
Knowl Inf Syst (2010) 25:229–251
DOI 10.1007/s10115-009-0271-6

REGULAR PAPER

Multi-sorting algorithm for finding pairs of similar short
substrings from large-scale string data

Takeaki Uno

Received: 30 September 2008 / Revised: 20 October 2009 / Accepted: 23 October 2009 /
Published online: 25 November 2009
© Springer-Verlag London Limited 2009

Abstract Finding similar substrings/substructures is a central task in analyzing huge string
data such as genome sequences, Web documents, log data, feature vectors of pictures, pho-
tos, videos, etc. Although the existence of polynomial time algorithms for such problems is
trivial since the number of substrings is bounded by the square of their lengths, straightfor-
ward algorithms do not work for huge databases because of their high degree order of the
computation time. This paper addresses the problem of finding pairs of strings with small
Hamming distances from huge databases composed of short strings of a fixed length. Com-
parison of long strings can be solved by inputting all their substrings of fixed length so that
we can find candidates of similar non-short substrings. We focus on the practical efficiency
of algorithms, and propose an algorithm that runs in time almost linear in the input/output
size. We prove that the computation time of its variant is linear in the database size when the
length of the short strings is constant, and computational experiments for genome sequences
and Web texts show its practical efficiency. Slight modifications adapt to the edit distance and
mismatch tolerance computation. An implementation is available at the author’s homepage.

Keywords Neighbor search · Neighbor graph construction · Similarity analysis · Data
analysis · Large scale data · Homology search

1 Introduction

These days, we have many huge string data such as genome sequences, Web documents,
log data, feature vectors of pictures, photos, videos, etc. Since the size of these data is so
huge that humans cannot grasp them intuitively, they must be computationally analyzed.
Finding similar substrings or similar substructures is an important way of analyzing the data.
The similarity and distribution of substrings make it possible to grasp the global or local
structures. The number of substrings in a string is at most the square of the string length.
Thus, if the distance between two substrings can be computed in polynomial time, similar

T. Uno (B)
National Institute of Informatics, 2-1-2, Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
e-mail: uno@nii.jp; uno@nii.ac.jp
URL: http://research.nii.ac.jp/~uno/index.html

123

230 T. Uno

substrings can be found in polynomial time by comparing all substrings one by one. However,
algorithms that spend no less than square time do not work for huge data; therefore, practical
fast algorithms, say quasi linear time algorithms, are needed.

In this paper, we consider the problem of enumerating all pairs of similar strings in a set
S of strings of the same length l. As a similarity measure, we use Hamming distance. Thus
the definition of the problem is as follows.

Short Hamming Distance String Pair Enumeration Problem:
Input: set S of strings of the same length l, distance threshold d
Output: all pairs of strings S1 and S2 such that the Hamming distance between S1 and S2

is at most d .
We call a pair of strings with Hamming distance of at most d a similar string pair. We

consider the case in which the length l is small, and propose a practical and efficient algo-
rithm. The idea of the algorithm is to classify the strings in several ways so that two strings
of a similar string pair are in the same group for at least one classification. Only strings in the
same group have to be compared, which reduces the cost of the comparison. Suppose that we
partition each string into k blocks. We choose k − d indices of blocks and classify the strings
so that two members of a group have the same letters on the specified blocks. Two strings
in a similar string pair must share at least the same k − d blocks; thus by examining all the
combinations of k − d indices, the two strings must be in the same group for at least one
combination. Thus, performing pairwise comparison in each group for each combination,
we can find all the similar string pairs. We call this “multi-sorting algorithm”, since we use
radix sort for the task of classification. If the k − d blocks have sufficiently many letters, the
members of each group is expected to be few; thus all pair comparisons takes quite a short
time, and practical computation time will be close to linear time. As we show later, the results
of the computational experiments for genome strings show that the algorithm is practically
efficient. The algorithm can be parallelized well. Computational experiments show that the
algorithm is scalable for the number of processors.

By setting k to l, the Hamming distance of any two strings in the same group is at most
d . Using this fact, the time complexity of the algorithm can be bounded by O(lCd × (|S| +
d N)) = O(2l(|S| + d N)), where N is the number of pairs to be output. This is linear in the
input and output size, but exponential in d; thus for fixed l, we can say that the algorithm is
linear time in the input and output size. This is the theoretical aspect of this algorithm. This
algorithm can be applied to the case of edit distance, with a slight modification. However, the
computation time will be much longer compared to the Hamming distance, thus we thought
that the Hamming distance is useful practically.

One of the disadvantages of our problem model is that we may have many output pairs, and
each pair does not give the shape of local similarity structures. We introduce a new similarity
measure called continuous interval Hamming distance of two strings defined by the maxi-
mum Hamming distance of all their substrings of given length l. Using this measure we can
naturally introduce a maximality to the similar strings. By outputting maximal similar string
pairs, which can be obtained from similar string pairs, we can capture the local similarity
and reduce the output at the same time. The computation time for checking the maximality is
bounded by the number of similar string pairs and thus we lose no efficiency in terms of time
complexity. The experimental results show that the number of output solutions is drastically
small compared to similar string pairs.

Using the algorithm makes it possible to approach the problem of finding similar non-
short strings, and similar non-short substrings of long strings. We can observe that two
non-short similar strings may have several similar string pairs as their substrings. Thus,

123

Multi-sorting algorithm for finding pairs of similar short substrings 231

pairs of non-short strings including several similar string pairs are candidates for non-short
similar substrings. This approach has a certain certification of accuracy. For example, any
two strings L1 and L2 of 3,000 letters with the Hamming distance of at most 293 have at
least three pairs of substrings of 30 letters starting from the same position of L1 and L2 such
that the Hamming distance between them is two at most.

This fact motivates us to find mid-length strings pairs L1 and L2 such that L1 and L2

have at least a certain number of similar substrings such that the difference of their starting
positions is bounded by some constant. From these observations, we propose a way to find
“candidates” of similar substrings, by finding a set of a certain number of similar string pairs
composed of substrings whose positions are close to each other. In this way, we compared
the human genome and mouse genome by our algorithm. The computation is done in quite
a short time, and even though we found the candidates of similar structures, we could see
homology structures figured out by the comparison.

The organization of this paper is as follows. The rest of this section shows related works
and applications to the problem. Section 2 is for preliminaries, and Sect. 3 shows our algo-
rithm. Section 4 describes the details of the application to long similar string detection, and
Sect. 5 presents some extensions and generalizations of our algorithm and problem. We show
the computational experiments in Sect. 6.

1.1 Related works

The short Hamming distance string pair enumeration problem can be considered as a kind
of neighbor graph (or, ε-neighbor graph) construction problem. For given data, the neighbor
graph construction problem is to construct the graph such that each vertex corresponds to an
object in the data, and an edge connects two vertices when corresponding two objects are
similar to each other, i.e., the distance between them are no more than the given threshold.
Neighbor graph is often used for clustering, for example [5,12]. Constructing a neighbor
graph is to find all the pairs of objects such that the distance is no more than the threshold.
Hence, if the data are a collection of short strings of the same length, it is equivalent to the
short Hamming distance string pair enumeration problem. Even when the objects in the data
are not short string, nor the distance is not given by Hamming distance, we can use Local
Sensitive Hashing. Local Sensitive Hashing is a way to maps objects to short strings such
that similar objects are mapped to strings of short Hamming distance with high probability.
In [12], they also use Local Sensitive hashing for the clustering, but they find only the pairs
of the same strings. By finding string pairs of short Hamming distance, we may be able to
more efficiently find the clusters.

In the area of algorithms and computation, the problem of finding similar strings has been
widely studied. The problem is usually formulated that for two given strings Q and S, find
all substrings of S similar to Q. This formulation can be considered as a generalization of
string matching problems. When the Hamming distance is chosen as a similarity measure, a
straightforward algorithm solves the problem in O(|S||Q|) time; thus a research goal is to
reduce this time complexity. Here the length of S and Q is denoted by |S| and |Q|.

For the problem of finding substrings of S with the shortest Hamming distance to Q,
Abrahamson [1] proposed an algorithm running in O(|S|(|Q| log |Q|)1/2) time. If the max-
imum Hamming distance is k, the computation time can be reduced to O(|S|(k log k)1/2)

[4]. Some approximation approaches have also been developed. The Hamming distance of
two strings of length l within (1 − ε) and (1 + ε) approximation ratio with probability δ

can be computed in O(log l log(1/δ)/ε) time [8]. For edit distance, which allows insertions
and deletions, algorithms proposed by Muthukrishnan and Sahinalp [15,16] approximate the

123

232 T. Uno

minimum distance substring. Using these algorithms, the problem can be solved in a shorter
time but may fail with some solutions. These algorithms take more than O(|S|2) time to find
similar substrings even for fixed length strings, Thus, direct applications of these algorithms
does not work in practice.

