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Abstract Finding the nearest k objects to a query object is a fundamental operation for
many data mining algorithms. With the recent interest in privacy, it is not surprising that there
is strong interest in k-NN queries to enable clustering, classification and outlier-detection
tasks. However, previous approaches to privacy-preserving k-NN have been costly and can
only be realistically applied to small data sets. In this paper, we provide efficient solutions
for k-NN queries for vertically partitioned data. We provide the first solution for the L∞
(or Chessboard) metric as well as detailed privacy-preserving computation of all other Min-
kowski metrics. We enable privacy-preserving L∞ by providing a practical approach to the
Yao’s millionaires problem with more than two parties. This is based on a pragmatic and
implementable solution to Yao’s millionaires problem with shares. We also provide privacy-
preserving algorithms for combinations of local metrics into a global metric that handles
the large dimensionality and diversity of attributes common in vertically partitioned data.
To manage very large data sets, we provide a privacy-preserving SASH (a very successful
data structure for associative queries in high dimensions). Besides providing a theoretical
analysis, we illustrate the efficiency of our approach with an empirical evaluation.

Keywords Privacy-preserving data mining · Secure multi-party computation ·
Nearest-neighbour classification · Yao’s millionaires problem

1 Introduction

The diffusion of global threats, like terrorism, requires collaboration and partnership between
many governments and/or corporations. Data mining has been identified as one of the most
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useful tools for the fight on terror and crime [41]. However, the information needed resides
with many different data holders, and such collaboration may be required among parties that
mutually do not trust each other, or between parties that have conflicts of interest. But all
parties are aware of the benefits brought by such collaboration. For this kind of collaboration,
data privacy becomes extremely important. In the privacy-preserving model, all parties of
the collaboration promise to provide their private data to the collaboration, but all want to
minimize what the others or any third party may learn about their private data. Collection of
data by several agencies results in large databases, those demand efficient methods for data
retrieval. For most data mining algorithms, the data is encoded as vectors in high dimensional
space.1 For these algorithms, a measurement of similarity (or dissimilarity) is necessary and
often fundamental for their operation. Similarity queries on multi-dimensional data are usu-
ally implemented by finding the closest feature vector(s) to the feature vector of the query
data. More importantly, in large databases, the high dimensional space can be subject to the
curse of dimensionality, and in such settings, content-based retrieval under the vector model
must typically be implemented as k-nearest-neighbour (k-NN) queries, whose result consists
of the k items whose features most closely resemble those of the query vector according to
the similarity measure. This type of query is known as a nearest neighbor (NN) query [46],
it has been extensively studied in the past [5,10,15] and constitutes the basis of one of the
top 10 algorithms in data mining [61]. A closely related query is the ε-range query where all
feature vectors that are within the ε-neighborhood of the query point q are retrieved.

Similarity search is widely used as a common form of query in modern database appli-
cations such as multimedia information systems [50], geographical information systems
(GIS) [14], time-series databases [24], medical imaging [38], and bioinformatics [34]. The
similarity between two objects is defined with a distance function, e.g., Euclidean distance,
between the corresponding feature vectors. For example, in image databases, the query can
ask for the most similar images to a given image [4]. 3D shape histograms are used in molec-
ular biology to find similar 3D proteins [3]. Consider a database consisting of DNA sequence
of people with cancer. Users can search this database to see if their DNA sequence is simi-
lar to the ones in the database. Here privacy-preserving similarity search is very important.
While range queries enable distance-based clustering (as in DBSCAN with R-Trees) and out-
lier detection [54], k-NN queries also enable Local Outlier Detection [12], Shared Nearest
Neighbour Clustering [47] and k-NN Classification [2,35,47].

This wide variety of data mining task, for which k-NN or range queries are a fundamental
operation, has recently prompted approaches to privacy-preserving k-NN [2,35,47,54,55].
However, these approaches do have some serious shortcomings. For example, the suite of
privacy-preserving algorithms [55] to create a privacy-preserving version of Fagin’s A0 algo-
rithm [23] proved costly even though the authors argued that disclosure of some additional
information (the union of all items in a set required to get k intersecting items) was necessary
for reasonable efficiency. Other common limitations have been the need to compute all pairs
of distances [54], to have the query-point public [35], or to deal with horizontally partitioned
data [2,47].

In all settings, the additional cost of preserving privacy is non-trivial [36,39,51,59,62].
In this paper we use n for the number of data vectors when this is a small set. In such a
case, the additional cost of privacy should be clearly an absolute priority. In a sense, these
are relatively few values and releasing information is a large relative loss. We will use N
when we are referring to a large dataset, as it is usually the case in data mining applications,

1 Attribute-vectors are the common input for learning algorithms like decision trees, artificial neural network
or for clustering algorithms like k-Means or DBSCAN .
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and here we accept that the cost of information leak (relative to the dataset size) and the
necessity for efficiency justifies a small leakage of information as long as that leakage can be
identified as inconsequential and innocuous. Previous work has not produced totally secure
algorithms [47,55].

When the dataset is large, data structures that efficiently support k-NN search are essen-
tial to many applications. This family includes classic search structures like k-d-trees [8] and
R-Trees [29], and newer structures and techniques such as SR-trees [37], X-trees [9] and
iDistance [64]. The central role of these indices in data mining algorithms is illustrated by
the role that R-Trees play in the efficiency of the popular data mining clustering algorithm
DBSCAN[1,20].

This paper shows how to compute distances in a privacy-preserving context. This allows
privacy-preserving k-NN queries. Finally, we apply protocols for computing distances to
a very successful data structure for associative queries in high dimensions, the SASH. We
emphasize the SASH [31] as this data structure makes minimal assumptions about the nature
of the metric for associative queries. The SASH is neither a spatial index nor a metric index:
it makes no assumptions on the nature of the database elements other than the existence of a
pairwise distance measure, nor does it require the measure to satisfy the triangle inequality.
Houle [31] has shown that for approximate k-NN (k-ANN) queries on very large sets, the
SASH consistently returns a high proportion of the true k-NNs at speeds of roughly two orders
of magnitude faster than sequential search. Houle’s research also demonstrates that the SASH
offers better performance, and significantly better control over the time-accuracy trade-off,
than previous approximation methods based on metric indices. The SASH has already been
successfully applied to clustering and navigation of very large, very high dimensional text
data sets [30], and spatial data mining of web documents [42]. Two papers [31,32] present
the details of the SASH structure and its query methods. The SASH becomes of particular
interest for its potential for data mining because the involvement of many parties results in
data of high dimensions that is vertically partitioned. However, the current form of the SASH
would be inappropriate for privacy preservation. Therefore, this paper develops a SASH and
its algorithms so that parties are confident that privacy of their data is pragmatically protected.
Naturally, the result of k-NN queries by one party on the union of the data reveals information
on the other party’s private data since significant information can be inferred from the result
of the query alone. Privacy is threatened further if queries are repeated or malicious queries
are issued. This paper aims at offering a pragmatic (practical and efficient) solution while
specifying the departure from some theoretical ideal solutions.

2 Private collaborations

We study collaboration between several parties that wish to compute a function of their col-
lective databases. In fact, they are to conduct data mining tasks on the joint data set that is the
union of all individual data sets. Each wants the others to find as little as possible of their own
private data. To focus the discussion on privacy-preserving collaboration, we will regularly
use two parties Alice and Bob. We focus on vertically partitioned data [56] (Fig. 1).

Every record in the database is an attribute-value vector. Alice owns one part of that vector
and Bob owns the other part. In the case of more than two parties, then every party will own
some part (a number of attributes) from the attribute-value vector. Note that, for vertically
partitioned data, the more parties are involved, the more attributes are involved and the higher
the dimensions of the attribute-vectors. For simplicity, we can identify each attribute (column
or field) with one party (so the dimension m of the records is also used as the number of
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Fig. 1 Vertically partitioned data

parties). Obviously, there would be fewer parties than dimensions (for example, in Fig. 1 the
two parties hold 9D records). However, we consider Alice as four virtual parties (one for each
of the columns) and Bob as five virtual parties each controlling one of Bob’s columns. This
simplifies the notation in the algorithms (and communication between two virtual parties of
the same party does not need to occur).

A direct use of data mining algorithms on the union of the data requires one party to receive
data (every record) from all other parties, or all parties to send their data to a trusted central
place. The recipient of the data would conduct the computation in the resulting union. This
naive solution is unacceptable from the privacy perspective. However, the cost of this distrib-
uted non-private solution (DNPS) has been used in the past as a benchmark for evaluating
the overhead required for privacy.

Our approach will make reference to the theory developed under the name of “secure
multi-party computation” (SMC) [27]. Yao’s millionaires problem [63] provides the origin
for SMC. In this problem, Alice holds a number a while Bob holds b. They want to identify
who holds the larger value (they compute if a > b) without either learning anything else
about the other’s value.

Secure multi-party computation under the semi-honest model [27] has regularly been used
for privacy-preserving data mining [17,19,26,53]. Here we use as the fundamental point of
reference the semi-honest model as well, which means all parties will follow the protocol
since all are interested in the results. However, all parties can use all the information collected
during the protocol to attempt to discover information on the private data or some private val-
ues from another party. We accept that any information that can be inferred from the privately
computed output and the inputs of one party, is acceptable for that party to discover.2

2 The formal definition of the semi-honest model for two parties [27, Defintion 7.2.1, Page 620] is slightly
different than for three or more parties [27, Definition 7.5.1, Page 696]. For three or more parties one
most additionally prove that any proper subset of the parties colluding among themselves do not learn any
additional information about the private data of those that remain honest. The data mining community has
generally ignored this technical difference between the two-party case and settings with three or more parties
by assuming there will not be a case where a subset of the parties collude. For example, the semi-honest model
is illustrated to the data mining community with the protocol secure sum for m > 2 parties (see Protocol 4
later) in a text [56] that admits no party can collude with the originator of the protocol or the protocol fails.
The same text suggests [56] an extension that suffices for an honest majority (so it is formally insecure for a
honest minority). Another example is the Private Generalized Scalar Protocol—Protocol 4 [26,
Page 119] which improves the security of at least two other protocols for computing the scalar product. Again,
the authors admit that “when Alice colludes with other parties, then privacy can be compromised”. In other
cases, the authors express a security result as a theorem for the semi-honest model without any collusions
[35,57]. Therefore, as our formal model, we will follow the community’s practice, and use the semi-honest
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The current k-NN privacy-preserving algorithms at some stage make use of the theoreti-
cal generic “secret shares” result for computation with data split across several parties. The
SMC literature has a general solution for all polynomially bound computations [28]. This
generic “secret shares” solution computes f (�x, �y) for a polynomial-time f using private
input �x from Alice and private input �y from Bob. Alice learns nothing about �y except what
can be computed from f (�x, �y) and similarly Bob learns nothing about �x except what can
be inferred from f (�x, �y) and �y. Why, if such a solution exists, is there so much interest
in protocols for SMC? The first consideration is that the general solution requires f to be
explicitly represented as a Boolean circuit of polynomial size. Second, even if represented as
a circuit of polynomial size in its input, the input must be very small for the construction of the
circuit to be practical. This means, the sub-task that uses this result must be on small inputs, a
constraint difficult to meet in data mining applications. Third, the constants involved are not
small. The circuit must be described for each input size n; once the circuit is described the
parties enter into a protocol holding shares of the inputs to gates and shares of the outputs of
gates. Fourth, the literature shows that much more efficient solutions exist for special cases of
f . In other cases, researchers are prepared to describe pragmatic solutions that reveal some
information that can be considered innocuous. Also, the usage of a circuit-based protocol as
a subroutine in another protocol enables construction of more complex and secure protocols,
but transmits the impracticality of the generic “secret shares” result further.

