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Abstract Feature selection has been an important preprocessing step in high-dimensional
data analysis and pattern recognition. In this paper, we propose a locality preserving multi-
modal discriminative learning method called LPMDL for supervised feature selection, which
arises by solving two standard eigenvalue problems and seeks to find a pair of optimal trans-
formations for two sets of multivariate data in different classes. This topic can optimally
discover the local structure information of the given data hided in the original space and aims
at structuring an effective low-dimensional embedding space, under which LPMDL keeps
nearby data pairs in the same class close and between-class data pairs apart, and the projec-
tions of the original data in different classes can be appropriately separated from each other.
LPMDL can be performed either in the input space or the reproducing kernel Hilbert space
which gives rise to the kernelized version of LPMDL. We also evaluate the feasibility and
efficiency of the LPMDL approach by conducting extensive data visualization and classifica-
tion tasks. Experimental results on a broad range of data sets show LPMDL tends to capture
the intrinsic structure characteristics of the samples data due to the effective representation
of the points and achieves similar or even better performance than the conventional PCA,
NPE, LPP and LFDA methods.
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1 Introduction

More and more scientific research and real-word applications require to deal with the
high-dimensional image data, which leads to a deep study of the feature selection approaches
[8,7,13,29,19,16,6,23,26,28]. Feature selection has been an important preprocessing step
in pattern recognition and high-dimensional data analysis, which attracts much attention and
leads us to consider the problems of feature selection that allow one to represent the data
in a reduced pace, while most of intrinsic information hided in the data can be effectively
preserved. Once feature selection methods are performed appropriately, then we can uti-
lize the low-dimensional representations of data for a variety of succeeding tasks, such as
visualization, classification and image recognition.

Based on whether the class labels and constraints are adopted, feature selection methods
can be divided into supervised methods [8] that evaluates feature relevance by the correlation
between the features and the class labels or the constraints, and unsupervised cases [7,6],
evaluating feature relevance by the capability of keeping the local structure preserving ability.
To embed the data well, it is essential and important to preserve the spatial local structure of
the points. Mapping data from a high-dimensional space into a low-dimensional embedding
space is considered to be locality preserving if points nearby in the original space are still
compact in the embedding space [17]. The local structures between the samples data can
be regarded as the spatial distribution or location of data in the original input space and the
learnt feature space [32]. Locality preserving projection (LPP) [10] keeps nearby data pairs
in the input space close in the found embedding space, by which the multimodal data can
be embedded without losing its intrinsic structures. However, Sugiyama [24] has pointed
that LPP tends to make samples of different classes overlapped if they are close in the input
space. Locality pursuit embedding (LPE) [16] has been introduced to consider and preserve
the locality variation information. Roweis and Saul have proposed the locally linear embed-
ding (LLE) [19], which assumes that any one datum could be reconstructed by using its local
nearest neighbors in the original space and this local reconstruction relationship can still hold
in the obtained low-dimensional space. Neighbor-hood preserving embedding (NPE) [11] is
the linear approximation to the LLE method [19] and aims at preserving the global Euclid-
ean structure and aims to preserve the local neighborhood structure of the data manifold. It
is worthy of noticing that LPP and NPE do not take into account the class information of
samples which is actually useful in machine learning and are developed originally for the
unsupervised cases. Alternatively, though these methods can be extended to the supervised
learning fields when the class information is used to construct the weights, it does not nec-
essarily work effectively in the supervised learning scenarios. Sugiyama has taken the local
structure information and the class information of the samples into account and proposed the
local Fisher discriminant analysis (LFDA) [24] for supervised feature selection or, namely,
dimensionality reduction. Numerical results show that LFDA tends to achieve with-class
compactness and between-class separability.

In recent years, the locality preservation–based learning approaches are significantly stud-
ied and developed for feature selection and pattern recognition. These successful applications
of the locality-based methods [10,24,27,11,13,19,16,12] have inspired us to pay much more
attention to the locality-based techniques. In this paper, we propose an effective algorithm
for supervised feature selection, which we refer to as locality preserving multimodal dis-
criminative learning (LPMDL), setting a graph incorporating the neighborhood information
of samples and aiming to compute a pair of bases ωx and ωy for two data sets in differ-
ent classes. LPMDL can achieve between-class separability and preserve the local structure
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and within-class multimodal structure of the given data simultaneously. This algorithm is
interesting from some remarkable perspectives:

1. LPMDL is a linear method, which makes it applicable for practical applications, and
similar to LFDA [24], it does not project the multimodal data in the same class to a
single cluster.

2. For feature selection, the embedding transformation can be effectively computed and be
simply applied to any new point to locate it in the reduced space. Moreover, LPMDL
can resolve the XOR problems and the results of the XOR data set are superior to those
of some established feature selection approaches, such as, principal component analysis
(PCA) [9],LPP [10], NPE [11] and LFDA [24].

3. LPMDL may be conducted either in the original space or in the reproducing kernel
Hilbert space (RKHS) Thus, LPMDL may be extended to the nonlinear scenarios by
employing the so-called kernel trick [20].

4. For visualization, the projections of the points in different classes can be effectively
separated from each other in the feature space obtained by LPMDL. Moreover, LPMDL
aims to preserve the local structure of the data, therefore, it is likely that a local neighbor
search in the input space will yield the similar results in the low-dimensional embedding
space.

