Knowl Inf Syst (2011) 26:105-125
DOI 10.1007/s10115-009-0270-7

REGULAR PAPER

A decentralized search engine for dynamic Web
communities

Daze Wang - Quincy Chi Kwan Tse - Ying Zhou

Received: 13 November 2006 / Revised: 10 September 2009 / Accepted: 28 September 2009 /
Published online: 8 December 2009
© Springer-Verlag London Limited 2009

Abstract Currently, most Web search engines perform search on corpus comprising nearly
entire content of the Web. The same centralized search service can be performed on a
single site as well. Nonetheless, there is little research on community-wide search. This
paper presents a peer-to-peer search engine ComSearch. ComSearch is designed to provide
small- and middle-scale online communities—the ability to perform text search within the
community. Communities are formed in a self-organizing style. P2P IR system may suffer
unnecessary internal traffic in answering a multi-term query. In this paper, we propose several
techniques to optimize the multi-term query process. The simulation results show that our
proposed algorithms have good scalability. Compared with baseline approach, our improved
algorithm can reduce the communication cost by about two orders of magnitude in the best
case. We also deploy the system in a small-scale network and conduct a series of experiments
to estimate the actual query response time as well as to investigate the data movement effect
caused by node joining. Experimental results show that multiple data movements are quite
common during network expansion. However, the percentage of multiple data movements
decreases when a network is getting stable after the initial frequent joining activities. This
provides possibilities for improvement on P2P data movement management.

Keywords Distributed hash table - Bloom filter - Information retrieval - Community level
search - Web feed
1 Introduction

In recent years a wide range of second generation Internet-based services, such as web-
logs and wikis emerged and gained rapid popularity among Internet users. Average Internet

D. Wang - Q. C. K. Tse - Y. Zhou (X)

School of Information Technologies, The University of Sydney,
Sydney, NSW 2006, Australia

e-mail: y.zhou@usyd.edu.au; zhouy @it.usyd.edu.au

@ Springer

106 D. Wang etal.

users are becoming more and more active in publishing on the Web. Many loosely organized
communities have started to form around common interests.

The trend on the one hand brings huge increases in the scale of the Web; on the other hand
boosts people’s expectations on Web information retrieval. The traditional centralized search
engine, such as Google works reasonably well for certain tasks, especially those that help
people to get instant knowledge or information based on a few keywords. Such task does
not require any prior knowledge since the query is performed on almost an entire copy of
the Web documents. The “single point of contact to the whole world” style, which once had
brought big success to search engines, may not satisfy new query requests made by experi-
enced users. Increased scale of Web may magnify the noise level of any query performed on
the entire Web. Therefore, experienced users may want to limit the search to a few Websites
that they know are highly related. Currently, the option is to visit and search in each Website
or to perform a site-wise search in a centralized search engine, such as Google. User will
need to compare and rank the results from each site manually. The popularity of a number
of specialized search engines, such as blog search (e.g., http://technorati.com/, http://www.
daypop.com/), bookmark search (e.g., http://del.icio.us) and academic paper search (e.g.,
http://www.citeulike.org/, http://scholar.google.com/) indicates an increasing awareness of
the need for specialized search. Some specialized search engines, such as technorati.com and
daypop.com index only weblog and news-related pages on the Web. They select to index Web
contents based on very coarse-grained styles or types (e.g., regular Web vs. news). In sum-
mary, there are fully automatic services for searching the whole Web, a portion of the Web
roughly categorized by content style, and searching a single site, but there is little work done
to supply search functionality to a collection of Websites, especially those interconnected
weblogs or wiki. Weblogs and wikis are usually maintained by individual users, not large
organizations. A prominent feature of weblogs is the large number of links coming in and
going out of it [12]. Most weblogs are not isolated islands in the Web but are densely con-
nected with other weblogs of similar topics. The densely connected weblogs soon form a new
type of online community of interest to many recent researches [9, 10]. Those communities
are very dynamic in terms of participating members and their communication. Traditional
centralized search engine design does not apply here. On the one hand, it is not possible to
have an external site to centrally manage all those dynamic communities. On the other hand,
an individual Web site can only manage its own data.

To address this issue, we present a self-organizing search engine, ComSearch. Itis designed
to provide communities like blogspace (network of weblogs with similar topics) the abilities
to perform text search services covering all contents within the community from any mem-
ber node. Since the index used in ComSearch is collectively managed by all members of
the community, ComSearch is able to deliver flexible search services. Members form a P2P
network and they can join the community in a self-organizing manner.

ComSearch is built on top of FreePastry [6], a popular structured overlay network imple-
mentation. It utilizes the property of structured overlay networks that the content, if exists,
is always accessible from the host whose identifier is closest to the identifier of the con-
tent. This property allows data to be retrieved through routing of a query message instead of
broadcasting to all nodes, which helps to improve the scalability in terms of the content and
network size.

One big issue of P2P IR system is the high internal traffic among nodes in answering
a multi-term query. This may result in delays in query response. Document clustering or
classification, which requires substantial global information, is the main research effort in
minimizing distributed query traffic [14]. It relies on implicit assumptions that both the entire
document corpus and network topology are rather stable such that main document clustering

@ Springer

http://technorati.com/
http://www.daypop.com/
http://www.daypop.com/
http://del.icio.us
http://www.citeulike.org/
http://scholar.google.com/

A decentralized search engine for dynamic Web communities 107

can be performed beforehand. This assumption cannot be held for frequently updated docu-
ment corpus of online community. Hence the document clustering approach is not adopted.
In this paper, we propose several techniques to optimize the multi-term AND query process
in ComSearch framework. Those techniques are based on local compression using bloom
filter and query routing optimization. Little or no global information is required for most
techniques. We present simulation results showing that our proposed algorithms have good
scalability and can improve performance of the system by about two orders of magnitude in
the best case. The optimization of OR queries may require very different techniques and is
not addressed here.

Another issue explored in this paper is the data movement caused by network topology
change. ComSearch is designed for dynamic online communities and certain data movements
are expected. We present empirical results of ComSearch deployed on a small-scale network.
The empirical results are focused on actual query response times of multi-term queries and
data movement issues cased by peers joining an existing network.

Our work makes the following contributions:

We present a framework that is capable of providing community-wide text search for
the contents published by community members. In particular we propose to use Web feed
information to provide quality and compact indices for Web content to be distributed in a
P2P IR system.

We present and evaluate several algorithms for optimizing distributed multi-term queries.
Those algorithms do not rely on assumed knowledge of entire document corpus and network
topology.

