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Abstract In the ongoing discussion about combining rules and ontologies on the Semantic
Web a recurring issue is how to combine first-order classical logic with nonmonotonic rule
languages. Whereas several modular approaches to define a combined semantics for such
hybrid knowledge bases focus mainly on decidability issues, we tackle the matter from a
more general point of view. In this paper, we show how Quantified Equilibrium Logic (QEL)
can function as a unified framework which embraces classical logic as well as disjunctive
logic programs under the (open) answer set semantics. In the proposed variant of QEL, we
relax the unique names assumption, which was present in earlier versions of QEL. Moreover,
we show that this framework elegantly captures the existing modular approaches for hybrid
knowledge bases in a unified way.

Keywords Hybrid knowledge bases · Ontologies · Nonmonotonic rules · Semantic web ·
Logic programming · Quantified equilibrium logic · Answer set programming

1 Introduction

In the current discussions on the Semantic Web architecture a recurring issue is how to com-
bine a first-order classical theory formalising an ontology with a (possibly nonmonotonic)
rule base. Nonmonotonic rule languages have received considerable attention and achieved
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maturity over the last few years especially due to the success of Answer Set Programming
(ASP), a nonmonotonic, purely declarative logic programming and knowledge representa-
tion paradigm with many useful features such as aggregates, weak constraints and priorities,
supported by efficient implementations (for an overview see [1]).

As a logical foundation for the answer set semantics and a tool for logical analysis in
ASP, the system of Equilibrium Logic was presented by Pearce [24] and further developed
in subsequent works (see [25] for an overview and references). The aim of this paper is to
show how Equilibrium Logic can be used as a logical foundation for the combination of ASP
and ontologies.

In the quest to provide a formal underpinning for a nonmonotonic rules layer for the
Semantic Web which can coexist in a semantically well-defined manner with the Ontology
layer, various proposals for combining classical first-order logic with different variants of
ASP have been presented in the literature.1 We distinguish three kinds of approaches: At one
end of the spectrum there are approaches which provide an entailment-based query interface
to the Ontology in the bodies of ASP rules, resulting in a loose integration (e.g., [10,9]). At the
other end there are approaches which use a unifying nonmonotonic formalism to embed both
the Ontology and the rule base (e.g., [4,23]), resulting in a tight coupling. Hybrid approaches
(e.g., [29–31,16]) fall between these extremes. Common to hybrid approaches is the defi-
nition of a modular semantics based on classical first-order models, on the one hand, and
stable models—often, more generally, referred to as answer sets2—on the other hand. Addi-
tionally, they require several syntactical restrictions on the use of classical predicates within
rules, typically driven by considerations upon retaining decidability of reasoning tasks such
as knowledge base satisfiability and predicate subsumption. With further restrictions of the
classical part to decidable Description Logics (DLs), these semantics support straightforward
implementation using existing DL reasoners and ASP engines, in a modular fashion. In this
paper, we focus on such hybrid approaches, but from a more general point of view.

Example 1 Consider a hybrid knowledge base consisting of a classical theory T :

∀x .P E RSO N (x)→ (AG E N T (x) ∧ (∃y.H AS-M OT H E R(x, y)))
∀x .(∃y.H AS-M OT H E R(x, y))→ AN I M AL(x)

which says that every P E RSO N is an AG E N T and has some (unknown) mother, and
everyone who has a mother is an AN I M AL , and a nonmonotonic logic program P:

P E RSO N (x)← AG E N T (x),¬machine(x)
AG E N T (DaveBowman)

which says that AG E N T s are by default P E RSO Ns, unless known to be machines, and
DaveBowman is an AG E N T .

Using such a hybrid knowledge base consisting of T and P , we intuitively would con-
clude that P E RSO N (DaveBowman) holds since he is not known to be a machine, and
furthermore we would conclude that DaveBowman has some (unknown) mother, and thus
AN I M AL(DaveBowman).

1 Most of these approaches focus on the Description Logics fragments of first-order logic underlying the Web
Ontology Language OWL.
2 “answer sets” denote the extension of stable models, which originally have only been defined for normal
logic programs to more general logic programs such as disjunctive programs.
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We see two important shortcomings in current hybrid approaches:
(1) Current approaches to hybrid knowledge bases differ not only in terms of syntactic

restrictions, motivated by decidability considerations, but also in the way they deal with more
fundamental issues which arise when classical logic meets ASP, such as the domain closure
and unique names assumptions.3 In particular, current proposals implicitly deal with these
issues by either restricting the allowed models of the classical theory or by using variants of
the traditional answer set semantics which cater for open domains and nonunique names. So
far, little effort has been spent in a comparing the approaches from a more general perspective.
In this paper we aim to provide a generic semantic framework for hybrid knowledge bases
that neither restricts models (e.g., to unique names) nor imposes syntactical restrictions driven
by decidability concerns. (2) The semantics of current hybrid knowledge bases is defined
in a modular fashion. This has the important advantage that algorithms for reasoning with
this combination can be based on existing algorithms for DL and ASP satisfiability. A single
underlying logic for hybrid knowledge bases which, for example, allows to capture notions
of equivalence between combined knowledge bases in a standard way, is lacking though.

Our main contribution with this paper is twofold. First, we survey and compare differ-
ent (extensions of the) answer set semantics, as well as the existing approaches to hybrid
knowledge bases, all of which define nonmonotonic models in a modular fashion. Second, we
propose to use Quantified Equilibrium Logic (QEL) as a unified logical foundation for hybrid
knowledge bases: As it turns out, the equilibrium models of the combined knowledge base
coincide exactly with the modular nonmonotonic models for all approaches we are aware of
Refs. [16,29–31].

The remainder of this paper is structured as follows: Sect. 2 recalls some basics of clas-
sical first-order logic. Section 3 reformulates different variants of the answer set semantics
introduced in the literature using a common notation and points out correspondences and
discrepancies between these variants. Next, definitions of hybrid knowledge bases from the
literature are compared and generalised in Sect. 4. QEL and its relation to the different vari-
ants of ASP are clarified in Sect. 5. Section 6 describes an embedding of hybrid knowledge
bases into QEL and establishes the correspondence between equilibrium models and non-
monotonic models of hybrid KBs. We discuss some immediate implications of our results
in Sect. 7. In Sect. 8, we show how for finite knowledge bases an equivalent semantical
characterisation can be given via a second-order operator NM. This behaves analogously to
the operator SM used by Ferraris, Lee and Lifschitz [12] to define the stable models of a
first-order sentence, except that its minimisation condition applies only to the nonclassical
predicates. In Sect. 9 we discuss an application of the previous results: we propose a defini-
tion of strong equivalence for knowledge bases sharing a common structural language and
show how this notion can be captured by deduction in the (monotonic) logic of here-and-
there. These two Sects. 8 and 9 particularly contain mostly new material which has not yet
been presented in the conference version [5] of this article. We conclude with a discussion
of further related approaches and an outlook to future work in Sect. 10.

2 First-order logic (FOL)

A function-free first-order language L = 〈C, P〉 with equality consists of disjoint sets of
constant and predicate symbols C and P . Moreover, we assume a fixed countably infinite set
of variables, the symbols ‘→’, ‘∨’, ‘∧’, ‘¬’, ‘∃’, ‘∀’, and auxiliary parentheses ‘(’,‘)’. Each

3 See [3] for a more in-depth discussion of these issues.
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predicate symbol p ∈ P has an assigned arity ar(p). Atoms and formulas are constructed
as usual. Closed formulas, or sentences, are those where each variable is bound by some
quantifier. A theory T is a set of sentences. Variable-free atoms, formulas, or theories are
also called ground. If D is a nonempty set, we denote by AtD(C, P) the set of ground atoms
constructible from L′ = 〈C ∪ D, P〉.