2.1 Yao’s two millionaires problem—solution with shares

One advantage of the “secret shares” theoretical result is that one can decompose the result
f (�x, �y) into a share sA for Alice and a share sB for Bob, so that sA + sB = f (�x, �y), but
neither party can find f (�x, �y) from their share. This allows us to use a protocol for one task
(like Yao-comparison of two values) in a larger protocol (e.g. sorting).

We present here a solution to Yao’s millionaires problem, that provide the output in secret
shares. Recall that here Alice holds a and Bob holds b, but then, after the protocol, they do
not share knowledge of the output (a > b?), but the output for Alice is ra and for Bob rb,
where

ra + rb =
{

1 if a > b,

0 if a < b.

There are several privacy-preserving data-mining algorithms [35,47,54] that invoke a subrou-
tine for Yao-comparison with shares, and all of them rely on the (circuit evaluation) generic
“shares” theoretical solution by Goldreich [27].3 Hence, they seem laborious for implemen-
tation. We present here a practical and inexpensive solution that we apply in our algorithms.
This solution can also alleviate the implementation issues for the above-mentioned protocols.
It will be close to an ideal solution in the semi-honest model. It uses a third untrusted party4

(also commonly used in the privacy-preserving literature [19]). It is also common that when
there are more than two parties, they take turns performing the role of the third party for two
others [53]. Even for fundamental protocols, like oblivious transfer, there has been an inter-

Footnote 2 continued
model where the definitions between two parties and three or more parties are equivalent by assuming parties
do not collude (we will indicate the threats of collusion when appropriate).
3 Within the security community, debate remains lively about requirements (and models) for this problem
[44], but we frame our discussion under the semi-honest model.
4 This may seem a strong assumption, but is not rare in reality. An on-line auction is an example of such a
party, because buyers and sellers assume that the auctioneer is non-colluding.
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est in using a third party [45]. In some protocols, like unconditionally secure commitment
schemes, the third party is absolutely necessary for perfect concealment [11].

Clearly, checking whether a > b is the same as checking whether a + (−b) > 0. In our
protocol, we will use an untrusted non-colluding third party (also called semi-trusted [13]).
Such a party only assists in performing the calculations. By definition, this party does not
collude with Bob, neither with Alice (and Alice and Bob would not collude since they are
two millionaires that do not trust each other). Therefore, in this case, the semi-honest model
with three or more parties is equivalent to semi-honest model with two parties.

Protocol 1 sign- based protocol with secret shares for Yao’s millionaires problem.

1. The third party generates a random number Ra and sends Ra to Alice.
2. Alice generates a random number R, where R ∈ �\{0} and sends (R, a · R + Ra) to

Bob.
3. Bob adds −b · R, and sends (a − b)R + Ra to the third party.
4. The third party subtracts Ra and checks whether (a − b)R > 0.
5. The third party generates two pairs of values (r0

a , r0
b ) and (r1

a , r1
b ), where r0

a + r0
b ≡

0 mod 2 and r1
a +r1

b ≡ 1 mod 2 (r0
a , r0

b , r1
a and r1

b ∈ Z2 = {0, 1} with r0
a and r1

a random
bits and r0

b and r1
b bits determined by the congruence). If (a − b)R < 0, then the third

party sends (r0
a , r1

a ) to Alice and (r0
b , r1

b ) to Bob. If (a − b)R ≥ 0, then the third party
sends (r1

a , r0
a ) to Alice and (r1

b , r1
b ) to Bob.

6. If sign(R) = 1 (i.e. R > 0) Alice and Bob use as their shares the random numbers
received as the first value in the pair sent by the third party. If sign(R) = −1, each
picks as their secret share the random number received as the second number in the pair
received as the third party’s message.

2.1.1 Illustration of Yao’s two millionaires problem—solution with shares

Assume that Alice holds a := 25 and Bob holds b := 37. They want to know whether a > b
with shares.

1. The third party generates a random number Ra := 45 and sends Ra to Alice.
2. Alice generates random number R := −14, where R ∈ �\{0} and sends (R, a·R+Ra) =

(−14, 25 · (−14) + 45) = (−14,−305) to Bob.
3. Bob adds −b · R = −37 · (−14), and sends R(a −b)+ Ra = −14(25−37)+45 = 213

to the third party.
4. The third party subtracts Ra and checks whether R(a − b) > 0 ⇒ 213 − 45 > 0.
5. The third party generates two pairs of values (r0

a , r0
b ) := (0, 0) and (r1

a , r1
b ) := (0, 1),

where r0
a + r0

b = 0 and r1
a + r1

b = 1. Since R(a − b) = 168 ≥ 0, so the third party sends
(0, 0) to Alice and (1, 0) to Bob.

6. Because sign(R) = −1, each picks as their share the random number received as the
second number in the message, that is 0 for Alice and 0 for Bob.

2.1.2 The security of the sign- based protocol with shares

Let us see what every party obtains from this protocol.

1. Alice obtains R, Ra and the set {r1
a , r0

a }. However, Alice has no way of telling which one
is which in the set {r1

a , r0
a }.

2. Bob obtains R, the set {r1
b , r0

b }, and (a)R + Ra . Again, Bob can not tell which one is
which on the set {r1

b , r0
b }.
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3. The third party obtains Ra , (r1
a ), (r0

a ), (r1
b ), (r0

b ), and (a − b)R.

From the discussion above, the following result follows.

Theorem 1 If a �= b, the sign- based protocol with shares is secure within the semi-
honest model of computation.

We emphasize that in the sign- based protocol neither Alice nor Bob learn anything.
Alice does not receive any messages nor values from Bob and what she receives from the
third party is random numbers. Similarly, Bob receives (R, (a)R + Ra); this is the only
message from Alice and since Ra is a random number he cannot infer a. Neither can he infer
the choice by the third party.

Some researchers use the tools by Goldreich [27] to establish the security of the proto-
col. In particular, a proof by simulation is sometimes performed there [54]. Here a proof of
Theorem 1 by simulation is obvious.

Proof Bob just needs to get a random value for (a)R + Ra and in polynomial time can add
(−b)R. The output is given by the third party. Alice’s simulation is even more trivial since
she receives nothing from Bob, and the only output is also from the third party. Let a �= b,
the third party only receives (a − b)R where R is a random number, thus it can also be
simulated. 	


We have chosen to define a Yao-comparison also when a = b. When values are equal, the
predicate a > b? receives the value true or false by considering the party that supplies the
second argument as the holder of a larger value. This implements implicitly and effectively
a comparison where a later indexed party is considered to have a larger value among parties
with equal values (which is useful for computing the Chessboard distance later in Protocol 5).

2.1.3 The implementation of the sign-based solution with shares

Theorem 1 proves the ideal protocol is secure, but as presented it uses real numbers and cannot
be considered efficient. Implementation requires some adaptation, as for example, the value
R ∈ �\{0} generated by Alice cannot be any non-zero real. However, all implementations of
a solution to Yao’s millionaires problem assume that the values of a for Alice and b for Bob
are in a large but bounded interval; that is a, b ∈ [0, M] where M is very large (and known
to both Alice and Bob). Alice and Bob will map their values from whatever total order by a
strictly monotonic function to [0, M]. Even those solutions that do not provide the answer
with shares require this and typically assume further that a and b are integers in a very large
field. Therefore, our implementation of the sign-based solution also assumes that a and b are
integers with a, b ∈ [0, M], and M is known to the implementer.

The implementation will not reveal any information about Bob’s value to Alice, since
nothing that Alice receives depends on Bob’s b except the output of the protocol. The imple-
mentation faces two challenges, namely limiting what Bob may learn about Alice’s value
and limiting what the third party learns on Alice’s value, Bob’s value or both. We address
first the second case.

Note that the third party does not know the value a −b, since sign(R) ∈ {−1, 1}. A small
concern is that in the case a = b, the third party learns that a = b, although it does not learn
anything else (the values a and b remain inaccessible to the third party). Theorem 1 does not
cover this case.
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Risk that the third party learns |a − b|. The trusted party does learn (a − b)R and because
|R| is bounded (in fact, the most conservative assumption is that the distribution of |R| will
be known to the third party), this party learns approximations to |a − b|. That is, the third
party will not learn whom between Alice and Bob holds the larger value, but will gain an
idea on the gap that exists between the two. Thus, the implementation of our protocol no
longer satisfies Theorem 1 for the third party.
Risk that the third party learns something about a (and thus something about b). If we
consider the values of |a − b| given that a, b ∈ [0, M], we can see that |a − b| ∈ [0, M];
however, the combinations that lead to a value are not equally many. For example, if
|a − b| = M , then we know that (a = 0 ∧ b = M) ∨ (a = M ∧ b = 0). That is, there are
only two possibilities. If |a − b| = M − 1, then we know that there are only 4 possibilities
(this are a = 0 ∧ b = M − 1, a = 1 ∧ b = M , a = M − 1 ∧ b = 0, and a = M ∧ b = 1).
However, for other values of |a − b|, we do not gain additional information. For example
|a − b| = M/2� can be produced with any value of a ∈ [0, M]. Therefore, when the
third party obtains the value R(a − b), if the particular value of R has a few possibilities
(for example, it is the maximum possible value) and |a − b| is one of those extreme values
with few possibilities, then the third party may reduce the universe of possibilities for |a|
(and therefore for |b|).