We also investigate the data movement caused by peers joining an existing community
network.

The rest of the paper is organized as follows. In Sect. 2 we present important background
knowledge. In Sect. 3 we describe a few related works. Section 4 is focused on our frame-
work and query optimization algorithms. We show the simulation results in Sect. 5. Section 6
reports the experimental results and Sect. 7 concludes the whole paper.

2 Background

In this section, we briefly describe distributed hash table (DHT) based structured P2P net-
work, bloom filter and its parameters. We also introduce Web feed and common elements in
various feed formats.

2.1 DHT-based structured P2P network

P2P networks can be classified into two categories: unstructured and structured. They have
different structures and routing strategies. Unstructured P2P systems focus on data sharing
and do not have well-defined rules for data placement. Early file sharing protocol, such as
Gnutella (http://wiki.limewire.org/) is a good example of such network.

Chord [7] and FreePastry [6] are examples of structured P2P systems. Nodes in such P2P
network cannot define independently what they would store and share with the other peers
in the network. Data placement and retrieval are governed by a special DHT algorithm. The
term DHT includes a family of algorithms which vary in ways of organizing nodes and rout-
ing information. We briefly introduce the Pastry algorithm implemented in the FreePastry
network.

@ Springer

http://wiki.limewire.org/

108 D. Wang etal.

Each node in a Pastry network has a unique identifier from a 128-bit circular index space.
The identifier is generated by applying SHA-1 hashing algorithm on a node’s IP address.
Each node also maintains a small table storing the addresses and the identifiers of nodes the
identifiers of which are numerically larger or smaller than its own identifier. Contents in a
structured overlay network are also assigned identifiers, which are usually the hashes of the
keys to the contents. For instance, important terms of an article may be used as keys. By
applying secure hash algorithm (SHA-1) on a particular term, we get the identifier of the
article. Contents in the network are stored in the node the identifier of which is numerically
closest to the identifier of the content. Content retrieval in such a network is achieved by
comparing the identifier of the content with the identifier of the node handling the query.
This query is routed through the network until the node, the identifier of which is numeri-
cally closest to the identifier of the content is reached. The content is then retrieved locally
and forwarded back to the requesting node.

2.2 Web feed

A Web feed is an XML document containing metadata of several Web pages from the same
sites. The metadata usually include summaries of news articles or weblog posts with URLSs
pointing to longer versions. The summary is a good way of identifying keywords (e.g., impor-
tant terms) in corresponding content (e.g., news article) for storing and retrieving purpose
in a structured P2P network. URL is a natural document ID for any Web content. Other
metadata, such as author, title and publishing date may also be included in the feed. The two
most popular feed formats are RSS 2.0 and ATOM. Web feed is originally designed for Web
content syndication. We will use RSS 2.0 as an example in this paper. In RSS 2.0, a complex
type element <item>contains metadata of a news article or weblog post stored, respectively,
in elements like <title>, <author>, <link>and <description>. ATOM format contains similar
core elements but of different name. We will use the RSS element names in this paper.

2.3 Bloom filter

Bloom filter [3] is a hash-based data structure. A bloom filter can represent a set compactly,
at the cost of a small probability of false positive. It achieves the compact representation by
using a set of independent hash functions.

A bloom filter for representing a set S = {xy, x2, ..., x,} of n elements is described by an
array of m bits, initially all set to 0. The k independent hash functions %1, k2, ..., hy are then
applied on each element x;. For each element, we get kK numbers over the range {1, ..., m}.
We then turn the corresponding bit of the array to 1. The final bit array is the bloom filter
representing the set S.

A bloom filter has two basic parameters: the number of hash functions k and the length of
bloom filter m. We briefly discuss the configuration of these two parameters to get optimal
false positive rate and network traffic.

Assume the k hash functions uniformly distribute k£ hash values of an element over the
range {1, ..., m}. The probability that a specific bit is still 0 after adding an element is:
1- %)k . After adding n elements into the bloom filter, the probability that a specific bit is

0 becomes (1 — %)k” ~ e~*"/™ Hence the probability of false positive Py, is given by

lknk knfmnk
Pry=({1—({1—-— (1 —e M
fp ((m)) (1—e)

@ Springer

A decentralized search engine for dynamic Web communities 109

By simple calculation, Py, is minimized when k = [n2 - -

We can see that the network traffic is determined by two factors: the length of bloom filter
m, and the desired false positive rate Py,. Larger m will reduce the false positive rate, but
it will result in larger bloom filter and higher network traffic. If we set the desired Py, to a
relatively high value, it will not only decrease the quality of results, but also transmit more
incorrect final results over the network. This in turn increases overall network traffic. [12]
justified that the relationship between overall network traffic and m is a logarithm function.
So it is possible to find an optimal m to minimize network traffic. In Sect. 5 we present
experimental results on optimal m.

3 Related works

Study by Li etal. [8] on the feasibility of P2P search engines presents two common P2P text
search strategies: partition-by-document and partition-by-keyword. Partition-by-document
option divides the content up among the peers. Each peer maintains a local inverted index
of the documents it is responsible for. Each query must be broadcast or flooded to all peers
each of which returns its most relevant document(s). The approach is mainly adopted by
P2P file-sharing systems on unstructured P2P networks. The problem of this approach is
that there is no guarantee that content can be located properly, even if relevant content does
exist. Moreover, flooding consumes too much bandwidth. Partition-by-keyword means that
responsibility for the terms that appear in the document corpus is divided among the peers.
Each peer stores the posting list for the word(s) it is responsible for. A DHT would be used
to map a word to the peer responsible for it. Many recent proposals [14] are based on this
scheme.

Li etal. [8] justified that in naive implementation, neither scheme is capable to support
Web scale full-text search. The bottleneck here is communication cost: at Web scale a naive
partition-by-keyword implementation might require 530 MB to be sent over the whole net-
work per query, which is impractical. ComSearch is not designed as a Web scale search
engine; however, pilot experiments also suggest that scalability of such system is a serious
issue. Reducing the communication cost is a key focus in this paper. Li etal. [8] proposes
various techniques for reducing communication cost: caching, compression techniques, such
as bloom filter, gap compression, adaptive set intersection and clustering. Theoretic com-
pression ratios based on the size of result set for various techniques are presented. However,
this paper does not propose an effective way of computing the size of bloom filter. It does
not consider the practical issues, such as the impact of various ways of distributing queries
and collecting back the results.