Given a first-order language L, an L-structure consists of a pair I = 〈U, I 〉, where the
universe U = (D, σ ) (sometimes called pre-interpretation) consists of a nonempty domain
D and a function σ : C ∪ D → D which assigns a domain value to each constant such that
σ(d) = d for every d ∈ D. For tuples, we write σ(t) = (σ (d1), . . . , σ (dn)). We call d ∈ D
an unnamed individual if there is no c ∈ C such that σ(c) = d . The function I assigns a rela-
tion pI ⊆ Dn to each n-ary predicate symbol p ∈ P and is called the L-interpretation over
D. The designated binary predicate symbol eq , occasionally written ‘=’ in infix notation, is
assumed to be associated with the fixed interpretation function eq I = {(d, d) : d ∈ D}. If I
is an L′-structure we denote by I|L the restriction of I to a sublanguage L ⊆ L′.

An L-structure I = 〈U, I 〉 satis f ies an atom p(d1, . . . , dn) of AtD(C, P), written
I |� p(d1, . . . , dn), if (σ (d1), . . . , σ (dn)) ∈ pI . This is extended as usual to sentences and
theories.

I is a model of an atom (sentence, theory, respectively) ϕ, written I |� ϕ, if it satisfies ϕ.
A theory T entails a sentence ϕ, written T |� ϕ, if every model of T is also a model of ϕ.
A theory is consistent if it has a model.

In the context of logic programs, the following assumptions often play a role: We say that
the parameter names assumption (PNA) applies in case σ |C is surjective, i.e., there are no
unnamed individuals in D; the unique names assumption (UNA) applies in case σ |C is injec-
tive; in case both the PNA and UNA apply, the standard names assumption (SNA) applies,
i.e., σ |C is a bijection. In the following, we will speak about PNA-, UNA-, or SNA-structures,
(or PNA-, UNA-, or SNA-models, respectively), depending on σ .

An L-interpretation I over D can be seen as a subset of AtD(C, P). So, we can define
a subset relation for L-structures I1 = 〈(D, σ1), I1〉 and I2 = 〈(D, σ2), I2〉 over the same
domain by setting I1 ⊆ I2 if I1 ⊆ I2.4 Whenever we speak about subset minimality of
models/structures in the following, we thus mean minimality among all models/structures
over the same domain.

3 Answer set semantics

In this paper, we assume nonground disjunctive logic programs with negation allowed in rule
heads and bodies, interpreted under the answer set semantics [21].5 A program P consists
of a set of rules of the form

a1 ∨ a2 ∨ · · · ∨ ak ∨ ¬ak+1 ∨ · · · ∨ ¬al ← b1, . . . , bm,¬bm+1, . . . ,¬bn (1)

where ai (i ∈ {1, . . . , l}) and b j ( j ∈ {1, . . . , n}) are atoms, called head (body, respectively)
atoms of the rule, in a function-free first-order language L = 〈C, P〉 without equality. By
CP ⊆ C , we denote the set of constants which appear in P . A rule with k = l and m = n is
called positive. Rules where each variable appears in b1, . . . , bm are called safe. A program
is positive (safe) if all its rules are positive (safe).

4 Note that this is not the substructure or submodel relation in classical model theory, which holds between a
structure and its restriction to a subdomain.
5 By ¬ we mean negation as failure and not classical, or strong negation, which is also sometimes considered
in ASP.
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For the purposes of this paper, we give a slightly generalised definition of the common
notion of the grounding of a program: The grounding grU (P)of P wrt. a universe U = (D, σ )
denotes the set of all rules obtained as follows: For r ∈ P , replace (i) each constant c appear-
ing in r with σ(c) and (ii) each variable with some element in D. Observe that thus grU (P)
is a ground program over the atoms in AtD(C, P).

For a ground program P and first-order structure I, the reductPI consists of rules

a1 ∨ a2 ∨ · · · ∨ ak ← b1, . . . , bm

obtained from all rules of the form (1) in P for which it holds that I |� ai for all k < i ≤ l
and I �|� b j for all m < j ≤ n.

Answer set semantics is usually defined in terms of Herbrand structures over L = 〈C, P〉.
Herbrand structures have a fixed universe, the Herbrand universe H = (C, id), where id is
the identity function. For a Herbrand structure I = 〈H, I 〉, I can be viewed as a subset of
the Herbrand base,B, which consists of the ground atoms of L. Note that by definition of
H, Herbrand structures are SNA-structures. A Herbrand structure I is an answer set [21]
of P if I is subset minimal among the structures satisfying grH(P)I . Two variations of
this semantics, the open [15] and generalised open answer set [16] semantics, consider open
domains, thereby relaxing the PNA. An extended Herbrand structure is a first-order structure
based on a universe U = (D, id), where D ⊇ C .

Definition 1 A first-order L-structure I = 〈U, I 〉 is called a generalised open answer set of
P if I is subset minimal among the structures satisfying all rules in grU (P)I . If, additionally,
I is an extended Herbrand structure, then I is an open answer set of P .

In the open answer set semantics the UNA applies. We have the following correspondence
with the answer set semantics. First, as a straightforward consequence from the definitions,
we can observe:

Proposition 1 If M is an answer set of P then M is also an open answer set of P .

The converse does not hold in general:

Example 2 Consider P = {p(a); ok ← ¬p(x); ← ¬ok} over L = 〈{a}, {p, ok}〉. We
leave it as an exercise to the reader to show that P is inconsistent under the answer set
semantics, but M = 〈({a, c1}, id), {p(a), ok}〉 is an open answer set of P .

Open answer set programs allow the use of the equality predicate ‘=’ in the body of rules.
However, since this definition of open answer sets adheres to the UNA, one could argue that
equality in open answer set programming is purely syntactical. Positive equality predicates
in rule bodies can thus be eliminated by simple pre-processing, applying unification. This is
not the case for negative occurrences of equality, but, since the interpretation of equality is
fixed, these can be eliminated during grounding.

An alternative approach to relax the UNA has been presented by Rosati in Ref. [30]:
Instead of grounding with respect to U , programs are grounded with respect to the Her-
brand universe H = (C, id), and minimality of the models of grH(P)I wrt. U is redefined:
I�H = {p(σ (c1), . . . , σ (cn)) : p(c1, . . . , cn) ∈ B, I |� p(c1, . . . , cn)}, i.e., I�H is the
restriction of I to ground atoms of B. Given L-structures I1 = (U1, I1) and I2 = (U2, I2),6

the relation I1 ⊆H I2 holds if I1�H ⊆ I2�H.

6 Not necessarily over the same domain.
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Definition 2 An L-structure I is called a generalised answer set of P if I is ⊆H-minimal
among the structures satisfying all rules in grH(P)I .

The following Lemma (implicit in [14]) establishes that, for safe programs, all atoms of
AtD(C, P) satisfied in an open answer set of a safe program are ground atoms over CP :

Lemma 2 Let P be a safe program over L = 〈C, P〉 with M = 〈U, I 〉 a (generalised)
open answer set over universe U = (D, σ ). Then, for any atom from AtD(C, P) such that
M |� p(d1, . . . , dn), there exist ci ∈ CP such that σ(ci ) = di for each 1 ≤ i ≤ n.

Proof First, we observe that any atom M |� p(d1, . . . , dn) must be derivable from a
sequence of rules (r0; . . . ; rl) in grU (P)M. We prove the lemma by induction over the
length l of this sequence. l = 0: Assume M |� p(d1, . . . , dn), then r0 must be (by safety) a
ground fact in P such that p(σ (c1), . . . , σ (cn)) = p(d1, . . . , dn) and c1, . . . , cn ∈ CP . As
for the induction step, let p(d1, . . . , dn) be inferred by application of rule rl ∈ grU (P)M.
By safety, again each d j either stems from a constant c j ∈ CP such that σ(c j ) = d j which
appears in some true head atom of rl or d j also appears in a positive body atom q(. . . , d j , . . .)

of rl such that M |� q(. . . , d j , . . .), derivable by (r0; . . . ; rl−1), which, by the induction
hypothesis, proves the existence of a c j ∈ CP with σ(c j ) = d j . ��

From this Lemma, the following correspondence follows directly. Note that the answer
sets and open answer sets of safe programs coincide as a direct consequence of Lemma 2:

Proposition 3 M is an answer set of a safe program P if and only if M is an open answer
set of P .