5. By introducing the unlabeled samples for learning, LPMDL can be extended to the semi-
supervised case. The detailed implementation of the semi-supervised feature selection
method is beyond the focus of this paper and we will discuss it in another paper.

As a result of all these perspectives, we expect that the proposed feature selection tech-
nique to be widely used in the fields of data visualization and pattern recognition. The rest
of the paper is organized as follows. In Sect. 2, we present a sensitivity analysis of the pro-
posed algorithm and show its fundamental properties. In Sect. 3, we numerically evaluate
the performance of our method and some existing feature selection methods by visualization
analysis and classification using some benchmark UCI and real-world data sets. Finally, we
conclude this paper and raise some issues for future works in Sect. 4.

2 Locality preserving multimodal discriminative learning

2.1 Basic idea

In Figs. 1 and 2, the dimensionality reduction results obtained by PCA [9], LPP [10], NPE
[11], LFDA [24] and our LPMDL method on the Toy and XOR data sets and the distributions
of the original data are shown, where two-dimensional two-class samples are embedded into
a one-dimensional space. The line in each figure denotes the one-dimensional embedding
space, on which the data points are projected, found by these methods. In LPP, the affinity
matrix A is determined by the heat kernel method [2]. For the simplest data set shown in
Fig. 1, PCA, LPP and LFDA can find the better embedding spaces and give the promising
results where samples of different classes are nicely separated. As illustrated in Fig. 1, NPE
performs worse than the other methods if samples in a class form separate clusters, i.e. mul-
timodal. For the XOR data set in Fig. 2, no matter unsupervised PCA, LPP, NPE methods
or supervised LFDA method cannot perform effectively on the data set due to their obtained
one-dimensional embedding space that the samples data are projected on. In fact, the XOR
data set has within-class multimodality in each class, which makes only one set of optimal
transformations cannot embed the data points appropriately. We see from Fig. 2 that PCA,
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Fig. 1 Examples of feature selection by PCA, NPE, LPP, LFDA, LPMDL on the Toy data set
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Fig. 2 Examples of feature selection by PCA, NPE, LPP, LFDA, LPMDL on the XOR data set

LPP, NPE and LFDA tend to mix the projections of the multimodal data of different classes
when they are compact in the original input space. In order to embed the multimodal data
well, we utilize the class labels of samples and propose LPMDL to perform dimensionality
reduction on the data, whose aim is to compute two sets of optimal projection transforma-
tions for two sets of multivariate data in different classes. More importantly, we evaluate
the levels of the between-class spread or scatter and the within-class spread or scatter in a
local manner, allowing us to achieve between-class separation and within-class multimodal
structure preservation and local structure preservation at the same time.

2.2 Learning linear LPMDL

In this section, we formulate the supervised locality preservation–guided multimodal discrim-
inative learning for feature selection as the following. Given two sets of labeled multivariate
data X, Y ∈ R

n and let X, Y be X = (x0, x1, . . . , xmx −1) and Y = (y0, y1, . . . , ymy−1)

with two different class labels. The objective is to seek a pair of projection transforma-
tions, ωx and ωy , and the transformations map the samples data onto a set of points in a
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low-dimensional embedding space. To improve the tightness among the similar patterns in the
same class and separate the dissimilar patterns in different classes better, we consider shrink-
ing the distances between similar patterns by minimizing

∑mx
i=1

∑mx
j=1 Axx ||ωT

x xi − ωT
x x j ||2(∑my

i=1

∑my
j=1 Ayy ||ωT

y yi − ωT
y y j ||2

)
, while expanding dissimilar ones by maximizing

∑mx
i=1

∑my
j=1 Axy ||ωT

y xi − ωT
y y j ||2

(∑my
i=1

∑mx
j=1 Ayx ||ωT

y yi − ωT
y x j ||2

)
, where the trans-

formations ωT
x X and ωT

y Y are, respectively, the low-dimensional representations of the
X and Y sets and the weights Axx , Ayy , Axy and Ayx are introduced for preserving the
locality.

Let G represent a graph with m nodes, then we put an edge between nodes i and j if
sample xi (yi ) and sample x j (y j ) are local neighbors. Furthermore, the local neighbors of
sample xi (yi ) may be defined as the following two popular approaches [10,1]:

(1) ε-hypersphere measure: if ||xi − x j || ≤ ε(||yi − y j || ≤ ε), thus we say that sample
x j (y j ) is the local neighbor of sample xi (yi ), where ε ∈ R is a user specified control
parameter.

(2) k-nearest neighborhood measure: if sample x j (y j ) is among the k-nearest neighbors of
sample xi (yi ), thus we say sample x j (y j ) is the local neighbor of sample xi (yi ), where
the parameter, k ∈ N.

