary to
treat clusters and outliers as concepts of equal importance in data analysis. In this paper, we
present our continuous work on the cluster–outlier iterative detection (simplified as COID
in the following content) algorithm [33,35] for noisy multi-dimensional data sets. In the
previous works [33,35], we defined the problem and the basic terms for the algorithm and
briefly described the algorithm. In this paper, we improve the definitions, present the details
of the algorithm, and demonstrate the extensive experiments for the algorithm.

In the data analysis field, we observe another fundamental problem. Clusters and outliers
are detected mostly based on the features of data sets, and the results are compared to the
ground truth of natural clusters and outliers. However, in many cases, the available features
do not reflect the ground truth very well. Also, good results are hard to achieve even using
dimension reduction approaches. This is another motivation for us to develop the COID
algorithm. We detect clusters and outliers in another perspective: not only relying mainly on
the features of the data sets, but also exploiting the relationship between clusters and outliers
in a computable way.

The remainder of this paper is organized as follows. Section 2 introduces the related work of
clustering, outlier detection, and cluster evaluation. Section 3 presents the formalization and
definitions of the problem. Section 4 describes the cluster–outlier iterative detection (COID)
algorithm. Section 5 presents experimental results, and concluding remarks are offered in
Sect. 6.

2 Related work

More and more large quantities of multi-dimensional data sets need to be clustered and
analyzed. Many data mining approaches have been designed and analyzed [1,28,38,41,42].
Cluster analysis is applied to identify homogeneous and well-separated groups of objects
in data sets. It plays an important role in many fields of business and science. The basic
steps in the development of a clustering process can be summarized as data cleaning, feature
selection, application of a clustering algorithm, validation of results, and interpretation of the
results [14]. Among these steps, the clustering algorithm and validation of the results are espe-
cially critical, and many methods have been proposed in the literature for these two steps.
Existing clustering algorithms can be broadly classified into four types [22]: partitioning
[11,26,24,27], hierarchical [17,18,46], grid-based [3,32,39], and density-based [6,13,19]
algorithms.

Partitioning algorithms construct a partition of a database of n objects into a set of K clus-
ters, where K is an input parameter. In general, partitioning algorithms start with an initial
partition and then use an iterative control strategy to optimize the quality of the clustering
results by moving objects from one group to another. Hierarchical algorithms create a hierar-
chical decomposition of the given data set of data objects. The hierarchical decomposition is
represented by a tree structure, called dendrogram. Grid-based algorithms quantize the space
into a finite number of grids and perform all operations on this quantized space. Grid-based
algorithms have the advantage of fast processing time independent of the data set size. The
processing time is dependent only on the number of segments of each dimension in the quan-
tized space. Density-based algorithms are designed to discover clusters of arbitrary shapes.
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They hold that, for each point within a cluster, the density in the neighborhood of a given
radius must exceed a defined threshold. Density-based approaches can also filter out outliers.

An outlier is a data point that does not follow the main characteristics of the input data.
Outlier detection is concerned with discovering the exceptional behaviors of certain objects.
It is an important branch in the field of data mining with numerous applications, including
credit card fraud detection, discovery of criminal activities, discovery of computer intrusion,
etc. In many applications, outlier detection is at least as significant as cluster detection. There
are numerous studies on outlier detection [29,37,40,44]. Yu et al. [45] proposed an outlier
detection approach termed FindOut as a by product of WaveCluster [32], which removes
the clusters from the original data and identifies the outliers. Knorr and Ng [25] detected a
distance-based outlier defined as a data point with a certain percentage of the objects in the
data set, which have distances of more than dmin away from it. Ramaswamy et al. [30] further
extended Knorr’s work based on the distance of a data point from its kth nearest neighbor
and identified the top n points with largest kth nearest neighbor distances as outliers. Breunig
et al. [10] introduced the concept of local outlier and defined local outlier factor (LOF) of
a data point as a degree of how isolated the data point was with respect to the surrounding
neighborhood. Aggarwal and Yu [2] extended the problem of outlier detection in subspace
to overcome the curse of dimensionality.

Our approach (COID) is different from previous clustering and outlier detection methods.
We tried to detect and adjust the set of clusters and outliers according to both the intra-
relationship and the inter-relationship between the set of clusters and the set of outliers.
The related work was also presented in [34], which describes our initial attempt to solve
the problem of clustering and outlier detection in subspace. In [34], we discussed the issue
related to subspace-based approach, in which each cluster is associated with a unique subset
of dimensions, so is each outlier. In each iteration, the subset of dimensions and the quality
of each cluster are modified and adjusted dynamically, so are the subset of dimensions and
the quality of each outlier. On the other hand, our approach (COID) focuses on the full data
space analysis.

There are several criteria for quantifying the similarity (dissimilarity) of the clusters.
ROCK [18] measured the similarity of two clusters by comparing the aggregate inter-
connectivity of them. Chameleon [23] measured the similarity of two clusters based on a
dynamic model. In the model, two clusters are merged only if the inter-connectivity and close-
ness (proximity) between the two clusters are highly related to the internal inter-connectivity
of the clusters and closeness of items within the clusters.

Many approaches [12,20,43] have been proposed for evaluating the results of a clustering
algorithm. Halkidi and Vazirgiannis [20] presented a clustering validity procedure. It defined
a validity index, which contained the information of the average degree of scatter within
clusters and the average number of points between the clusters. The index incorporated cri-
teria addressing compactness, separation, and density. Chen and Lee [12] introduced a fuzzy
validity function to measure the overall average compactness and separation of the fuzzy
partition. The average compactness was estimated by the deviation of data points from the
center of each cluster. The separation of the partition was represented by the distance between
cluster centers. These clustering validity measurements evaluated clustering algorithms by
measuring the overall quality of the clusters.