On the other hand, there have been several studies for efficient data structures to find
similar substrings. The problem is formulated such that, for a given string S, construct a data
structure of not a large size such that for any query string Q, substrings of S similar to Q can
be found in a short time. For the problem of finding substring of S equal to Q, there are many
efficient data structures such as suffix array, which make it possible to find all such substrings
in almost O(|Q|) time. However, allowing the errors makes the problem difficult. Existing
algorithms basically need θ(|S|) time in the worst case. This difficulty can be observed in
many other similarity search problems, such as inner product of vectors, points in Euclidean
space, texts, and documents. Motivated by practical use, there have been many studies on
approximation and heuristic approaches.

Yamada and Morishita [21] proposed an algorithm for computing a lower bound of the
shortest Hamming distance from Q to a substring in S. The algorithm constructs a data struc-
ture in O(|S| log |S|) time, then answers a lower bound in O(|Q|L) time for any Q, where L
is a constant no greater than |Q|. They also proposed an efficient exact algorithm for strings
with a small alphabet such as genome sequences [22].

In bioinformatics, the problem of finding substrings of two strings that are similar to
each other is called homology search, and has been widely studied. Because of the huge
size of genome sequences, developing exact algorithms running in a short time is difficult
thus many heuristic algorithms have been proposed. BLAST and FASTA [2,3,17] are widely
used among these algorithms. The idea of BLAST is to find short substrings of S and Q that
are equal and check whether there are similar substrings including them. This idea is based
on the observation that two similar substrings may have common short substrings. Actually,
if the Hamming distance between two strings of length more than 10 is no more than 9%
of their length, they always have a common substring of 10 letters. The disadvantage of this
method is that when the strings are long, a large number of substrings are the same and thus
a lot of comparisons must be made. Such frequently appearing strings can be considered
to be not important in practice; thus heuristic methods ignore these strings in the interest of
practical efficiency. Another method of solving the problem is to partition Q and S into many
blocks [20]. Some statistics of the blocks are computed, for example, the number of each
letter in the blocks, which is for detecting the pairs of blocks which will never be similar.
Then a dynamic programming connects the blocks and produces candidates of long similar
substrings. The idea is that long similar substrings are expected to be few.

1.2 Applications

There are many kinds of applications of string similarity detections in both industrial and
academic areas. We look at some of them.

(1) Genome sequence homology detection
A genome sequence is a string composed of letters ATGC witch represents the sequence
of amino acid in the DNA of a species, or an individual animal/plant. To capture the
evolutionary changes of organisms, their (common) ancestors, or the genomic differ-
ence of species, finding similar substrings of genome sequences is an important task.
The length of a genome sequence is usually quite large. For mammalians including
homo sapiens, the total length of genome sequences is up to 4 billion. Therefore, the
speed of comparison algorithms is quite important. A popular tool for this task BLATZ

123

Multi-sorting algorithm for finding pairs of similar short substrings 233

is based on the idea of finding the pairs of similar substrings and visualizing those pairs
by a dot plot. However, since it finds exactly the same quite short strings as the seeds of
similar substrings, quite many string pairs will be found; thus BLATZ may take more
than 1 week to compare two chromosomes of length 100 million [18]. Murasaki [18]
terminates in a short time, say 2 or 3 h, by decreasing the error ratio, i.e., it finds only
pairs of long and quite similar strings. By using our approach, we can find pairs of
similar not-so-short substrings in a short time, say 15 min, without decreasing the error
ratio. Using the pairs found as the seeds, we can speed up without losing much accuracy.

(2) Assembling fragments to genome sequences [9]
It is not easy to read the genome sequence from DNA at all once. What we can do
now is to read short sequences with at most thousand letters. To construct the whole
genome sequence completely, we usually randomly cut many DNA fragments taken
from an organism, read such fragments of thousand letters, and connect the fragments
by using the overlapping fragments. Since the genome-sequencing machine generates
errors, and the genome itself has errors, overlaps have to be detected with errors. Thus,
similarity detection among many fragments is important for this task. Generally, the
number of fragments needed to construct a genome sequence of length 1 million is at
least 6 million; thus construction of the human genome needs to solve the problem of
6 billion. The similar short substrings of fragments can be good candidates (seeds) for
finding the overlaps.

(3) Mapping fragments to reference strings (genome sequences) [10]
Mapping a fragment means finding the positions of a reference string to which the frag-
ment and the substrings starting from the positions have a small distance. This mapping
is used in several application areas. In genomic science, genome sequence fragments
of a species or an individual organism are mapped to the genome sequence of a sim-
ilar species, or the same species, to detect small differences (changes) of the genome
sequences between species or individuals. Constructing the entire genome sequence by
assembling the fragments is a difficult task, and requires a large number of fragments,
but mapping is lighter task and performs well when we want to capture the small differ-
ences. The similar substrings of fragments and reference strings gives us the positions
on which the fragments are mapped; thus we can efficiently solve the problem by using
our algorithm. If the fragments are long, short substrings will give candidates of the
position to be mapped.
This detection can be applied to OCR (optical character recognition). When OCR device
reads a document, it makes many errors thus many letters will be replaced with other
letters. By mapping each sentence of the document to a text database such as Web doc-
uments, we may find the same substring of the sentence but including no error. Such
detection enables automatic error correction of OCR documents.

(4) Detecting reference/copy relation of documents [19]
By finding similar sentences/phrases from document databases, we can detect the refer-
ence/copy relation among many documents. The relation is between parts of documents;
thus the entire documents do not have to be similar. This will be a base of evaluation
of value/originality of documents, detecting violation of copyrights, dependency, etc.
Such reference/copy relations can be found by detecting similar substrings, which can
be found by finding similar short substrings as the seeds. Note that it is not easy to find
“sentences having the same meaning but written in different ways”.

(5) Finding pairs of similar images, and similar scenes of videos [7]
Similarity of two images can be evaluated by extracting features of the images. The fea-
tures can be represented by a string obtained by discretizing the features; thus we can

123

234 T. Uno

find pairs of similar images among many images in a short time by using our algorithm.
Since movies are sequences of images, by finding similar images among those images,
we can find similar scenes among many movies.

(6) Finding similar structures from sequential data [13]
Sequential data can be transformed to a string by discretizing the time and the values.
Thus, partially similar subsequences can be detected by using our algorithm. In par-
ticular, similar parts/phrases of musics/songs can be detected. Since they often have
the same phrase with different speed, we have to consider expansion/contraction of
music data. This can be done by duplicating sequential data at different speeds. In this
way, phrases are expanded/contracted uniformly. Thus our algorithm is expected to be
efficient for music data.

(7) Finding partial similarity among matrix (geometical) data
Finding similar submatrices (with small Hamming distance) from large matrices can be
solved in the same way to our algorithm, by dealing submatrices as substrings. Using
this, we can find partially similar areas of images from many images. In this way, even
when an image is cut, has a shade in front of the background image, and/or translation,
we can detect similar areas. To deal with the rotation/expansion/contraction, we also
use the same technique to (6); we prepare duplicated images obtained by rotating and/or
expanding the original image. The partial similarity among them gives us the similarity
with expansion, rotation, and translation.

2 Preliminary

Let � be an alphabet of letters, and a string be a sequence of letters. The length of a string
S is the number of letters in S and is denoted by |S|. A sequence composed of no letters is
also a string and is called an empty string. The length of an empty string is 0. The i th letter
of string S is written S[i], and i is called the position of S[i]. The substring of S starting
from the i th letter and ending at the j th letter is denoted by S[i, j]. For example, when string
S is ABC DE FG, S[3] = C , and S[4, 6] = DE F . When j < i , we define S[i, j] by the
empty string. For two strings S1 and S2, the concatenation of S2 to S1 is a string S given
by concatenating S2 to S1, i.e., |S| = |S1| + |S2|, S[i] = S1[i] if i ≤ |S1|, and S2[i − |S1|]
otherwise. The concatenation of S2 to S1 is denoted by S1 · S2.

For two strings S1 and S2 of the same length, the Hamming distance of S1 and S2 is
defined by the number of positions i satisfying that S1[i] �= S2[i]. The Hamming distance
is denoted by Ham Dist (S1, S2). Such letters are called the mismatch of S1 and S2, and the
positions of mismatches are called mismatch positions of S1 and S2. For a given threshold
value d , we say two strings S1 and S2 of the same length are similar if their Hamming
distance is no greater than d , and call them similar string pair. For string S and integers b
and k, b ≤ k, we denote the substring of S starting from (�|S|(b − 1)/k� + 1)th letter to
(�|S|b/k�)th letter, i.e., S[�|S|(b − 1)/k� + 1, �|S|b/k�], by B(S, k, b). B(S, k, b) is called
the bth block.

For string S, the deletion of the position i is a string given by S[1, i − 1] · S[i + 1, |S|].
The insertion of letter a to S at position i is a string given by S[1, i −1] · A · S[i, |S|] where A
is the string composed of one letter a. The change of position i of S to a is a string given by
S[1, i − 1] · A · S[i + 1, |S|]. For two strings S1 and S2, the edit distance of S1 and S2 is the
smallest number of combinations of insertions, deletions, and changes needed to transform
S1 to S2.