Once the graph G is constructed, on the basis of the definitions of local neighborhood,

we can define the similarity matrices Ax =
{

Ax
i j

}mx

i, j
and Ay =

{
Ay

i j

}my

i, j
as the following,

where

Ax
i j =

{
exp

(−||xi − x j ||2/κ
)
, if sample xi is the local neighbor of sample x j

0, otherwise
(1)

Ay
i j =

{
exp

(−||yi − y j ||2/κ
)
, if sample yi is the local neighbor of sample y j

0, otherwise
(2)

where the tunable parameter κ is a positive scalar and ||.|| denotes the L2-norm with Euclid-
ean metric. In fact, Eqs. 1 and 2 can reflect the locality around each data point, that is, the
smaller the distances ||xi −x j ||2 (||yi − y j ||2), the closer the samples data, and thus the larger
Ax

i j (Ay
i j ). For dimensionality reduction, local neighbors will have similar embeddings, so the

data points lying on a dense area are likely to have the same label [33]. Thus, if x j and xi

are in the same class, we say they are local neighbors. Let Axx , Ayyand Axy be the matrices
with Axx = Rxx − Ax × Ax , Ayy = Ryy − Ay × Ay and Axy = Rxy − Ax × Ay . Let
Ai j denote the (i,j)th entry of A, thus Rxx (Ryy ,Rxy) is a diagonal matrix whose entries are
column (or row due to the symmetry) sum of the matrix Ax × Ax (Ay × Ay ,Ax × Ay), i.e.,
Rxx = ∑

i (Ax × Ax )i, j , and the similar expressions exist for Ryy and Rxy . In the compu-
tations, we compute the dot products between two matrices, i.e., for matrices C, D with the
same size, (C × D)i j = Ci j Di j . Since local neighbors tend to have the similar embeddings
on the data manifold, the points distributed in a dense area commonly have the same label,
thus if sample x j (y j ) has the same label with sample xi (yi ), we say they are mutually local
neighbors.

Noticing that ωT x means that transformation ω basically projects the points to a set
of useful features in the reduced feature space [25], in which samples of different classes
can be easily partitioned from each other. Ideally, the feature set should be as compact as
possible that means that the small rank for ωT ω or ω, since rank(ωT ω)= rank(ω) will be
desired. Here, we aim to minimize it by finding an eigen-decomposition T r of ωT ω, that
is, T r(ωT ω) = V �V T , thus rank(ωT ω) = rank(�) = ||�||0, but a direct optimization of

123



478 Z. Zhang, N. Ye

the zero norm is not practical to deal with. Therefore we approximate it by the Euclidean
(L2-) norm ||�||2 = ||ω||2 in the computations. Then we formulate the following objective
functions for discriminative learning:

Min
ωx

1
2 ||ωx ||2 + Mxx

2

∑mx
i=1

∑mx
j=1 Axx ||ωT

x xi − ωT
x x j ||2

∑mx
i=1

∑my
j=1 Axy ||ωT

x xi − ωT
x y j ||2

(3)

Min
ωy

1
2 ||ωy ||2 + Myy

2

∑my
i=1

∑my
j=1 Ayy ||ωT

y yi − ωT
y y j ||2

∑my
i=1

∑mx
j=1 Ayx ||ωT

y yi − ωT
y x j ||2

(4)

where T denotes the transpose of a matrix and mx and my are the numbers of samples in
class 1 and class 2, respectively. In the experiments, we consistently need mx = my . Here,
we add two scaling parameters Mxx and Myy to balance the contributions of two terms in
the numerators of Eqs. 3 and 4. The intuitions behind Eqs. 3 and 4 are brief and natural. We
aim to select the canonical features with better locality preserving ability. More specifically,
if there is the same class label between two samples, a canonical feature should be the one
on which those two samples are close to each other; on the other hand, if the samples have
different class labels, a canonical feature should be the one on which those two samples
are far away from each other. Moreover, Eqs. 3 and 4 realize the feature selection approach
according to the features’ locality preserving abilities.

Theorem 1 The optimal transformation ωx can be solved by computing the eigenvectors
according to the first d smallest eigenvalues of the matrix

(
I + Mxx A(X X) − Mxy A(XY )

)
,

where I is the identity matrix.

Justification of Theorem 1. From Eq. 3, we expect the distances among data samples in
the same class to be as small as possible and to be as away from the samples with different
class labels as possible. Besides, it is also worthy of noting the singularity. In order to avoid
involving the matrix inverse operation and to ensure the computational stability, here we
reformulate the objective function in Eq. 3 to the following:

Min
ωx

1

2
||ωx ||2 + Mxx

2
ωT

x A(X X)ωx − Mxy

2
ωT

x A(XY )ωx (5)

with respect to ωT
x ωx = I and I is the identity matrix. Here, we add another scaling parame-

ter Mxy to balance the contributions of three terms in Eq. 5. Intuitively, the distances involved
among samples in the same should typically be close to the expected metric, thus we empir-
ically set Mxx = 1 and Mxy > 1, respectively for optimization. Here, we formulate A(X X)

and A(XY ) in a matrix form as follows:

A(X X) =
mx∑

i=1

mx∑

j=1

(Axx )i, j ||xi − x j ||2

=
mx∑

i=1

⎛

⎝
mx∑

j=1

(Axx )i, j

⎞

⎠ xi xT
i +

mx∑

j=1

( mx∑

i=1

(Axx )i, j

)

x j xT
j − 2

mx∑

i, j=1

(Axx )i, j xi xT
j ,

= 2
mx∑

i=1

Dii xi xT
i − 2X Axx X T

= 2X Fxx X T (6)
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A(XY ) =
mx∑

i=1

my∑

j=1

(
Axy

)
i, j ||xi − y j ||2

=
mx∑

i=1

Wii xi xT
i +

my∑

j=1

M j j y j yT
j − 2X AxyY T ,

= X W X T + Y MY T − 2X AxyY T (7)

where (Axx )i, j is the (i, j)th entry of Axx and D(W ,M) is a diagonal matrix and its ith entry
equals the sum of the entries in the ith row (or the ith column due to the symmetry) of the
matrix Axx (Axy), i.e.