Cuenca-Acuna etal. [5] presented another P2P IR system, PlanetP that works with XML
document. PlanetP uses a gossiping algorithm instead of structured overlays. It prevents
flooding of queries by the use of bloom filters stored on each node. Each node has a copy of
the bloom filter from all other nodes. These bloom filters summarize what data are stored in
the corresponding node. For each query, the issuing node looks up their copy of the bloom
filter to determine which node may have the information requested, thus minimizes flooding.
Comparing with the structured overlay approach, gossiping has less maintenance cost but
also worse scalability and availability.

Broder etal. [4] presented a survey of uses of bloom filter in various network applications.
By investigating the nature of bloom filter, they present the bloom filter principle: “whenever
a list or set is used and space is an issue, then bloom filter can be considered.” Using bloom
filter will introduce false positives, thus it is important to consider if false positives are

@ Springer

110 D. Wang etal.

permitted in the specific application context. For partition-by-keyword P2P search engines,
a multi-term query requests intermediate results to be sent from individual nodes over the
network to calculate an intersection. The intermediate result sets can be compressed using
bloom filter. False positives in this case represent incorrect results containing only a subset of
terms. This will bring in some unnecessary traffic and may reduce the precision of final result.
However, information retrieval different from database query, it does not require a perfect
100% precision. The quality of final result can be guaranteed by choosing the parameters of
bloom filters carefully.

Tryfonopoulos etal. [16] proposed LibraRing, which uses the publish/subscribe method to
facilitate searches. In LibraRing, a network of “super peers” forms the back bone of the rout-
ing network. Super peers are connected via a structured network overlay, utilizing the DHT
for its pub/sub functionality. Each super peer is responsible for a subset of subscriptions
as well as the nodes connected to it. Provider nodes (content producers) and client nodes
(content consumers) join the network at any one of the super peers to access the service.
Providers and clients have no knowledge of the network other than its super peer. When a
client submits a query, the query is flooded among the super peers, thus limiting the flooding
to a subset of the network. LibraRing is designed mainly for the pub/sub facility. The one
time query function, may not scale well with a large number of super peers. Balke etal. [2]
presented another system which relies on super peers and their topologies to achieve top-K
distributed retrieval. The key focus of this system is to use dynamic query statistics to opti-
mize the routine algorithm to minimize the contacting peer and the internal traffic. The local
ranking algorithm reduces individual result set to the top-key documents. We do not consider
the super peer structure as it is not suitable for community-wide query.

Reynolds etal. [12] proposed a P2P search infrastructure and several techniques to reduce
communication cost in search. These optimization techniques include bloom filter, caching,
virtual hosts and incremental results. In the work they justified that if we need to construct
a bloom filter to calculate intersection of set A and B, a unique optimal length exists and is
relevant to the size of both A and B. It means that for each pair of initiator node and target
node, the optimal length and corresponding false positive rate of bloom filter is different.
However, this may bring in extra communications in order to compute and to exchange the
size of both sets. The configuration of hash functions and bloom filter length are also required
to be sent with bloom filters. In our work we use a simpler technique. This technique fixes
a desirable false positive rate for each bloom filter and uses a predefined optimal value to
calculate the size of bloom filter based on set size. Each node can independently compute
the bloom filter’s size. The calculation involves only a simple multiplication. This results in
faster computation at each node. It also eliminates the need of exchanging initial results size
among participating nodes. The optimal value is determined by the experiment reported in
Sect. 5.4.

4 System design

ComSearch takes partition by keyword approach. It is built on top of a structured overlay
network, as the gossip algorithm adopted by PlanetP does not have good scalability. The
node in the ComSearch network can either be a content provider of documents, for instance,
aweblog, or a dedicated content syndicating host (news aggregator), or a member node which
only provides storage and computation power. Hence, each node will at most have, and only
have, a local copy of the documents they publish or collect. Some nodes may not have any
local data.

@ Springer

A decentralized search engine for dynamic Web communities 111

Index file

Index file Posrio-poer

XML NET

FreePastry
Feed: http:ifwwaw innog.com/blogisy Termis) hitp:/iblogs. msdn.com/mpowell!
index-rss2 sml | | rss.aspuTCategorylD=B27

Hodo) Node B .
XML hup://blogs.msdn.com/mpowell/archive/2005/06/09/42731 NET hup//blogs msdn.com/mpowell/archive/2005/11/14/49278
9.aspx, 113, Node B) Laspx, 120, Node B)_

hitp:/fwww.innog.com/blog/st/2005/1 1/20/informed_opini 25 msdn. com/mpoweli/archive/2005/06109/42731
on_on_xml_schemahiml, 61, Node A . 113, Node B)
hitp:/iww oq.com/blog/st/2005/11/20/informed_opini
on_on_xml_schema html, 65, Node A)

Inttp:dfwww. innog.com/blog/stindex-rss2. xml hitp:/
ftem

sdn.com/mpowell/ss.aspxCategoryID-837
Update to WSERM for WSE 3.0 Available

Item <title> Informed Opinion on XML Schema Ifp:/blogs.msdn nomyimpowell/archives
<Hink> hitp:/Awww. innoq.com/blog s/ 2005/11/20¢ 2005/11/14/49278 Laspx.
) informed_opinion_on_xmi_schema himl <description ... The new version works with the RTM
“deseription> ... 1 used be the program manager > versions of the .NET Framework 2.0 and
responsible for a number of XML WSE 3.0 ..
hnol in the NET F k. ... Item <title> Questions about WSE 3.0
<link> hitp://blogs.msdn.com/mpowell/archive/200’
SM06/09/427319 aspx
<description .. You are required to have the NET
> Framework 2.0 installed to install the

technical preview of WSE 3.0 It is also
Mi 's first impl ion of the
W3C standard MTOM spec for sending
binary data with your XML message...