3 Problem definition

The concepts of cluster and outlier are related to each other. One aspect of the qualities of
clusters and outliers is reflected by how much diversity they have inside and among each
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other. The cluster–outlier iterative detection (COID) problem is formalized as follows. Let
n denote the total number of data points and d be the dimensionality of the data space.
Let the input d-dimensional data set be X = { �X1, �X2, . . . , �Xn}, which is normalized to
be within the hypercube [0, 1]d ⊂ Rd . Each data point �Xi is then a d-dimensional vector:
�Xi = [xi1, xi2, . . . , xid ].

Based on the initial cluster–outlier division of a data set, the COID algorithm is performed
iteratively. In one given iterative step, let the current number of clusters be kc and the current
number of outliers be ko; let the set of clusters be C = {C1, C2, . . . , Ckc } and the set of
outliers be O = {O1, O2, . . . , Oko}. We use the term compactness to measure the quality of
a given cluster based on the closeness of its data points to its centroid.

3.1 Distance metric selection

It is crucial to define a proper distance metric for a specific data mining problem. We use
d(p1, p2) to represent the distance between data points p1 and p2 under a certain distance
metric. In a high-dimensional space, data points are usually sparse, and widely used distance
metrics such as Euclidean distance may not work well as dimensionality goes higher.

Recent research [8] shows that in high dimensions nearest neighbor queries become unsta-
ble: the difference of the distances of farthest and nearest points to some query point does
not increase as fast as the minimum of the two. Aggarwal et al. [4,21] viewed the curse of
dimensionality from distance metrics point of view. They argued that for the commonly used
L K norm, the problem of meaningfulness in high dimensionality was sensitive to the value
of K: for high values of K, it worsens faster with increasing dimensionality. In this case, the
Manhattan distance metric (L1 norm) is consistently more preferable than the Euclidean dis-
tance metric (L2 norm) for high-dimensional data mining applications. They also exploited
the research in fractional distance metrics [4]. The fractional distance metric provides more
meaningful results from both the theoretical and empirical perspective. It can significantly
improve the effectiveness of standard clustering algorithms such as the k-means algorithm.
Based on the current research, we prefer the fractional distance metric L0.1 to L2 metric in our
implementations. For two data points �X1, �X2 ∈ Rd , L0.1( �X1, �X2) = ∑d

i=1((x1i −x2i )
0.1)10.

3.2 The compactness of a cluster

A cluster in a data set is a subset where the included data points have a closer relationship
with each other than with points outside the cluster. In the literatures [12,20], the intra-cluster
relationship is measured by compactness, and the inter-cluster relationship is measured by
separation. Compactness is a relative term; an object is compact in comparison to a looser
surrounding environment.

Definition 1 Given the current set of clusters C = {C1, C2, . . . , Ckc } and the current set of
outliers O = {O1, O2, . . . , Oko}, the compactness (CPT) of a cluster Ci is the closeness
measurement of the data points in Ci to the centroid of Ci :

CPT(Ci ) =
∑

�p∈Ci
d( �p, mci )

|Ci | , (1)

where mci is the centroid of Cluster Ci , �p is any data point in Cluster Ci , |Ci | is the number
of data points in Ci , and d( �p, mci ) is the distance between �p and mci . The centroid mci of the
cluster is the algebraic average of all the points in the cluster: mci = ∑

�p∈Ci
�p/|Ci | where

|Ci | is the size of cluster Ci .
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3.3 The diversities of data groups

We use the term diversity to describe the dissimilarity between two clusters, the dissimilarity
between two outliers, and the one between a cluster and an outlier. We adopt compactness
(CPT) concept (definition 1) of the cluster to set up the weights for the distance measurement.

Definition 2 The diversity between a cluster C and an outlier O is defined as:

D1(C, O) = w1 · dmin(O, C) + w2 · davr(O, C) (2)

where w1 = 1
CPT(C)+1

, w2 = CPT(C)

CPT(C)+1
, davr(O, C) = d(O, mc), and dmin(O, C) =

max(d(O, mc) − rmax, 0) where rmax is the maximum distance of the data points in C from
its centroid.

In this way, the more compact the cluster is, the more important role dmin plays in deter-
mining the diversity between an outlier and a cluster. The larger the value of D1(C, O) is,
the larger diversity the cluster C and the outlier O have to each other. If 1 � CPT(C), cluster
is very compact: all the data points in C are extremely close to the centroid of C. In this

case, w1 = 1
CPT(C)+1

≈ 1 and w2 = CPT(C)

CPT(C)+1
≈ 0; thus, dmin plays the major role in

Definition 2. Actually, it is similar to the situation of calculating the diversity (distance)
between two data points.

The distance between two clusters may not always represent their diversity accurately.
Figure 1 shows an example of the relationship between clusters. Both clusters C11 and C12

are sparser than clusters C21 and C22. From global point of view, the cluster pair (C11 and
C12) has a higher chance of being merged into a larger cluster than the pair (C21 and C22).
However, neither their minimum distance nor their average distance is different from each
other (dmin(C11, C12) = dmin(C21, C22) and davr(C11, C12) = davr(C21, C22)). There are
also cases where the pair of clusters have different compactness and sizes as shown in Fig. 2,
which makes the analysis even more complicated (dmin(C11, C22) = dmin(C11, C12) =
dmin(C21, C22) and davr(C11, C22) = davr(C11, C12) = davr(C21, C22)).

We apply a simplified criterion that integrates the compactness (CPT) concept
(definition 1) into the diversity measurement of two clusters. It represents how compact
the data points inside the cluster are.

Definition 3 The diversity between two clusters C1 and C2 is defined as:

D2(C1, C2) = d(C1, C2)

CPT(C1) + CPT(C2)
(3)

where d(C1, C2) can be either the average distance between the two clusters or the minimum
distance between them. We just simply apply the former one d(mC1 , mC2). The larger the
value of D2(C1, C2) is, the larger diversity the clusters C1 and C2 have to each other.

Among the cluster pairs shown in Fig. 1 and Fig. 2, the cluster pair C11 and C12 will be
chosen to merge prior to the cluster pair C21 and C22 or the pair C11 and C22, although they
are more sparse than the other two pairs. The reason is that D2(C11, C12) < D2(C11, C22) <

D2(C21, C22), according to Definition 3.