Similarly, on unsafe programs, generalised answer sets and generalised open answer sets do
not necessarily coincide, as demonstrated by example 2. However, the following correspon-
dence follows straightforwardly from Lemma 2:

Proposition 4 Given a safe program P,M is a generalised open answer set of P if and
only if M is a generalised answer set of P .

Proof
(⇒) Assume M is a generalised open answer set of P . By Lemma 2, we know that rules

in grU (P)M involving unnamed individuals do not contribute to answer sets, since
their body is always false. It follows that M =M�H which in turn is a ⊆H-minimal
model of grH(P)M. This follows from the observation that each rule in grH(P)M
and its corresponding rules in grU (P)M are satisfied under the same models.

(⇐) Analogously. ��
By similar arguments, generalised answer sets and generalised open answer sets coincide

in case the parameter name assumption applies:

Proposition 5 Let M be a PNA-structure. Then M is a generalised answer set of P if and
only if M is a generalised open answer of P .

If the SNA applies, consistency with respect to all semantics introduced so far boils down
to consistency under the original definition of answer sets:

Proposition 6 A program P has an answer set if and only if P has a generalised open
answer set under the SNA.
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Answer sets under SNA may differ from the original answer sets since also non-Herbrand
structures are allowed. Further, we observe that there are programs which have generalised
(open) answer sets but do not have (open) answer sets, even for safe programs, as shown by
the following simple example:

Example 3 Consider P = {p(a); ← ¬p(b)} over L = 〈{a, b}, {p}〉. P is ground, thus
obviously safe. However, although P has a generalised (open) answer set—the reader may
verify this by, for instance, considering the one-element universe U = ({d}, σ ), where
σ(a) = σ(b) = d—it is inconsistent under the open answer set semantics, i.e., the program
does not have any open (nongenrealised) answer set.

4 Hybrid knowledge bases

We now turn to the concept of hybrid knowledge bases, which combine classical theories
with the various notions of answer sets. We define a notion of hybrid knowledge bases which
generalises definitions in the literature [16,29–31]. We then compare and discuss the differ-
ences between the various definitions. It turns out that the differences are mainly concerned
with the notion of answer sets, and syntactical restrictions, but do not change the general
semantics. This will allow us to base our embedding into Quantified Equilibrium Logic on a
unified definition.

A hybrid knowledge base K = (T ,P) over the function-free language L = 〈C, PT ∪ PP 〉
consists of a classical first-order theory T (also called the structural part of K) over the lan-
guage LT = 〈C, PT 〉 and a program P (also called rules part of K) over the language L,
where PT ∩ PP = ∅, i.e., T and P share a single set of constants, and the predicate sym-
bols allowed to be used in P are a superset of the predicate symbols in LT . Intuitively, the
predicates in LT are interpreted classically, whereas the predicates in LP are interpreted
nonmonotonically under the (generalised open) answer set semantics. With LP = 〈C, PP 〉
we denote the restricted language of P to only the distinct predicates PP which are not
supposed to occur in T .

We do not consider the alternative classical semantics defined in Refs. [29–31], as these
are straightforward.

We define the projection of a ground program P with respect to an L-structure I = 〈U, I 〉,
denoted �(P, I), as follows: for each rule r ∈ P, r� is defined as:

1. r� = ∅ if there is a literal over AtD(C, PT ) in the head of r of form p(t) such that
p(σ (t)) ∈ I or of form ¬p(t) with p(σ (t)) �∈ I ;

2. r� = ∅ if there is a literal over AtD(C, PT ) in the body of r of form p(t) such that
p(σ (t)) �∈ I or of form ¬p(t) such that p(σ (t)) ∈ I ;

3. otherwise r� is the singleton set resulting from r by deleting all occurrences of literals
from LT ,

and�(P, I) =⋃{r� : r ∈ P}. Intuitively, the projection “evaluates” all classical literals in
P with respect to I.

Definition 3 Let K = (T ,P) be a hybrid knowledge base over the language L = 〈C, PT ∪
PP 〉. An NM-model M = 〈U, I 〉 (with U = (D, σ )) of K is a first-order L-structure such
that M|LT is a model of T and M|LP is a generalised open answer set of �(grU (P),M).

Analogous to first-order models, we speak about PNA-, UNA-, and SNA-NM-models.
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Example 4 Consider the hybrid knowledge base K = (T ,P), with T and P as in
Example 1, with the capitalised predicates being predicates in PT . Now consider the inter-
pretation I = 〈U, I 〉 (with U = (D, σ )) with D = {DaveBowman, k}, σ the identity
function, and I = {AG E N T (DaveBowman), H AS-M OT H E R(DaveBowman, k),
AN I M AL(DaveBowman),machine(DaveBowman)}. Clearly, I|LT is a model of T .
The projection �(grU (P), I) is

← ¬machine(DaveBowman),

which does not have a stable model, and thus I is not an NM-model of K. In fact, the logic
program P ensures that an interpretation cannot be an NM-model of K if there is an AG E N T
which is neither a P E RSO N nor known (by conclusions from P) to be a machine. It is
easy to verify that, for any NM-model of K, the atoms AG E N T (DaveBowman),
P E RSO N (DaveBowman), and AN I M AL(DaveBowman) must be true, and are thus
entailed by K. The latter cannot be derived from neither T nor P individually.

4.1 r-hybrid KBs

We now proceed to compare our definition of NM-models with the various definitions in the
literature. The first kind of hybrid knowledge base we consider was introduced by Rosati
in Ref. [29] (and extended in Ref. [31] under the name DL+log), and was labelled r-hybrid
knowledge base. Syntactically, r-hybrid KBs do not allow negated atoms in rule heads, i.e.,
for rules of the form(1) l = k, and do not allow atoms from LT to occur negatively in the rule
body.7 Moreover, in Ref. [29], Rosati deploys a restriction which is stronger than standard
safety: each variable must appear in at least one positive body atom with a predicate from
LP . We call this condition LP -safe in the remainder. In Ref. [31] this condition is relaxed to
weak LP -safety: there is no special safety restriction for variables which occur only in body
atoms from PT .

Semantically, Rosati assumes (an infinite number of) standard names, i.e., C is countably
infinite, and normal answer sets, in his version of NM-models:

Definition 4 Let K = (T ,P) be an r-hybrid knowledge base, over the language
L = 〈C, PT ∪ PP 〉, where C is countably infinite, and P is a (weak) LP -safe program.
An r-NM-model M = 〈U, I 〉 of K is a first-order L-SNA-structure such that M|LT is a
model of T and M|LP is an answer set of �(grU (P),M).

In view of the (weak) LP -safety condition, we observe that r-NM-model existence coin-
cides with SNA-NM-model existence on r-hybrid knowledge bases, by Lemma 2 and
Proposition 6.

The syntactic restrictions in r-hybrid knowledge bases guarantee decidability of the satisfi-
ability problem in case satisfiability (in case of LP -safety) or conjunctive query containment
(in case of weak LP -safety) in T is decidable. Rosati [29,31] presents sound and complete
algorithms for both cases.

7 Note that by projection, negation of predicates from PT is treated classically, whereas negation of predi-
cates from PP is treated nonmonotonically. This might be considered unintuitive and therefore a reason why
Rosati disallows structural predicates to occur negated. The negative occurrence of classical predicates in the
body is equivalent to the positive occurrence of the predicate in the head.
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Table 1 Different variants of hybrid KBs

SNA Variables Disjunctive rule heads Negated LT atoms

r-hybrid Yes LP -safe Pos. only No

r+-hybrid No LP -safe Pos. only No

rw-hybrid Yes Weak LP -safe Pos. only No

g-hybrid No Guarded Neg. allowed∗ Yes

∗ g-hybrid allows negation in the head but at most one positive head atom

4.2 r+-hybrid KBs

In Ref. [30], Rosati relaxes the UNA for what we will call here r+-hybrid knowledge bases.
In this variant the LP -safety restriction is kept but generalised answer sets under arbitrary
interpretations are considered:

Definition 5 Let K = (T ,P) be an r+-hybrid knowledge base consisting of a theory T and
an LP -safe program P . An r+-N M-model,M = 〈U, I 〉 of K is a first-order L-structure
such that M|LT is a model of T and M|LP is a generalised answer set of �(grU (P),M).