Fig. 1 ComSearch architecture

In addition to the documents, each node also keeps the inverted index files of a subset of
all terms appearing in the entire corpus. Here, entire corpus means the collection of local
documents in all member nodes. Each term has an object ID and is stored in the node whose
node ID is closest to this object ID. Local data stores do not always match local term indices;
i.e., aterm index may point to a document residing on a different node in the network. Figure 1
shows the overall architecture of the ComSearch system with some sample data and inverted
index to illustrate the idea. Suppose node A is locally storing feed http://www.innoq.com/
blog/st/index-rss2.xml, we illustrate the result of creating indices for two terms in the item
with title “Informed Opinion on XML Schema”. Partial information of that item is shown
in Fig. 1. The terms of interest are “XML” and “.NET”. They both appear in the description
of that item. Suppose the local Pastry location service on node A determines that term XML
should be stored on node A and term. NET should be stored on node B. Therefore, a record of
term XML is added to node A’s index file. This corresponds to the record http://www.innoq.
com/blog/st/2005/11/20/informed_opinion_on_xml_schema.html, 61 under entry XML. A
record of term. NET is eventually passed to node B where it is supposed to store. This
corresponds to the http://www.innoq.com/blog/st/2005/11/20/informed_opinion_on_xml_
schema.html, 65 under entry. NET in the index file of node B. Figure 1 also shows the
indexing result of two other documents: “Update to WSERM for WSE 3.0 Available” and
“Questions about WSE 3.0”. Both documents are stored on node B but the final indexed term
records are distributed on both nodes A and B. Each node will have the complete inverted
index files of any term it is supposed to store and the inverted index file of a term can only
be stored in one node. For instance, in Fig. 1, node A has the complete inverted index file
of term “XML”, which includes information about document (“Questions about WSE 3.0”)
stored on node B.

Based on this data distribution scheme, query can be issued on any node of the network.
Each node can independently work out the location of query terms’ inverted index files and
then send modified queries to all nodes that should have the term stored.

@ Springer

http://www.innoq.com/blog/st/index-rss2.xml
http://www.innoq.com/blog/st/index-rss2.xml
http://www.innoq.com/blog/st/2005/11/20/informed_opinion_on_xml_schema.html
http://www.innoq.com/blog/st/2005/11/20/informed_opinion_on_xml_schema.html
http://www.innoq.com/blog/st/2005/11/20/informed_opinion_on_xml_schema.html
http://www.innoq.com/blog/st/2005/11/20/informed_opinion_on_xml_schema.html

112 D. Wang etal.

Handling single term query is very straightforward. The query will be routed from the
query node to the target node that has the index file of that term. The target node then checks
its index file and sends answer back to the query node. A multi-term ‘AND’ type query would
involve contacting a few nodes and perform ‘join’ operation on partial results from all nodes.
In this section, we will focus on presenting the multi-term query algorithms implemented in
ComSearch.

4.1 Naive algorithm

We first present two direct and naive multi-term query algorithms. Figure 2 shows a straight-
forward multi-term query algorithm, the “Star” algorithm. When the initial node (node I in
the figure) receives a query request T1, T2, T3, it checks every term T1, T2 and T3 and then
send them to corresponding nodes (node A, B, C in the figure), respectively. Afterwards each
node sends its local query result A, B, C back to the initial node. Final result is generated by
intersecting all the results together.

Figure 3 shows another naive algorithm taking serial approach. Upon receiving a query
request, node I first determines if there are locally stored terms in the request. If present, then
a local result is obtained from the database. The remaining terms, if any, are routed to a node
(node A in the figure) that is responsible for the first term in the query. At node A this pro-
cedure is repeated. At last every node receives the local result of its next node and performs
an intersection with its own local result, then route the outcome to its previous node. Finally,

Fig. 2 Query with Star algorithm

Fig. 3 Query with Serial algorithm

@ Springer

A decentralized search engine for dynamic Web communities 113

{T1, 72,73}

Fig. 4 Query with StarWithBF algorithm

node I will receive the intersection of all the results. Comparing with the Star algorithm, the
Serial algorithm can cut down the overall network traffic by sending intersection instead of
the whole result sets.

4.2 Naive algorithms with bloom filter

We then apply bloom filter on the two algorithms to minimize network transmission in the
query process. For convenience, we name the two algorithms with bloom filter “StarWithBF”
and “Serial WithBF”, respectively. The parameter configuration of these bloom filters is dis-
cussed in Sect. 2.3.

The StarWithBF algorithm is slightly modified from the Star algorithm. In Star algorithm,
the node that receives a query (e.g., node I in Fig. 4) is responsible for aggregating all results
from different nodes. In StarWithBF, we request the node that has information of the first
query term T1 (e.g., node A in Fig. 4) to do the aggregation. This can save the cost of sending
inverted index file of T1, which may be quite large, over the network if the querying node (I)
does not have information for any query term. If node I happens to have at least one query
term then StarWithBF becomes the same with Star algorithm.

Here, the “results” from other nodes are actually bloom filters (¥ (C) denotes the bloom
filter of result set C) of their local result sets. After receiving all the bloom filters, node A inter-
sects its own local result with the bloom filters, and then returns the outcome AN F (B)NF (C)
to node I.

The Serial WithBF algorithm as illustrated in Fig. 5 is very similar to the Serial algorithm.
The only difference is that nodes send bloom filters instead of the whole result set. Both
StarWithBF and Serial WithBF will return result that contains certain false positives. Seri-
alWithBF may produce more false positives than StarWithBF as it has nested bloom filter
operations.

4.3 A revised serial algorithm with bloom filter

The performance of Serial and Serial WithBF algorithm is optimized if the bloom filter is
always sent from a node with a smaller result set to a node with a larger one. If we need to
get the intersection of nodes A, B and C and we have N¢ < Np < N4, where N4 represents
the size of result set at node A; the network traffic is minimized if we send F(C) to B and
then send F (BN F(C)) to A. However, original Serial WithBF algorithm sends queries in the
same order as terms appear in a query. In this section we propose a revised Serial algorithm

@ Springer

114 D. Wang etal.

T1.72,73)

X ANF(BNF(C)

I ST A
FBNFC) F2.TP)
1

\
Y
N

f’
:’ B
L F(©) &
\

.

\\
c
Fig. 5 Query with Serial WithBF algorithm

5
S

“1

i, 72,73}

D

- %
I A
Y F(A), { Ne.Nc)
A
{T1.72.7T3) \\\
C‘ﬂf[ElnF{A)]
N B
\\\ F(BOF (A)). {c}

~
~

\\
C

Fig. 6 Query with ImpSerial algorithm

with bloom filter. We call it “ImpSerial” in short. ImpSerial is inspired by the bloom filter
intersection technique proposed in Reynolds etal. [12].

Figure 6 shows how the ImpSerial algorithm works. The algorithm can work with arbitrary
number of terms, but for simplicity we use a 3-term query here as an example. The algorithm
starts by sending query requests to the corresponding nodes. Instead of instantly returning
query results or bloom filters, the nodes answer the queries by returning the sizes of their
result sets. The initial node (node 1) is responsible for receiving size information N4, Np,
Nc from all nodes involved in the query process.