Dii =
mx∑

j=1

(Axx )i, j , Wii =
mx∑

j=1

(
Axy

)
i, j , M j j =

my∑

i=1

(
Axy

)
i, j . (8)

Forming the Lagrangian of Eq. 5 with the multipliers λx , then we can obtain

L(ωx , λx ) = 1

2
||ωx ||2 + Mxx

2
ωT

x A(X X)ωx − Mxy

2
ωT

x A(XY )ωx − λx

2
(ωT

x ωx − I ). (9)

By computing ∂L(ωx , λx )/∂ωx = 0, we get the following eigenvalue problem:
(

I + Mxx A(X X) − Mxy A(XY )
)

ωx = λxωx . (10)

Clearly, it is a scale-reduced typical eigenvalue problem, from which the optimal pro-
jection transformation ωx = (

ωx[1] |ωx[2] | . . . |ωx[d]
)
, d ≤ n that minimizes the objec-

tive function in Eq. 5 can be effectively obtained by solving the eigenvectors of(
I + Mxx A(X X) − Mxy A(XY )

)
corresponding to the first d smallest eigenvalues.

Theorem 2 The optimal transformation ωy can be solved by computing the eigenvectors
according to the first d smallest eigenvalues of the matrix

(
I + Myy A(Y Y ) − Mxy A(XY )

)
,

where I is the identity matrix.

Justification of Theorem 2. Let Ayx = Ryx −Ay×Ax , thus A(Y X) =∑my
i=1

∑mx
j=1

(
Ayx

)
i, j

||yi − x j ||2 = Y MY T + X W X T − 2X AxyY T = A(XY ) and Ayx = Axy . Analogous to the
computations of the optimal ωx , we reformulate the objective in function in Eq. 4 to the
following problem with respect to ωT

y ωy = I :

Min
ωy

1

2
||ωy ||2 + Myy

2
ωT

y A(Y Y )ωy − Mxy

2
ωT

y A(XY )ωy, (11)

Similarly, the matrix A(Y Y ) can be interpreted in a matrix form as the following:

A(Y Y ) =
my∑

i=1

my∑

j=1

(
Ayy

)
i, j ||yi − y j ||2

=
my∑

i=1

⎛

⎝
my∑

j=1

(
Ayy

)
i, j

⎞

⎠ yi yT
i +

my∑

j=1

( my∑

i=1

(
Ayy

)
i, j

)

y j yT
j − 2

my∑

i, j=1

(
Ayy

)
i, j yi yT

j ,

= 2

my∑

i=1

Zii yi yT
i − 2Y AyyY T

= 2Y FyyY T (12)
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where Z is a my-dimensional diagonal matrix with ith diagonal input element being

Zii =
my∑

j=1

(
Ayy

)
i, j . (13)

In order to ensure that distances of the points involved among data samples with the same
class labels should be typically close to the expected metric, we empirically set Myy = 1
and Mxy > 1 as well. Thus, forming the Lagrangian of Eq. 11 with the multipliers λy and
by zeroing it, we obtain the following similar scale-reduced typical eigenvalue problem:

(
I + Myy A(Y Y ) − Mxy A(XY )

)
ωy = λyωy, (14)

from which ωy = (
ωy[1] |ωy[2] | . . . |ωy[d]

)
can be effectively obtained by computing the eigen-

vectors of the matrix
(
I + Myy A(Y Y ) − Mxy A(XY )

)
corresponding to the first d smallest

eigenvalues.
Computationally, the LPMDL approach is finally transformed to two standard eigen-

value problems based on three symmetric matrices, so LPMDL can be easily computed by
the eigen-decompositions. Once the pairs of the optimal projection transformations

(
ωx , ωy

)

are obtained, dimensionality reduction can be performed in the forms of ωT
x X and ωT

y Y . In
the experiments, we keep the local information Ax

i j and Ay
i j unchanged and attempt to ensure

that if points are close in the original input space, then after dimensionality reduction using
our LPMDL method, the points in the found embedding space are still compact with each
other, which will be validated by data visualization and classification experiments.

2.3 Kernel generalization

Till now, we only focused on linear feature selection. Next, we will extend our discussion
further to nonlinear feature selection scenarios by the so-called kernel trick [20] and propose
the kernelized approach, which we refer to as KLPMDL in further readings. Implicitly in the
kernel Hilbert space connected to the kernel function K that is used. According to [31], a
kernel is a function in the input space and simultaneously is the inner product in the embed-
ding space through the kernel-induced measure-based nonlinear mapping. More specifically,
a kernel can be formulated as the dot-product form of K

(
xi , x j

) = 〈φ (xi ) , φ
(
x j

)〉 =
(φ (xi ))

T φ
(
x j

)
. Since for each kernel function, there exists a mapping φ corresponds to

a scalar product and maps input data x to φ (x), here we define the following mapping
φ : R

n → Hp, (p > n) , φ (x) = K (., x), i.e., φ maps each data xi to the function
K (., xi ), where the first argument of K is free and the second is fixed to xi .