LP -safety guarantees safety of�(grU (P),M). Thus, by Proposition 3, we can conclude
that r+-NM-models coincide with NM-models on r-hybrid knowledge bases. The relaxation
of the UNA does not affect decidability.

4.3 g-hybrid KBs

G-hybrid knowledge bases [16] allow a different form of rules in the program. In order to
regain decidability, rules are not required to be safe, but they are required to be guarded
(hence the ‘g’ in g-hybrid): All variables in a rule are required to occur in a single positive
body atom, the guard, with the exception that unsafe choice rules of the form

p(c1, . . . , cn) ∨ ¬p(c1, . . . , cn)←
are allowed. Moreover, disjunction in rule heads is limited to at most one positive atom,
i.e., for rules of the form(1) we have that k ≤ 1, but an arbitrary number of negated head
atoms is allowed. Another significant difference is that, as opposed to the approaches based
on r-hybrid KBs, negative structural predicates are allowed in the rules part within g-hybrid
knowledge bases (see also Footnote 7). The definition of NM-models in Ref. [16] coincides
precisely with our Definition 3.

Table 1 summarises the different versions of hybrid knowledge bases introduced in the
literature.

5 Quantified equilibrium logic (QEL)

Equilibrium logic for propositional theories and logic programs was presented in Ref. [24] as
a foundation for answer set semantics, and extended to the first-order case in Ref. [26], as well
as, in slightly more general, modified form, in Ref. [27]. For a survey of the main properties
of equilibrium logic, see [25]. Usually in quantified equilibrium logic, we consider a full first-
order language allowing function symbols and we include a second, strong negation operator
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as occurs in several ASP dialects. For the present purpose of drawing comparisons with
approaches to hybrid knowledge bases, it will suffice to consider the function-free language
with a single negation symbol, ‘¬’. In particular, we shall work with a quantified version of
the logic HT of here-and-there. In other respects, we follow the treatment of Ref. [27].

5.1 General structures for quantified here-and-there logic

As before, we consider a function-free first order language L = 〈C, P〉 built over a set of
constant symbols, C , and a set of predicate symbols, P . The sets of L-formulas, L-sen-
tences and atomic L-sentences are defined in the usual way. Again, we only work with
sentences, and, as in Sect. 2, by an L-interpretation I over a set D we mean a subset I of
AtD(C, P). A here-and-there L-structure with static domains, or QHTs(L)-structure, is a
tuple M = 〈(D, σ ), Ih, It 〉 where 〈(D, σ ), Ih〉 and 〈(D, σ ), It 〉 are L-structures such that
Ih ⊆ It .

We can think of M as a structure similar to a first-order classical model, but having two
parts, or components, h and t that correspond to two different points or “worlds”, ‘here’ and
‘there’, in the sense of Kripke semantics for intuitionistic logic [32], where the worlds are
ordered by h ≤ t . At each world w ∈ {h, t}, one verifies a set of atoms Iw in the expanded
language for the domain D. We call the model static, since, in contrast to say intuitionistic
logic, the same domain serves each of the worlds.8 Since h ≤ t , whatever is verified at h
remains true at t . The satisfaction relation for M is defined so as to reflect the two different
components, so we write M, w |� ϕ to denote that ϕ is true in M with respect to the w
component. Evidently we should require that an atomic sentence is true at w just in case it
belongs to the w-interpretation. Formally, if p(t1, . . . , tn) ∈ AtD then

M, w |� p(t1, . . . , tn) iff p(σ (t1), . . . , σ (tn)) ∈ Iw. (2)

Then, |� is extended recursively as follows9:

– M, w |� ϕ ∧ ψ iff M, w |� ϕ and M, w |� ψ .
– M, w |� ϕ ∨ ψ iff M, w |� ϕ or M, w |� ψ .
– M, t |� ϕ→ ψ iff M, t �|� ϕ or M, t |� ψ .
– M, h |� ϕ→ ψ iff M, t |� ϕ→ ψ and M, h �|� ϕ or M, h |� ψ .
– M, w |� ¬ϕ iff M, t �|� ϕ.
– M, t |� ∀xϕ(x) iff M, t |� ϕ(d) for all d ∈ D.
– M, h |� ∀xϕ(x) iff M, t |� ∀xϕ(x) and M, h |� ϕ(d) for all d ∈ D.
– M, w |� ∃xϕ(x) iff M, w |� ϕ(d) for some d ∈ D.

Truth of a sentence in a model is defined as follows: M |� ϕ iff M, w |� ϕ for each
w ∈ {h, t}. A sentence ϕ is valid if it is true in all models, denoted by |� ϕ. A sentence ϕ is a
consequence of a set of sentences �, denoted � |� ϕ, if every model of � is a model of ϕ. In
a model M we often use the symbols H and T , possibly with subscripts, to denote the inter-
pretations Ih and It respectively; so, an L-structure may be written in the form 〈U, H, T 〉,
where U = (D, σ ).

The resulting logic is called Quantified Here-and-There Logic with static domains, denoted
by QHTs . In terms of satisfiability and validity this logic is equivalent to the logic introduced

8 Alternatively it is quite common to speak of a logic with constant domains. However this is slightly ambig-
uous since it might suggest that the domain is composed only of constants, which is not intended here.
9 The reader may easily check that the following correspond exactly to the usual Kripke semantics for intui-
tionistic logic given our assumptions about the two worlds h and t and the single domain D, see e.g., [32].
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before in Ref. [26]. By QHTs= we denote the version of QEL with equality. The equality pred-
icate in QHTs= is interpreted as the actual equality in both worlds, ie M, w |� t1 = t2 iff
σ(t1) = σ(t2).

The logic QHTs= can be axiomatised as follows. Let INT= denote first-order intuitionistic
logic [32] with the usual axioms for equality:

x = x ,

x = y → (F(x)→ F(y)),

for every formula F(x) such that y is substitutable for x in F(x). To this we add the axiom
of Hosoi

α ∨ (¬β ∨ (α→ β)),

which determines 2-element here-and-there models in the propositional case, and the axiom
SQHT (static quantified here-and-there):

∃x(F(x)→ ∀x F(x)).

Lastly we add the “decidable equality” axiom:

x = y ∨ x �= y.

For a completeness proof for QHTs=, see [20].
As usual in first order logic, satisfiability and validity are independent from the language.

If M = 〈(D, σ ), H, T 〉 is an QHTs=(L′)-structure and L ⊂ L′, we denote by M|L the
restriction of M to the sublanguage L: M|L = 〈(D, σ |L), H |L, T |L〉.
Proposition 7 Suppose that L′ ⊃ L, � is a theory in L and M is an L′-structure such
M |� �. Then M|L is a model of � in QHTs=(L).

Proposition 8 Suppose that L′ ⊃ L and ϕ ∈ L. Then ϕ is valid (resp. satisfiable) in
QHTs=(L) if and only if is valid (resp. satisfiable) in QHTs=(L′).

Analogous to the case of classical models, we can define special kinds of QHTs (resp.
QHTs=) models. Let M = 〈(D, σ ), H, T 〉 be an L-structure that is a model of a universal
theory T . Then, we call M a PNA-, UNA-, or SNA-model if the restriction of σ to constants
in C is surjective, injective or bijective, respectively.

5.2 Equilibrium models

As in the propositional case, quantified equilibrium logic is based on a suitable notion of
minimal model.