123

Multi-sorting algorithm for finding pairs of similar short substrings 235

The problem we address in this paper is formulated as follows. Let S be a multi-set of
strings of the same length. S is allowed to include more than one string that is the same,
and every string has an ID to be distinguished from the others. The problem is formulated as
follows:

Short Hamming Distance String Pair Enumeration Problem:
Input: A multi-set S of strings of fixed length l, and threshold value d
Output: All pairs of strings S1 and S2 in S such that Ham Dist (S1, S2) ≤ d .
Hereafter, we fix the input set S of strings of length l and a threshold value d , and assume
that the size of � is smaller than the total size of S, i.e., l × |S|.

3 Multi-sorting algorithm

The basic idea of the algorithm is to classify the strings in several ways so that any two
similar strings are in the same group at least once. Let C(k, j) be the set of j distinct inte-
gers taken from 1, . . . , k. For example, C(4, 2) = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}.
For string S and set C = {b1, ..., bk−d}, b j < b j+1 taken from C(k, k − d), we define
Sig(S, C) = B(S, k, b1) · B(S, k, b2) · . . . · B(S, k, bk−d). We suppose that an integer
k, d < k ≤ l is chosen, and have a look at the following property:

Lemma 3.1 If Ham Dist (S1, S2) ≤ d, at least one C ∈ C(k, k − d) satisfies Sig(S1, C) =
Sig(S2, C).

Proof The statement is obvious from the pigeonhole principle. Suppose that Ham Dist (S1,

S2) ≤ d . Observe that if B(S1, k, b) �= B(S2, k, b) holds, it includes at least one mismatch,
i.e., S1[i] �= S2[i] holds for some b, �|S|(b − 1)/k� + 1 ≤ i ≤ �|S|b/k�. Since S1 and S2

have at most d mismatches, at most d integers b satisfy B(S1, k, b) �= B(S2, k, b), thereby at
least k − d integers b satisfy B(S1, k, b) = B(S2, k, b). Setting C to the set of those integers
h satisfying B(S1, k, b) = B(S2, k, b) shows that Sig(S1, C) = Sig(S2, C). ��

This lemma motivates us to restrict the comparison to those pairs of strings satisfying
the condition of the lemma. To efficiently find these pairs, we focus on the combinations of
integers. For each C ∈ C(k, k −d), we classify strings S in S according to Sig(S, C) so that
two strings S1 and S2 satisfy Sig(S1, C) = Sig(S2, C) if and only if they are in the same
group. In Fig. 1, we show an example of this method, which we call the multi-sorting method.
In this example, there are nine strings and set d = 1 and k = 3. Each block is composed of
two letters, and classified by two blocks are done three times. For each classification there
are several groups represented by rectangles with more than one string, and some of them
contain strings with a Hamming distance of at most one, written at the head of the arrows.

ALGORITHM MultiSorting_Basic (S:set of strings of length l, d)
1. choose k from d + 1, . . . , l
2. for each C ∈ C(k, k − d) do
3. classify all strings S ∈ S by Sig(S, C)

4. for each group K of the classification
output all pairs S1 and S2 in K satisfying Ham Dist (S1, S2) ≤ d

6. end for

The classification for C is done by sorting Sig(S, C) in O(l(k − d)/k × |S|) time by a
radix sort. We compute the probability that two randomly chosen letters from strings of S

123

236 T. Uno

AB CC EF
AB CD AA
AB CD EA
AB CD EF
CC AB FF
CD AB EF
FF CC EF
FF CD EA
FF CD EA

AB CD EF
CD AB EF
AB CC EF
FF CC EF
AB CD AA
FF CD EA
CC AB FF
AB CD EA
FF CD EF

AB CD AA
AB CD EA
AB CC EF
AB CD EF
CC AB FF
CD AB EF
FF CC EF
FF CD EA
FF CD EA

CC AB FF
CD AB EF
AB CC EF
FF CC EF
AB CD AA
AB CD EA
FF CD EA
FF CD EA
AB CD EF

ABCDAA & ABCDEA
ABCDEA & ABCDEF
FFCDEA & FFCDEA

ABCCEF & ABCDEF
FFCDEA & FFCDEA

FFCDEA & FFCDEA

Fig. 1 Example of multi-sorting for finding strings with Hamming distance of at most one, by dividing strings
in three blocks and classifying them by two blocks

are the same, and choose k such that the expected size of each group in a classification is less
than 1. Then the comparisons in a group are not so many, and the bulk of the computation
time is for radix sort. Since l(k − d)/k is expected to be relatively small when l is small, it
can be expected that the practical performance of the algorithm will be high.

3.1 Reducing the cost for radix sort

We present a way to reduce the total computation time for radix sort by unifying the sort
of the prefix of Sig. Suppose that we repeatedly and recursively add an integer one by one
to C , which represents the combination of the blocks, to construct C ∈ C(k, k − d) like a
backtrack algorithm. Then, after choosing an integer b in some iteration of the backtrack-
ing, B(S, k, b) is common to all C generated in the recursive call, i.e., until b is removed.
Thus, the radix sort for B(S, k, b) can be done at the iteration and the result can be used
in the recursive calls. As a result, the computation time for each radix sort is reduced to
O(l/k × |S|). A radix sort usually requires O(l/k × (|S| + |�|)) time, since it puts each
string into one of the |�| buckets, and scans the buckets in increasing order of letters. How-
ever, we do not want to sort them, but just classify the strings; thus we need only non-empty
buckets. Moreover, the buckets do not have to be sorted in alphabetical order. Thus, instead
of scanning all the buckets, we make a list (or stack) of the ID’s of non-empty buckets.
Therefore, when we are given initialized O(|�|) memory, the classification can be done in
O(l/k×|S|) time. Note that after the classification the memory re-initialized in O(l/k×|S|)
time, since at most O(l/k × |S|) memory has been accessed. We describe the algorithm in
the next subsection. Additionally, when the members of a bucket is not so many, say less
than 10, we can perform the pairwise comparison directly, instead of recursively executing
the radix sort. This can reduce the computation time when there are many buckets with small
sizes.

3.2 Avoiding duplication without memory

The multi-sorting described above may output duplicates, i.e., output one pair of strings
many times. For example, in Fig. 1, the pair FFCDEA and FFCDEA is output three times.

123

Multi-sorting algorithm for finding pairs of similar short substrings 237

A way to avoid such duplication is to store all the pairs found in memory and check for
duplication when a new pair is found. Although this is simple, it requires much memory. We
present a method that does not store the pairs found in memory, and thus requires no extra
memory.

A pair of strings S1 and S2 is output more than once if B(S1, k, b) = B(S2, k, b) holds
for more than k − d integers i , since Sig(S1, C) = Sig(S2, C) holds for many C’s. For
given S1 and S2, let C∗(S1, S2) be the lexicographically minimum one among {C ′|C ′ ∈
C(k, k − d), Sig(S1, C ′) = Sig(S2, C ′)}. Our idea is to output an S1 and S2 pair only when
the current operating C is equal to C∗(S1, S2). Since, C∗(S1, S2) is the collection of the
k − d smallest i’s satisfying B(S1, k, b) = B(S2, k, b), the computation is not a heavy task.
The algorithm is described as follows, that requires an initial call with S, d and k, and set
C = ∅:

ALGORITHM MultiSorting (S:set of strings of length l, d , k, C)
1. if |C | = k − d then output all pairs S1 and S2 in K

satisfying Ham Dist (S1, S2) ≤ d and C = C∗(S1, S2) ; return
2. for each b larger than the maximum integer in C do
3. radix sort to classify all strings S ∈ S according to B(S, k, b)

4. for each group K of the classification with |K | > 1
call MultiSorting (K , d , k, C ∪ {b})

5. end for

Theorem 3.1 The memory usage of algorithm MultiSorting is O(|S|+|�|), which is almost
two integers for each letter in precise. The computation time of the algorithm except for step
1 is bounded by O(|�| + l/k × (|S|) × lCd).

3.3 Choosing good k

The MultiSorting algorithm needs a parameter k, and it affects the computation time; if k is
too small, the cost for pairwise comparison will be large, and if k is too large, the cost for radix
sort will be large. In our computational experiments, the computation time was sufficiently
short for many ks. Thus, we do not have to be serious about choosing k. We propose a simple
way to choose a good k, and the computational experiments shows it is efficient enough in
the practice.

For each letter a ∈ �, let p(a) be the number of appearances of a in S divided by l ×|S|.
p(a) is the probability that a letter randomly chosen from a string of S is a. The probability
that two randomly chosen letters are the same is p = ∑

a∈� p(a). Under the assumption
that the letters of strings in S are independently chosen at random, two substrings of length
t of some strings in S will be the same with probability pt . If we divide each letter into k
blocks, MultiSorting algorithm executes a radix sort with approximately ld/k letters; hence
two strings will be in the same bucket with probability approximately pld/k . This means that
the expected number of the members in each bucket is |S| × pld/k .

Let k∗ be the minimum k such that |S| × pld/k ≤ 1, i.e., the expected number of the
members is no more than one. We choose k∗ for the parameter k. The computation time for
pairwise comparison would be O(|S|) under the above assumption, thus shorter than the
computation time for radix sorts. When the assumption does not hold, the cost for pairwise
comparison will be large and will be equal to or longer than that for radix sorts. However,
in our computational experiments, this choice usually attains almost minimum computation
time among all possible ks.