Definition 4 The diversity between two outliers O1 and O2 is defined as:

D3(O1, O2) = d(O1, O2) (4)
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Fig. 1 Two cluster pairs with same average distance and minimum distance but different diversity

Fig. 2 A cluster pair with different compactness and sizes

3.4 The qualities of data groups

We propose a novel way to define the quality of a cluster C and an outlier O . The quality of
C is reflected by the diversity between itself and other clusters (how far away and different
they are from each other). It is also reflected by the diversity between C and outliers. If C
is near some outliers, its quality should certainly be affected because outliers are supposed
to be far away from any cluster. Thus, we take consideration of both the diversity between
clusters and the diversity between a cluster and an outlier to define the quality of a cluster.
We define the quality of an outlier O in a similar way.

Definition 5 We measure the quality of a cluster C as:

Qc(C) =
∑

C ′∈C,C ′�=C D2(C,C ′)
kc−1 +

∑
O∈O D1(C,O)

ko

CPT(C)
(5)

The larger Qc(C) is, the better quality cluster C has.
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Definition 6 We measure the quality of an outlier O as:

Qo(O) =
∑

O′∈O,O′�=O D3(O, O′)
ko − 1

+
∑

C∈C D1(C, O)

kc
(6)

The larger Qo(O) is, the better quality outlier O has.

4 Algorithm

The main objective of the COID algorithm is to mine the meaningful set of clusters and
outliers from the input data set. Clusters and outliers are closely related and affect each other
in a certain way. As mentioned in the previous sections, in our approach, clusters and out-
liers of multi-dimensional data are detected, adjusted, and improved iteratively. The overall
pseudocodes for the algorithm are given in Fig. 3. Section 5.3 illustrates the entire process
in detail.

The algorithm proceeds in two phases: an initialization phase and an iterative phase. In the
initialization phase, we find the centers of clusters and locations of outliers. The problem of
finding cluster centers has been extensively investigated. For example, in [9,15], the authors
proposed a procedure for computing a refined starting condition from a given initial one that
is based on an efficient technique for estimating the modes of a distribution. We apply a
strategy similar to the greedy technique proposed in [16], which tries to iteratively choose
surrogate cluster centers (medoids). In the iterative phase, we refine the set of clusters and
outliers gradually by exchanging the outliers of the worst qualities with the boundary data
points of the worst clusters. Each phase is detailed in the following.

4.1 Initialization phase

In the initialization phase, first, the initial set of medoids is found. Next, data points are
dispatched to their nearest medoids, forming data subsets associated with the medoids.
Approaches are then exploited to determine whether a data subset is a cluster or a group
of outliers.

4.1.1 Acquirement of medoids

Finding medoids that can approximate the centers of different clusters is critical for our
approach. Since outliers normally exist in real data sets, it is not effective to apply the greedy
technique of [16] directly to find k medoids. Similar to the method proposed in [5], we try to
find a superset of a good set of k medoids. We also develop a novel approach to determine
the set of k medoids from its superset.

We first choose a random set RS1 of data points from the original data set. RS1 has the
size RandomSize1, which is multiple of the required cluster number k. We then apply the
greedy algorithm in [16] to find another random set RS2 from RS1. To form RS2, each time
we find a data point from RS1, which is farthest to its closest data point among all the current
data points in RS2, and put it into RS2, until the size of RS2 reaches the value Random-
Size2. RandomSize2 is also multiple of k, and RandomSize1 > RandomSize2.
RandomSize1 and RandomSize2 do not necessarily need to be set as multiples of k. We set
them proportional to k just to keep the calculation simple. RS2 has a subset of well-scattered
data points from RS1. This greatly reduces the dependence of the clustering result on the
content of RS1 and improves the effectiveness of the algorithm.
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Fig. 3 Algorithm: COID

4.1.2 Dispatching data points

Once the smaller random set RS2 of medoids is obtained, we proceed to determine which
medoids are in some clusters and which medoids are actually outliers.

We first assign each data point dp to a certain medoid (the nearest one to dp) in RS2.
After this step, each medoidi ∈ RS2 is associated with a set of data points denoted as Ei in
Fig. 4 (notice that Ei can be an empty set).

4.1.3 Initial partition of the data set

Cluster or outlier? After obtaining the set E = {Ei } of the initial partition of the input data
set X, we check the size of each medoid-associated data subset Ei ∈ E . A medoid medoidi
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Fig. 4 Proc: DispatchDataPoints

Fig. 5 Data groups associated
with different medoids

with a small associated data subset Ei may seem to be an outlier, but it is not necessarily
the case. Since we get the initial medoids randomly, multiple medoids can be located in
the same natural cluster. Some of the medoids may contain very few data points, but they
actually belong to a cluster instead of being an outlier. Figure 5 shows an example of such
a case. In Fig. 5, three medoids (medoid1, medoid2, and medoid3) are randomly selected,
and they form three data subsets (E1, E2, and E3). The data subset E1 has the smallest size.
However, it is easy to see that E1 is actually a part of a natural cluster (combination of E1

and E2). Therefore, the size alone is not enough to determine whether a medoid is an outlier
or actually in a cluster.

Here, we exploit an approach to adjust the criterion to determine whether a medoid is an
outlier. We partition the data subsets Ei ∈ E into sets C and Otemp by Ts . Ts is the threshold
of the cluster size, which can be application oriented. For each subset Es (formed by medoid
medoidi ) in Otemp, we use two factors to determine the possibility of medoidi being an
outlier: the size of Es and the minimum distance between Es and other medoid-associated
data subsets in E . The reason is given above. Practically, we use |Es |

dt (Es )
as the criterion for

the determination. |Es | is the size of Es , and dt (Es) is the diversity between Es and the
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Fig. 6 Proc: ClusterOrOutlier

medoid-associated data subsets E j ∈ E . See Fig. 6 for the definition of dt (Es). The smaller
the value of |Es | is and the larger dt (Es) is, the smaller |Es |

dt (Es )
is, and the medoid medoidi

(forming data subset Es) is probably an outlier. This is also consistent with the situation
shown in Fig. 5.