We evaluated the possibility of the third party bounding the range for |a − b| and found
the third party would still have large amounts of noise. We conducted experiments where
we kept |a − b| constant. For each value of |a − b| at least 250 executions of the sign-

based protocol were executed. In each, the third party used the mechanism above to
estimate |a − b|. The range of values for which the estimate of |a − b| was explored was
1 to 4,000. Figure 2 shows that with 95% confidence the expected relative error is around
50%, and the maximum relative error is over 99%. The plot of relative error zooms into the
range |a − b| ∈ [1, 1,000] to show that even with small values, the relative error remains
essentially constant. We regard this leak of information in the sign- based protocol as
innocuous given the estimates of |a − b| have at least 50% expected relative error.

Secondly, the risk of a leak because of extreme values is very low already. If M is at
least 255 and R ∈ [256, 1,024], then the value |a − b| = M would happen with probability
2/2552 and R would be largest with probability 1/768, thus the chance of the sign- based

protocol implementation running into these values is less than 2 in 10 million.

Fig. 2 Expected absolute and relative error (with 95% confidence intervals) when the third party estimates
|a −b|, as well as maximum absolute error and maximum relative error over 250 execution of the sign- based

protocol
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Nevertheless, we provide a further enhancement that will result in an efficient implemen-
tation, but it will not be the of the sign- based protocol as presented earlier. Theorem 1
will not hold for the implementation, but we will introduce other formal aspects regarding
its security. The implementation will be parameterized so that it is possible to arbitrarily
increase the uncertainty in the third party. To hide information on |a −b| from the third party,
Alice and Bob will perform an additional number of tests. Here Alice and Bob use dummy
values a and b, some of which have a = b. Only Alice and Bob know the index of the test
that actually corresponds to the comparison of their private values.

Protocol 2 Iteration of Comparison- Tests

1. Alice and Bob (without the third party’s involvement), agree on a integer parameter r
(or repetitions), a random uniformly distributed integer i ∈ [1, r ].

2. For each value j ∈ [1, r ]\{i}, Alice flips a coin with probability 1/2 and if heads, Alice
adds j to a set of e. The set e is initially empty and after the above step is a set of different
integers in [1, r ] (of dummy tests where Alice and Bob will supply each equal values).

3. Alice and Bob agree on random values c1, . . . , c‖e‖ that are in the range of a and b.
4. Alice and Bob run the sign- based protocol r times, providing dummy values except

for the i th test where Alice provides a and Bob provides b. If the j th dummy test has its
index in e, they both provide the value c j .

In our experiments with real databases we found that equal distance values are extremely rare
in some databases and common in others. Thus, handling this issue properly is essential, but
we will not emphasize it much further (implementations for settings were a and b are of a
small enumerated type, for example Boolean values, will use more rounds of the Iteration

of Comparison- Tests with more dummy tests).
While the Iteration of Comparison- Tests is formally not compliant with the semi-

honest model because the third party knows that one of these tests gives some idea of the range
of |a − b|, the certainty on any particular value decreases monotonically with the number of
iterations.5 An alternative model for assessing the privacy of protocols in privacy-preserving
data mining is the weak model. The weak model was used for many algorithms involv-
ing matrix operations and in particular, linear regression [18,56]. In this model, security is
regarded with respect to certainty. Therefore, one party is considered to not have breached
the security as long as there are an infinite number of possibilities for the values of the other
parties. This model has been criticized, and in many cases rejected, because it can consider
secure a protocol where one party learns significant information about another party’s data.
For example, Alice could learn that Bob’s b value is in a small range. While there are an
infinite number of rationals (or reals) in this interval, this could provide enough precision
for it to be considered a security leak. Learning or discovering an interval is discovering a
distribution of the value. If the distribution has very small variance, although a large range,
the security leak could be serious.

While some protocols for vector and matrix operations have been dismissed as only secure
on the weak-model and not in the semi-honest model, we believe one cannot discard the merit
of these protocols; particularly if they are regarded as not secure in the semi-honest model
by a technicality. Case in point is the protocol for scalar product that provides the output in
shares [19]. This protocol is regarded as secure in the weak-model sense because it requires
a commodity server. We argue here that the commodity server does not contradict the spirit

5 If we are in a situation where m > 3 not colluding parties are involved, with P3, . . . Pm as commodity third
parties, alternating to help P1 and P2 perform a sign- based protocol, then each party Pi (ı ∈ {3, . . . , m})
is not even sure that one of the test is not using dummy values.
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of the semi-honest model. We can consider the commodity server as a third party in the
protocol, with empty input and empty output. Then, the three parties would be interested in
computing f (�x, �y, λ) = sA + sB , where the input λ of the third party (the commodity server)
is empty and will not affect the output value sA + sB discovered by Alice and Bob with
respected private shares. As we mentioned before, many times a protocol in the semi-honest
model among more than two parties requires a sub-protocol in which two parties compute a
value with the assistance of a third. We hope that the above discussion makes clear that our
iterated sign- based protocol is not only secure on the weak model but is arbitrarily close
to being secure in the semi-honest model.

We make this last statement formal with the notions of perfect secrecy6 and of statistical
secrecy.7 We now present the specific definitions of perfect security and statistical security
we will use.8 Consider an encryption scheme E S(K, Ek, Dk), where K is a random variable
(representing the distribution of the keys), Ek is the family of encryption functions (which
can possibly be randomized) and Dk is the decoding function. That is, Dk(Ek(p)) = p for
all possible plain texts p.

Definition 2.1 The encryption scheme has perfect security if for any two plain-text instances
p1 and p2 and a cipher-text c, we have

Pr [Ek(p1) = c] = Pr [Ek(p2) = c],
where probability is taken over the distribution of k ∈ K.

For example, consider how well are Alice and Bob hiding the secret “i th round is the
actual round to compare their values”. It is not hard to see that for any set T ⊂ [1, r ], we
have Pr [actual round ∈ T ] = ‖T ‖/r . This proves the following result.9

Theorem 2 Protocol 2 Iteration of Comparison- Tests, hides which round is the round
involving the actual values a and b form Alice and Bob with perfect secrecy.

However, it is intuitively clear that when a = b, there would be more rounds where the third
party observes a Yao-comparison with a = b than if a �= b. Thus, the protocol is not perfectly
secure in this regard, but we will show it is statistically secure and parameterized to achieve
any level of statistical security. First, we must recall the definition of statistical distance.

Definition 2.2 Let X and Y be two distributions over {0, 1}t . The statistical distance between
X and Y, denoted �(X, Y) is

max
T ⊂{0,1}t

|Pr [X ∈ T ] − Pr [Y ∈ T ]|.

Moreover, if �(X, Y) ≤ ε, then we say the distributions are ε-equivalent and write X ≡ε Y.

6 Shannon seminal paper defined [48] “ ‘Perfect Secrecy ’is defined by requiring of a system that after a
cryptogram is intercepted by the enemy the a posteriori probability of this cryptogram representing various
messages be identically the same as the a priori probabilities of the same messages before the interception”.
7 Informally, perfect secrecy means that an unrestricted adversary gains absolutely no information about the
secret, while for statistical secrecy, the adversary learns a little about the secret and this is measure by the
difference in the distribution before and after the protocol [7,16].
8 Our definition is equivalent to Definition 2.2 [49, Page 48] and Shannon’s when we naturally assume that
the a posteriori probability is the uniform probability.
9 This is analogous to the proofs that Shift Cipher and that One-Time Pad have perfect secrecy [49, Chapter 2].
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We are now in a position to define statistical secrecy. An encryption scheme is ε-secure if
for any two plain-texts p1 and p2, the distributions Ek(p1) and Ek(p2) are ε-equivalent. We
can now establish the following result.

Theorem 3 Protocol 2 Iteration of Comparison- Tests, is a parameterized protocol
by the number of rounds r that hides the secret whether a = b with statistical security at any
required security level.

Proof The definition of statistically secure requires that whatever event T in the probability
space, the probability of observing any ciphertext landing in T (that is, Ek(p1) = c ∈ T ) is
within ε of the probability of observing any other ciphertext Ek(p2) = c ∈ T . But the num-
ber ‖e‖ of rounds in the protocol where equal inputs are provided by the parts is distributed
as the Binomial distribution with r − 1 trials and probability 1/2 when a �= b, and shifted
by one when a = b. But the Binomial distribution converges to the Normal distribution and
for r sufficiently large, the number of rounds where the third party observes a = b will have
probability ε close to whether it is the case that the actual values are equal or whether they
are not. 	


Even more levels of statistical security for |a − b| can be obtained by Alice and Bob
engaging in a previous protocol that chooses randomly a constant number of monotonic10

functions from [0, M] to [0, M] (without knowledge from the third party). In fact, they can
also chose anti-monotonic11 functions. In this way, they can change the magnitude of |a −b|
to | f (a) − f (b)| with a slight trade-off. Namely, because [0,M] has M+1 values, there may
be cases where f (a) = f (b) but a �= b. Nevertheless, the family of monotonic functions on
[0, M] is rich enough to select a subfamily to suit the balance between strict comparison and
a randomized comparison that, with small probability, returns that a = b rather than the true
comparison of a and b.

Lets now look at the risk that Bob learns something about a. Since Bob will learn R and
a R+ Ra , the value Ra produced by the commodity server must mask a R (otherwise Bob may
learn some bits about a). Since a R can have as many bits as log2 M + log2 R, we typically
let Alice chose R so that |R| > M and the trusted party chooses |Ra | > M2. For example,
Alice can chose R uniformly in [−2M, M) ∪ (M, 2M].12

However, Bob learns the value of R and the most conservative assumption is that Bob
knows the distribution (typically uniform distribution) of Ra . Therefore, when Bob receives
a · R + Ra and although R may be equally likely in its range [Rl , Rh] and Ra is equally
likely in it range [Ra,l , Ra,h], the values of the form a · R + Ra are not equally likely
(even if also a is equally likely in [0, M]). For illustration, we can consider M = 10,
Ra ∈ [Ra,l = 100, Ra,h = 1, 000] and suppose R = 21 > M . The possible values that
Alice may send to Bob have a distribution as per Fig. 3a.

For example, for the values a · R + Ra in [101, 120]∪ [1,190, 1,210], there is only one
value of a. That is, if Bob receives 1,192, he would be able to find that Alice’s value is
a = 1. Similarly, for the values a · R + Ra in [121, 141]∪[1,169, 1,189], there are only

10 A function f : [0, M] → [0, M] is monotonic if for all x, y ∈ [0, M] with x < y, we have f (x) ≤ f (y).
11 A function f : [0, M] → [0, M] is anti-monotonic if for all x, y ∈ [0, M] with x < y, we have
f (x) ≥ f (y).