123

238 T. Uno

3.4 A fixed parameter tractable algorithm

The time complexity of the algorithm presented in the previous subsection is still O(|S|2)
since the bottle neck of the computation is actually step 1. For example, if all strings in S
are the same, Ham Dist (S1, S2) must be computed lCd times for every S1 and S2 pair in S;
thereby the total computation time is O(l|S|(|S|+l Cd)). We will save the computation time
in step 1.

Let k = l. Then, for each i , B(S, k, b) is composed of one letter, thus Sig(S1, C) =
Sig(S2, C) immediately means Ham Dist (S1, S2) ≤ d . This implies that any pair of strings
in the same group will be output. Thus, the computation time in step 1 is bounded by prod-
uct of the size of output, and the maximum number of duplications for one pair, which is
|C(l, d)| = lCd . We call this algorithm the complete version. For the complete version of our
algorithm, we obtain the following theorem. Note that the computation of Ham Dist (S1, S2)

is done in O(d) time if Sig(S1, C) = Sig(S2, C), and each radix sort is performed in O(|S|)
time.

Theorem 3.2 The short Hamming distance string pair enumeration problem for set S of
strings of length l and distance threshold d can be solved in O(|�| + lCd × (|S| + d N)) =
O(|�| + 2l(|S| + d N)) time with O(|S| + |�|) memory where N is the number of output
string pairs.

4 Approach to long substrings

The algorithms proposed here are to detect similarity in short strings. In this section, we
show an approach to detect non-short similar substrings based on short similar substring
enumeration. A straightforward approach may take more than square time, since the length
of strings to be compared cannot be bounded by a constant.

One typical approach to capturing similarity structures by using similar string pairs is as
follows. We partition S into non-short blocks, for example, partition a string of 1,000,000
letters into 1,000 strings of 1,000 letters. We define the similarity measure of blocks S[k1, h1]
and S[k2, h2] by the number of pairs of similar substrings taken from one block and a sub-
string taken from the other block. We can visualize the similarity structure in this measure by
a figure such that the intensity of the color of the pixel (x, y) is given by the similarity. This
method is called “dot plot” in bioinformatics. The left of Fig. 2 shows an example of images
obtained by this method. The images are drawn by solving the problem with parameters
l = 30 and d = 2. The computation is done in few minutes.

If the blocks are large, any two blocks contain a sufficiently large number of similar string
pairs; thus all pixels will be of the same color. Moreover, we need much time for computation.
In such cases, we have to reduce the number of outputs, without losing important informa-
tion. One simple way to reduce the output is to output the pairs included in longer similar
substrings. For example, we choose a constant k, and output a similar substring pair S1 and
S2 only if S1 and S2 are substrings of L1 and L2 of length kl such that S1 = L1[i, i + l − 1]
and S2 = L2[i, i + l − 1] hold for some i , and Ham Dist (L1, L2) ≤ kd . We can also use
the edit distance to be sensitive for insertion/deletion error.

Another way for reducing the output is sampling the substrings. For example, if we choose
1 of 10 substrings as substrings to be compared, we can reduce the number of output pairs
by possibly 1/100. However, this approach may miss some middle-length similar substrings.

123

Multi-sorting algorithm for finding pairs of similar short substrings 239

Fig. 2 Matrix showing similarity of mouse 11 chromosomes (X-axis) and Human 17 chromosome (Y-axis),
with black cells on similar parts; we can see similar substructures as diagonal lines; the left figure represents
the density of similar string pairs, and the right figure is the result of our filtering

Fig. 3 (Up) Maximal (6,1)-CIH
substrings of S1 and S2; (down)
positions (substrings) taken by
the interleaving approach with
p = 2. the maximal substrings
include two similar string pairs,
and the left one, GCAGCA and
GCTGCA, are the canonical pair

S1 = ATGCGCGGCAGCAGTGTAGATTATGGATAT

S2 = ATGGCTTTGCGTTAGGCTGCAGTGGAGAAGT

S1 = ATGCGCGGCAGCAGTGTAGATTATGGATAT

S2 = ATGGCTTTGCGTTAGGCTGCAGTGGAGAAGT

We propose a way to sampling the substrings that never miss similar substrings with a certain
length.

Suppose that we are going to compare long strings T1 and T2, by finding similar substrings
for length l and Hamming distance at most d . We first choose a divisor p of l. Then, we take
substrings from T1 such that their starting positions are 1, p + 1, 2p + 1, . . . , and take sub-
strings from T2 such that their starting positions are 1, 2, . . . , p, l +1, l +2, . . . , l + p, 2l +
1, 2l + 2, . . . , 2l + p, An example of such a method of taking substrings is shown at
the bottom of Fig. 3. We call this method the interleave method. Suppose that L1 and L2 are
substrings of T1 and T2 of length m such that L1 = T1[i, i + m − 1], L2 = T2[j, j + m − 1].
Let k = (i − j) mod l, x = p�k/p�, and y = k − (k mod p) Note that when i − j < 0,
k = l − ((j − i) mod l). Then, we can see that two substrings S1 of L1 and S2 of L2 of length
l starting from b +1th letter, i.e., S1 = T1[i, i +b + l −1] and S2 = T1[j +b, j +b + l −1],
are both taken to be compared if and only if (i + b) mod l = x , since i + b mod l = x
means that j + b mod l = y. Thus, for every l consecutive substrings pairs of length l, at
least one pair satisfies that both substrings are taken for the comparison. Thus, intuitively,
we never miss L1 and L2, if they are not sufficiently short and their Hamming distance is
not large. More precisely, we never miss L1 and L2 if their length is no less than 2l, and the
Hamming distance is less than (d + 1) × |L1|/ l�. In the case that l has no divisor, or few
divisors, we can choose a number l ′ < l and its divisor p, and take strings from positions
1, 2, . . . , p, l ′ + 1, l ′ + 2, . . . , l ′ + p, 2l ′ + 1, 2l ′ + 2, . . . , 2l ′ + p, In this way, we lose
the above certification, but expect that the practical efficiency does not change much.

123

240 T. Uno

Fig. 4 Three examples of cells with the same number of similar string pairs. Each dot represents the position
of a string pair. The diagonal rectangle is the bounding condition to be a seed. When the threshold number
is three, the left and center cells have seeds. However, the seeds in the central cell are too concentrated in a
small area and thus we have to remove the seeds

We briefly explained the second approach in the introduction. Observe that any two strings
L1 and L2 sufficiently longer than l with a Hamming distance less than |L1|/ l − h� × d +
(d − 1) must include at least h similar string pairs. For example, when l = 30, d = 2, and
L1 and L2 are of 3,000 letters with a Hamming distance of at most 293, they include at least
three similar string pairs. Generally speaking, if the Hamming distance of two strings of
length Kl is at most (K − h)d , then the string pair has at least h pairs of substrings starting
from the same positions and having a Hamming distance at most d . This is because the string
has K disjoint substring pairs, and at most (K − h) of them can have no less than d distinct
letters. We have similar observations for the edit distance. This comes from the same reason
as Lemma 3.1. We call such pairs a seed. It implies that there are long similar strings with
over 3,000 letters only if there is a seed. This motivates us to find seeds to capture the long
string similarity; draw an image by putting a dot if there are such three pairs. Furthermore,
if the member of a seed lies in a short interval, say 300, and there exits no other similar
string pair near by them, then the seed indicates short similar strings; thus we also delete
such isolated seeds within a small area. To find such pairs, we classify all similar string pairs
according to the difference in the starting positions of two strings in the pair. We then sort
the similar pairs with the same difference in the starting positions according to the starting
position of the first string. Then, by scanning the obtained sorted list of pairs, we can easily
find seeds. The classification and sorting of each group can be done using a radix sort in
linear time. This task can be done in O(N) time, where N is the number of similar pairs.

This approach can be applied even when we consider the edit distance. An insertion/dele-
tion can make the Hamming distance of two strings quite large. Thus, if the number of
insertions/deletions between two strings is relatively small, we can state a certain certifica-
tion of accuracy. Consider an example of two strings of 3,000 letters with an edit distance of
at most 198 with insertions/deletions of at most 55. Then, they have at least three substrings
of 30 letters with a Hamming distance of at most two. For the edit distance, the differences
in the start positions of the pairs in a seed do not have to be the same, but the differences
are bounded, at most 55. In Fig. 4, we present some examples of similar string pairs in cells.
Some bounding conditions of seeds are inside the diagonal boxes.

To find all seeds which are composed of three pairs in the above case, we modify the
above method. The starting positions of pairs in a seed can differ and thus we have to merge
several groups with similar starting position differences, then sort the pairs and scan them.
We call the merged groups a belt. An intuitive image of a belt is shown in Fig. 5. Thus, the
computation time is multiplied by the width of the belt, but we can reduce the computation
time by using a binary tree. We construct a binary tree representing the sorted order of the
pairs in a belt, then we shift the belt by removing one group and adding group to the belt,
and by using binary tree, we update the sorted list of the pairs in the belt. In this way, the
computation time to find all pairs not included in any seed is O(N log N).