Definition 6 Among QHTs=(L)-structures, we define the order � as: 〈(D, σ ), H, T 〉 �
〈(D′, σ ′), H ′, T ′〉 if D = D′, σ = σ ′, T = T ′ and H ⊆ H ′. If the subset relation is
strict, we write ‘�’.

Definition 7 Let � be a set of sentences and M = 〈(D, σ ), H, T 〉 a model of �.

1. M is said to be total if H = T .
2. M is said to be an equilibrium model of � (for short, we say: “M is in equilibrium”) if

it is minimal under � among models of �, and it is total.
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Notice that a total QHTs= model of a theory � is equivalent to a classical first order model
of �.

Proposition 9 Let � be a theory in L and M an equilibrium model of � in QHTs=(L′) with
L′ ⊃ L. Then M|L is an equilibrium model of � in QHTs=(L).

5.3 Relation to answer sets

The above version of QEL is described in more detail in Ref. [27]. If we assume all models
are UNA-models, we obtain the version of QEL found in Ref. [26]. There, the relation of
QEL to (ordinary) answer sets for logic programs with variables was established (in Ref. [26,
Corollary 7.7]). For the present version of QEL, the correspondence can be described as
follows.

Proposition 10 [27] Let � be a universal theory in L = 〈C, P〉. Let 〈U, T, T 〉 be a total
QHTs= model of �. Then 〈U, T, T 〉 is an equilibrium model of � iff 〈T, T 〉 is a propositional
equilibrium model of grU (�).

By convention, when P is a logic program with variables we consider the models and
equilibrium models of its universal closure expressed as a set of logical formulas. So, from
Proposition 10 we obtain:

Corollary 11 Let P be a logic program. A total QHTs= model 〈U, T, T 〉 of P is an equilib-
rium model of P iff it is a generalised open answer set of P .

Proof It is well-known that for propositional programs equilibrium models coincide with
answer sets [24]. Using Proposition 10 and Definition 4 for generalised open answer sets,
the result follows. ��

6 Relation between hybrid KBs and QEL

In this section, we show how equilibrium models for hybrid knowledge bases relate to the
NM models defined earlier and we show that QEL captures the various approaches to the
semantics of hybrid KBs in the literature [16,29–31].

Given a hybrid KB K = (T ,P), we call T ∪ P ∪ st (T ) the stable closure of K, where
st (T ) = {∀x(p(x) ∨ ¬p(x)) : p ∈ LT }.10 From now on, unless otherwise clear from con-
text, the symbol ‘|�’ denotes the truth relation for QHTs=. Given a ground program P and an
L-structure M = 〈U, H, T 〉, the projection�(P,M) is understood to be defined relative to
the component T of M.

Lemma 12 Let M = 〈U, H, T 〉 be a QHTs=-model of T ∪st (T ). Then M |� P iff M|LP |�
�(grU (P),M).

Proof By the hypothesis M |� {∀x(p(x) ∨ ¬p(x)) : p ∈ LT }. It follows that H |LT =
T |LT . Consider any r ∈ P , such that r� �= ∅. Then, there are four cases to consider. (i) r
has the form α→ β ∨ p(t), p(t) ∈ LT and p(σ (t)) �∈ T , so M |� ¬p(t). W.l.o.g. assume
that α, β ∈ LP , so r� = α→ β and

M |� r ⇔M |� r� ⇔M|LP |� r� (3)

10 Evidently T becomes stable in K in the sense that ∀ϕ ∈ T , st (T ) |� ¬¬ϕ → ϕ. The terminology is
drawn from intuitionistic logic and mathematics.
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by the semantics for QHTs= and Theorem 7. (ii) r has the form α → β ∨ ¬p(t), where
p(σ (t)) ∈ T ; so p(σ (t)) ∈ H and M |� p(t). Again it is easy to see that (3) holds. Case
(iii): r has the form α ∧ p(t) → β and p(σ (t)) ∈ H, T , so M |� p(t). Case (iv): r has
the form α ∧ ¬p(t) → β and M |� ¬p(t). Clearly for these two cases (3) holds as well.
It follows that if M |� P then M|LP |� �(grU (P),M).

To check the converse condition, we need now to only examine the cases where r� = ∅.
Suppose this arises because p(σ (t)) ∈ H, T , so M |� p(t). Now, if p(t) is in the head of
r , clearly M |� r . Similarly if ¬p(t) is in the body of r , by the semantics M |� r . The
cases where p(σ (t)) �∈ T are analogous and left to the reader. Consequently, if M|LP |�
�(grU (P),M), then M |� P . ��

We now state the relation between equilibrium models and NM-models.

Theorem 13 Let K = (T ,P) be a hybrid KB. M = 〈U, T, T 〉 is an equilibrium model of
the stable closure of K if and only if 〈U, T 〉 is an NM-model of K.

Proof Assume the hypothesis and suppose that M is in equilibrium. Since T contains only
predicates from LT and M |� T ∪ st (T ), evidently

M|LT |� T ∪ st (T ) (4)

and so in particular (U,M|LT ) is a model of T . By Lemma 12,

M |� P ⇔M|LP |� �(grU (P),M). (5)

We claim (i) that M|LP is an equilibrium model of �(grU (P),M). If not, there is a
model M′ = 〈H ′, T ′〉with H ′ ⊂ T ′ = T |LP and M′ |� �(grU (P),M). Lift (U,M′) to a
(first order) L-structure N by interpreting each p ∈ LT according to M. So N |LT =M|LT
and by (4) clearly N |� T ∪ st (T ). Moreover, by Lemma 12 N |� P and by assumption
N � M, contradicting the assumption that M is an equilibrium model of T ∪ st (T ) ∪ P .
This establishes (i). Lastly, we note that since 〈T |LP , T |LP 〉 is an equilibrium model of
�(grU (P),M),M|LP is a generalised open answer set of�(grU (P),M) by Corollary 11,
so that M = 〈U, T, T 〉 is an NM-model of K.

For the converse direction, assume the hypothesis but suppose that M is not in equilib-
rium. Then, there is a model M′ = 〈U, H, T 〉 of T ∪st (T )∪P , with H ⊂ T . Since M′ |� P
we can apply Lemma 12 to conclude that M′|LP |� �(grU (P),M′). But clearly

�(grU (P),M′) = �(grU (P),M).

However, since evidently M′|LT =M|LT , thus M′|LP �M|LP , so this shows that M|LP
is not an equilibrium model of �(grU (P),M) and therefore T |LP is not an answer set of
�(grU (P),M) and M is not an NM- model of K. ��

This establishes the main theorem relating to the various special types of hybrid KBs
discussed earlier.

Theorem 14 (Main Theorem)
(i) Let K = (T ,P) be a g-hybrid (resp. an r+-hybrid) knowledge base. M = 〈U, T, T 〉 is
an equilibrium model of the stable closure of K if and only if 〈U, T 〉 is an NM-model (resp.
r+-NM-model) of K.
(ii) Let K = (T ,P) be an r-hybrid knowledge base. Let M = 〈U, T, T 〉 be an Herbrand
model of the stable closure of K. Then M is in equilibrium in the sense of Ref. [26] if and
only if 〈U, T 〉 is an r-NM-model of K.
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Example 5 Consider again the hybrid knowledge base K = (T ,P), with T and P as in
Example 1. The stable closure of K, st (K) = T ∪ st (T ) ∪ P is

∀x .P E RSO N (x)→ (AG E N T (x) ∧ (∃y.H AS-M OT H E R(x, y)))
∀x .(∃y.H AS-M OT H E R(x, y))→ AN I M AL(x)
∀x .P E RSO N (x) ∨ ¬P E RSO N (x)
∀x .AG E N T (x) ∨ ¬AG E N T (x)
∀x .AN I M AL(x) ∨ ¬AN I M AL(x)
∀x, y.H AS-M OT H E R(x, y) ∨ ¬H AS-M OT H E R(x, y)
∀x .AG E N T (x) ∧ ¬machine(x)→ P E RSO N (x)
AG E N T (DaveBowman)

Consider the total HT-model MH T = 〈U, I, I 〉 of st (K), with U, I as in Example 4. MH T is
not an equilibrium model of st (K), since MH T is not minimal among all models: 〈U, I ′, I 〉,
with I ′ = I\{machine(DaveBowman)}, is a model of st (K). Furthermore, it is easy to
verify that 〈U, I ′, I ′〉 is not a model of st (K).