12 Using the range [−4M, M]∪[M, 4M], or a mapping of this to Zm , for large enough m ensures no overflow.
In fact, we could chose R uniformly in [−K ,−M]∪[M, K ], where K regulates the complexity of the protocol.
For example, letting K be the largest integer representable in as many bits as function C of the number of bits
of |a| + |b|, results in complexity regulated by C .
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Fig. 3 Potential risk that Bob
learns a smaller range for Alice’s
value a

two possible values for a (if Bob gets 1,189, he learns a = 10 or a = 9). However, in
the range [310, 1,000], Bob remains uncertain among the 11 possible values for a.

Clearly, given R, analyzing the frequencies of the value a · R + Ra does not support one
value of a more than it supports another one that can be expressed this way. For illustration,
consider again the setting of the distribution in Fig. 3a. Knowing that 1,153 corresponds to
three values of a does not favour any of these three values (although fewer than the original
11 possibilities for a, Bob will still be equally uncertain about a = 10, a = 9 or a = 8).
Thus, direct implementation of our protocol no longer satisfies Theorem 1 for Bob.

However, there are far more values that leave Bob as uncertain (in the example above 691
values of the from a · R + Ra maintain the 11 possible values for a). More realistic values are
M at least 255, (say 256) Ra ∈ [Ra,l = 65, 536, Ra,h = 16, 777, 216] and R ∈ [256, 1,024].
In this case, the number of values of the form a · R + Ra that reduce the M + 1 is no more
than 2M R. This represents less than 4% of the values Bob can see. Thus, most of the time
Alice does not have to worry about what Bob will learn. However, if this is an issue, (for
example, it is harder for Alice to hide the values a = 0 or a = M than a = M/2�), Alice
can actually request several values Ra from the commodity server and chose one that lands
in [Ra,l + RM, Ra,h − RM]. Then, it lets the third party know which of the several values
it selected without disclosing this to Bob.

Moreover, because Alice and the third party can set parameters of the protocol before
Bob, we can produce a parameterized version of the protocol that can be made statistically
secure for any desired level ε > 0.

Theorem 4 For every ε > 0, there is a parameter s so that we can tune the implementation
of the sign- based protocol, so that the protocol is statistically secure at level ε.

Proof Recall that [0, M] is the range of values for Alcie’s a and Bob’s b with M a constant.
Given ε > 0 chose s such that 2M/(2s + 1) < ε. Recall that Bob receives (a R + Ra).
We can consider this as the encryption scheme E(a) = a + Ra/R. Since an implemen-
tation will use floating point arithmetics, scaling by the floating-point unit, we can con-
sider the random variable K = Ra/R has a range V of integer values given by V =
{−s,−(s − 1), . . . ,−1, 0, 1, . . . , s − 1, s}. Then, the third party and Alice agree so that

Prob[K = x] =
{

1/(2s + 1) if x ∈ V
0 otherwise.
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That is, the probabilities are uniform in V . For simplicity of notation, for any value c, let
V + c denote the set {−s + c,−(s − 1) + c, . . . ,−1 + c, c, 1 + c, . . . , s − 1 + c, s + c} of
values in V shifted by c. Then, for any two integer values a0, a1 ∈ [0, M] we have

‖ (V + a0 ∪ V + a1) \ (V + a0 ∩ V + a1) ‖ ≤ 2M.

Note that the probability for any event T ⊂ �, is the same as analyzing it for T ′ = T ∩ V .
Moreover,

Prob[E(a0) ∈ T ′] =
∑
x∈T ′

Prob[E(a0) = x] = ‖T ′‖/(2s + 1).

We are interested in an event T ′ that maximizes |Pr [E(a0) ∈ T ′] − Pr [E(a1) ∈ T ′]. But if
t ∈ T ′ is such that t ′ ∈ V + a0 ∩ V + a1, then Pr [E(a0) = t ′] = Pr [E(a1) = t ′]. At the
same time, if t ′ ∈ V +a0\V +a1 or t ′ ∈ V +a1\V +a0, then |Pr [E(a0) = t ′]− Pr [E(a1) =
t ′]| = 1/(2s + 1).

Therefore, the event T ′ that maximizes |Pr [E(a0) ∈ T ′] − Pr [E(a1) ∈ T ′]| is

T ′
0 = (V + a0 ∪ V + a1) \ (V + a0 ∩ V + a1).

Moreover the maximum value is bounded by ‖T ′
0‖/(2s +1) ≤ 2M/(2s +1) < ε as required.

	

Protocol 3 Implementable sign- based protocol with secret shares

1. Alice an the third party agree on distributions of R and Ra so that R/Ra has a range V
so that ‖V ∩ Z‖ has more than 2s + 1 consecutive integers, 2M/(2s + 1) < ε, and the
values in V have almost equal probability (while also |R| > M and |Ra | > M2).

2. They proceed with the sign- based protocol.

We have implemented the sign-based solution presented above in combination with Pro-
tocol 2. Note that for nominal or categorical types that are converted to ordinal types for
comparisons (like Boolean values) the value of M is small and the choice of distributions
for R and Ra is simple. The implementation trades-off uncertainty for the size of ranges in
the implementation. This implementation minimizes exchanged messages and operations.
Other implementations of SMC are recognized as expensive, originally directly implement-
ing circuit evaluation [40], but recent efforts have made them feasible [43]. To the best of
our knowledge, ours is the first implementation for Yao’s millionaires problem with shares
(we have a C++ implementation over sockets). Second, it is far more efficient that other
solutions to Yao’s millionaires problem, even without shares. Cachin’s solution [13] is linear
on the number13 of bits of a + b; however, it also requires a trusted party and very heavy
cryptographic machinery. A solution that has been demonstrated to be efficient enough for
ETHERNET networks [33] requires quadratic time and quadratic number of messages on
log2(a + b) and also as many oblivious transfers as log2(a + b). Other practical protocols
[6] also require O(log2(a + b)) rounds of oblivious transfer. Oblivious transfer implemen-
tations usually require at least two messages with a key each. The sign- based protocol

requires three messages in total with size log2(a + b) (one from the trusted party to Alice,
one from Alice to Bob and one from Bob to the trusted party). In the last round, messages
have constant size 2 bits. So we have linear complexity on the size of the message (with
a constant value 2) and constant number of messages. The complexity analysis is so over-
whelming clear in favor of the sign- based protocol that we feel direct comparison to

13 We let log2(a + b) denote the number of bits of a + b.
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any other implementation of a solution to Yao’s millionaires unnecessary. The sign- based

protocol requires little machinery and thus it is also much easier to implement than any of
the others. The fact that we may chose |Ra | > M2 or even M3 only adds liner complexity
to the size of the very few messages our protocol requires. Note also that our protocol is
connection-less, facilitating significantly the complexity of the networking machinery and
also reducing other security risks. Note, however, that this also illustrates the power of the
third party. Some of the other protocol mentioned here trade-off their independence from a
third party by additional machinery.

3 Privacy-preserving metrics

One of the contributions of this paper is to show how to carry out the SMC computation
of all Minkowski metrics (among them, the Euclidean metric) and also of the L∞ distance.
Also, we expect that in applications of vertically partitioned data, the fields (or columns) may
be very diverse, including many units, and types, some being categorical and others ordinal
or numerical. It is well known that in Instance-based Learning [60] or k-NN classification,
typically the metric is a weighted convex combination of metrics for each attribute. The
discussion of algorithms for Minkowski and L∞ will enable algorithms for combinations of
local metrics into a global metric. Equipped with this, we can show that data structures for
associative queries are then readily suitable for privacy-preserving algorithms. The protocols
in the previous section are involved in the computation of L∞ metrics but not Minkowski
distances.

3.1 Minkowski metrics

Obviously, if all parties know the r th Minkowski distance M( �p, �q) between two points �p and
�q in the database, they will also know the value [M( �p, �q)]r by each raising the Minkowski
distance to the r th power. Conversely, if the parties find [M( �p, �q)]r , they can take r th roots
and find the desired distance value. Since the i th party knows a range of the attributes of the
vectors �p and �q, it is not hard to see that

[M( �p, �q)]r =
m∑

i=1

∑
attr. known
to party i

(
j th attr. in �p
owned by i

− j th attr. in �q
owned by i

)r

.

Letting vi be the r th Minkowski distance of those attributes known to the i-party, then
[M( �p, �q)]r = vr

1 +· · ·+vr
m , and the problem reduces to finding the value of the sum of values

distributed among m parties (each contributes the knowledge of the r th Minkowski distance
raised to the power r in the projection that they own). Protocols that compute distributed
sums have received many names (for example, secure sum [56]), so we reproduce here the
necessary variant for clarity.

Protocol 4 the Minkowski distance protocol: Add the m values among m ≥ 3 parties.

1. The first party (Alice) generates a random number R and passes it to the mth party (this
is like an XOR mask of random bits).

2. The mth party adds its value vr
m to the random number R and passes the result to the

(m − 1) party.
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3. For i = m − 1 down to 2, the (i − 1)th party adds vr
i to the value received and passes

the result to the (i − 1)th party.
4. The protocol continues until Alice (the first party) gets (vr

2 + · · · + vr
m−1 + vr

m + R),
then she adds her value vr

1 and subtracts the random number R. She takes the r th root
and announces the result to all parties.

Note that if we halt at step 3 with Bob (the second party), then we have a protocol for

the Minkowski distance with shared values between Bob and Alice. This means
Alice holds a = vr

1 − R and Bob holds b = (vr
2 +· · ·+ vr

m + R) where [M( �p, �q)]r = a + b.
In some applications (in particular, k-NN queries) the calculation of the metric is an inter-
mediate step. Although the disclosure of distance values may be considered the release of
innocuous information in some cases, it is more acceptable to use shares as this adheres to
the ideal principle of SMC where parties learn only what is implied by the final output. In
fact, we can use encryption modulo a field F so that the shares sa of Alice and sb of Bob
are such that sa + sb = [M( �p, �q)]r mod F . In a k-NN query, only the ids of the k records
is the ideal answer and it is preferable than all the parties learning some exact values of the
metrics to the query point.