123

Multi-sorting algorithm for finding pairs of similar short substrings 241

Fig. 5 Example of belt; it
sweeps in left-down direction. It
updates the sorted order of string
pairs it contains, and finds the
pairs satisfying the condition to
be a seed. Discretized belt that
has the doubled width, is placed
only at the dotted lines

beltdiscretized belt
positions

In practice, we can use a simpler method by discretizing the belts. We double the width
w of the belt, and scan only one belt among w belts. An example of the positions of belt is
shown in Fig. 5. The computation time of this method is linear, but it never misses any seeds.
However, some similar string pairs not included in any seed may be judged to be in a seed.
However, we believe such an error is not critical, since we can consider that random noise
produces few errors. If there are many such errors, we should consider them as a kind of
similarity. The right image of Fig. 2 was made in this approach. The image was drawn by first
finding the problem with parameters l = 30 and d = 3, and finding seeds composed of three
pairs with length 3,000 and width 300, by the discrete belt approach. We discard the isolated
seeds, if a seed is in an area of length 300, and has no similar string pair with a distance
shorter than 2,700, in the belt. The resolution of the image is 2,000 by 2,000, and each dot is
written when it has at least one seed. Each dot is enlarged for emphasizing. We successfully
removed the noise patterns from the image and emphasized the similar structures for better
understanding. The computation was done in few minutes.

5 Extensions

In practical applications, there are many variants of similar string finding problems. In the
following subsections, we present several problems to which we can apply our multi-sorting
algorithm.

5.1 Computing mismatch tolerance

In real-world applications, we often need to find several unique short strings, which are
similar to no other string. Such unique strings can be used as characterizations, invariants
of string databases, or markers of substructures. A typical application is in microarrays.
A microarray is a tool for biological experiments that can detect the existence of short
strings, say 25 letters, in the genome sequence of species or an organism. If a unique short
substring in a gene sequence is known, the existence of the substring indicates the existence
of the gene. To allow for experimental error, the substring has to have no similar substring.

When the similarity measure is the Hamming distance, mismatch tolerance [21] is such a
uniqueness measure. The mismatch tolerance is the shortest Hamming distance to the other
string. More precisely, for a set S of strings of the same length l, the mismatch tolerance
of string S, denoted by mis(S, S) is defined by min{Ham Dist (S, S′) | S′ ∈ S\{S}}. If
mis(S, S) is large, S has no similar string in S in the sense of Hamming distance. Thus, our

123

242 T. Uno

S1 = A B C D E F G H I J K L M N O

S2 = A D E F G H I J # L M N O P P

Fig. 6 Two strings S1 and S2 with edit distance of three. Among five blocks, two blocks of S1 have same
corresponding blocks. The second block of S1 has actually the same block in S2, but it is outside, and thus
does not satisfy the condition of Lemma 5.1

aim is to find the strings with no large and not too small mismatch tolerance. We define the
problem as follows:

All Mismatch Tolerance Computing Problem
Input: set S of strings of the same length l, and distance threshold d
Output: all S ∈ S such that mis(S, S) ≤ d

The output strings are similar to at least one other string in S; thus the remaining strings
are unique, i.e., similar to no other string in S. This problem can be solved by solving the
short Hamming distance string pair enumeration problem. We do not have to output pairs and
therefore we do not check duplications. Moreover, in the complete version of our algorithm,
we have to execute the algorithm only for d ′ = d , and omit the computation of the Hamming
distance. Thus we obtain the following theorem.

Theorem 5.1 The all mismatch tolerance computing problem for set S of strings of length
l and distance threshold d can be solved in O(lCd |S|) = O(2l |S|) time.

5.2 Generalize to edit distance

In many studies and real-world applications, the distance between two strings, genomes, and
documents is evaluated by edit distance. The multi-sorting algorithm proposed above fails for
edit distance since the position of the block shifts by the preceding insertions and deletions.
For example, the edit distance between S1 = ABCDEFGH and S2 = ACDEFGHI is 2,
obtained by deleting the second letter of S1 and the eighth letter of S2. By setting k = 4, the
strings are partitioned into substrings of two letters. Although there are only two positions
edited, no substrings in the partitions of S1 and S2 are the same, since the substrings in the
middle are shifted by the deletion of the second letter.

For adapting to the edit distance, we consider Ĉ(k, d) instead of C(k, k − d) where
Ĉ(k, d) is the set of k − d signed or unsigned integers taken from 1 to d , i.e., Ĉ(k, d) =
{C | |C | = d, C ⊆ {1, 1+, 1−, 2, 2+, 2−, . . . , k, k+, k−}}. b+, b− and b means an insertion,
a deletion and a change at the bth block, respectively. For C ∈ Ĉ(k, d), let sft(C, b) =
|{ j+ | j < b, j+ ∈ C}| − |{ j− | j < b, j− ∈ C}|, and Eq(C) = {b | b, b+, b− �∈ C}.
We denote S[�|S|(b − 1)/k� + 1 + j, �|S|b/k� + j] by B̂(S, b, j). We display two of these
blocks of string S2 in Fig. 6. Then, for string S and C ∈ Ĉ(k, d), we define Sig(S, C) by
B̂(S, b1, sft(C, b1)) · B̂(S, b2, sft(C, b2)) · . . . · B̂(S, bk−d , sft(C, bk−d)) where Eq(C) =
{b1, . . . , bk−d}, bh < bh+1. By using this terminology, we obtain the following corollary
obtained from Lemma 3.1. An example is shown in Fig. 6.

Lemma 5.1 If the edit distance between strings S1 and S2 is no more than d, at least one
C ∈ Ĉ(k, d) satisfies Sig(S1, Eq(C)) = Sig(S2, C).

Proof Suppose that the edit distance e between strings S1 and S2 of length l is no more than
d , and A is an alignment which yields the edit distance. Note that an alignment is a matching

123

Multi-sorting algorithm for finding pairs of similar short substrings 243

of letters of S1 and S2, allowing matching a letter and a gap, and here A has exactly e matches
between a letter and a gap, or two distinct letters. Let X = {b1, . . . , be} be the set of the
positions of the letters of S1 in these e matches. When a letter of S2 matches with a gap
between i th letter and (i + 1)th letter of S1, we define the number for this match by i + 0.5.
We say that bth block of S1 is outside if the number of positions included in the blocks from
the first (b − 1)th is strictly larger than b − 1. Since |sft(C, b)| < b, bth block of S1 can
satisfy B̂(S2, b, sft(C, b)) = B(S1, k, b) holds for some C ∈ Ĉ(k, d), which means that the
bth block of S1 and the shifted bth block of S2 according to C are the same, if the bth block
includes no position in X and is not outside. Thus, the statement of this lemma holds if at
least k − d blocks include no position of X and are not outside.

If there is no outside block, then in the similar way to the proof of Lemma 3.1, we can see
that the statement of the lemma holds. If there are outside blocks, we suppose that the bth
block has the largest index among all outside blocks. Then, among k −b blocks from b+1 to
k, at most d −b blocks have positions in X . This implies that at least (k −b)−(d −b) = k −d
blocks are not outside and include no position of X . This concludes the proof. ��

From this lemma, we are motivated to classify all strings by Sig(S, Eq(C)) and Sig(S, C)

for all C ∈ Ĉ(k, d) to obtain all the pairs of strings satisfying the condition of the lemma.
By checking the edit distance for all pairs in each classified group, we can find all pairs of
strings with an edit distance of at most d .

Theorem 5.2 The computation time of Multi-sorting algorithm modified to edit distance is
bounded by O(|�| + 3dl/k × |S| ×l Cd), except for that for step 1.

The duplication can also be checked by introducing a representative among all pairs of
C ∈ Ĉ(k, d) and Eq(C) satisfying Sig(S1, Eq(C)) = Sig(S2, C). Such a representative
can be computed in O(l2) time.

First, by using a usual shortest-path algorithm, find an alignment of S1 and S2 whose
cost is equal to the edit distance. From Lemma 5.1, we can see that there are at least k − d
non-overlapping same blocks in the alignment. Note that two same blocks are included in
an alignment if they match i th letters of both blocks for any i . We iteratively choose such
same blocks with the smallest start position so that they are not overlapping, k −d times. We
define the representative blocks of S1 and S2 by the blocked obtained in this way. Note that
since edit distance computation algorithms are deterministic, they always compute a uniquely
determined solution for the same input. In this way, we can compute the representative in
O(l2) time.

Theorem 5.3 For set S of strings of length l and distance threshold d, we can find all
pairs of strings with an edit distance of at most d in O(|�| + 3d ×l Cd × (|S| + l2 N)) =
O(|�| + 2l3d(|S| + l2 N)) time, where N is the number of string pairs to be output.

5.3 Dealing with large l

In some application areas, the length l of the string will be large. For example, let us consider
a database of Euclidean vectors composed of discrete values, which can be considered as
strings, by regarding each value as a letter. Let us consider the case that the dimension of
the vectors is large, and threshold d is also large. For example, if the dimension is 1,000 and
d = 100, and the number of blocks is 103, the multi-sorting algorithm performs radix sorts
103C3 ≥ 150,000 times.