Now, consider the total HT-model M′
H T = 〈U,M,M〉, with U as before, and

M = {AG E N T (DaveBowman), P E RSO N (DaveBowman),

AN I M AL(DaveBowman), H AS − N AM E(DaveBowman, k)} .
M′

H T is an equilibrium model of st (K). Indeed, consider any M ′ ⊂ M . It is easy to verify
that 〈U,M ′,M〉 is not a model of st (K).♦

7 Discussion

We have seen that quantified equilibrium logic captures three of the main approaches to
integrating classical, first-order or DL knowledge bases with nonmonotonic rules under the
answer set semantics, in a modular, hybrid approach. However, QEL has a quite distinct fla-
vour from those of r-hybrid, r+-hybrid and g-hybrid KBs. Each of these hybrid approaches
has a semantics composed of two different components: a classical model on the one hand
and an answer set on the other. Integration is achieved by the fact that the classical model
serves as a pre-processing tool for the rule base. The style of QEL is different. There is one
semantics and one kind of model that covers both types of knowledge. There is no need for
any pre-processing of the rule base. In this sense, the integration is more far-reaching. The
only distinction we make is that for that part of the knowledge base considered to be classical
and monotonic we add a stability condition to obtain the intended interpretation.

There are other features of the approach using QEL that are worth highlighting. First,
it is based on a simple minimal model semantics in a known nonclassical logic, actually a
quantified version of Gödel’s 3-valued logic. No reducts are involved and, consequently, the
equilibrium construction applies directly to arbitrary first-order theories. The rule part P of
a knowledge base might therefore comprise, say, a nested logic program, where the heads
and bodies of rules may be arbitrary boolean formulas, or perhaps rules permitting nestings
of the implication connective. While answer sets have recently been defined for such gen-
eral formulas, more work would be needed to provide integration in a hybrid KB setting.11

Evidently, QEL in the general case is undecidable, so for extensions of the rule language
syntax for practical applications one may wish to study restrictions analogous to safety or

11 For a recent extension of answer sets to first-order formulas, see [12], which is explained in more detail in
Sect. 8.

123



A semantical framework 95

guardedness. Second, the logic QHTs= can be applied to characterise properties such as the
strong equivalence of programs and theories [20,27]. While strong equivalence and related
concepts have been much studied recently in ASP, their characterisation in the case of hybrid
KBs remains uncharted territory. The fact that QEL provides a single semantics for hybrid
KBs means that a simple concept of strong equivalence is applicable to such KBs and char-
acterisable using the underlying logic, QHTs=. In Sect. 9 below, we describe how QHTs= can
be applied in this context.

8 Hybrid KBs and the SM operator

Recently, Ferraris, Lee and Lifschitz [12] have presented a new definition of stable models.
It is applicable to sentences or finitely axiomatisable theories in first-order logic. The defini-
tion is syntactical and involves an operator SM that resembles parallel circumscription. The
stable models of a sentence F are the structures that satisfy a certain second-order sentence,
SM[F]. This new definition of stable model agrees with equilibrium logic in the sense that
the models of SM[F] from [12] are essentially the equilibrium models of F as defined in
this article.

We shall now show that by slightly modifying the SM operator, we can also capture the NM
semantics of hybrid knowledge bases. First, we need to introduce some notation, essentially
following [20].

If p and q are predicate constants of the same arity then p = q stands for the formula

∀x(p(x)↔ q(x)),

and p ≤ q stands for

∀x(p(x)→ q(x)),

where x is a tuple of distinct object variables. If p and q are tuples p1, . . . , pn and q1, . . . , qn

of predicate constants then p = q stands for the conjunction

p1 = q1 ∧ · · · ∧ pn = qn,

and p ≤ q for

p1 ≤ q1 ∧ · · · ∧ pn ≤ qn .

Finally, p < q is an abbreviation for p ≤ q ∧ ¬(p = q). The operator NM|P defines
second-order formulas and the previous notation can be also applied to tuples of predicate
variables.

NM|P [F] = F ∧ ¬∃u((u < p) ∧ F∗(u)),

where p is the list of all predicate constants p1, . . . , pn �∈ LT occurring in F,u is a list
of n distinct predicate variables u1, . . . , un . The NM|P operator works just like in the SM
operator from Ref. [12] except that the substitution of predicates pi is restricted to those not
in LT . Notice that in the definition of NM|P [F] the second conjunct specifies the minimality
condition on interpretations while the third conjunct involves a translation ‘∗’ that provides
a reduction of the nonclassical here-and-there logic to classical logic. This translation is
recursively defined as follows:
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– pi (t1, . . . , tm)∗ = ui (t1, . . . , tm) if pi �∈ LT ;
– pi (t1, . . . , tm)∗ = pi (t1, . . . , tm) if pi ∈ LT ;
– (t1= t2)∗ = (t1= t2);
– ⊥∗ = ⊥;
– (F  G)∗ = F∗  G∗, where  ∈ {∧,∨};
– (F → G)∗ = (F∗ → G∗) ∧ (F → G);
– (Qx F)∗ = Qx F∗, where Q ∈ {∀, ∃}.

(There is no clause for negation here, because ¬F is treated as shorthand for F →⊥.)

Theorem 15 M = 〈U, T 〉 is a NM-model of K = (T ,P) if and only if it satisfies T and
NM|P [P].

We assume here that both T and P are finite, so that the operator NM|P is well-defined.

Proof (⇒) If 〈U, T 〉,U = (D, σ ), is a NM-model of K = (T ,P), then 〈U, T 〉 |� T , and
〈U, T 〉 |� P , and 〈U, T, T 〉 is an equilibrium model of T ∪ st (T ) ∪ P . So we only
need to prove that 〈U, T 〉 |� ¬∃u((u < p) ∧ P∗(u)). For the contradiction, let us
assume that

〈U, T 〉 |� ∃u((u < p) ∧ P∗(u))

This means that:
Fact 1: For every pi �∈ LT , there exists pi ⊂ Dn such that (u < p) ∧ P∗(u) is valid
in the structure 〈U, T 〉 where ui is interpreted as pi .
If we consider the set

H = {pi (d1, . . . , dk) : (d1, . . . , dk) ∈ pi } ∪
∪{pi (d1, . . . , dk) : pi ∈ LT , pi (d1, . . . , dk) ∈ T },

and ui is interpreted as pi , then u < p is valid in 〈U, T 〉 iff H ⊂ T and P∗(u) is valid
in 〈U, T 〉 iff 〈U, H〉 |� P∗(p); that is, the Fact 1 is equivalent to:

H ⊂ T and 〈U, H〉 |� P∗(p) (6)

Since T � H does not include predicate symbols of LT , 〈U, H, T 〉 |� T ∪ st (T ). So,
to finish the proof, we need to prove the following for every formula ϕ:
Fact 2: 〈U, H, T 〉, h |� ϕ if and only if 〈U, H〉 |� ϕ∗(p).
As a consequence of Fact 2, we have that 〈U, H, T 〉 |� P and thus 〈U, H, T 〉 is a
model of the stable closure of K, which contradicts that 〈U, T, T 〉 is in equilibrium.
Fact 2 is proved by induction on ϕ:

(i) If ϕ = pi (d1, . . . , dk), then ϕ∗(p) = ϕ:

〈U, H, T 〉, h |� ϕ ⇔ pi (d1, . . . , dk) ∈ H ⇔ 〈U, H〉 |� ϕ∗(p)
(ii) Let ϕ = ψ1 ∧ ψ2 and assume that, for i = 1, 2,