For Es ∈ Otemp, we sort them in ascending order by |Es |
dt (Es )

into an ordered list ls and find
the first sharp upward point p̃ (see Fig. 7). Data subsets before p̃ in ls can be reasonably
regarded as the groups of outliers since they have small size and also are far from other data
subsets. When there is no sharp point at all in ls , we simply set p̃ to the one-third position.
Data subsets after p̃ in ls are more likely some data groups inside natural clusters, and we
put them back into the cluster set C.

Real data sets such as those from UCI Machine Learning Repository [7] have data objects
much greater than k. In most cases, |C| (the size of the cluster C) is larger than k because
of the way RS2 is generated as described in 4.1.1. RS2 has a subset of well-scattered data
objects from RS1. After the process of dispatching data points in 4.1.2, each medoid will
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Fig. 7 Ordered list of outlier subsets in the intermediate set based on |Es |
dt (Es )

associate a number of data objects. Together, they tend to form similar sized groups, since
RS2 better represents the distribution of the data set.

However, there is still a chance that |C| is less than k. In this case, to improve the result,
we can adjust the threshold of the cluster size Ts . Improper value for Ts will cause the ini-
tialization phase to fail, as the initialization phase will always result in less than k initial
clusters. For example, if Ts is set extremely high, such as 	n/2
 , where n is the total number
of data objects in the data set, we cannot obtain k clusters when k is larger than 1. Since RS2

contains RandomSize2 medoids, a more reasonable value for Ts is 	n/RandomSize2
.
In this way, the average number of the data objects associated with each medoid in RS2 is in
the same order of magnitude as Ts . So, the possibility that we have k or more initial clusters
will be much higher. After several attempts, if we still cannot obtain at least k clusters, we
then add k-|C| sets in E to C. Those k-|C| sets are closest but not beyond the threshold Ts .

4.2 Iterative phase

In the iterative phase, there are four steps: (1) we merge the initial set of clusters into k
clusters; (2) we sort clusters and outliers based on their qualities and select the worst clusters
and outliers; (3) for clusters of the worst qualities, we exploit some methods to select the
boundary data points for each of them; and (4) we refine the set of clusters and outliers
gradually by exchanging the selected boundary data points and the worst outliers. Steps two,
three, and four are performed iteratively until a certain termination condition is reached. We
detail each step in the following.

4.2.1 Merging clusters

Before we perform the cluster–outlier iterative detection process, we should first merge the
current cluster set C into k clusters. It is an iterative process. In each iteration, two nearest
clusters are found in C, and they are merged. The distance between two clusters C1 and C2

is based on the diversity measurement D2(C1, C2) of two clusters defined in Sect. 3. The
iteration step is performed until the total number of clusters in C is k. We also compute the
centroid of each cluster Ci ∈ C (denoted as ci ).
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4.2.2 Sorting clusters and outliers

For each outlier O ∈ O, its nearest cluster Co ∈ C is located. The distance between the clus-
ter C and the outlier O is based on the diversity measurement D1(C, O) defined in Sect. 3.
The quality Qo(O) (defined in Sect. 3) is also calculated. Outliers with the worst qualities
(similar to the method shown in Fig. 7, the outliers before the first sharp point) are put into
set O′. Similarly, for each cluster C ∈ C, its quality Qc(C) (defined in Sect. 3) is calculated.
Clusters with the worst qualities (similar to the method shown in Fig. 7, the clusters before
the first sharp point) are put into set C′.

If a cluster has bad quality, it is more apt to contain some data points better to be considered
as outliers. Similarly, an outlier with bad quality should be considered to be included in a
certain cluster.

4.2.3 Finding boundary data points

We define boundary data points (BDP) of a cluster as those with the farthest distance to
the centroids of the cluster and having the least number of neighboring data points. Having
the least number of neighboring data points ensures that our method does not only favor
clusters of standard geometries such as hyper-spherical ones. For real-world data sets, the
boundary data points of the clusters are ambiguous. Some boundary data points under one
certain scale could be regarded as outliers under another scale. Some outliers under one cer-
tain scale may better to be treated as boundary data points under a different scale. To decide
which data points should be boundary data points belonging to a certain cluster and which
ones should be outliers is a difficult problem, and we design an algorithm to solve such a
problem.

For each cluster Ci ∈ C′, we identify its boundary data points based on di j and ς( j).di j is
the distance between each data point dp j ∈ Ci and the centroid ci of Ci .ς( j) is the number
of data points within radius τ of dp j , and τ is set proportional to |Ci |. We sort the data points

dp j ∈ Ci in descending order by
di j

ς( j) and locate the first sharp downward point p̃. Data
points before p̃ are regarded as boundary data points of Ci . The set of boundary data points
of Ci can be ∅ (empty) if there are no prominent boundary data points in Ci .

We then group all boundary data points of clusters in C′ into a set BDP and check its
size. If the size of BDP is much larger than the size of O′, we should further reduce the size
of BDP. Excessive differences between the sizes of BDP and O′ could unbalance the initial
division of X in the consideration that the initial results of most existing algorithms already
contain clusters and outliers similar to the ground truth.

To reduce the size of BDP, we perform another sorting on the data points in BDP. Note
that the previous sort of data points is for each cluster Ci ∈ C′ individually while this time
the sort is on the combination of the boundary data points from all the clusters in C′. The
criterion of the sort is also different from the previous one. The new criterion consists of (1)
the distance between boundary data points and the centroid of clusters they belong to and (2)
the number of their neighbors plus integrating the information of the sizes of the clusters. The
rationale is because clusters in C′ have difference sizes, and sort solely based on the distance
measurement is unfair to the boundary data points of some clusters in this case. Practically,
we use

di j
|Ci |∗ς( j) as the sorting criterion to eliminate the effect of the size differences among

clusters. We reduce the size of BDP, making it only contain the first |O′| boundary data points
in the ordered boundary data point list.
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4.2.4 Exchanging data points in clusters and outliers

The next step is to exchange the characteristics of outliers and boundary data points. For each
outlier O ∈ O′, we add O into its nearest cluster. For each boundary data point bdp ∈ BDP,
we change it into a new outlier. The reason that we do not exchange boundary data points
between two clusters is that the whole data partition will be deteriorated after exchange.
Termination condition: After the exchange step, we reorganize the united set U of the worst
outlier set O′ and the reduced boundary data point set BDP as U = O′ ∪ BDP. The iterative
process is performed until either of the following two conditions is satisfied: the elements in
U do not change dramatically anymore, or some threshold of the iteration number is reached.