In such cases, we partition the dimension into chunks, and find pairs of vectors such that
for some b, the Hamming distance of their bth chunks is small, more precisely, the same

123

244 T. Uno

error ratio. Here the error ratio of two strings is their Hamming distance over their length.
For the above example, the error ratio of the Hamming distance is 100/1,000 = 0.1. When
we partition the dimension into 10 chunks of equal size, we find pairs of vectors such that
there holds for some b, the Hamming distance of their bth chunks is at most 10. For each
b, we execute the multi-sorting algorithm to the bth chunks of all vectors. If the hamming
distance of two vectors is no greater than 100, the Hamming distance of their bth chunks
is at most 10 for at least one b. Thus, any such pair of vectors is found at least once in the
executions of the multi-sorting algorithm. By choosing good-sized chunks, we can perform
the comparison quickly, even when the dimension is large. We set the number of chunks so
that the expected computation time will be the minimum, by estimating the computation time
with the method in Sect. 3.3 for all possible choices. In out computational experiments, this
choice usually attains the computation time closed to the minimum.

5.4 Maximal similar substrings

When we want to capture similar substrings of two long strings T1 and T2, we may face some
difficulties from the model of similarity. One of the difficulties is the large amount of output.
When we find all similar short substrings, we may obtain many pairs, and a large number of
string pairs makes it difficult to look at all the similar pairs in details. The second difficulty
is the definition of the representative similar substrings, or in other words, the definition of
the boundary of similar substrings.

Generally, maximality is a useful way to introduce a representative. For example, suppose
that we give a threshold θ for the error ratio, and want to find a pair of substrings with an
error ratio no greater than θ . Then, we have to define the maximal similar substring pair by
the substrings that are included in no other such pair. However, since the inclusion relation
does not satisfy the monotone property, this definition of maximality is not useful in practice;
when the error ratio of T1 and T2 is no greater than θ , we may miss many internal similar
substrings.

Even if we give a length m for similar strings to be found, an ambiguity occurs at the def-
inition of the end of the similar strings. For strings AAABBBBAAA and CCCBBBBCCC,
d = 2, and length m = 6, we have three pairs of similar strings (AABBBB,CCBBBB), (AB-
BBBA,CBBBBC), and (BBBBAA,BBBBCC), which should be considered as one similar
structure. Moreover, for strings ACCADDAEEA and BCCBDDBEEB, we have five pairs
of similar strings (ACCADD,BCCBDD), (CCADDA,CCBDDB), (CADDAE,CBDDBE),
(ADDAEE,BDDBEE), and (DDAEEA,DDBEEB). In such a case, we would say that the
strings are uniformly similar.

To avoid these difficulties, we introduce a new similarity measure called continuous inter-
val Hamming distance (CIH). The CIH of strings L1 and L2 for length parameter l, written
as C I H(L1, L2, l), is defined by the maximum Hamming distance between L1[i, i + l − 1]
and L2[i, i + l − 1] among all i , 1 ≤ i ≤ |L1| − l + 1. Intuitively, it is the maximum
Hamming distance of substrings in L1 and L2 with the same length l and starting at the same
position.

In CIH, we can clearly define the maximal similar substrings, and the end of similar sub-
strings, since a monotone property holds. If C I H(L1, L2, l) = d , C I H(L1[i, i+k], L2[i, i+
k], l) is always no greater than d for any k ≥ l and 1 ≤ i ≤ |L1| − k + 1. Thus, we can
naturally define a maximal pair of substrings with CIH, l, and d , by a pair of substrings L1 of
T1 and L2 of T2 whose CIH is no greater than d but any extension of them has a CIH of more
than d . More precisely, a pair of substrings L1 = T1[i, i+k] and L2 = T2[j, j+k] is maximal
(l, d)-CIH if (a) C I H(L1, L2, l) ≤ d , (b) C I H(T1[i − 1, i + k], T2[j − 1, j + k], l) > d

123

Multi-sorting algorithm for finding pairs of similar short substrings 245

if i, j > 1, and (c) C I H(T1[i, i + k + 1], T2[j, j + k + 1], l) > d if i + k ≤ |T1| and
j + k ≤ |T2|. Therefore, the end of the similar substrings is clearly defined.

Finding all maximal (l, d)-CIH substrings is not difficult by using our multi-sorting algo-
rithm. We find all pairs of substrings of length l and a Hamming distance of at most d ,
and find the maximal (l, d)-CIH substring pair by expanding the pair. By doing this, we
can find all of them, but some duplications occur. To avoid duplications, we introduce the
canonical similar substring pair for maximal (l, d)-CIH substrings, by the leftmost simi-
lar substrings. More precisely, for maximal (l, d)-CIH substrings L1 and L2, the canonical
similar substring pair S1 and S2 is the pair S1 = L1[1, l] and S2 = L2[1, l]. For substrings
S1 = T1[i, i + l − 1] and S2 = T2[j, j + l − 1], the pair S1 and S2 is the canonical similar
substring pair of a maximal (l, d)-CIH substring pair if and only if (a) i = 1, (b) j = 1,
or (c) Ham Dist (T1[i − 1, i + l − 2], T2[j − 1, j + l − 2]) > d . Thus, it can be checked
in O(1) time if we know the Hamming distance of S1 and S2. By outputting the maximal
(l, d)-CIH substring pair only when its canonical similar substring pair is found, we can
avoid duplications without losing the completeness of the output.

The idea of a canonical substring can be applicable when not all the pairs are compared,
such as the interleave method in the previous section. Let P be a set of pairs of substrings
of length l taken from strings T1 and T2. We suppose that P is the set of all similar substring
pairs found by the interleave method. For maximal (l, d)-CIH substrings L1 and L2, the
canonical similar substring pair is the pair S1 = L1[i, i + l − 1] and S2 = L2[i, i + l − 1]
included in P such that for any 1 ≤ j < i , the pair L1[j, j + l − 1] and L2[j, j + l − 1]
is not in P . The canonicity of substring pair P can be checked by searching a string pair in
P , preceding P on the maximal (l, d)-CIH substring pair M , including P . This can be done
by shifting the substring pair and updating the Hamming distance one by one, until we meet
the end of M , or the preceding pair. This computation may take a long time for one check.
However, by observing that each substring pair in M is accessed at most twice even if we
test the canonicity for all string pair included in M and P , we can see that the computation
time for checking the canonicity for the pair included in M and P is bounded by O(|M |).

When P is not the set of all pairs of substrings of length l taken from T1 and T2, we
may miss some maximal (l, d)-CIH substring pairs. However, in the case that the strings to
be compared are chosen in the manner described in the previous section, as the interleave
method, we never miss the maximal (l, d)-CIH substring pairs with length at least 2l, since
such a pair always include a string pair in P .

In practice, a maximal (l, d)-CIH substring pair can hardly be uniform. It is highly expected
to include several string pairs of length l, with a Hamming distance smaller than d . In such
cases, the idea of canonicity is still valid. We define P by the set of all string pairs with a
Hamming distance of no greater than d ′, and define the canonicity. The total computation
time for the canonicity check with respect to the maximal (l, d)-CIH substring pair M is still
O(|M |).

6 Computational experiments

This section shows the results of the computational experiments of our algorithm. The code
was written in C, and compiled with gcc. The algorithm implemented is the first version of
our algorithm, which is described in Sect. 3 with the techniques of avoiding duplications
and reducing the cost of the radix sort. These experiments were done on a PC with Intel
Core 2 Duo E8400 (3.0 GHz) with 4GB memory, with Linux and gcc. The implementation
is available at the author’s homepage; http://research.nii.ac.jp/~uno/index.html.

123

http://research.nii.ac.jp/~uno/index.html

246 T. Uno

10

100

1000

10000 l=20 d=0

d=1

d=2

d=3

d=4

d=0(/ 1M)

0.01

0.1

1

210 2100 22953

210 2100 22953

210 2100 22953

C
P

U
tim

e
(s

ec
)

length (1000 letters)

l=20 d=0

d=1

d=2

d=3

d=4

d=0(/1M)

d=1(/1M)

d=2(/1M)

d=3(/1M)

d=4(/1M)

10

100

1000

10000 l=50 d=0

d=2

d=4

d=6

d=8

d=0(/1M)

0.01

0.1

1C
P

U
tim

e
(s

ec
)

length (1000 letters)

l=50 d=0

d=2

d=4

d=6

d=8

d=0(/1M)

d=2(/1M)

d=4(/1M)

d=6(/1M)

d=8(/1M)

100

1000

10000

100000 l=300 d=0

d=15

d=30

d=45

d=60

d=0(/1M)

0.01

0.1

1

10

C
P

U
tim

e
(s

ec
)

length (1000 letters)

l=300 d=0

d=15

d=30

d=45

d=60

d=0(/1M)

d=15(/1M)

d=30(/1M)

d=45(/1M)

d=60(/1M)

100

1000

10000 fixed d/l d/l = 0/20

d/l = 1/20

d/l = 2/20

d/l = 3/20

d/l = 4/20

0/20(/1M)

0.1

1

10

20 80 320

C
P

U
tim

e
(s

ec
)

length (1000 letters)

fixed d/l
d/l = 0/20

d/l = 1/20

d/l = 2/20

d/l = 3/20

d/l = 4/20

0/20(/1M)

1/20(/1M)

2/20(/1M)

3/20(/1M)

4/20(/1M)

Fig. 7 Increase in computation time against increase in database size with fixed l and d: the right-lower figure
is for fixed d/ l inputting a string of 2.1 million letters

The instance was the set of substrings of fixed length taken from the Y chromosome of
Homo sapiens. The data were taken from the National Center for Biotechnology Information
(NCBI) genome repository, which is a database of genome sequences and genes. The data
was downloaded from the Web site “ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/”. The data
are of a text file composed of four letters A, T, G, and C, and some newline codes, to separate
lines. We ignored the newline codes and the length of string is thereby 22, 952, 816.