These values are then sorted at node I in numerical order. After that, node I generates a
list containing sorted nodes and sends it to the node that has the smallest result set. Suppose
we have Ny < Np < N¢ , node A will be the first node. Node A then removes itself from
the list and sends the list with the bloom filter of its result set to the next node on the list, that
is, node B. Node B calculates the intersection of B and F(A), and then send the bloom filter
of BN F(A) tonode C.

At the last node (node C) the list becomes empty. Here, we have two options. Node C may
calculate the intersection of C and F'(B N F(A)) and return it to node I directly. This option
will bring in some false positives and will eliminate weight information of terms. Alterna-
tively, node C can send C N F(B N F(A)) back to B and then to A. By sending result back to
previous nodes and calculating AN (BN(CNF(BNF(A)))) we can eliminate false positives
and retain weight information; but the network traffic will increase a lot. In ComSearch we

@ Springer

A decentralized search engine for dynamic Web communities 115

rank the query results using date information, so option one presents a trade-off between
precision and network traffic. Furthermore, the precision can be improved to an acceptable
range by reducing the false positive rate of bloom filter. Hence, option one is implemented
for the algorithm.

4.4 Caching

Two types of caching techniques can be used in ComSearch: server result caching and client
result caching. In the server result caching, every node caches its local query results to avoid
frequent local database query operations. Pushing the cache to the client side can save both
network traffic and local database cost [16]. ComSearch adopts client side caching option. It
is implemented by requesting each node to cache the bloom filters they received from other
nodes.

It is also viable to cache the query results instead of bloom filters. This option can avoid
false positives and can retain weight information. However, bloom filters are much smaller
than the actual query results and more information can be saved in a fixed sized cache, thus
increasing cache hit rate.

Caching is implemented for the Serial WithBF algorithm. When node A needs to get the
bloom filter from node B, it will first look up its cache for the bloom filter. If there is a hit,
it is not necessary for node B to send F(B) to A. This improves the overall performance. If a
query contains multiple terms, the bloom filter needed for answering the query and cached
locally may both be intersections of some terms. For instance, we may use a bloom filter
F(B N F(C)) to answer the query, a locally cached F(B N F (D)) does not consider as a
cache hit. We would expect lower hit rate in multi-term query compared with those from
single-term query.

Research on query logs has shown that the popularity of terms appearing in a large collec-
tion of queries roughly follows a Zipf distribution [13]. Hence caching the most popular terms
may result only in better performance. ComSearch implements such caching mechanism. Its
cache is maintained by a least-recently-used (LRU) based algorithm. LRU removes a cached
term if it is not requested for a predefined period of time.

5 Simulation and results

We use simulation to evaluate the performance of the various multi-term query algorithms.
In this section, we present the details of simulation design, datasets, environment and
results.

5.1 Simulation design

We model our simulator as a Markovian simulation. The simulator contains a given number
of nodes. A corpus (dataset) is randomly divided among the nodes. The simulator was build
using Java on top of FreePastry framework. Apache Lucene package is used for setting up
the inverted index and Hsqldb, an open source java database engine (http://hsqldb.org/), is
used as the local database management system for each node.

The simulator can accept queries on any arbitrary node, and use a pre-configured algorithm
to get query results. The query result set, the number of hits, the number of nodes contacted

@ Springer

http://hsqldb.org/

116 D. Wang etal.

in the query and the overall network traffic incurred in the query are returned to the node that
issues the query request.

The number of nodes contacted in a query is calculated by counting all the nodes involved
in the query. The count includes the initial node that issues the query. The maximum number
of nodes being contacted is (number of terms + 1) assuming that all terms are distributed in
different nodes.

The overall network traffic is estimated by cumulating the length of all messages routed
over the network. Every ASCII char is counted as 1 byte long. The length of bloom filter is
counted as | g | plus the length of head information.

5.2 System measurements

We use three metrics to measure the performance of ComSearch: precision of query results,
network traffic per query and number of nodes contacted. Recall is not measured because
bloom filters and cache do not introduce any false negatives. Thus, the recall of all algorithms
will be constant.

Among our five algorithms, the basic Star algorithm and the basic Serial algorithm do not
bring in any false positives or false negatives, so the query result returned from basic algo-
rithms is used as a base line for comparison. The precision of a given algorithm is calculated
as

number of results of basic algorithms

~ number of results of improved algorithms

Network traffic, or number of bytes sent over the network per query, is considered as the
most important metric of performance in this paper. Reducing network traffic will decrease
the overall query latency.

Number of nodes contacted is mainly measured in cache experiment. Cache algorithms
are expected to reduce the number of nodes being contacted. This will in turn reduce the
network traffic and local CPU time.

5.3 Simulation environment

We gathered 14,000 RSS feeds from various online RSS and RDF aggregators as the exper-
imental corpus. These feeds are mainly for news articles. They can be viewed as the base
content of an online news community. Feeds are randomly assigned to nodes as their local
contents. Feed may contain various number of items. Each item is a summary of a news
article Web page and it represents a document in ComSearch. There are 34,998 distinctive
documents in the whole system. After initial text preprocessing, there are 677,933 terms in
the entire corpus. The number of distinctive terms is 30,776.

To emulate realistic queries, we find the top 50 most popular terms in the corpus used
in each experiment, and use those to generate queries of given number of terms. We do not
test rare terms as they would result in small term postings and much less internal traffic.
However, the proposed approach works for all sorts of terms. The frequency of terms in all
generated queries in an experiment follows the same Zipf distribution as that in the corpus.
For example, if a term T4 has a probability of 0.15 to occur in the whole corpus, then in our
generated queries T4 also has a probability of 0.15 to be selected. The simulator runs on a
PC with 2 Pentium 4 Xeon 2.8 GHz CPUs and 2G RAM.

@ Springer

A decentralized search engine for dynamic Web communities 117

5.4 Bloom filter setting

Bloom filters may reduce network traffic with slight sacrifice on query accuracy. The con-
figuration of bloom filters is essential for the performance. In this section, we report the test
performance of StarWithBF, Serial WithBF and ImpSerial algorithms under various parame-
ter configurations. The purpose is to find an optimal value to use in all simulations. For each
algorithm, 100 queries are submitted and average precision and network traffic are calculated.
The same query process are repeated under various configurations of bloom filter parameter
%, where 7 represents the number of bits per element (n represents the total number of
bits and n is the number of documents in an intermediate result set). The number of hash
functions is calculated by formula k = In2 - %"

We start this experiment with a dataset of 2,000 feeds. The dataset is then expanded to
6,000, 10,000 and 14,000 feeds to see if the optimal value is consistent while the system
scales. The queries used are all 3-term ones.