The Minkowski distance protocol with shares is trivial in the case m = 2 parties, since
in this case, each party uses its projected metric value as its share and they exchange no mes-
sages at all. In the core operations for the SASH (or similar data structures) rather than being
interested in dist ( �p, �q) itself, the question is whether “dist ( �p, �q) < dist ( �p, �r) ?” In the case
of the Minkowski distance, this is also equivalent to asking “is [M( �p, �q)]r −[M( �p, �r)]r < 0
?”. For additional privacy, then, it is better if each party contributes the difference of its
projections. That is, let vr

i be the Minkowski distance (raised to the r th degree) between �p
and �q in the projection owned by the i th party, and let ur

i be the Minkowski distance of r th
degree between �p and �r in the projection owned by the i-party. Then, to answer the question
we compute the sum of the m values (vr

i −ur
i ) owned distributively by the m parties, and each

party then can check where the sum stands relative to zero. SMC of the Euclidean distance is
achieved by the above Minkowski algorithm in the case r = 2. Note also that if we consider
the “shares” version of the protocol and dist ( �p, �q) = sa + sb and dist ( �p, �r) = s′

a + s′
b (with

s′
a and sa known by Alice and sb, s′

b by Bob), we can still ask “dist ( �p, �q) < dist ( �p, �r) ?”
as a Yao-comparison as sa + sb < s′

a + s′
b? is also (sa − s′

a) + (sb − s′
b) < 0? with (sa − s′

a)

known to Alice and (sb − s′
b) known to Bob.

Theorem 5 If three or more parties use the Minkowski distance protocol, no party
learns other parties’ private data represented as an attribute in the feature vector. If the pro-
tocol is the shares distance version, even with two parties, no party learns any information.

Proof The protocol calculates the distance between �p = (p1, . . . , pm) and �q = (q1, . . . ,

qm). During the calculation each party Pl (l = 2, . . . , m) obtains

Sl = (pl+1 − ql+1)
r + · · · + (pm − qm)r + (p1 − q1)

r + R

where R is a random number produced by the 1st party. Thus, because R is random, for party
Pl it is impossible to learn any value from (pl+1 − ql+1)

r up to (pm − qm)r and (p1 − q1)
r .

In the case of the first party (l = 1), it obtains the actual distance [M( �p, �q)]r by subtracting
R and taking r th root from the sum. Here, because several terms are involved in the sum, the
1st party cannot learn any attribute pi or qi , where i = 2, . . . , m.

The case for shares follows by the discussion above. 	

Note that in the formulation of the theorem we have not mentioned the semi-honest model.
However, this protocol is considered secure among the data mining community [56] because
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each party can be simulated individually in polynomial time from its inputs and outputs and
a random oracle assuming no proper subset of the parties colludes.

3.2 SMC chessboard or L∞ distance

While Minkowski metrics combine the discrepancy in each attribute with a sum there is
also the alternative of selecting the maximum difference as the overall metric. This leads to
the L∞ metric (some researchers prefer the name “Chessboard distance” which is defined
as dist (�x, �y) = max(|vx

1 − v
y
1 |, . . . , |vx

m − v
y
m |) where �x = (vx

1 , . . . , vx
m)T and �y =

(v
y
1 , . . . , v

y
m)T are two vectors).

Note that if �x and �y are owned by several parties on vertically partitioned data, each party
can identify the largest absolute difference vi = |vx

i − v
y
i | in its projection. So the problem

reduces to which of the m parties has the largest value (thus, from now, we assume party i
holds |vx

i − v
y
i | and the vectors have dimension m).

A first approach can use a version of Yao’s protocol (without shares) as a subroutine to
deploy a finding maximum algorithm based on m − 1 comparisons. For example, for i = 1
to m − 1 compare the maximum found in the i th first parties with the (i + 1) party. While
this works well, the (i + 1)th party must interact using the sign- based protocol with the
holder of the maximum among the first i parties (thus, learning who holds the maximum so
far and has won some comparisons). So this approach is not secure in the ideal sense of the
semi-honest SMC since additional information besides the maximum among all m entries
is leaked. Again, some may consider this information leak innocuous, and in that case, par-
ties may use this proposed approach. However, we now present an approach that with some
additional machinery is secure and practical. The additional machinery is how to compare
two numbers and distribute the output into shares (Sect. 2.1).

Protocol 5 Find maximum value with shares.
The protocol starts with each party comparing its value to every other party. Note here that,
the <Alice vs Bob> comparison is not the same as the <Bob vs Alice> comparison. For
instance, if Alice compares with Bob and it happens to be that Alice’s value is smaller than
Bob’s, then they will have shares C A

AB and C B
AB , where C A

AB + C B
AB = 0,14 but if Bob com-

pares with Alice the shares should add up to one. However, we do not need to compare again
Bob’s number with Alice in order to have shares C A

B A and C B
B A, where C A

AB + C B
AB = 1,

since they are already provided by the third party in our sign- based protocol (see the
Sect. 2.1). Thus, we will use it as the shares for the 〈Bob vs Alice〉 comparison.

1. Alice (the first party) compares her value with all others, then sums up her parts of the
shares and puts it as the first component in her shares vector. All other parties put their
shares, which come from comparisons with Alice, again as the first component of their
shares vector.

2. Bob (the second party) compares his value with all others,15 then sums up his parts of
the shares and puts this sum as the second component in his shares vector. All other
parties put their shares that come from these comparisons as the second component of
their shares vector.

3. The protocol continues until each party’s value will be compared with all others.

14 Here the subscript AB means the 〈Alice vs Bob〉 comparison, whereas subscript BA means the 〈Bob vs
Alice〉 comparison.
15 Note that Bob does not need to compare with Alice again. He rather uses the other share provided from
the third party.
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Table 1 Shares after all
comparisons

P1 P2 · · · Pm

∑
j=2,...,m

C1
1 j C2

12 · · · Cm
1m

C1
21

j �=2∑
j=1,...,m

C2
2 j · · · Cm

2m

.

.

.
.
.
.

. . .
.
.
.

C1
m1 C2

m2

.

.

.
∑

j=1,...,m−1

Cm
mj

This provides the information shown in the Table 1, where Ci
i j belongs to Pi , C j

i j belongs
to Pj , and

Ci
i j + C j

i j =
{

1 if vi > v j ,
0 if vi ≤ v j .

Note that now, each column is owned by one party only; therefore we can treat them as
the separate vectors distributed to each party. Moreover, for each party Pi , the sum of the

elements in the i th row is
j �=i∑

j=1,...,m

Ci
i j +

j �=i∑
j=1,...,m

C j
i j , which will show us exactly how many

v j were smaller than vi . The problem now reduces to finding the id of the maximum value
in a sum of vectors.16 This can be performed by SMC with the Maximum Value in the

Sum of Vectors protocol [2] where no party learns anything except the id of the entry
holding the maximum value.17 If a version with shares is needed, the party P holding the
maximum value M can generate a random number sP = R, so that s = M − R is made
public to another party. The two parties then will hold values so that sp + s = M mod F .

Theorem 6 Whenever a secure Yao algorithm with shares is used for its comparisons. Pro-
tocol 5 is secure (in the semi-honest model).

That is, in theory, Protocol 5 will fit the semi-honest model where each party can be simulated,
because parties do not learn who holds the larger value in each comparison since they are all
encoded in distributed shares. In practice, we would use or sign- based protocol and the
mechanisms discussed earlier (Protocol 2). Together, these protocols ensure the information
learned by a helper party about the party declared to have a larger value (in case projections
of distances are equal and one is later in the ranking of parties) is extremely small.

16 If all distances are different we know the maximum value is always m −1. Our protocol works even if some
comparisons are between equal values. The use of circuit evaluation for a Yao-comparison with shares faces
the additional complexity of handling the case when the millionaires hold equal values. We believe solutions
that resort to adding a second key (like the index of the vector [47]) to split up ties lead to larger circuits and
more impractical solutions.
17 Other alternatives for computing the maximum values in a sum of vectors under the semi-honest model
provided no subset of the parties colludes also exist [21,53] but are computationally more expensive.
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Table 2 Shares after all comparisons

Alice (1) Bob (28) Charles (12) Daniel (6)

C1
12 + C1

13
+C1

14
C2

12 C3
13 C4

14

C1
21

C2
21 + C2

23
+C2

24
C3

23 C4
24

C1
31 C2

32
C3

31 + C3
32

+C3
34

C4
34

C1
41 C2

42 C3
43

C4
41 + C4

12
+C4

43

Table 3 Shares after all comparisons

Alice (1) Bob (28) Charles (12) Daniel (6)

0.2 + 1 + 12 −0.2 −1 −12

0.7 0.3 + 13 + 1.1 −12 −0.1

0.5 −1 0.5 + 1 + 0.4 0.6

22 1.8 3 −21 − 1.8 − 3

3.2.1 Illustration of SMC Chessboard of L∞ distance calculation

Suppose there are given �xT = (12,−23, 5, 8) and �yT = (13, 5,−7, 13), and assumed these
are owned by four parties (Alice, Bob, Charles and Daniel) each holding one attribute. Since
each party can identify the largest absolute difference vi = |vx

i − v
y
i | in its projection, so the

problem reduces to which of the 4 parties has the largest value. Thus, at present Alice holds
|12 − 13| = 1, Bob holds | − 23 − 5| = 28, Charles holds |5 − (−7)| = 12 and Daniel holds
|8 − 13| = 6.

The protocol starts with each party comparing its value to every other party. This provides
the information in Table 2, where Ci

i j is the share that Pi holds, C j
i j is the share that Pj

holds, and

Ci
i j + C j

i j =
{

1 if vi > v j ,
0 if vi ≤ v j .

Assume the Ci
k j are as in Table 3. If we sum up all the components18 in each row we will

obtain
⎛
⎜⎜⎝

0
3
2
1

⎞
⎟⎟⎠.

Since the ID of the maximum is 2, the winner is Bob, the second party.

18 This can be performed by SMC with the Maximum Value in the Sum of Vectors protocol [2].
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3.3 Combinations of metrics

Protocol 5 for the Chessboard distance and Protocol 4 with shares illustrated with the
Minkowski metric are powerful enough to handle the fact that, in k-NN queries among par-
ties sharing vertically partitioned data, it is likely the attributes may belong to very diverse
domains. Each party may be applying a local metric MPi to the projection the party holds of
the two records �p and �q. This results in the value vi = MPi ( �p, �q). Thus, the global metric
could be a weighted sum

∑m
i=1 ωivi of the local metric values vi . The problem of computing

it would be solved by our Protocol 4 as we illustrated with the Minkowski distance (with
both versions, with shares or disclosing the global metric value). Alternatively, the global
metric could be a weighted maximum maxm

i=1 ωivi . In this case, our Protocol 5 (previously
illustrated with the Chessboard metric) generalizes to compute the global metric from the
local metric values on the attributes known to each corresponding party. This allows for very
flexible metrics that take into account issues like different units of measure and data types
on the attributes.

Note however, that, if the global metric is a sum of local metrics, one may be tempted to
parallelize Protocol 4. Then Alice would add one random vector �Ra = (Ra, . . . , Ra) to its
projection of all the metrics, and pass it to the m-party, which would add its projection and
pass the vector down to the (m − 1)th party, and so on. This does not represent a real saving
except using one rather than n random values generated by Alice, but it allows each party to
learn the distribution of the projection of the distance values for the previous parties in the
line-up.