Mika et al. have proved that every solution β ∈ H (usually high-dimensional) in the
kernel feature space can be written as an expansion in terms of the mapped training data
[15]. Therefore, the projection vectors ω

φ
x and ω

φ
y in the high-dimensional kernel space can

be rewritten as the following:

ωφ
x =

mx∑

i=1

αi
xφ (xi ) = φ (X) αx , ω

φ
y =

my∑

i=1

αi
yφ (yi ) = φ (Y ) αy . (15)

By substituting the basis vectors ω
φ
x and ω

φ
y into the original optimization problems, we

can formulate KLPMDL as follows. Let φ (X) = (
φ (x1) , φ (x2) , . . . , φ

(
xmx

))
,φ (Y ) =(

φ (y1) , φ (y2) , . . . , φ
(
ymy

))
and column vectors α = [

αx , αy
] = [ (

αx[1] |αx[2] | . . . |αx[d]
)
,
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(
αy[1] |αy[2] | . . . |αy[d]

) ]
be dpairs of projection vectors in the kernel space. Therefore, Eq. 5

can be rewritten as

Min
ω

φ
x

1

2
||ωφ

x ||2 + Mxx

2

(
ωT

x �ωx

)φ − Mxy

2

(
ωT

x ℵωx

)φ

S.t.
(
ωT

x ωx

)φ = I, (16)

where matrices A(X X) and A(XY ) are formulated as

A(X X) =
mx∑

i, j=1

(
Aφ

xx

)
i, j

(
φ (xi ) − φ

(
x j

)) (
φ (xi ) − φ

(
x j

))T
, (17)

A(XY ) =
mx∑

i=1

my∑

j=1

(
Aφ

xy

)

i, j

(
φ (xi ) − φ

(
y j

)) (
φ (xi ) − φ

(
y j

))T
, (18)

where matrices Aφ
xx , Aφ

xy are defined for preserving the local relations among samples in
the kernel space. Let S(Q,L) be a diagonal matrix and its ith diagonal entry equals the sum
of the entries in the ith row (or the ith column due to the symmetry) of Aφ

xx (Aφ
xy), that is,

Sii = ∑
j

(
Aφ

xx

)

i, j
, Qii = ∑

j

(
Aφ

xy

)

i, j
and L j j = ∑

i

(
Aφ

xy

)

i, j
. Therefore, we can com-

pute the Laplacian matrix [5] over Aφ
xx as E = S − Aφ

xx . By computing
(
ωT

x A(X X)ωx
)φ

, we
get

(
ωT

x A(X X)ωx

)φ = αT
x (φ (x))T

⎛

⎝
mx∑

i, j=1

(
Aφ

xx

)
i, j

(
φ (xi ) − φ

(
x j

)) (
φ (xi ) − φ

(
x j

))T

⎞

⎠ φ (x) αx

= αT
x (φ (x))T

⎛

⎝
mx∑

i=1

⎛

⎝
mx∑

j=1

(
Aφ

xx

)
i, j

⎞

⎠ φ (xi ) (φ (xi ))
T

+
mx∑

j=1

( mx∑

i=1

(
Aφ

xx

)
i, j

)

φ
(
x j

) (
φ

(
x j

))T

⎞

⎠φ (x) αx

−αT
x (φ (x))T

⎛

⎝
mx∑

i, j=1

(
Aφ

xx

)
i, j φ (xi )

(
φ

(
x j

))T

+
mx∑

i, j=1

(
Aφ

xx

)
i, j φ

(
x j

)
(φ (xi ))

T

⎞

⎠ φ (x) αx

= 2αT
x

mx∑

i=1

(φ (xi ))
T φ (xi ) Sii (φ (xi ))

T φ (xi ) αx

−2αT
x (φ (x))T φ(x)Aφ

xx (φ (x))T φ (x) αx

= 2αT
x Eαx . (19)
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Similarly, let matrix V be V =
(

Kxx QKxx + Kxy L K T
xy − 2Kxx Aφ

xy K T
xy

)
, thus we can

obtain

(
ωT

x A(XY )ωx

)φ = αT
x (φ (x))T

⎛

⎝
mx∑

i=1

my∑

j=1

(
Aφ

xy

)

i, j

(
φ (xi ) − φ

(
y j

)) (
φ (xi ) − φ

(
y j

))T

⎞

⎠φ (x) αx

= αT
x

(
Kxx QKxx + Kxy L K T

xy − 2Kxx Aφ
xy K T

xy

)
αx

= αT
x V αx (20)

with Kxx = (φ (X))T φ (X), where Kxx is the kernel matrix among the data samples in X
set and Kxy is the kernel matrix among the data samples in X and Y sets, which is represented
as Kxy = (φ (X))T φ (Y ). Let U = 2E , and by substituting Eqs. 19 and 20 into problem of
Eq. 16, we can rewrite Eq. 16 as

Min
αx

1

2
αT

x Kxxαx + Mxx

2
αT

x Uαx − Mxy

2
αT

x V αx

S.t. αT
x Kxxαx = I. (21)