〈U, H, T 〉, h |� ψi iff 〈U, H〉 |� ψ i
∗(p). (7)

* For ϕ = ψ1 ∧ ψ2 under assumption (7):

〈U, H, T 〉, h |� ψ1 ∧ ψ2 ⇔ 〈U, H, T 〉, h |� ψ1 and 〈U, H, T 〉, h |� ψ2

⇔ 〈U, H〉 |� ψ∗1 (p) and 〈U, H〉 |� ψ∗2 (p)
⇔ 〈U, H〉 |� (ψ1 ∧ ψ2)

∗
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* Similarly, for ϕ = ψ1 → ψ2 under assumption (7):

〈U, H, T 〉, h |� ψ1 → ψ2 ⇔
⇔ 〈U, H, T 〉, t |� ψ1 → ψ2 and

either 〈U, H, T 〉, h �|� ψ1 or 〈U, H, T 〉, h |� ψ2

⇔ 〈U, T 〉 |� ψ1 → ψ2 and either 〈U, H〉 �|� ψ∗1 (p) or 〈U, H〉 |� ψ∗2 (p)
⇔ 〈U, H〉 |� (ψ1 → ψ2)

∗

(⇐) If 〈U, T 〉,U = (D, σ ), satisfies T and NM|P [P], then trivially 〈U, T, T 〉 is a
here-and-there model of the closure of K; we only need to prove that this model is in
equilibrium. By contradiction, let us assume that 〈U, H, T 〉 is a here-and-there model
of the closure of K with H ⊂ T . For every pi �∈ LT , we define

pi = {(di , . . . , dk) : pi (di , . . . , dk) ∈ H}
Fact 3: (u < p)∧P∗(u) is valid in the structure 〈U, T 〉 if the variables ui are interpreted
as pi .
As a consequence of Fact 3, we have that ∃u((u < p)∧P∗(u)) is satisfied by 〈U, T 〉
which contradicts that NM|P [P] is satisfied by the structure.
As in the previous item, Fact 3 is equivalent to

H ⊂ T and 〈U, H〉 |� P∗(p)

The first condition, H ⊂ T , is trivial by definition and the second one is a consequence
of Fact 2. ��

9 The strong equivalence of knowledge bases

Let us see how the previous results, notably Theorem 13, can be applied to characterise a
concept of strong equivalence between hybrid knowledge bases. It is important to know when
different reconstructions of a given body of knowledge or state of affairs are equivalent and
lead to essentially the same problem solutions. In the case of knowledge reconstructed in
classical logic, ordinary logical equivalence can serve as a suitable concept when applied
to theories formulated in the same vocabulary. In the case where nonmonotonic rules are
present, however, the situation changes: two sets of rules may have the same answer sets
yet behave very differently once they are embedded in some larger context. Thus for hybrid
knowledge bases, one may also like to know that equivalence is robust or modular. A robust
notion of equivalence for logic programs will require that programs behave similarly when
extended by any further programs. This leads to the following concept of strong equivalence:
programs�1 and�2 are strongly equivalent if and only if for any set of rules	,�1∪	 and
�2 ∪	 have the same answer sets. This concept of strong equivalence for logic programs in
ASP was introduced and studied in Ref. [19] and has given rise to a substantial body of further
work looking at different characterisations, new variations and applications of the idea, as
well as the development of systems to test for strong equivalence. Strong equivalence has
also been defined and studied for logic programs with variables and first-order nonmonotonic
theories under the stable model or equilibrium logic semantics [8,20,22,27]. In equilibrium
logic we say that two (first-order) theories �1 and �2 are strongly equivalent if and only if
for any theory 	,�1 ∪ 	 and �2 ∪ 	 have the same equilibrium models [20,27]. Under
this definition we have:
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Theorem 16 [20,27] Two (first-order) theories �1 and �2 are strongly equivalent if and
only if they are equivalent in QHTs=.

Different proofs of Theorem 16 are given in Refs. [20] and [27]. For present purposes, the
proof contained in Ref. [27] is more useful. It shows that if theories are not strongly equiva-
lent, the set of formulas 	 such that �1 ∪	 and �2 ∪	 do not have the same equilibrium
models can be chosen to have the form of implications (A → B) where A and B are atomic.
So if we are interested in the case where�1 and�2 are sets of rules,	 can also be regarded
as a set of rules. We shall make use of this property below.

In the case of hybrid knowledge bases K = (T ,P), various kinds of equivalence can be
specified, according to whether one or other or both of the components T and P are allowed
to vary. The following form is rather general.

Definition 8 Let K1 = (T1,P1) and K2 = (T2,P2), be two hybrid KBs sharing the same
structural language, ie. LT 1 = LT 2.K1 and K2 are said to be strongly equivalent if for any
theory T and set of rules P, (T1∪T ,P1∪P) and (T2∪T ,P2∪P) have the same NM-models.

Until further notice, let us suppose that K1 = (T1,P1) and K2 = (T2,P2) are hybrid KBs
sharing a common structural language L.

Proposition 17 K1 and K2 are strongly equivalent if and only if T1 ∪ st (T1) ∪ P1 and
T2 ∪ st (T2) ∪ P2 are logically equivalent in QHTs=.

Proof Let K1 = (T1,P1) and K2 = (T2,P2) be hybrid KBs such that LT 1 = LT 2 = L.
Suppose T1 ∪ st (T1) ∪ P1 and T2 ∪ st (T2) ∪ P2 are logically equivalent in QHTs=. Clearly
(T1 ∪ T ∪ st (T1 ∪ T ) ∪ P1 ∪ P) and (T2 ∪ T ∪ st (T2 ∪ T ) ∪ P2 ∪ P) have the same
QHTs=-models and hence the same equilibrium models. Strong equivalence of K1 and K2

follows by Theorem 13.
For the ‘only-if’ direction, suppose that T1 ∪ st (T1) ∪ P1 and T2 ∪ st (T2) ∪ P2 are not

logically equivalent in QHTs=, so there is.an QHTs=-model of one of these theories that is not
an QHTs= of the other. Applying the proof of Theorem 16 given in Ref. [27] we can infer that
there is a set P of rules of a simple sort such that the equilibrium models of T1∪st (T1)∪P1∪P
and T2 ∪ st (T2)∪P2 ∪P do not coincide. Hence by Theorem 13 K1 and K2 are not strongly
equivalent. ��

Notice that from the proof of Proposition 17, it follows that the nonstrong equivalence of
two hybrid knowledge bases can always be made manifest by choosing extensions having a
simple form, obtained by adding simple rules to the rule base.

We mention some conditions to test for strong equivalence and nonequivalence.

Corollary 18 (a) K1 and K2 are strongly equivalent if T1 and T2 are classically equivalent
and P1 and P2 are equivalent in QHTs=.
(b) K1 and K2 are not strongly equivalent if T1 ∪ P1 and T2 ∪ P2 are not equivalent in
classical logic.