3.4 Other metrics

Other metrics common for large records (for example, between Web visitation paths [22]) are
very important for high dimensional settings. The first one of these metrics is the Hamming
distance H . Here H( �p, �q) is the number of entries where the vectors �p and �q differ. One
realizes that for vertically partitioned data, secure multi-party computation of this reduces
to computing again the sum of the Hamming distance in the projection by each party. If we
now consider metrics, like the usage/access metrics or frequency metrics, we see that these
metrics have the form �pT · �q/‖ �p‖2‖�q‖2. That is, they are the cosine of the angle between the
vectors �p and �q. The dot (scalar) product �pT · �q is, again, the sum of values that correspond
to the dot-product in the local projection of each party, and we have already indicated how
to perform Euclidean distances like ‖ �p‖2. However, while the value

cos(α) = �pT · �q
‖ �p‖2‖�q‖2

can be computed securely by our earlier protocols, we now show that it also can be computed
securely and split in shares sa + sb = cos(α) where again, sa is known by Alice only and
sb is known by Bob only. This will pave the way for using this metric in our associative
query algorithms later. Since dot products on vertically partitioned data are sums and can be
computed with shares by our Protocol 4 we have constants A1, A2 and A3 known only by
Alice and B1, B2 and B3 only known by Bob so that

cos(α) = A1 + B1

(A2 + B2)(A3 + B3)

= A1 + B1

A2 A3 + A2 B3 + B2 A3 + B2 B3

123



346 A. Amirbekyan, V. Estivill-Castro

= A1 + B1

A2 A3 + (A2, A3)T ·
(

B3

B2

)
+ B2 B3

.

Using the Scalar Product [19] with shares,19 we obtain values A4 and B4 so that A4+B4 =
(A2, A3)

T ·
(

B3

B2

)
, A4 is known only to Alice and B4 only to Bob. With B5 = B4 + B2 B3

and A5 = A2 A3 + A4 we have the derivation.

cos(α) = A1 + B1

A2 A3 + A4 + B4 + B2 B3
= A1 + B1

A5 + B5

where A5 is only known by Alice and B5 is known by Bob.
This last division could be computed securely by applying a secure division protocol

[17]; however, this does not result in a metric split on additive shares useful for k-NN queries.
The next subsection handles this.

3.4.1 New division protocol with secret shares

The most common SMC division protocol [17], does not provide an answer with shares,
it gives an answer to one party only.

Protocol 6 In the division protocol, Alice holds (a1, a2) and Bob holds (b1, b2), the goal
for Alice is to obtain A and for Bob to obtain B, where

A + B = a1 + b1

a2 + b2
.

1. Alice produces random number r1 and Bob produces random number r2.
2. Using the scalar product protocol ([17] or [19]20) which provides an answer to

the one party only, Alice can obtain

r2(a2 + b2) = (a2, 1)T ·
(

r2

r2b2

)

and Bob can obtain

r1(a2 + b2) = (b2, 1)T ·
(

r1

r1a2

)
.

3. Alice and Bob again perform the scalar product [19,26], which provides an answer
with shares A and B, using the input vectors from each party, because

A + B =
(

r1a1,
1

r2(a2 + b2)

)T

·
⎛
⎝ 1

r1(a2 + b2)
r2b2

⎞
⎠

= r1a1

r1(a2 + b2)
+ r2b2

r2(a2 + b2)
= a1 + b1

a2 + b2
.

19 SMC of scalar product protocols has been scrutinized extensively, recently two protocols [17,52] have been
shown [26] to be vulnerable to attacks in the case of binary entries and with low frequency, but an improved
alternative (with answers in shares) has also been proposed [26].
20 Here Bob sets his private share V2 = 0. As the authors of this protocol remarked in the original paper
[19](page 6), this does not let Alice to learn any of Bob’s private data.
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Clearly, all these protocols for alternative metrics are secure in the semi-honest model as com-
monly applied among the data community (i.e., when more than three parties, we assume no
subset colludes).

3.5 Private k-nearest neighbours

We are now in a position to describe our first algorithm for k-NN queries. Given a set of
vectors

�v1 = (v11, . . . , v1m), . . . , �vn = (vn1, vn2, . . . , vnm)

together with a vector �q = (q1, q2, . . . , qm) (where m is the number of parties involved in
the computation), we must find P(�q, k) where P(�q, k) is the ids for the k nearest neighbours
to the vector �q .

Protocol 7 PP k- NN.

1. The parties calculate metrics with shares. After this, we can assume the first party Alice
holds a vector �sa of dimension n and Bob holds a vector �sb so that sa

i + sb
i = dis(�q, �vi )

(in fact, it is possible to assume encryption modulo a field F ; i.e. sa
i + sb

i = dis(�q, �vi )

mod F).
2. Alice computes the matrix D A whose i j entry is |sa

i − sa
j |, while Bob computes the

matrix (DB
i j ) = (|sb

i − sb
j |).

3. Alice and Bob engage in Yao-comparisons with shares for each respective entry of D A

and DB . Let σ a
i j be Alice’s share of comparing D A

i j with DB
i j (Bob’s share is σ b

i j ).

4. Let Alice compute the vector V A whose i th entry is
∑n

j=1 σ a
i j while Bob’s V B is such

that V B
i = ∑n

j=1 σ b
i j .

5. Alice and Bob use the secure add vectors protocol
21 where Alice obtains π−1(V A+

V B) with π known only to Bob.
6. Alice sorts and sends the top k fake-ids to Bob. Bob broadcast π−1( f akeI Ds) (IDs for

k-NN of �q).

Since Alice only learns counts of da
pq − da

pr < db
pq − db

pr comparisons (or from the proof
mechanisms of the semi-honest model), it cannot be simulated just from its inputs and out-
puts. Note that, if we use a metric like Minkowski (where all parties satisfy the semi-honest
model in that they can be individually simulated), then all parties besides Alice can be
simulated (this follows from the “Composition Theorem [27]22). If Step 5 in Protocol 7 is
replaced by the ‘finding the kth largest element’ [55], then provided there are no collusions

21 The technique was introduced for manipulation of vector operations as the “permutation protocol” [17]
and is also known as the “permutation algorithm” [53]. This protocol can provide an output in secret shares,
so will discuss this as well. In this protocol, Alice has a vector �x while Bob has vector �y and a permutation
π . The goal is for Alice to obtain π(�x + �y); that is Alice obtains the sum �s of the vectors in some sense. The
entries are randomly permuted, so Alice cannot perform �s − �x to find �y. Also, Bob is not to learn �x .
22 The Composition Theorem for the semi-honest model [27, Theorem 7.5.7, page 702] is technically only
valid if the larger protocol f ◦ g is composed of two protocols f and g each secure in the semi-honest model
(where g could involve k1 parties and f could involve k2 parties). However, as we explained earlier, if one
assumes no proper subset of all parties will collude, then f ◦ g is secure when f and g are secure, whenever
no subset of the parties collude. This follows from inspection of the proof of the Composition Theorem [27,
Page 702]. And thus, the data mining community uses secure sum inside other protocols [56] (for example,
k-means clustering for vertically partitioned data [53]) and the larger protocols is considered secure with the
caveat that no subset ever colludes, even for one instance of a subprotocol.
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of any subset of parties, Protocol 7 is secure under the semi-honest model. For this, we use
the versions with shares over a field for our protocols that compute metrics, and then it is
possible to use the binary search over a field for the top k-neighbours [55]. The field binary
search requires Yao-comparisons with shares (which we have now made more practical).
This prevents Alice from learning the distribution of the distance values at the expense of the
O(n log |F |) Yao-comparisons. Moreover, because the data is vertically partitioned, and the
algorithm is distributed, it is impossible for one party to repeat an associative query many
times without the participation (or knowledge) of the other parties. This is an extra security
aspect of our context. However, if we use our protocol for the L∞ metric, and the parties
participate as helpers in sign- based protocol computations, in theory, they could not be
simulated, but in practice, by Protocol 2, they would learn innocuous information. Protocol
7 is quadratic on n; for our implementation, we preferred the following protocol. Although
it reveals what we believe is innocuous information, it requires O(n log n) time.

Protocol 8 Fast PP k- NN.

1. Same as Protocol 7.
2. Bob (the second party) uses a random value Rb only know to him and adds the vector

�Rb = (Rb, . . . , Rb) (that consists of all entries set to one random number Rb). He adds
�sb + �Rb.

3. Alice and Bob use the add- vectors protocol for �sa known to Alice and �sb + �Rb

known to Bob. This gives Alice a random translation of the distances dist (�q, �vi ), for
i = 1, . . . , n, permuted by a random permutation π that only Bob knows.

4. Alice sorts and sends the top k fake-ids to Bob. Bob broadcast π−1( f akeI Ds) (IDs for
k-NN of �q) (Fig. 4).

Theorem 7 The PP k- NN protocol does not allow any party to learn other parties’ private
data represented as an attribute in the feature vector.

Proof Clearly each party except Bob and Alice participate in the protocol with an input that
looks random (under the theory of SMC, all these parties can be simulated by polynomial
algorithms that use as inputs guessed values from an oracle). Bob also participates in the
protocol with what can be random input until Alice passes to him π−1 of the ids that consti-
tute the result. This is secure because in the semi-honest model, Bob can learn anything that
can be inferred from the result. Alice learns the distribution of the distance values translated
by a random number. No other information is disclosed. Alice cannot be simulated with a
polynomial algorithm that uses guessed values from an oracle or the protocol would fail.
However, from a pragmatic point of view, Alice cannot link any of the values she receives to
any party (because she ignores π , neither any of the distance values becomes known because
they have Rb added to them and only Bob knows Rb). 	


4 The private SASH data structure

For a privacy-preserving SASH, we must ensure that it is possible to implement all ADT-
Dictionary operations (construct, insert, delete, search, etc.) and that each party will
hold enough information to learn the desired output while being unable to discover data from
records of other parties. The SASH data structure considers a universe of n objects (not nec-
essarily vectors) for which a similarity measure dist (u, v) exists between any two objects u
and v. A SASH is a directed edge-weighted graph with the following main properties.
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Fig. 4 k-NN calculation
algorithm

– Each database object corresponds to a unique node. Little distinction will be made between
a node, the object id or the database object to which it corresponds.

– The nodes are organized into a hierarchy of levels, ranging from a bottom level contain-
ing n/2� nodes (the leaves), to a top level containing a single node (the root). With the
possible exception of the bottom level, each level contains half as many nodes as the level
below it, rounded down. The levels of the SASH are numbered from 1 to h.