Figure 7 shows the average network traffic per query as a function of the bloom filter
length for 14,000 feeds. As expected, the function is similar to a logarithm curve. As the
length of bloom filter goes up, the false positive rate decreases. However, as bloom filter
length continues growing, the size of bloom filters becomes a dominating part in the overall
network traffic. Through our experiment we can see that the optimal value is 16 bits per
element. The logarithm feature and optimal number is consistent over all dataset sizes.

Figure 8 and Table 1 shows the relationship between precision and bloom filter length. We
can see that setting the parameter to 16 bits per element will minimize network traffic, but
the precision of Serial WithBF algorithm and ImpSerial algorithm is not very good. If we use
the value 32 bits per element to construct the bloom filters, in ImpSerial algorithm, there is
only 5% increase in network traffic while the precision is increased from 45% to 100%. The
same trade-off cannot be achieved in Serial WithBF algorithm. Moving from 16 bits/element
to 32 bits/element, both precision and network traffic go up for about 30%. This indicates
that the growth of bloom filter length has a smaller impact on the overall traffic of ImpSerial
algorithm than those of the other two algorithms. For ImpSerial algorithm, we may opt to use
32 bits per element bloom filter to achieve both desirable precision and near optimal network
traffic. However, for the other two, 16 is the optimal value.

600
500
400
200
200
100
ol

Triffac per query (KB)

& I 8 16 - 32 (64
Bloom filter length [bits/zlemant)

StarWithBF = = = =~ SerialWithBF

ImpSearizl

Fig. 7 Network traffic as a function of BF length

@ Springer

118 D. Wang etal.

Precision
000000000
0 = e L s U O e 00 D e

4 8 16 32 54
Bloom filter langth [bits/zlzmant)

StarWithBF == === SarizlWithBF ImpSarizl

Fig. 8 Precision as a function of BF length
Table 1 Performance of various bloom filter lengths

16 bits/element 32 bits/element

Traffic (Bytes) Precision Traffic (Bytes) Precision
StarWithBF 104380.2 0.88269 131796.1 1
Serial WithBF 117301.1 0.636831 162090.4 0.96
ImpSerial 84278.89 0.454518 89171.6 1

5.5 Scalability in terms of network size and corpus size

This simulation seeks to evaluate the scalability of our proposed algorithms. We start with
10 nodes each containing 100 feeds in average. We issue 100 2-term queries on Star, Serial,
StarWithBF, Serial WithBF and ImpSerial algorithms and compare the average network traf-
fic per query. After that we change the queries to 100 3-term ones and do the same process.
We continue with 4-term, 7-term and 10-term queries and then scale the system to 20, 40,
60, 80, 100, 120 and 140 nodes. Every node in the experiment contains 100 feeds in average.
The bloom filters in this experiment are configured to 16 bits per element in length and 11
hash functions are used. While the size of the system grows linearly, we expect the average
network traffic of our improved algorithms grows sub-linearly. Due to space limit, we show
only results of 4-term query here. Figure 9 shows the internal traffic as a function of network
sizes.

We also test the scalability in terms of corpus size. We fix the number of nodes at 100 but
increase the size of whole corpus gradually from 1,000 feeds to 2,000, 4,000, 6,000, 8,000,
10,000, 12,000 and 14,000 feeds. Figure 10 shows the internal traffic as a function of corpus
sizes.

The results for other multi-term queries have similar features. The only difference lies
in the actual traffic per query. The results clearly show that the Serial algorithm has better
scalability than the Star algorithm. This is because it cuts down duplicated transmission to
some extent. However, scalability of both basic algorithms falls far behind the scalability
of the three algorithms that implement bloom filter. Figures 11 and 12 further compare the
scalability of the three. Again, only 4-term query result is show here. For 2-term queries the
three algorithms achieve similar performance. For other groups, the performance of Star-
WithBF algorithm is very unstable as exemplified by some sharp ups and downs in Fig. 11.

@ Springer

A decentralized search engine for dynamic Web communities 119

8000
. Star 2 msaaas Sarizl
o StzrWithBF SerizlWithBF
= 5000 R
= mpSeriz -‘_,-
@ JRETTIREE
3 ‘.l.
E 4000 ‘__.-"
a _10'
o o
U -
— y -
ﬁ 2000 g -
= o' - wy v - - o L
= __.,u"* I -

.:J |___'-

10 20 490 60 80 100 120 140
Mumberofnodas

Fig. 9 Traffic per query as a function of network size

8000

Star = as==a Sarizl

;Eg‘ StarWithBF SerislWithBF s

= §000 : o
ImpSerizl -~

E- P "..u"

g -

o 4000 '

5

(=8 ‘,af.

J ‘l"

£ 2000

= o e mmm =T

oLt o

1 2 4 6 8 10 12 14
Mumberoffeeds [thousznd)

Fig. 10 Traffic per query as a function of corpus size

The internal traffic of StarWithBF relies heavily on the sizes of result sets of involving nodes.
Generally Serial WithBF algorithm has better scalability than StarWithBF; but it is not as good
as ImpSerial algorithm. The ImpSerial algorithm has a stable performance. The advantage
over other algorithms is very obvious in 4-term, 7-term and 10-term queries experiments. Its
performance is nearest to the theoretical optimal bloom filter compression ratio. When the
query returns O result, which happens quite often for long queries, the ImpSerial algorithm
can avoid unnecessary traffic by checking the number of partial hits on each participating
node in advance.

5.6 Caching performance

We implement caching technique over the Serial algorithm and issue 100 2-term queries to
compare the performance of the original algorithm and the new one with caching technique.
The ImpSerial algorithm is used as a reference baseline. The same process is repeated for
3-term, 4-term, 7-term and 10-term queries. The experiment runs twice using 50 and 100
nodes, respectively. The corpus used in this experiment contains 10,000 feeds.