Proof (a) Assume the hypothesis. Since K1 = (T1,P1) and K2 = (T2,P2) share a common
structural language L, it follows that st (T1) = st (T2) = S, say. Since T1 and T2 are classi-
cally equivalent, T1∪S and T2∪S have the same (total) QHTs=-models and so for any T also
T1 ∪ T ∪ S ∪ st (T ) and T2 ∪ T ∪ S ∪ st (T ) have the same (total) QHTs=-models. Since P1

and P2 are equivalent in QHTs= it follows also that for any P, (T1∪T ∪S ∪ st (T )∪P1∪P)
and (T2 ∪ T ∪ S ∪ st (T ) ∪ P2 ∪ P) have the same QHTs=-models and hence the same
equilibrium models. The conclusion follows by Theorem 13.
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(b) Suppose that T1 ∪ P1 and T2 ∪ P2 are not equivalent in classical logic. Assume
again that st (T1) = st (T2) = S, say. Then clearly T1 ∪ S ∪ P1 and T2 ∪ S ∪ P2 are not
classically equivalent and hence they cannot be QHTs=-equivalent. Applying the second part
of the proof of Proposition 17 completes the argument. ��

Special cases of strong equivalence arise when hybrid KBs are based on the same classical
theory, say, or share the same rule base. That is, (T ,P1) and (T ,P2) are strongly equivalent
if P1 and P2 are QHTs=-equivalent.12 Analogously:

(T1,P) and (T2,P) are strongly equivalent if T1 and T2 are classically equivalent. (8)

Let us briefly comment on a restriction that we imposed on strong equivalence, namely
that the KBs in question share a common structural language. Intuitively, the reason for this is
that the structural language LT associated with a hybrid knowledge base K = (T ,P) is part
of its identity or ‘meaning’. Precisely the predicates in LT are the ones treated classically. In
fact, another KB, K′ = (T ′,P), where T ′ is completely equivalent to T in classical logic,
may have a different semantics if LT ′ is different from LT . To see this, let us consider a
simple example in propositional logic. Let K1 = (T1,P1) and K2 = (T2,P2), be two hybrid
KBs where P1 = P2 = {(p → q)}, T1 = {(r ∧ (r ∨ p))}, T2 = {r}. Clearly, T1 and T2 are
classically and even QHTs=-equivalent. However, K1 and K2 are not even in a weak sense
semantically equivalent. st (T1) = {r ∨ ¬r; p ∨ ¬p}, while st (T2) = {r ∨ ¬r}. It is easy
to check that T1 ∪ st (T1) ∪ P1 and T2 ∪ st (T2) ∪ P2 have different QHTs=-models, differ-
ent equilibrium models and (hence) K1 and K2 have different NM-models. So we see that
without the assumption of a common structural language, the natural properties expressed in
Corollary 18 (a) and (8) would no longer hold.

It is interesting to note here that meaning-preserving relations among ontologies have
recently become a topic of interest in the description logic community where logical con-
cepts such as that of conservative extension are currently being studied and applied [13].
A unified, logical approach to hybrid KBs such as that developed here should lend itself well
to the application of such concepts.

10 Related work and conclusions

We have provided a general notion of hybrid knowledge base, combining first-order theories
with nonmonotonic rules, with the aim of comparing and contrasting some of the different
variants of hybrid KBs found in the literature [16,29–31]. We presented a version of quantified
equilibrium logic, QEL, without the unique names assumption, as a unified logical founda-
tion for hybrid knowledge bases. We showed how for a hybrid knowledge base K there is a
natural correspondence between the nonmonotonic models of K and the equilibrium models
of what we call the stable closure of K. This yields a way to capture in QEL the semantics
of the g-hybrid KBs of Heymans et al. [16] and the r-hybrid KBs of Rosati [30], where the
latter is defined without the UNA but for safe programs. Similarly, the version of QEL with
UNA captures the semantics of r-hybrid KBs as defined in Ref. [29,31]. It is important to
note that the aim of this paper was not that of providing new kinds of safety conditions or
decidability results; these issues are ably dealt with in the literature reviewed here. Rather our
objective has been to show how classical and nonmonotonic theories might be unified under
a single semantical model. In part, as [16] show with their reduction of DL knowledge bases

12 In Ref. [5] it was incorrectly stated in Proposition 7 that this condition was both necessary and sufficient
for strong equivalence, instead of merely sufficient.
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to open answer set programs, this can also be achieved (at some cost of translation) in other
approaches. What distinguishes QEL is the fact that it is based on a standard, nonclassical
logic, QHTs=, which can therefore provide a unified logical foundation for such extensions of
(open) ASP. To illustrate the usefulness of our framework we showed how the logic QHTs=
also captures a natural concept of strong equivalence between hybrid knowledge bases.

There are several other approaches to combining languages for Ontologies with non-
monotonic rules which can be divided into two main streams [3]: approaches which define
integration of rules and ontologies (a) by entailment, ie. querying classical knowledge bases
through special predicates the rules body, and (b) on the basis of single models, ie. defining
a common notion of combined model.

The most prominent of the former kind of approaches are dl-programs [10] and their gen-
eralisation, HEX-programs [9]. Although these approaches both are based on ASP like our
approach, the orthogonal view of integration by entailment can probably not be captured by
a simple embedding in QEL. Another such approach which allows querying classical KBs
from a nonmonotonic rules language is based on Defeasible Logic [33].

As for the second stream, variants of Autoepistemic Logic [4], and the logic of minimal
knowledge and negation as failure (MKNF) [23] have been recently proposed in the litera-
ture. Similar to our approach, both these approaches embed a combined knowledge base in a
unifying logic. However, both purchase use modal logics fact syntactically and semantically
extend first-order logics. Thus, in these approaches, embedding of the classical part of the
theory is trivial, whereas the nonmonotonic rules part needs to be rewritten in terms of modal
formulas. Our approach is orthogonal, as we use a nonclassical logic where the nonmono-
tonic rules are trivially embedded, but the stable closure guarantees classical behaviour of
certain predicates. In addition, the fact that we include the stable closure ensures that the
predicates from the classical parts of the theory behave classically, also when used in rules
with negation. In contrast, in both modal approaches occurrences of classical predicates are
not interpreted classically, as illustrated in the following example.

Example 6 Consider the theory T = {A(a)} and the program P = {r ← ¬A(b)}. We
have that there exists an NM-model M of (T ,P) such that M |� A(a), A(b) and M �|�
A(a), A(b), and so r is not entailed. Consider now the embedding τH P of logic programs
into autoepistemic logic [4]. We have τH P (P) = {¬LA(b) → r}. In autoepistemic logic,
LA(b) is true iff A(b) is included in a stable expansion T , which is essentially the set of all
entailed formulas, assuming T . We have that A(b) is not entailed from T ∪ τH P (P) under
any stable expansion, and so LA(b) is false, and thus r is necessarily true in every model.
We thus have that r is a consequence of T ∪ τH P (P).

Similar for the hybrid MKNF knowledge bases by Motik and Rosati [23].

As shown by Bruijn et al. [6], adding classical interpretation axioms—essentially a modal
version of the stable closure axioms—to the theory T ∪ τH P (P) allows one to capture the
hybrid knowledge base semantics we considered in this paper.

In future work, we hope to consider further aspects of applying QEL to the domain of
hybrid knowledge systems. Extending the language with functions symbols and with strong
negation is a routine task, since QEL includes these items already. We also plan to consider
in the future how QEL can be used to define a catalogue of logical relations between hybrid
KBs. Last, but not least, let us mention that in this paper we exclusively dealt with hybrid
combinations of classical theories with logic programs under variants of the stable-model
semantics. Recently, also hybrid rule combinations based on the well-founded semantics
have been proposed by Drabent et al. [7] or Knorr et al. [18], defining an analogous, modular
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semantics like hybrid knowledge bases considered here. In this context, we plan to investi-
gate whether a first-order version of Partial Equilibrium Logic [2], which has been recently
shown to capture the well-founded semantics in the propositional case, can similarly work
as a foundation for hybrid rule combinations à la Drabent et al. [7].

We believe that on the long run the general problem addressed by the theoretical founda-
tions layed in this paper could potentially provide essential insights for realistic applications
of ontologies and Semantic Web technologies in general, since for most of these applications
current classical ontology languages provide too limited expressivity and the addition of
nonmonotonic rules is key to overcome these limitations. As an example, let us mention the
“clash” between the open world assumption in ontologies and the nonmonotonicity/closed
world nature of typical Semantic Web query languages such as SPARQL, which contains non-
monotonic constructs and in fact can be translated to rules with nonmonotonic negation [28].
While some initial works exist in the direction of using SPARQL on top of OWL [17],
the foundations and exact semantic treatment of corner cases is still an open problem.13

As another example, let us mention mappings between modular ontologies as for instance
investigated by Ensan [11]; nonmonotonic rules could provide a powerful tool to describe
mappings between ontologies.
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