Forming the Lagrangian of Eq. 21 with the multipliers λx , we obtain the following
formulation:

L(αx , λx ) = 1

2
αT

x Kxxαx + Mxx

2
αT

x Uαx − Mxy

2
αT

x V αx − λx

2
(αT

x Kxxαx − I ). (22)

By computing ∂L(αx , λx )/∂αx = 0, we obtain the following generalized eigenvalue
problem:

(
Kxx + MxxU − Mxy V

)
αx = λx (Kxx + β I ) αx , (23)

here we add the term β I with a small positive scalar β to avoid the singularity and is taken
as 0.0001 in all the experiments. Therefore, the projection vectors αx can be computed from
the scale-reduced generalized eigenvalue problem in Eq. 23. The projection vectors αy are
obtained by the analogous computational method. Once the projection vector pairs

(
αx , αy

)

are obtained, the feature selection can be performed in the forms of the low-dimensional
transformations using the kernel mapping in Eq. 15. Finally, Eq. 23 can be used for feature
selection and classification. After running the LPMDL and KLPMDL algorithms, there exist-
ing supervised feature selection learning methods can be effectively and efficiently executed.

3 Experiments and analysis

In this section, we numerically compare the performance of LPMDL and KLPMDL with some
existing feature selection methods, i.e. PCA, LPP, NPE and LFDA, for visualization analysis
and classification tasks. In LFDA, the affinity matrix is computed by the local scaling method
defined in [30]. In the experiments, the RBF kernel K (x, xT ) = exp∧ (−||x − xT ||2/2σ 2

)
is

selected for projecting the points with kernel parameter, σ = 0.01. The tunable parameters,
Mxx , Myy and Mxy , introduced in the optimization models are respectively set to 1, 1 and 20.
We evaluate the learning performance of the proposed algorithm based on several benchmark
data sets chose from the UCI ML repository [3] (i.e. Ionosphere, Wisconsin-Breast-Cancer,
Iris, Waveform-5000, Vote, Heart-statloge, Hepatitis) and the XOR data set and the wood
image database [22]. Chapelle et al. have pointed that each feature selection method per-
forms very well for a particular type of data sets [4], however, it tends to perform poorly for
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Table 1 List of the used data sets

Data sets indicated by ‘*’ contain
within-class multimodal
structures

Data name Dimensions Input samples # of classes

Ionosphere 34 351 2

Wisconsin-Breast-Cancer 9 699 2

Iris 4 150 3

Waveform-5000 40 5,000 3

Vote 16 435 2

Heart-statlog 13 270 2

Hepatitis 19 155 2

XOR* 2 20,000 2

Wood image database* 177 800 2

the other varieties of data sets. Thus, the performance of feature selection method is highly
associated with the type of data sets and there seems to be no single best method. The wood
image set contains intrinsic within-class multimodal structure when they are converted from
multi-class problems to the two-class problems by merging some of the classes. The XOR
data set is also multimodal. For each data set, we choose the parameter κ by fivefold cross-
validation [14]. Table 1 displays the representations of the data sets used in the experiments.
In our experiments, we carry out the experiments on a PC with Intel (R) Pentium (R) D CPU
2.80 GHz 2.79 GHz 512 M. All the used algorithms are implemented in Matlab 7.1.

3.1 Data visualization

We first take the multimodal XOR data set used in Sect. 2.1 and the Iris and Waveform-5000
data sets for examples. The Iris and Waveform-5000 contains three types of samples specified
by ‘∗’, and ‘×’. We use (‘∗’, � ) and (‘∗’, ‘×’) and (‘×’, � ) to create two-class prob-
lems, respectively, and perform dimensionality reduction on them. Results of visualization
are shown in the same chart. We choose 1,600 data samples in each class randomly from
the Waveform-5000 data set for experiments. Figure 3 shows the embedded result by each
method in the two-dimensional embedding space. For the XOR data set, it is obvious that
the pair of projection transformations is a further example of the XOR problems. We call
this example cross-projections since the data points are obtained by perturbing points origi-
nally lying on two sets of nonparallel basis vectors. The projection transformations found by
LPMDL can correctly recover the intrinsic multimodal and local structures hided in the given
data and achieve a satisfying performance on the used data sets. The embedded results of the
original data in different classes can be effectively partitioned from each other in the reduced
space found by LPMDL, while LFDA, LPP and NPE tend to mix the projections of the data
points. For the Waveform-5000 data set, the embedding space discovered by NPE, LPP and
LFDA are similar to a triangle and more samples data of different classes are mixed with
each other, while LPMDL tends to keep in-class data pairs compact and between-class data
pairs apart. For the Iris data set, the multimodality of the ‘×’-class can be clearly observed
in the results of these methods; however, for the other two classes, NPE, LPP and LFDA
mix the embedded samples data. Based on above simulation experiments, LPMDL would
be a desirable property in visualization and is found to be more appropriate for embedding
the multimodal data than the NPE, LPP and LFDA methods. The experimental results here
support the qualitative justification of LPMDL given in Sect. 2.
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Fig. 3 Results of data visualization. From top to bottom, the XOR data set (D = 2, N = 20000, C = 2,
d = 2), the Waveform-5000 data set (D = 40, N = 5000, C = 3, d = 4), the Iris data set (D = 4, N = 150,
C = 3, d = 3). From left to right, samples in the original spaces and the feature subspaces constructed by
LFDA, LPP (k = 5), NPE (k = 5) and LPMDL (k = 5, κ=6, 1.2, 2, respectively). Where, D is the dimensions
of the data set, N is the number of instances, C is the number of classes, k is the number of neighbors and d
is the selected features