4.3 Time and space analysis

Let the size of the data set be n. Throughout the process, we need to keep track of the
information of all points, which collectively occupies O(n) space. For the iteration step, we
need (1) information of current set C of clusters, (2) the current set O of outliers, (3) the
boundary data points of each cluster, and (4) the worst outliers and worst clusters in each
iteration. The total space needed is O(n). The time required for each iteration is O(n +
|C| log |C| + |O| log |O|) mainly for computation of the various qualities and sort process.
The total time required for the algorithm is O(� ∗ (n + |C| log |C| + |O| log |O|)) in which
� is the threshold of the iteration number.

5 Experiments

We conducted comprehensive experiments on both synthetic and real data sets to assess the
accuracy and efficiency of the proposed approach. Our experiments were run on a SUN
ULTRA 60 workstation with the Solaris 5.8 system. Trials using data sets from real-world
applications were performed comparing to other algorithms such as CURE and Shrinking.

The accuracy of a detected cluster was measured by precision and recall. For a detected

cluster Cs
i and a real cluster Co

i , the precision of Cs
i with respect to Co

i is defined as
|Cs

i

⋂
Co

i |
|Cs

i |
and the recall is

|Cs
i

⋂
Co

i |
|Co

i | .Cs
i is called a corresponding cluster of Co

i if the precision and

recall of Cs
i with respect to Co

i are high.

5.1 Scalability on high-dimensional data sets

To test the scalability of our algorithm over dimensionality and data size, we designed a
synthetic data generator to produce data sets with clusters. The sizes of the data sets varied
from 5,000, 10,000, . . ., to 100,000, and the dimensions of the data sets varied from 10, 20,
. . . to 60. Each data set contained five clusters with the points in each cluster generated in
normal distributions. An additional 5% of data points were added randomly to each data set as
noise. Clusters and outliers were effectively detected by our algorithm in all tests performed
on these high-dimensional data sets. Figure 8 shows the running time of 20 groups of data sets
with dimensions increasing from 10 to 60. Each group had a fixed data size (the noisy data
points were not counted). Figure 9 shows the running time of 11 groups of data sets with sizes
increasing from 5,000 to 100,000. Each of these 11 groups had a fixed number of dimensions.
The two figures indicate that our algorithm is scalable over dimensionality and data size.
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Fig. 8 Running time with increasing dimensions
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Fig. 9 Running time with increasing data sizes

5.2 Real-world data sets

The real data sets were obtained from UCI Machine Learning Repository [7]. The first set
is the Wine Recognition data (simplified as Wine data). It contains the results of a chemical
analysis of wines grown in the same region in Italy but derived from three different cultivars.
It has 178 instances with 13 features. The data set has three clusters with the sizes of 59, 71,
and 48.

The second data set is Ecoli data. It contains data regarding Protein Localization Sites.
This data set is made up of 336 instances, with each instance having seven features. It has 8
clusters with the sizes of 143, 77, 52, 35, 20, 5, 2, and 2.
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The third data set is Pen-Based Recognition of Handwritten Digits data (or Pendigits). It
was created by collecting 250 samples from 44 writers. It has two subsets used, respectively,
for training and testing. For the purpose of this experiment, we have combined these two
subsets, resulting in a combined dataset with 10992 instances, each containing 16 attributes.
The data set has ten clusters, Co

i for i = 1, 2, . . . , 10.
Due to the space limitation, we only show the comparison of the testing results of our

algorithm on Wine and Ecoli data with those of other algorithms. We also demonstrate how
COID can improve the performance of other algorithms on Wine and Pendigits data.

5.3 COID on wine data: An illustration

In this section, we used the Wine data set to illustrate how the COID algorithm performed. As
mentioned in Sect. 4, the COID algorithm proceeded in two phases: an initialization phase
and an iterative phase. We demonstrated how the original data points from the wine data
were processed step by step, eventually forming various clusters and outliers.

5.3.1 Initialization Phase

1. Acquirement of medoids

The first step in the initialization phase was to locate the initial set of medoids. We tried to
find a superset of a good set of k medoids. From the ground truth, there were 3 (k = 3)
natural clusters in the Wine data set. Here, we let Const1 be 4 and Const2 be 2
(Fig. 3). We also set the density threshold as 20, which means any group that contains
less than 20 data points would first be regarded as a group of outliers (which could be
changed later). The worst 3 clusters and the worst 3 outliers (in terms of the qualities)
would be chosen in each iteration to perform exchange between outliers and boundary data
points.

Based on these settings, we randomly chose 12 (RandomSize1 = Count1×k) data
points from the Wine data set as the initial group RS1 of medoids. Since those medoids
were randomly picked, they might not represent the distribution of the data set well. We then
applied the strategy described in Sect. 4.1.1 to find another superset RS2 of the k (k = 3)
medoids with size 6 (RandomSize2 = Count2×k). We started with a random pick of a
medoid from RS1 and then performed an iteration to pick up the next medoid, until we chose
6 medoids. Each time, we tried to find the medoid that was farthest to the medoids that were
already in RS2.

Now, we had 6 medoids in RS2. We then assigned each data point in the Wine data to
one of these 6 medoids. There were 178 data points altogether. After the assignment, we had
initially 6 groups of data points represented by these 6 medoids. The sizes were 21, 42, 45,
28, 18, and 24.