– Edges within the SASH connect nodes from consecutive levels. Each node can have edges
directed to at most p parent nodes as the level above it, and to at most c child nodes as the
level below it. Every node except for the root must have at least one parent. The distance
dist (u, v) is always stored with each edge (u, v) at the time of its creation.

– Every node v (other that the root) has an edge directed to one parent g(v) that is desig-
nated as its guarantor. The guarantor of v must have v as one of its children; v is called
the dependant of g(v). The requirement that every node have a guarantor ensures that
every node is reachable from the root.
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Fig. 5 Illustration of the strategy
used in the SASH data structure

In our privacy-preserving SASH, all parties will know the entire graph structure of the
SASH. That is, all parties will know how many nodes are at each level and what record cor-
responds to each node. Each party knows what are the parents and children of a node as well
as who is its guarantor or the dependant of a node. For illustration, consider for a moment
two parties with database objects as vectors in 2D and each coordinate known only by one
party. Thus, Alice holds the first coordinate and Bob holds the second coordinate of each
record. While both may know that, say, the fifth record in the database corresponds to the
root of the SASH, neither will know the value of the other coordinate. The operations in the
privacy-preserving SASH will inform all parties of the identifier of the record pointed by a
node, its parents and its children, but will not reveal any values of the attribute-valued vector
that describes the object. Distance values stored in edges are in fact distributed in shares (and
not recomputed), this avoids the potential risk that repeated computation of a metric on the
same vector may result in information leak to one party.

4.1 Constructing the SASH

The edges of the SASH heuristically minimise the distances between their endpoints. During
the construction, each new node is attached to a small number of its near neighbours from
the level above it. At the start of construction, the SASH is empty, and we insert all objects
in a random and uniform order. We denote by SASHi the graph induced by the nodes from
level 1 through i , for 1 ≤ i ≤ h. Thus, SASHi is a SASH in itself. Iteratively construct-
ing S ASH1, S ASH2, . . . , S ASHh results in the construction of the entire SASH (that is,
S ASHh). The following algorithm shows how to construct S ASHl given S ASHl−1 securely
(for 1 ≤ l ≤ h). This is where we add edges between nodes of the current last two levels
(Fig. 5).
Algorithm privacy_Preserving_Connect_SASH_Level(l):

1. If l = 2, then every node of level 2 will have the root node as its sole parent and guaran-
tor, and the root node will have all nodes of level 2 as its children and dependents. This
completes the construction of S ASH2. Note that all parties must know the order of the
data vectors (otherwise, the vertically partitioned data would not be able to join attri-
butes for the same entity across parties). One can consider vertically partitioned data as
several tables where a join can be performed in a publicly known id attribute. Moreover,
generating a random permutation of the object ids so that all parties know how to create
the insertion order is no privacy risk. This would determine which entity is the root, what
entities are in level two and all the edges between these two levels.
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2. Otherwise, for the remaining steps, we have l > 2. For each node v of level l, choose
using privacy-preserving protocol a set of up to p near neighbours Pi (v, p) from among
the nodes of each level 1 ≤ i < l. The algorithms for finding Pi (v, p) uses Pi−1(v, p),
so we show how to compute Pi (v, p) preserving privacy, assuming that Pi−1(v, p) is
computed preserving privacy (with a structural induction) as follows:

(a) If i = 1, then Pi (v, p) consists of a single node, the root (all parties know the id of
the object here).

(b) Otherwise, i > 1.
i Let P ′

i (v) be the set of distinct children of the nodes of Pi−1(v, p). All parties
can obtain this, because once Pi−1(v, p) is computed securely, its children can
be found using the shared knowledge of edges linking ids.

ii We compute Pi (v, p) as the p nodes of P ′
i (v) closest to v, according to the

measure dist (we use the PP-k-NN in the Sect. 3.5). If |P ′
i (v)| < p, then set

Pi (v, p) = P ′
i (v).

3. We assign the parents of v to be the nodes of Pl−1(v, p) in all replicas of the SASH.
Recall that we consider vertically partitioned data as disjoint private tables where one
common attribute (the ids) is public. The public edges of the SASH can be considered as
linking id (and we continue to make no distinction between the nodes of the SASH, the
objects, and the ids, except that the ids are keys for each party to the private attributes it
holds). Each element v at level l now has up to p distinct parents associated with database
elements in its vicinity.

4. Now, we create the child edges for the nodes of level l − 1, as follows:

(a) For each node u of level l − 1, each party determines the list of distinct nodes C(u)

of level l that have chosen u as a parent.
(b) Using or privacy-preserving comparison of dist values, and the PP-k-NN with k

set to c and the set of ids being C(u), each party securely obtains the list to hold
the c elements closest to u.

(c) Now, each party connects these c nodes in C(u) as the children of u.

5. Using the edges between ids, each party determines (for each node v of level l), whether
it was accepted as a child of any node at level l − 1. If a node was accepted, then the
closest node that accepted it as a child becomes the guarantor g(v) of v, and v becomes
a dependant of g(v). This guarantor is found by invoking our PP-k-NN with k = 1. If
the node v was not accepted as a child, we label v as an orphan node.

6. For each orphan node v at level l, a node at level l − 1 is needed to act as its guarantor.
The node should be as close as possible to v (in terms of the distance measured), and
must be unencumbered; that is, it must have fewer that the maximum allowed number
of children, c. Find a guarantor for v by successively doubling the size of the candidate
parents set as follows:

(a) Set i = 1
(b) Compute Pl−1(v, 2i p) securely as in Step 2.
(c) If Pl−1(v, 2i p) has no unencumbered node, let i++ and go to Step 6b.
(d) Otherwise, choose as the guarantor g(v) the unencumbered node of Pl−1(v, 2i p)

that is closest to v (again, using PP-k-NN, with k = 1 on the set of unencumbered
nodes). The parties add v as a child and dependant of g(v), and replace the parent
of v furthest from v by g(v).
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The previous discussion (regarding SMC metrics and PP-k-NN as building blocks, and
the algorithms of the SASH construction) confirm that we can produce a privacy-preserving
SASH.

4.2 Private approximate k-NN queries

A simple and effective way to retrieve an approximation to the k-nearest neighbours of a
query object q is to generate the candidate parents as in the SASH construction. This allows
us to compute P1(q, k) ∪ P2(q, k) · · · ∪ Ph(q, k) and then we select k elements closest to
q as the result of the query. Since all nodes are reachable from the root, there is a level j
with more than k elements where |Pj (q, k)| = k. Thus, exactly k elements will be returned,
(provided that the number of elements in the database is at least k).

The authors of the SASH propose a search pattern that improves both accuracy and search

time [31] (a variable number ki = max{k1− h−i
log2 n , 1

2 pc} of objects is drawn from each level
1 ≤ i ≤ h). The number of objects ki selected from level i does not depend on the query
object q . We can implement this privacy-preserving variant as follows.

Algorithm Privacy_Preserving_FindNearNeighbors(q,k):

1. Construct securely a set of up to ki > 0 near neighbours Pi (q, ki ) from among the nodes
of SASH level i , for 1 ≤ i ≤ h, as follows:

(a) If i = 1, then Pi (q, ki ) consists of a single node, the root (this is public knowledge).
(b) Otherwise, i > 1.

i Let P ′
i (q) be the set of distinct children of the nodes of Pi−1(q, ki ) (these are

publicly known edges of the SASH).
ii Set Pi (q, ki ) to be the ki nodes of P ′

i (q) closest to q using our PP-k-NN with
k = ki on the set P ′

i (q). If |P ′
i (q)| < ki , then set Pi (q, ki ) = P ′

i (q).

2. Using PP-k-NN again, return the k elements of P1(q, k1) ∪ P2(q, k2) · · · ∪ Ph(q, kh)

closest to q . If the set contains fewer than k elements, return the entire set.

4.3 Private range queries

The SASH can also be used to perform approximate range queries by iteratively computing
approximate k-NN queries for some increasing sequence of value k = s1, s2, s3, . . .. For
example, the size of the query could be doubled at each iteration (si+1 = 2si for i > 1). The
iteration would continue until either an element outside the desired range is discovered (at
which time all generated elements that lie within the range are reported as the solution to the
range query), or the entire database has been visited (which occurs only when most or all of
the database elements lie within the query range). If we use this doubling strategy, we can
guarantee a competitive ration of two; namely, the final value k is guaranteed to be at most
twice the true number of elements lying in the desired range. Because range queries are based
upon privacy-preserving approximate k-NN queries, (ie, we use approximate k-NN queries
for some increasing sequence of value k = s1, s2, s3, . . .), this immediately means that
constructing a SASH and performing approximate k-NN queries in the privacy-preserving
context suffices to have range queries in the privacy-preserving context.

While we have not shown Delete or other ADT-Dictionary operations here, the description
on insertion/construction should suffice to perform the necessary extensions.
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5 Performance evaluation

Algorithms which do not ensure some level of privacy will not be considered when pri-
vacy is needed. However researchers compare secure and non-secure versions to identify the
overhead of privacy-preserving algorithms over a distributed non-private setting. We show
that for our protocols and algorithms, the cost is essentially as for a distributed non-private
setting (DNPS) where parties would still need to incur local calculations and communication
costs between them or to a central party. Also, the implementation of our privacy-preserving
algorithms is feasible.

There are solutions for a Yao-comparison without shares with complexity linear on the
number of bits (Sect. 2.1). This is very efficient, and if one is prepared to disclose the outcome
of comparisons in the Chessboard distance calculation (Sect. 3.2), even this metric can be
computed in time linear in the number of parties and linear in the number of bits used for
the metric values with a communication cost also linearly proportional to number of parties
and to the number of bits. The constants involved in the O-notation are also small. Our
Yao-comparison with shares trades un-feasibility of theoretical circuit evaluation for a third
party who can be played by one of the other parties in settings with three or more parties.
Our solution is also linear in the number of bits and the local computation time is at most
a few (constant number of) operations (additions and multiplications). Using our Yao-com-
parison with shares and our Protocol 5 increases the complexity of the Chessboard distance
to quadratic in the number of parties. However, the number of parties would be of the order
of no more than 100, and usually about 10. This is very affordable for the additional privacy.