From Fig. 13 and Table 2 we can see that caching can decrease both the network traffic and
the number of nodes contacted per query. In 2-term and 3-term queries the difference is not
so obvious because these queries are issued at the beginning of the simulation and the cache

@ Springer

120 D. Wang etal.

1200
. StarWithBF SerizlWithBF
g‘ 1000 ImpSerizl
£ 800
[+ 1]
o
T 500
[+1}
(=8
o 400
tE 200
'_
Gl ']
10 20 40 &0 80 100 120 140
Numbearof nodsas

Fig. 11 Scalability of BF algorithms with respect to network size

1000
Star\WithBF arislWithBF
500

ImpSerizl

Trattic per query (KE)

ol —
2 4 & g 10 12 14
Numbear of feads [thousznd)

=

Fig. 12 Scalability of BF algorithms with respect to corpus size

SerialWithBF CachedSerialWithBF SerialWithBF CachedSerialWithBF
o = ImpSerial . = ImpSerial
£ 350 £ so0,
300
4

E 3% g oo}
2 200 2 300
L 150 5 200
g 100 = j
& 50 z -°°|
= 04l = a
i el o by o
= = 2 3 a 7 10

Number nftermsm query Number of terms in query

(a) 50 nodes (b) 100 nodes

Fig. 13 Comparing caching with other algorithms. a 50 Nodes, b 100 nodes

is in filling up stage. In 4-term, 7-term and 10-term queries there is a remarkable reduction
in the both metrics. Queries are randomly assembled from the list of terms appearing in the
data corpus. It is very likely that 10 randomly assembled terms may not return any results.
This explains the traffic reduction observed in SerialWithBF on 10-term query. However, it
should be noted that the average network traffic of ImpSerial algorithm is still much smaller
than that of CachedSerial WithBF.

@ Springer

A decentralized search engine for dynamic Web communities 121

Table 2 Average number of nodes contacted in a query

2-term 3-term 4-term 7-term 10-term
50 Nodes Serial WithBF 2.98 3.94 4.85 7.72 10.7
Cached 2.96 3.64 3.93 4.6 5.56
100 Nodes Serial WithBF 2.93 3.78 4.69 7.13 9.38
Cached 2.86 3.34 3.49 341 4.28

6 Experimental results

In this section we present the experimental results of running ComSearch on a network of
up to 30 PCs connected by 10 Mbps Ethernet. We use the experiment first to investigate the
base case query response time under real network environment. We also investigate the data
movement caused by node joining an existing network.

6.1 Query response time

We are interested to learn the possible maximum response time in a real network. The queries
we submitted to ComSearch are combination of most common terms in the entire document
corpus. Such queries do not necessarily represent the query a Web user may issue. However,
they do represent worst case response time where all terms in a query have large intermediate
result sets. Figure 14 plots the mean response times for 1 and 4 common term queries against
the number of nodes and number of feeds for basic Serial algorithm. Dashed lines repre-
sent mean response times for 1-term query while solid lines represent mean response times
for 4-term query. There is not much difference in response time for queries performed on
10, 20 or 30 nodes. However, with respect to the feed number, the response times increase
in a linear scale with the increase of the corpus size. This is consistent with the observation

===+ 10Node-1Term === 20Node-1Term
30Node-1Term 10Node-4Term
20Node-4Term 30Mode-4Term

100000.0 -
o 900000 1
% 80000.0 1
g 700000
E 60000.0
£ 500000 1
8 40000.0
8 300000
,i-? 20000.0
@ A At P
0.0 J ————
PREPFPFRS

Number of feeds

Fig. 14 Query response versus number of nodes versus number of feeds

@ Springer

122 D. Wang etal.

from the simulation. Basic Serial algorithm does not use any optimization (bloom filter or
caching), the recorded actual response time is higher than those of real world search engine.
It would be much smaller for ImpSerial algorithm. Also, as shown in the simulation results,
the internal traffic does not increase with the increase of network size or corpus size for the
ImpSerial algorithm and two other algorithms with bloom filter. We do not expect the actual
query response time to be increased as well.

6.2 Node joining

To investigate the data movement caused by node joining, we build an initial network con-
sisting of 10 nodes each that stores a certain amount of data. New node will join the system
continuously until the network has a maximum of 30 nodes. The data brought by new node
will be indexed and routed to its destinations in a similar way as described in Sect. 4. More
importantly, some indices previously stored in existing peers need to be relocated to the new
node. We will focus on the movement of existing indices in this experiment; hence we assume
that all new nodes do not bring new data to the network.

Figure 15 shows the relationship between the percentage of records moved and the number
of existing nodes. The theoretic data movement based on the ideal situation that all nodes
store equal amount of records is plotted in dashed lines. There are reasons to believe that
the relationship is hyperbolic as the amount of data at each node should follow a 1/x rela-
tionship, where x represents the number of nodes in the system. Therefore, the trend line
(solid) had been plotted as a hyperbolic function. Since the experiment starts from 10 nodes,
measurements for node numbers 1-10 are not taken. This hyperbolic relationship would be
difficult to show with the measurements taken. The decrease of the theoretical values from
10 nodes to 29 nodes is only 5.6, while the spread of the values is almost 10. Data movement
is sensitive to a number of factors including the order of joining, the original dataset and the
new datasets. The large spread of the values is caused by those unmeasured uncertainties.

Figure 16 plots the cumulative percentage of total multiple movements against the per-
centage of number of nodes joined. It is obvious that a large amount of record has been
moved multiple times during the network expansion. Of the total amount of records moved
to expand the network from 10 nodes to 20 nodes (200% expansion), approximately 30%
of all the record movements are multiple movements. For a 300% expansion (expending
from 10 nodes to 30 nodes), almost 55% are multiple movements. It is also observed that
almost 95% of all the multiple movements have been completed after approximately 80% of

L]
(=]

y = 149,125

Percentage of Record Moved

Theoretic Dat® P . b
0 Movement
10 15 20 25
Existing Hosts

Fig. 15 Percentage of records moved versus number of existing hosts

@ Springer

A decentralized search engine for dynamic Web communities 123

100
90
=
2 80
(=]
E 70
£ 60
-
s 50
& 40
n
T 30
]
5 2
e 10
0 - - . ——-
0 20 40 60 80 100

Percentage of nodes joined

Fig. 16 Percentage of total node joins versus percentage of data moved more than once

the final number of nodes joined the network. For example, for a 10-node network, if there
are a total of 1,000 multiple movements, then after the 8th node joins the network (80% of
the 10-node network), about 950 multiple movements are completed. The observation on
multiple movements is a good indicator of an alternative solution of node joining. In our
experiment, data are instantly moved to its new target node when the topology of network
changes. Alternatively, a link can be placed in the new target node pointing back to data’s
original position. This will increase the number of hops during query but will save network
traffic caused by multiple movements of the same data item. Data can be moved to its final
target node periodically or when there is clear sign of a relatively stable network.