2. Dispatching data points

The next step was to decide which groups were initial clusters and which ones were initial
outliers. Since the density threshold for a cluster was set as 20, at this stage, we had 5 clusters
and 1 group of outliers (the one with size 18). If there were more than 10 groups of outliers, we
would sort them in ascending order based on |Es |

dt (Es )
(Fig. 6) and found the first sharp upward

point p̃ (Fig. 7). Since here we only had 1 group of outliers, this step could be skipped. The
group of 18 data points would be assigned as the initial outliers. So far, we partitioned the
Wine data set into 5 clusters and 18 outliers.
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5.3.2 Iterative phase

1. Merging clusters

We now entered iterative phase. Since there were 3 (k = 3) clusters in the Wine data set
according to the ground truth, the first step in the iterative phase was to merge clusters
eventually to form 3 clusters. Each time we found two clusters that were closest to each other
and merged them together. We first merged the cluster with 21 data points and the one with
24 data points. The new cluster had 45 data points. We then merged the cluster with 42 data
points and the one with 28 data points. The new cluster had 70 data points. After merging
clusters twice, now we shrunk the number of clusters from 5 to 3, which was the number of
natural clusters according to the ground truth.

2. Iteration process

We performed the following steps iteratively: (1) for each cluster, we found its boundary
data points following the strategy described in Sect. 4.2.3; (2) for each outlier, we found
the nearest cluster it was close to; (3) we sorted outliers and clusters respectively based on
their qualities and selected the worst outliers and the worst boundary data points; and (4)
we changed the worst outliers to the new boundary data points, and we changed the worst
boundary data points to the new outliers.

We assigned each data point in the Wine data set with an identity number (ID), from
0, 1, . . . , 177. We assigned clusters as Cluster 1

(
Cs

1

)
contained 70 data points; Cluster 2(

Cs
2

)
contained 45 data points; Cluster 3

(
Cs

3

)
contained 45 data points. We used Co

1 , Co
2 , and

Co
3 to denote the natural clusters according to the ground truth of the Wine data set. Before

iteration started, Cs
1 contained data points from Co

1 , Co
2 , and Co

3 . Its precision and recall were
0.785 and 0.932, respectively. The detail for each cluster is listed below.

Cluster Size From Co
1 From Co

2 From Co
3 Precision Recall

Cs
1 70 55 13 2 0.785 0.932

Cs
2 45 4 40 1 0.888 0.563

Cs
3 45 0 3 42 0.933 0.875

In iteration 1, Cs
1 had 2 boundary data points, Cs

2 had 2 boundary data points, and Cs
3 had 2

boundary data points. The worst BDP IDs were 33, 90, 121, 146, and 169. They were changed
as new outliers. There were 5 worst outliers, and their IDs were 75, 117, 100, 62, and 86. For
each O of those 5 outliers, we found the cluster C it is closest to based on D1(C, O) defined
in Sect. 3 and included it in C.

In iteration 2, the worst BDP IDs were 7, 61, and 158, and they were changed as new
outliers. There were 3 worst outliers, and their IDs were 90, 64, and 67. These outliers were
included in various clusters as we did in iteration 1. There was 1 data point with ID 90, which
also appeared in the last iteration. After iteration two, clusters were updated as follows:

Cluster Size Boundary point From Co
1 From Co

2 From Co
3 Precision Recall

Cs
1 69 2 55 13 1 0.797 0.932

Cs
2 48 2 3 44 1 0.916 0.619

Cs
3 43 2 0 2 41 0.953 0.854

In iteration 3, the worst BDP IDs were 90, 145, 95, and 68. They were changed as new
outliers. There were 4 worst outliers, and their IDs were 61, 142, 96, 112. They were changed
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as new data points for certain clusters. There were 2 data points with ID 90 and 61, which
also appeared in the last iteration. After iteration two, clusters were updated as follows:

Cluster Size Boundary point From Co
1 From Co

2 From Co
3 Precision Recall

Cs
1 68 1 55 13 0 0.808 0.932

Cs
2 49 2 2 46 1 0.938 0.647

Cs
3 43 1 0 2 41 0.953 0.854

The iterations were preformed until the union of worst DBPs and worst outliers was stable
or the iteration number exceeded a threshold. In this case, we executed 30 times, and the
union of worst DBPs and worst outliers became stable.

Cluster Size Boundary point From Co
1 From Co

2 From Co
3 Precision Recall

Cs
1 68 1 57 9 0 0.876 0.966

Cs
2 60 2 2 57 1 0.950 0.802

Cs
3 43 1 0 2 44 0.956 0.916

5.4 Algorithm comparison

5.4.1 Algorithms

CURE: We used the implementation of CURE provided to us by Michael Steinbach from
University of Minnesota. It requires three input parameter options:−k option is for the number
of clusters, −α is for alpha parameter of CURE, and −r is the number of representative points
of the cluster. To compare CURE with our algorithm fairly, we applied different values of those
parameters extensively and adopted the best clustering results. Since we used CURE mainly
to compare the accuracy of its clustering result with ours, we did not take into consideration
the partition number parameter p for speedup mentioned in [17].

Shrinking: We also conducted experiments using Shrinking algorithm [36] on real data
sets. Shrinking is a data preprocessing technique that optimizes the inner structure of data
inspired by the Newton’s Universal Law of Gravitation [31] in the real world. Shrinking-
based multi-dimensional data analysis approach first moves data points along the direction
of the density gradient, thus generating condensed, widely separated clusters. It then detects
clusters by finding the connected components of dense cells. Then, it uses a cluster-wise
evaluation measurement to compare the clusters from different cases and select the best
clustering results.

COID: Our clustering and outlier detection version is based on the algorithm described in
the previous sections. First, medoids for natural clusters are searched and the initial clusters
and outliers are detected. Then, clusters and outliers are iteratively modified and refined
according to the relationship among them.