The length of the short strings was set to 20, 50, and 300. Figure 7 shows the results.
Each solid line represents the computation time of a threshold value d , and each dotted

line represents the computation time per 1,000,000 output similar string pairs. The X -axis is
the number of input substrings, and Y -axis is the computation time. Both axes use log scales.
We can see that the computation time increases slightly higher than linear time, but smaller
than the square time.

We can also see that the computation time per 1,000,000 output pairs does not increase
as the input size increases; thus we can say that the algorithm is output sensitive, i.e., the
algorithm takes linear time in the output size.

We also show the increase in computation time against the increase in l with fixed d/ l. The
instance is fixed to that with 2.1 million strings, and the results are shown in the lower-right
graph of Fig. 7. The left graph of Fig. 9 shows the number of executed radix sorts, which is
the number of recursive calls. The horizontal axis is for the length of the input string, and
the vertical axis is for the number of recursive calls. Each line corresponds to the results of
fixed length l and threshold d . In this implementation, when the members in a group are
sufficiently few, we execute a pairwise comparison immediately and do not execute further
recursive calls. The results show the number of recursive calls is also robust for the increase

123

ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/

Multi-sorting algorithm for finding pairs of similar short substrings 247

1000

10000 l=20, Ychr

d=1

10

100

d+1 d+3 d+5 d+7

C
P

U
tim

e
(s

ec
)

k

d=2

d=3

100

1000

10000 #chunks

d=12

1

10

1 5 9 13 17

C
P

U
tim

e
(s

ec
)

#chunks

d=24

d=36

d=48

d=60

Fig. 8 Left: The experiments with the increase in k. Right: Experiments with the increase in the number of
chunks

in the length when the length and the threshold are fixed. From these results, at least for
genome sequences, our algorithm is quite scalable for the increase in the input string size.

The next experiment was to see the computation time against the increase in k. The instance
was fixed to the Y chromosome, which has 22.9 million letters, and the length l was set to
20. We examined various k for d = 0, 1, 2, and 3, and the results are shown in the left graph
of Fig. 8. The execution was terminated when it took more than 10,000 min, and the time is
not plotted in the graph. Note that the case of k = d + 1 corresponds to the existing methods
such as BLAST, since when k = d + 1, the algorithm finds string pairs having at least one
same block. The number of letters included in a block is approximately ld/k; thus there is
no big difference between the cases when k = d + 1 and the case when k is larger than
d + 1, if d is small enough. However, when d is not small, that is d > 1, the computation
time with k = d + 1 is quite long compared to the minimum computation time. Moreover,
the computation time is close to the minimum for many ks; thus we can say that the choice
of k is not a difficult problem.

In the right graph of Fig. 8, we present the results for the change of the number of chunks.
The instance was fixed to that with 2.1 million strings, the length l = 300. We set the number
of chunks to 1, 3, 5, . . . , 19, and examined them for the cases of d = 0, 1, 2, and 3. The
execution was terminated when it took over 10,000 min, and the time is not plotted in the
figure. We can observe that there is a big difference when d is large.

Table 1 shows the computation time with k∗ which is chosen by the method described in
Sect. 3.3, and the minimum computation time among all k. The references are the genome
sequence of the Y chromosome of human, and Japanese Web texts. We can see that our choice
k∗ always attains almost minimum computation time. Table 2 shows the computation time
by estimating the computation time described in Sect. 5.3, and the minimum computation
time. The references are the first 2,100,000 letters taken from the genome sequence of the Y
chromosome of human, and Japanese Web texts of 8,212,800 letters. Our choice also attains
almost the minimum in many cases.

The Table 3 lists the results of determining the efficiency of the interleave method and
maximal CIH. We used the Y chromosome of 22 million letters, and compared the num-
ber of similar string pairs and the number of maximal CIH substrings pairs. We fixed the
length of the strings to 20, and examined for d = 1, 2, 3, and 4 and thus we found maximal
(20, d)-CIH substrings for d = 1, 2, 3, and 4. By using the interleave method, the computa-
tion time and the number of solutions is reduced significantly. The additional computation
time by introducing maximal CIH is not considerably long, while the number of solutions is
drastically reduced. By using interleave, we missed many maximal CIH substrings, but their

123

248 T. Uno

Table 1 The choice of k and minimum computation time

k∗ Time min. k min. time

Y chromosome l = 20, d = 1 3 55.17 3 55.17

Y chromosome l = 20, d = 2 6 335 4 281

Y chromosome l = 20, d = 3 7 944 7 944

Y chromosome l = 50, d = 2 3 45.5 3 45.5

Y chromosome l = 50, d = 4 6 218 6 218

Y chromosome l = 50, d = 6 9 1,036 8 843

Japanese Web text l = 20, d = 1 2 6.3 3 6.2

Japanese Web text l = 20, d = 2 3 11.0 3 11.0

Japanese Web text l = 20, d = 3 5 22.3 4 18.4

Japanese Web text l = 50, d = 3 4 15.9 4 15.9

Japanese Web text l = 50, d = 6 7 30.0 7 30.0

Japanese Web text l = 50, d = 9 10 82.1 11 60.7

Table 2 The choice of the number of chunks and minimum computation time

Estimation Time min. k min. time

Y chromosome (2.1 million letters) l = 100, d = 5 1 3.9 2 3.4

Y chromosome (2.1 million letters) l = 100, d = 10 1 61.3 4 20.3

Y chromosome (2.1 million letters) l = 100, d = 15 4 71.8 4 71.8

Y chromosome (2.1 million letters) l = 300, d = 20 1 31.5 7 11.4

Y chromosome (2.1 million letters) l = 300, d = 30 8 49.8 8 49.8

Y chromosome (2.1 million letters) l = 300, d = 40 11 144.8 14 118.4

Japanese Web text l = 100, d = 5 1 21.1 1 21.1

Japanese Web text l = 100, d = 10 1 39.3 1 39.3

Japanese Web text l = 100, d = 15 2 74.3 4 66.0

Japanese Web text l = 300, d = 20 1 79.1 3 75.2

Japanese Web text l = 300, d = 30 1 130 4 113

Japanese Web text l = 300, d = 40 1 233 7 155

lengths are no more than 39, since if the length of maximal CIH substrings is no less than
40, it includes at least one similar string pair even if we use the interleave method.

The right graph of Fig. 9 is the experimental results with Japanese texts taken from Web
pages, crawled at 2007. The data was collected by Kawahara and Kurohashi [11]. The data
were obtained by extracting the body of text, i.e., not including HTML commands or images.
The size of the alphabet was 4,638, and the length was 42,915,000. The horizontal axis is
the length of input data in log scale, and the vertical axis is the CPU time and CPU time
per one million output pairs, in seconds in log scale. The lengths of input were from 1.3 to
40 million. We fixed the length l to 30, and evaluated the increase of the computation time
for each d = 0, . . . , 4. The computation time per pair found did not increase against the
increase in the input length; thus we would say our multi-sorting algorithm also scales for
this data.