3.2 Experimental results on classification

In this subsection, we investigate the performance of the LPMDL and KLPMDL methods
for classification on six benchmark UCI data sets. For avoiding the bias caused by the choice
of the classifiers, we introduce the k-nearest-neighbor classifier with Euclidean distance for
classification tasks. In short, the classification process has three steps. First, we calculate
the image subspace from all the data samples, that is, the points are projected into d-dimen-
sional subspace for each method and create the new input patterns for the experiments;
choose the training samples and test samples from the new sample pool, and train a classifier
model from the training set; finally, the new sample image is identified and recognized by a
k-nearest-neighbor classifier. In the experiments, feature selection is performed by selecting
the first d features from the ranking list of features generated by different algorithms, where
d is the desired number of selected features specified by users. The performance of LPMDL
and KLPMDL are measured by the classification accuracy using the selected features on
the testing data. Here we test LPMDL, PCA, LFDA, LPP and NPE on these data sets for
comparison. For each data set, we randomly choose the first half of data samples from each
class as the training data (Tr), and the remaining for testing (Te). Before the experiments, we
preprocess the data set by adding random vectors chosen from the used data set to ensure
that the sample size of Tr equals that of Te and mx = my for the experiments.

Figure 4 indicates that, in most cases, the performance of LPMDL and KLPMDL is sig-
nificantly better than those of the PCA, LFDA, LPP and NPE methods as the number of
selected features and neighbors increase, especially on the XOR, Ionosphere, Hepatitis and
Heart-statlog data sets. Moreover, LPMDL and KLPMDL tend to remain stable for a wide
range of reduced dimensions. From Figs. 4a, b, d and f, LPMDL and KLPMDL almost always
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Fig. 4 Accuracy versus different numbers of selected features or neighbors on the six UCI data sets: a on
Ionosphere; b on Wisconsin-Breast-Cancer; c on Hepatitis; d onVote; e on Heart-statlog; f on XOR

achieve the highest classification accuracy, which is comparable to that of PCA. As shown
in Figs. 4c and e, our method performs better than the other methods significantly. For the
Ionosphere data set, with increasing of the selected features, the classification accuracies of
PCA and LPP are comparative, and both superior to those of NPE and LFDA. As described in
Figs. 4b and d, LPP and LFDA work better than NPE, especially on the Vote data set. For the
XOR data set, PCA and LFDA perform better than LPP and NPE methods in a great extent,
but both inferior to LPMDL and KLPMDL. What is even more, LPP and NPE cannot keep
stable for a wide range of selected features and are sensitive to the selected features. LFDA
works poorly on the Heart-statlog data set, and the performance is almost always inferior to
the other methods. The values in the brackets are the parameter κ here and in later sections.

Moreover, we show the averaged accuracy obtained by PCA, LPP, NPE, LFDA, LPMDL
and KLPMDL, over 20 random splits of training samples, in Table 2. The classification accu-
racy in Fig. 4 and Table 2 indicate that when the number of selected features is smaller, both
LPMDL and KLPMDL can achieve the comparative performance to the classical PCA, LPP
and LFDA methods. On the contrary, PCA, LPP, LPMDL and KLPMDL are more robust to
the number of the selected features.

To investigate the runtime performance of these algorithms under different numbers of
selected features and nearest neighbors, we perform PCA, LPP, NPE, LFDA and LPMDL
on the Hepatitis, XOR and Heart-statlog data sets and the experimental results are plotted
in Fig. 5, which represents that the runtime performance of LPMDL is generally superior to
that of NPE and LPMDL works slightly slower than the LPP, PCA and LFDA methods. For
the XOR data set, NPE need much computation time than the other methods and increase
faster with the increasing of the number of nearest neighbors.

3.3 Recognition results on wood image database

In this study, we will investigate the proposed algorithm for wood defects recognition. In
the experiments, local binary pattern (LBP) [18] is used to select the texture features from
the wood image set, including 400 negative samples labeled by −1 and 400 positive ones
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Table 2 The averaged accuracy of the several algorithms on the selected data sets and the methods are listed
in rows

Data name PCA LPP NPE LFDA LPMDL KLPMDL

Ionosphere 0.6687
(k = 5)

0.4691
(k = 5)

0.5562
(k = 5)

0.6237
(k = 5)

0.7085
(k = 5, κ = 0.18)

0.7393
(k = 5, κ = 0.08)

Wisconsin-Breast-Cancer 0.9699
(k = 5)

0.8954
(k = 5)

0.9118
(k = 5)

0.8986
(k = 5)

0.9961
(k = 5, κ = 0.15)

0.9983
(k = 5, κ = 0.11)

Hepatitis 0.5065
(k = 5)

0.4805
(k = 5)

0.5455
(k = 5)

0.5447
(k = 5)

0.6419
(k = 5, κ = 0.02)