5.4.2 Comparison

The first experiments were conducted on Wine data. We applied CURE algorithm on the
Wine Recognition data set, setting parameter values to different values extensively. We set
the cluster number parameter k to 3 based on the ground truth of the Wine Recognition data
set, set the shrinking factor α and the number of representative points r with different values
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Table 1 Clustering result of
CURE for Wine data as α = 0.3
and r = 10

Cs
1 Cs

2 Cs
3 Recall (%)

Co
1 54 3 2 91.52

Co
2 2 41 9 57.77

Co
3 10 5 26 54.16

Precision (%) 75.00 82.00 56.52

Table 2 Clustering results of
Shrinking algorithm for Wine
data

Cs
1 Cs

2 Cs
3 Recall (%)

Co
1 53 1 1 89.83

Co
2 0 51 1 71.83

Co
3 0 0 43 89.58

Precision (%) 100 98.08 93.48

Table 3 Clustering result 1 of
COID algorithm for Wine data

Cs
1 Cs

2 Cs
3 Recall (%)

Co
1 53 3 1 89.83

Co
2 1 65 2 91.54

Co
3 2 2 45 93.75

Precision (%) 94.64 89.04 97.82

Table 4 Clustering result 2 of
COID algorithm for Wine data

Cs
1 Cs

2 Cs
3 Recall (%)

Co
1 53 2 2 89.83

Co
2 1 64 3 90.14

Co
3 0 1 45 93.75

Precision (%) 96.36 86.49 97.82

and found the best clustering result among those parameter values. Due to space limitation,
we just present one of the best results of CURE. Table 1 shows the clustering results of CURE
algorithm when α = 0.3, and r = 10.

We then applied Shrinking-based clustering algorithm on Wine data. Table 2 shows the
clustering results of the Shrinking algorithm.

Our COID algorithm was also performed on the Wine data. In order to analyze how
randomly generated medoids in RS1 can affect the performance of our approach, we randomly
generated medoids three times. Tables 3, 4, and 5 show the clustering results of our algorithm.
The overall clustering result of COID algorithm was better than CURE (in Table 1). As for
Shrinking, although the average precision of the testing result of COID was lower than that
of Shrinking (93.50 vs. 97.05%), the average recall of the testing result of COID was higher
than that of Shrinking (91.36 vs. 83.75%).

Experiments were performed on Ecoli data. We applied CURE algorithm on the Ecoli data
set, setting parameter values to different values extensively. According to the ground truth
of the Ecoli data set, there are 8 clusters in it. However, three of the clusters are too small,
so we set the cluster number parameter k to 5, set the shrinking factor α and the number of
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Table 5 Clustering result 3 of
COID algorithm for Wine data

Cs
1 Cs

2 Cs
3 Recall (%)

Co
1 53 2 2 88.14

Co
2 1 64 3 91.54

Co
3 0 1 45 93.75

Precision (%) 94.54 89.04 95.74

Table 6 Clustering result of CURE for Ecoli data as α = 0.8 and r = 20

Cs
1 Cs

2 Cs
3 Cs

4 Cs
5 Cs

6 Cs
7 Cs

8 Recall (%)

Co
1 115 10 0 N/A N/A 0 N/A N/A 80.41

Co
2 1 41 1 N/A N/A 0 N/A N/A 53.24

Co
3 0 8 30 N/A N/A 0 N/A N/A 57.69

Co
4 N/A N/A N/A N/A N/A N/A N/A N/A N/A

Co
5 N/A N/A N/A N/A N/A N/A N/A N/A N/A

Co
6 1 0 0 N/A N/A 3 N/A N/A 60.00

Co
7 N/A N/A N/A N/A N/A N/A N/A N/A N/A

Co
8 N/A N/A N/A N/A N/A N/A N/A N/A N/A

Precision (%) 95.83 61.19 93.75 N/A N/A 100 N/A N/A

Table 7 Clustering result of Shrinking algorithm for Ecoli data

Cs
1 Cs

2 Cs
3 Cs

4 Cs
5 Cs

6 Cs
7 Cs

8 Recall (%)

Co
1 130 3 5 1 0 N/A N/A N/A 90.91

Co
2 2 22 14 7 1 N/A N/A N/A 28.57

Co
3 0 0 43 5 0 N/A N/A N/A 82.69

Co
4 0 0 2 32 0 N/A N/A N/A 91.43

Co
5 0 0 3 2 10 N/A N/A N/A 50.00

Co
6 N/A N/A N/A N/A N/A N/A N/A N/A N/A

Co
7 N/A N/A N/A N/A N/A N/A N/A N/A N/A

Co
8 N/A N/A N/A N/A N/A N/A N/A N/A N/A

Precision (%) 96.30 100 63.24 65.31 90.91 N/A N/A N/A

representative points r with various of values and select the best clustering result. Table 6
shows the clustering results of CURE algorithm when α is equal to 0.8 and r is 20.

We then applied Shrinking-based clustering algorithm on Ecoli data. Table 7 shows the
clustering results of the Shrinking algorithm.

Our COID algorithm was also performed for three times on the Ecoli data, generating
three different sets of medoids for RS1. Table 8, 9, and 10 show the clustering results of our
algorithm. Compared to the clustering results of CURE and Shrinking algorithms, COID has
the most information of the first 3 largest natural clusters.
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Table 8 Clustering result 1 of COID algorithm for Ecoli data