Node departure is another common activity in a self-organized peer to peer network. In
normal case, when a node departs it will invalidate entries related with its local data in other
nodes and send its term postings to neighboring nodes. There are also unusual cases when
a node may depart without doing all the regular departure preparations. The whole network
may have to perform some re-indexing if there is no data replication. However, these are
beyond the scope of this paper.

7 Conclusion and future work

In this paper, we proposed a self-organizing decentralized searching engine ComSearch
mainly designed for dynamic online communities. We presented several techniques to opti-
mize multi-term query process. We applied bloom filter and caching to reduce the overhead
of multi-term AND queries. To evaluate our approach, we first built a simulator implementing
the techniques; experiments with various system configuration and scale have been done on
the simulator. We found the optimal length of bloom filter in our system through experiments.
Results also show that our proposed techniques and algorithms have good scalability while
the system scale grows. Comparing with the naive query algorithms, our revised algorithm
can reduce overall network traffic for about two orders of magnitude in the best case. Con-
sidering the decentralized and self-organizing nature of our system, ComSearch would be
attractive for online communities who want flexible searching services. We also deployed
the system in a small-scale network and conducted a series of experiments to estimate the
actual query response time as well as to investigate the data movement effect of node joining.
Experimental results show that multiple data movements are quite common during network

@ Springer

124 D. Wang etal.

expansion. However, the percentage of multiple data movements decreases when a network
is becoming stable. This provides incentives and possibilities for improvement on P2P data
movement management.

The experiment results on node joining and data movement prompt several interesting
data placement issues that deserve further study. We will investigate data placement strate-
gies involving link structure and replication and study the cost involved in node joining and
departure stage under various strategies.

References

1. Anagnostopoulos A, Broder A, Punera K (2008) Effective and efficient classification on a search-engine
model. Knowl Inf Syst 16(2):129-154

2. Balke WT, Nejdl W, Siberski W, Thaden U (2005) Progressive distributed top-k retrieval in peer-to-peer
networks. Poceedings of the 21st international conference on data engineering. Tokyo, Japan

3. Bloom B (1970) Space/time tradeoffs in hash coding with allowable errors. Commun ACM 13(7):
422-426

4. Broder A, Mitzenmacher M (2003) Network applications of bloom filters: a survey. Internet Math
1(4):485-509

5. Cuenca-Acuna FM, Peery C, Martin RP, Nguyen TD (2003) Planet P: infrastructure support for P2P
information sharing. Proceedings of the 12th international symposium on high-performance distributed
computing, 22-24 June 2003

6. Druschel P, Engineer E, Gil R, Hu YC, Iyer S, Ladd A (2006) FreePastry. http://freepastry.rice.edu/

7. Ton S, Robert M, David LN, David RK, Kaashoek MF, Frank D, Hari B (2001) Chord: a scalable peer-
to-peer lookup protocol for internet applications. Proceedings of the 2001 conference on applications,
technologies, architectures, and protocols for computer communications. San Diego, California, United
States, 2001

8. LilJ, Loo B, Hellerstein J, Kaashoek F, Karger D, Morris R (2003) On the feasibility of peer-to-peer web
indexing and search. Proceedings of the 2nd international workshop on peer-to-peer systems, Berkeley,
California, 2003

9. Lento T, Welser HT, Gu L, Smith M (2006) The ties that blog: examining the relationship between social
ties and continued participation in the Wallop weblogging system. Proceedings of the 3rd annual work-
shop on the weblogging ecosystems: aggregation, analysis and dynamics, WWW?2006. Edinburgh, May
23,2006

10. Lin Y, Sundaram H, Chi Y, Tatemura J, Tseng B (2006) Discovery of Blog communities based on mutual
awareness. Proceedings of the 3rd annual workshop on the weblogging ecosystems: aggregation, analysis
and dynamics, WWW2006. Edinburgh, May 23, 2006

11. NgP,NgV (2008) RRSi: indexing XML data for proximity twig queries. Knowl Inf Syst 17(2):193-216

12. Reynolds P, Vahdat A (2003) Efficient peer-to-peer keyword searching. Proceedings of middleware 2003.
Rio de Janeiro, Brazil

13. Searls D, Sifry D (2003) Building with blogs. Linux J 107:65-73

14. Silverstein C, Marais H, Henzinger M, Moricz M (1999) Analysis of a very large web search engine
query log. ACM SIGIR Forum 33(1):6-12

15. Tang C, Xu Z, Mahalingam M (2003) pSearch: information retrieval in structured overlays. ACM SIG-
COMM Comput Commun Rev 33(1):89-94

16. Tryfonopoulos C, Idreos S, Koubarakis M (2005) LibraRing: an architecture for distributed digital libraries
based on DHTs. Proceedings on the 9th European conference on research and advanced techonology for
digital libraries. 18-25 Sept 2005

17. Yuan C, Chen Y, Zhang Z (2003) Evaluation of edge caching/offloading for dynamic content delivery.
Proceedings of the WWW2003 Budapest, Hungary, 20-24 May 2003

@ Springer

http://freepastry.rice.edu/

A decentralized search engine for dynamic Web communities 125

Author Biographies

Daze Wang received a B.E. degree from University of Science and
Technology in China., and a MSc. Degree from The university of
Sydney. The work was done when he was doing Master of Science
at School of Information Technologies, the University of Sydney.

Quincy Chi Kwan Tse is currently a PhD student at the University of
Sydney supported by NICTA. He is currently researching in the area
of intelligent transportation systems, specifically looking at vehicular
communications for safety and road management systems.

Ying Zhou is currently a lecturer at school of Information Technolo-
gies, the university of Sydney, Australia. Her research interests include
Web information retrieval, Web community and recommendation sys-
tems.

@ Springer

	A decentralized search engine for dynamic Web communities
	Abstract
	1 Introduction
	2 Background
	2.1 DHT-based structured P2P network
	2.2 Web feed
	2.3 Bloom filter

	3 Related works
	4 System design
	4.1 Naive algorithm
	4.2 Naïve algorithms with bloom filter
	4.3 A revised serial algorithm with bloom filter
	4.4 Caching

	5 Simulation and results
	5.1 Simulation design
	5.2 System measurements
	5.3 Simulation environment
	5.4 Bloom filter setting
	5.5 Scalability in terms of network size and corpus size
	5.6 Caching performance

	6 Experimental results
	6.1 Query response time
	6.2 Node joining

	7 Conclusion and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