0.6356
(k = 5, κ = 0.2)

Vote 0.8694
(k = 5)

0.3794
(k = 5)

0.6895
(k = 5)

0.7167
(k = 5)

0.9044
(k = 5, κ = 0.15)

0.9032
(k = 5, κ = 0.11)

Heart-statlog 0.5556
(k = 5)

0.5326
(k = 5)

0.5764
(k = 5)

0.4968
(k = 5)

0.7257
(k = 5, κ = 0.8)

0.6894
(k = 5, κ = 7.5)

XOR 0.7760
(k = 5)

0.6315
(k = 5)

0.6475
(k = 5)

0.7190
(k = 5)

0.8770
(k = 5, κ = 60)

0.9508
(k=5, κ=0.5)

The numbers in the bracket are respectively the numbers of neighbors and the values of tunable parameters κ

trained by fivefold cross-validation
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Fig. 5 Runtime performance versus different numbers of selected features or neighbors on the Hepatitis,
Heart-statlog and XOR data sets

labeled by 1, chose from the wood database [22], which consists of a large number of pine
boards with ground truth classifications for each defect. The results reported here are based
on a set of 438 samples images with over 200 labeled defects. The imaging resolution has
been 0.5 mm, and a color line-scan camera has been used for image acquisition. In the exper-
iments, we randomly choose first half of data samples for training and the remaining as
the test data. In both training and test sets, each class has 200 samples randomly selected
from the image set. We repeat this process 20 times and compute the average accuracy.
Different pattern classification technologies have been applied for wood defects recognition
based on the real-world image data base, e.g. [21]. Here, we apply our proposed method and
5-nearest-neighbor classifier (5-NN) for defects recognition on the wood feature set. Here,
we first apply the existing PCA, LPP, NPE, LFDA and our LPMDL and KLPMDL methods
to the feature set for 2D visualization and then evaluate the classification performance of the
proposed method in the real-world data set further.

Figure 6 shows the results of the image data visualization. Analogous to Sect. 3.1, we
obtain a satisfying result and the cross-transformations learned by LPMDL can correctly
recover the intrinsic structure information of the wood feature set and learn a optimal embed-
ding space, under which the positive and negative samples can be effectively partitioned
from each other. Figure 7 shows the plots of the recognition accuracy and the runtime perfor-
mance vs. different number of selected features on the feature set. Table 3 gives the averaged
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Fig. 6 2D Data visualization of the wood image database
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Fig. 7 Recognition accuracy and runtime performance versus different numbers of selected features on the
wood image database

Table 3 The averaged accuracy of the several algorithms under different number of selected features on the
wood image database

Data name PCA LPP NPE LFDA LPMDL KLPMDL

Wood image database 0.8285 0.5155 0.5129 0.8565 0.9248 0.8997
(k = 5) (k = 5) (k = 5) (k = 5) (k = 5, κ = 0.65) (k = 5, κ = 5)

accuracy under different numbers of selected features on the feature set. As shown in Fig. 7a
and Table 3, LPMDL and KLPMDL work well on the data set and perform the comparative
results to PCA and LFDA, which again verifies the usefulness of the proposed methods for
pattern classification. Relatively, LPP and NPE perform poorly on the data set. Figure 7b
displays the running time (here, we compute the time in seconds) of these methods with the
increasing of the selected features, from which we can find the runtime performance of our
LPMDL method is close to those of LPP and NPE. PCA and LFDA work fast on the data set.
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4 Conclusions and outlooks

In this paper, we focused on the supervised feature selection problem where samples were
accompanied with the class information and proposed a novel Locality preserving multi-
modal discriminative learning algorithm, namely LPMDL, for feature selection. LPMDL
can optimally embed the labeled multimodal data appropriately and can capture the local
neighborhood information of the data manifold in a certain sense, that is, if two points are
mutually local neighbors in the original space, then the neighborhood relationship still holds
in the reduced feature space. LPMDL has an analytical form of the embedding transformation,
which can be effectively and easily computed based on eigen-decomposition. By defining
the new formulations, our approach is interesting and has some distinctive advantages over
some existing feature selection techniques.

We test PCA, NPE, LPP, LFDA and our method in data visualization and classification
experiments based on some benchmark UCI data sets, the XOR data set and the real-world
wood image database. For visualization, LPMDL can separate the projections of data in dif-
ferent classes from each other in addition to preserving the local and multimodal structures
due to the optimal embedding space that the samples data are projected on. The test results
show that PCA, NPE, LPP, LFDA tend to overlap the projections of the data in different
classes if they are close in the original space. For classification, LPMDL can select the good
features from the original set and train a high-performance nearest-neighbor classifier model.
The classification accuracy show LPMDL achieves the comparable or even better learning
performance to some classical methods. Moreover, the runtime performance of these methods
is comparative when the dimensionality of the data is not very high.

This is our current research topic. It is interesting to investigate whether we can improve the
performance by introducing the unlabeled samples for representation and extending LPMDL
to the semi-supervised learning case. Furthermore, the learning performance of the kernel-
ized LPMDL heavily depends on the choice of the kernels and its parameters. Thus, how to
optimally determine the kernels and estimate the kernel parameters for the nonlinear learning
method needs to be explored in the future work.
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