Cs
1 Cs

2 Cs
3 Cs

4 Cs
5 Cs

6 Cs
7 Cs

8 Recall (%)

Co
1 130 2 4 N/A N/A 0 N/A N/A 90.90

Co
2 3 56 5 N/A N/A 0 N/A N/A 72.72

Co
3 1 4 47 N/A N/A 0 N/A N/A 90.38

Co
4 N/A N/A N/A N/A N/A N/A N/A N/A N/A

Co
5 N/A N/A N/A N/A N/A N/A N/A N/A N/A

Co
6 0 0 0 N/A N/A 4 N/A N/A 80.00

Co
7 N/A N/A N/A N/A N/A N/A N/A N/A N/A

Co
8 N/A N/A N/A N/A N/A N/A N/A N/A N/A

Precision (%) 94.89 62.92 67.14 N/A N/A 100 N/A N/A

Table 9 Clustering result 2 of COID algorithm for Ecoli data

Cs
1 Cs

2 Cs
3 Cs

4 Cs
5 Cs

6 Cs
7 Cs

8 Recall (%)

Co
1 131 3 3 N/A N/A 0 N/A N/A 91.60

Co
2 4 56 3 N/A N/A 0 N/A N/A 72.72

Co
3 1 3 47 N/A N/A 0 N/A N/A 90.38

Co
4 N/A N/A N/A N/A N/A N/A N/A N/A N/A

Co
5 N/A N/A N/A N/A N/A N/A N/A N/A N/A

Co
6 0 0 0 N/A N/A 4 N/A N/A 80.00

Co
7 N/A N/A N/A N/A N/A N/A N/A N/A N/A

Co
8 N/A N/A N/A N/A N/A N/A N/A N/A N/A

Precision (%) 94.92 62.22 68.12 N/A N/A 100 N/A N/A

Table 10 Clustering result 3 of COID algorithm for Ecoli data

Cs
1 Cs

2 Cs
3 Cs

4 Cs
5 Cs

6 Cs
7 Cs

8 Recall (%)

Co
1 130 2 3 N/A N/A 0 N/A N/A 90.90

Co
2 3 55 6 N/A N/A 0 N/A N/A 71.43

Co
3 2 3 47 N/A N/A 0 N/A N/A 90.38

Co
4 N/A N/A N/A N/A N/A N/A N/A N/A N/A

Co
5 N/A N/A N/A N/A N/A N/A N/A N/A N/A

Co
6 0 0 0 N/A N/A 4 N/A N/A 80.00

Co
7 N/A N/A N/A N/A N/A N/A N/A N/A N/A

Co
8 N/A N/A N/A N/A N/A N/A N/A N/A N/A

Precision (%) 94.20 61.80 66.20 N/A N/A 100 N/A N/A

5.5 Using COID to improve other algorithms

We also conducted experiments to test how COID algorithm can improve the clustering
and outlier detection results of other algorithms. Due to the space limitation, here we only
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Table 11 Iteration of COID
algorithm on clustering result of
CURE algorithm on Wine data

i O′ BDP Match Average Average
precision (%) Recall (%)

0 N/A N/A N/A 71.17 67.81

1 70 36 110 66 0 71.24 67.90

2 44 19 74 98 109 124 0 71.91 68.56

... ... ... ... ... ...

20 129 62 124 59 3 82.96 79.32

21 124 110 62 43 2 83.44 79.79

22 62 43 110 124 4 83.25 79.42

demonstrate how COID can improve the testing results of Wine data and Pendigits data from
the CURE algorithm.

Table 11 shows the change in status of the testing result of Wine data. In Table 11, the
column O′ contains ids of those outliers with the worst qualities, although there might be
other outliers at that moment. Similarly, the column BDP presents ids of those boundary
data points of clusters that had worst qualities. The contents of these two columns were to
be exchanged with each other. They constituted the set U ( U = O′∪ BDP). The column
match shows how many elements in U in current iteration were similar to those in the previous
iteration. The average precision and the average recall columns are according to the clustering
results.

The first line lists the original testing result from the CURE algorithm on Wine data. So the
worst outliers, worst boundary data points and the match were not available yet. The average
precision was 71.17% (resulting from the average of the precisions of the clustering result
from Table 1: 75.00, 82.00, and 56.52%). The average recall was 67.81% (resulting from the
average of the recalls of the clustering result from Table 1: 91.52, 57.77, and 54.16%).

In each iteration, the clusters and outliers were adjusted and modified according to their
intra-relationship and inter-relationship. Outliers with the worst qualities were selected, so
were those worst boundary data points. From Table 11, we can see that the average precision
and average recall of the clustering result improved as the iteration went on. The iterations
were executed till iteration 22, when the match of the set U to that of the previous iteration
21 was 100%. The updated average precision was 83.25%, and the updated average recall
was 79.42%. Both were much higher than the original ones.

We tested how COID could improve the performance of the CURE algorithm on Pendigits
data as well. Table 12 shows the change in status of the testing result of Pendigits data.

6 Conclusion and discussion

In this paper, we present COID, a novel cluster and outlier iterative detection approach.
The method can effectively and efficiently improve the qualities of clusters and outliers in
a multi-dimensional noisy data sets. Clusters are detected and adjusted according to the
intra-relationship within clusters and the inter-relationship between clusters and outliers.
The adjustment and modification of the clusters and outliers are performed iteratively until
a certain termination condition is reached.

The COID approach can be applied in various fields such as networking security, financial
analysis, credit card fraud detection, etc. In these fields, the pattern of the dense data groups
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Table 12 Iteration of COID algorithm on clustering result of CURE algorithm on Pendigits data

i O′ BDP Match Average Average
precision (%) Recall (%)

0 N/A N/A N/A 79.22 49.69

1 3151 3994 3978 499 0 79.71 49.70

2 34 4040 2887 3994 3151 3318 2 79.71 49.70

3 3151 3994 2887 6838 3 78.78 49.69

... ... ... ... ... ...

23 3686 1216 824 10111 10718 1482 10986 10492 8047

1171 6493 7256 247 4336 499 8387 3686 8891 8643 8 81.58 49.83

24 10111 10718 247 1482 10492 8387 3686 8891

1171 6493 7256 4336 8643 499 10986 8047 8 81.93 49.82

25 10492 3686 499 247 1482 10111

8891 8643 8387 10718 6838 4042 10 82.33 49.83

(clusters) can be arbitrary and sometimes vague, as well as the isolated data (outliers). Our
approach can be applied to refine the clusters and outliers iteratively.

The cluster and outlier iterative detection approach still poses open issues. In some cases,
clusters and outliers cannot be efficiently and effectively detected in full data space, and
there might exist obstacles. Our future work includes exploring relationship between clusters
and outliers in subspace data mining problems and studying cluster and outlier detection
approaches in the dimension reduction field in the presence of obstacles.
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