123

Multi-sorting algorithm for finding pairs of similar short substrings 249

Table 3 The number of solutions in the case of CIH

d = 1 d = 2 d = 3 d = 4

Similar pairs; time 59.64 242.04 940.29 6,290.98

#solutions 308430876 701452360 1430762244 3110427918

Maximal CIH; time 70.15 269.08 1,018.49

#solutions 10083533 45952952 129868305 333156637

Similar pairs with

interleave; time 14.22 56.59 185.34 1,000.12

#solutions 30014243 68299127 139346032 303003424

Maximal CIH with

interleave; time 19.36 70.99 220.96 1,080.48

#solutions 5650668 20338491 47922714 101905970

#radix sorts

1

10

100

1000

10000

100000

210 700 2100 7000 22953 length l

C
om

bi
na

tio
ns

2/20
5/50
30/300
4/20
10/50
60/300

Japanese text

0.1

1

10

100

1000

1366 2556 5272 10637 21046 40915 letters (1000)

tim
e,

 ti
m

e/
#p

ai
rs

 (
se

c)

30,0
30,1
30,2
30,3
30,4
30,0 ave
30,1 ave
30,2 ave
30,3 ave
30,4 ave

Fig. 9 Left: Number of radix sorts performed. Right: Experiments with Japanese Web texts

6.1 Parallelizing the algorithm

Of late, the price of multi-core CPU computers is decreasing, so we can easily use parallel
computing systems. Our multi-sorting algorithm actually fits the multi-core CPU systems.
Basically, the pairwise comparison in the classified groups can be operated in parallel. The
classification is done by iterative radix sort. The radix sort itself is difficult to do in parallel,
but the radix sorts in deeper levels can be performed in parallel. One iteration of the radix
sort classifies strings into buckets, and the radix sorts in the next level will be performed for
each group. Thus, in the levels other than the first level, the radix sorts in the groups can
be performed in parallel. We implemented this parallelization by using thread library, which
enables us to use multi-threads in a multi-core CPU. Note that it cannot be used for parallel-
ization with cluster computers. After the first iteration of the radix sort, we make c threads,
where c is the number of cores, and a queue of non-empty buckets which can be accessed
from any thread. Each thread takes a bucket from the queue, with locking the queue counter,
and operates further radix sort iterations concerned to the bucket. When a thread completes a
bucket, it takes the next bucket from the queue. In summary, other than the inputting routine
and the radix sort in the first levels, we can perform the computation in parallel.

We implemented a parallel version of our algorithm and evaluated the performance on a
workstation with a quad core AMD Opteron processor of 4 cores, and an Intel Core 2 Duo
E8400 of 2 cores. The instance was Y chromosome of homo sapience, and the length of the
strings taken was 30. We changed the number of cores used, for several threshold values.
The results are listed in the following table. Each cell shows the computation time (s).

123

250 T. Uno

d AMD 1 core AMD 2 core AMD 4 core Intel 1 core Intel 2 core

0 20 17 15 10 7.9
1 47 34 27 27 17
2 138 89 64 88 51
3 353 237 142 285 151
4 1,507 835 490 1,111 576

When d is small, almost all computation time is spent for the initialization, the input of
the problem, and the first level radix sorts. Hence, acceleration by parallelization is relatively
small. However, for larger d , the computation time for these initialization processes is no
longer the majority and thereby the computation time is reduced much. In particular, when
d = 4 with Intel CPU, the acceleration is quite high, and close to twice the original by
two cores. Although the factor differs depending on the type of CPU, the computation is
accelerated by parallelization.

7 Conclusion

We proposed an efficient algorithm for enumerating all pairs of strings with a Hamming
distance of at most given d from string set S. We proposed multi-sorting algorithm whose
computation time is practically linear time. We proved that the computation time of its var-
iant is bounded by linear of the number of strings when the string length in the string set is
constant. A simple modification of the algorithm adopts the edit distance and computation
of mismatch tolerance. A new similarity continuous interval Hamming distance (CIH) was
introduced to clearly define maximal similar substrings.

We proposed a method for finding similar non-short substrings from huge strings. We
modeled similar non-short strings by two non-short strings including several short similar
substrings. We presented an efficient algorithm for finding these strings from huge strings.
From computational experiments for genome sequences, we demonstrated the practical effi-
ciency of the algorithm and the efficiency of the parallelization. From the comparison of
genome sequences, we found similar long substrings from human and mouse genomes in a
practically short time.

Acknowledgments We gratefully thank Professor Asao Fujiyama of National Institute of Informatics of
Japan, Professor Shinichi Morishita of Tokyo University, Doctor Takehiko Itoh of Mitsubishi Research Insti-
tute, and Professor Hidemi Watanabe of Hokkaido University, for their valuable comments. We would also
like to thank Professor Tsuyoshi Koide and Doctor Juzo Umemori of National Institute of Genetics for their
contribution to the evaluation of the algorithm on practical genome problems. We appreciate the advice con-
cerned with chunks given by Koji Tsuda of Advanced Institute of Science and Technology, Japan. For the
parallelization of the implementation, we would like to thank Yasuhiro Ike of Ybeat, Japan, for his help on
the implementation.

References

1. Abrahamson K (1987) Generalized string matching. SIAM J Comput 16:1039–1051
2. Altschul FS, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol

Biol 215:403–410
3. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST

and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
4. Amir A, Lewenstein M, Porat E (2000) Faster algorithms for string matching with k mismatches. In:

Symposium on discrete algorithms, pp 794–803

123

Multi-sorting algorithm for finding pairs of similar short substrings 251

5. Assent I, Krieger R, Glavic B, Seidl T (2008) Clustering multidimensional sequences in spatial and
temporal databases. Knowl Inf Syst 16:29–51

6. Brown P, Botstein D (2000) Exploring the new world of the genome with DNA microarrays. Nat Genet
21:33–37

7. Faloutsos C, Barber R, Flickner M, Hafner J, Niblack W, Petkovic D, Equitz W (1994) Efficient and
effective querying by image content. Intell Inf Syst 3:231–262

8. Feigenbaum J, Kannan S, Strauss M, Viswanathan M (1999) An approximate L1-difference algorithm
for massive data streams. In: Proceedings of FOCS99

9. Fleischmann RD, Adams MD, White O, Clayton RA (1995) Whole-genome random sequencing and
assembly of Haemophilus influenzae Rd. Science 28:496–512

10. Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome-wide mapping of in vivo protein-DNA
interactions. Science 31:1441–1442

11. Kawahara D, Kurohashi S (2006) Case frame compilation from the web using high-performance
computing. In: Proceedings of the 5th international conference on language resources and evaluation
(LREC2006), pp 1344–1347

12. Koga H, Ishibashi T, Watanabe T (2007) Fast agglomerative hierarchical clustering algorithm using local-
ity-sensitive hashing. Knowl Inf Syst 12:25–53

13. Liu J, Goss S, Murray G (1994) Similarity comparison and analysis of sequential data. In: IEEE interna-
tional conference on expert systems for development, pp 138–143

14. Manber U, Myers G (1993) Suffix arrays: a new method for on-line string searches. SIAM J Comput
22:935–948

15. Muthukrishnan S, Sahinalp SC (2000) Approximate nearest neighbors and sequence comparison with
block operations. In: Proceedings of 32nd annual ACM symposium on theory of computing, pp 416–424

16. Muthukrishnan S, Sahinalp SC (2002) Simple and practical sequence nearest neighbors under block edit
operations. In: Proceedings of CPM2002

17. Pearson WR (2000) Flexible sequence similarity searching with the FASTA3 program package. Methods
Mol Biol 132:185–219

18. Popendorf K, Osana Y, Hachiya T, Sakakibara Y (2007) Murasaki-homology detection across multiple
large-scale genomes. In: Fifth annual RECOMB satellite workshop on comparative genomics (San Diego,
USA, 2007)

19. Shivakumar N, Garcia-Molina H (1996) Building a scalable and accurate copy detection mechanism. In:
International conference on digital libraries, proceedings of the first ACM international conference on
digital libraries, pp 160–168

20. Yamada S, Gotoh O, Yamana H (2006) Improvement in accuracy of multiple sequence alignment using
novel group-to-group sequence alignment algorithm with piecewise linear gap cost. BMC Bioinform
7:524

21. Yamada T, Morishita S (2003) Computing highly specific and mismatch tolerant oligomers efficiently.
Bioinformatics Conference 2003

22. Yamada T, Morishita S (2005) Accelerated off-target search algorithm for siRNA. Bioinformatics
21:1316–1324

Author Biography

Takeaki Uno was born in 1970, in Tokyo, Japan, and received a Dr
of Science degree from Masakazu Kojima of Tokyo Institute of Tech-
nology, Japan, 1998, for the work of theoretical algorithmic research
on speeding up enumeration algorithms. He was research associate of
department of Industrial and Management Science of Tokyo Institute
of Technology, from 1998 to 2001, and researched on discrete opti-
mization algorithms and financial engineering. He has been an asso-
ciate professor of National Institute of Informatics, Japan, from 2001,
and researched on graph algorithms, graph classes, data mining algo-
rithms, bioinformatics, and data analyze algorithms. Major prizes he
received are Best Implementation award of FIMI04, Best Paper Run-
ner-up Award of PAKDD2008, and Best paper award of ISAAC2008.
His latest researches are on developing theoretically supported practi-
cally fast algorithms for processing huge data, and he provides efficient
implementations on his homepage, including those that got awards in
international conferences.

123

	Multi-sorting algorithm for finding pairs of similar short substrings from large-scale string data
	Abstract
	1 Introduction
	1.1 Related works
	1.2 Applications

	2 Preliminary
	3 Multi-sorting algorithm
	3.1 Reducing the cost for radix sort
	3.2 Avoiding duplication without memory
	3.3 Choosing good k
	3.4 A fixed parameter tractable algorithm

	4 Approach to long substrings
	5 Extensions
	5.1 Computing mismatch tolerance
	5.2 Generalize to edit distance
	5.3 Dealing with large l
	5.4 Maximal similar substrings

	6 Computational experiments
	6.1 Parallelizing the algorithm

	7 Conclusion
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