In the Minkowski metrics, one can easily see that the main cost we have is the communica-
tion cost, which is clearly affordable. In fact any other local cost (computing local projections
of the metric) would also be performed in a non-private setting. The communication cost is
also comparable to a non-private setting where the parties would have to communicate with
each other or to a central party their local metric values. The local cost for generation of a
pseudo-random number and the subtraction operation is totally subsumed with the cost of
the local metric. Moreover, there are usually fewer parties than dimensions; thus, passing
a value among the m parties to compute a global metric is usually well within the order of
cost of computing the global value without privacy. For the combinations metrics introduced
here (Sect. 3.3) (like sum/max of local metrics) the performance will be the same as for the
Minkowski metrics for sums and Chessboard for maximums. Finally, our private cosine metric
calculation is also within minimal overhead over a non-private setting. The communication
cost is again essentially the same as for parties computing this metric without privacy and is
still linear in the number of parties and bits of the floating-point values. There are constant
(less than 8) numerical computations (addition/multiplication) between the two parties left
with computing the metric value with shares. They engage in privacy-preserving computation
of dot products of dimension 2.

For the overwhelming majority of methods for k-NN queries and associative queries, the
major cost is not the computation of distances per se, but how many of these computations
are performed. That is, as long as computing distances are proportional to the number of
dimensions, the cost (associated with k-NN queries or associative queries) is essentially the
number of evaluations of distances. To perform k-NN queries, the only possible competitor
to our privacy-preserving SASH method is the privacy-preserving version [55] of Fagin’s
A0 algorithm [23]. However, for a vertically partitioned database with N records, this algo-
rithm’s complexity (time and communication cost) includes as a factor the number S of
candidates generated. It is well recognised that S can be as large as N and in the best case

123



354 A. Amirbekyan, V. Estivill-Castro

as small as k. The accepted [23,55] worst-case theoretical analysis is that the complexity is
O(N (m−1)/mk1/m) where m is the number of parties.

However, there are no studies on what is the expected performance of this algorithm. Our
intuition is that Fagin’s algorithm must perform poorly in general because in order to perform
well it requires that the cylinders around the query vector �q, that constitute the projection
to the k-nearest neighbour in each party, contain together as few elements as k. This seems
unlikely. To confirm this we evaluated the size S of the union of Fagin’s AO algorithm in
five well-known large data sets. The CoIL 2000 Challenge [58] dataset (Database 1) contains
information on customers of an insurance company. The data consists of 86 variables and
includes product usage data and socio-demographic data derived from zip area codes. We
repeated the following experiment 100 times. We partitioned the attributes randomly into
m parties, we selected random metrics for each party (among Euclidean, Hamming, Chess-
board and Minkowski with r = 1), we selected a random query point from the data and
computed the k-nearest neighbours using Fagin’s A0 algorithm. Table 4 shows the average
size S of the union in Fagin’s AO algorithm for this data set with 95% confidence intervals.
This data set has 5, 822 records and we can see that most of the entries in the table are close
to or above 3, 000 while several are above 5, 000. It is rather disappointing that when asking
for 10 neighbours among 8 parties we expect a union size to be 78% of the size N of the
database. We also recorded the best and worst observed size S of the union. Rather than
showing another table we present this data for m = 8 parties in Fig 6a. Note that the worst
case for all query sizes k is above 5, 000 and that the size of the union in the best observed
case is well above 500 × k, and rapidly above 50% of the size of the file. Similar results
occur for the Census-Income Database holding multivariate PUMS census data (Database 2)
from the Los Angeles and Long Beach areas for the years 1970, 1980, and 1990 (from KDD
UCI repository). Combining test and training databases we get 299,285 records with 40
dimensions/attributes.

The inefficiency of A0 is also reflected in three large datasets previously used for approx-
imate nearest neighbour queries [25].

The dataset named Histogram (Database 3) corresponds to a colour histogram, while the
one named Stock (Database 4) corresponds to a stock market price. Stock has dimension 360

Table 4 Evaluation of the A0
algorithm on Database 1 (The
Insurance Company Benchmark
CoIL 2000)

k Average size S of the union for A0
algorithm (95% confidence intervals)

Number m of parties

4 6 8 10

2 2,469±259 2,454±197 3,503±213 4,377±178

3 2,589±243 2,559±194 3,729±173 4,595±142

4 2,548±249 2,894±192 3,903±172 4,645±166

5 2,753±254 3,156±168 4,007±157 4,806±145

8 2,891±228 3,516±151 4,334±143 5,052±137

10 2,982±218 3,694±138 4,535±136 5,092±117

15 3,173±191 3,973±121 4,708±121 5,314±97

20 3,100±203 4,037±141 4,835±106 5,438±55

25 3,429±161 4,270±127 5,004±98 5,448±69

50 3,704±150 4,689±125 5,294±68 5,628±44
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Fig. 6 Maximum, average and minimum size of S with m = 8 parties (average is shown with 95% confidence
intervals)

Fig. 7 Maximum, average and minimum size of S with m = 8 parties (average is shown with 95% confidence
intervals)

and 6,500 records corresponding to different companies. For m = 8 parties, the observed
average, minimum and maximum size of the union for AO are shown in Fig 7b for the Stock
dataset while the results for Histogram dataset are shown in Fig. 7a. The histogram data
set has dimension 64 and 12,103 records. The results for histogram show not only an aver-
age case of O(n) but the worst case is essentially N . Finally, an aerial image dataset with
dimension 60 and 275,465 (Database 5) records was tested and results for m = 8 on the
size of the union for AO appear in Fig. 8. Another reason for performing this analysis is that
the privacy-preserving version of Fagin’s AO algorithm [55] leaks all the ids of the union.
Therefore, the size S of the union not only determines the inefficiency of the method but is
also a strong measure of the lack of security in the algorithm.

The privacy-preserving AO algorithm will perform at least as many distance evaluations
as the number S of candidates (or the size of the union).

We have chosen the SASH because this data structure is very efficient invoking a num-
ber of distance computations which is bounded by pcN log 2N [31,32] (for construction),
while the bound for an approximate k-NN query under the uniform search is ck log 2N , and

k1+ 1
log 2N

k
1

log 2N − 1
+ 2p3 log 2N for geometric search (here p and c are the constant parameters of

the SASH and k is the number of NN requested). Therefore, the SASH will easily outperform
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Fig. 8 Maximum, average and
minimum size of S with m = 8
parties for Database 5 (average is
shown with 95% confidence
intervals)

Fagin’s A0 algorithm, and will provide logarithmic response for k-NN queries and associative
queries.

Naturally, the SASH invokes k-NN queries on small data sets. That is, the privacy-pre-
serving SASH invokes Protocol 8 for small sets of size n. The natural question is why not use
the searching for top k-queries in a field which requires (n + 1) log |F | rounds, as opposed
to our Protocol 8 which has complexity O(n).

First, clearly all steps are equivalent until these protocols receive two vectors of dimen-
sions n known to two distinct parties. Our protocol does require �(n log n) time on Alice’s
side for sorting and O(n) time on Bob’s side to add a random value to all the shares it holds
and to generate the random permutation π , but the constants involved are small and clearly
the process is practical. However, the search in a field requires (n +1) log |F | rounds. Typical
values are |F | = 106, which makes a larger constant in the O(n) for this alternative.

More importantly, each of these rounds involves a Yao-comparison with shares and a final
round where each party totals n values. Clearly, the local computation is far more in this
aspect alone than our algorithm. In terms of communication cost, our approach is also more
efficient. Bob sends exactly n values, and Alice sends back k values. The binary search in a
field performs the communications needed for (n + 1) log |F | Yao-comparisons.

To further illustrate the practicality of our approach, we have implemented our Protocol 8.
Overall, Protocol 8’s complexity depends on the number m of parties, the number n of vectors
and the number k of near neighbors we are looking for.

In Fig. 9a–c, we illustrate these dependencies. The implementation confirms the logarith-
mic performance time for m and n. The dependency from k oscillates (in a small region) but
it remains bounded by constant. This is clear, because the sorting component is O(n log n)

while the selection of k values is O(k), with k much less than n. For communication cost,
the mn + k complexity is dominated by n again.

We have also implemented the SASH method and evaluated the performance on the same
five databases used with Fagin’s A0 algorithm. The performance depends directly on the
number of candidates generated at all levels of the SASH (the sum of ‖Pi (q, ki )‖ for all lev-
els [31, page 8]). Our results for all five databases are shown in Table 5 (with 95% confidence
intervals). The SASH candidate generation does not depend on m, and shows remarkably
small numbers for all data sets.

We have used the default parameters for the SASH recommended by the authors.23 That
is, we set the maximum number p of parents per node is 4 and the maximum number c

23 We thank Dr. M. Houle for providing two initial implementations of the SASH from which we were able
to create our experiments.
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Fig. 9 Dependency on k, n and m tested on Database 1—the CoIL 2000 challenge dataset

Table 5 Number of distinct candidates generated during k-NN queries using the SASH (95% confidence
intervals)

k Size of the union for the SASH method for all five databases

Database 1 Database 2 Database 3 Database 4 Database 5

2 930±17 1,325±41 1054±28 712±10 1702±63

3 930±16 1,325±41 1,054±28 712±10 1,702±63

4 930±17 1,326±41 1,054±28 712±10 1,702±63

5 930±16 1,326±41 1,054±28 712±10 1,702±63

8 930±16 1,325±41 1,054±28 712±10 1,702±63

10 930±16 1,325±41 1,054±28 712±10 1,702±63

15 930±16 1,325±41 1,054±28 712±10 1,702±63

20 930±17 1,325±41 1,054±28 712±10 1,702±63

25 930±16 1,326±41 1,054±28 712±10 1,702±63

50 954±17 1,350±42 1,074±28 727±11 1,737±64

75 1,051±20 1,461±48 1,179±32 789±11 1,900±73

100 1,157±23 1,589±53 1,295±36 865±12 2,110±84

of children per node is 4p (that is 16) [31]. The geometric search pattern [31] is the one
used for k-NN queries. The impact of this geometric pattern in our experiments is noticed in
the Figs. 10a, b, 11a, b and 12a. In particular, across these figures, the number of generated
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Fig. 10 Distinct candidates generation while performing k-NN queries for Database 1 and Database 2 (bars
indicate 95% confidence intervals)

Fig. 11 Distinct candidates generation while performing k-NN queries for Database 3 and Database 4 (bars
indicate 95% confidence intervals)

candidates remains essentially constant for k below k = 50. This is clear, because during the
construction of the SASH the parameters p and c determine the size of the local collection of
information about closest near neighbours for each node (see Sects. 4.1, 4.2). In particular,
this influences the values of the geometric pattern used for k-NN query. In this geometric

pattern, a variable number ki = max{k1− h−i
log2 n , 1

2 pc} of objects is drawn from each level
1 ≤ i ≤ h). Let us examine, for instance, Fig. 11a. In this dataset, the value n = 12, 103 and
during the construction of the SASH, a total of 11 levels are contracted, so h = 11. When
k ≤ 1

2 pc = 32, then every ki = 32 for 1 ≤ i ≤ h. If 32 ≤ k ≤ 42, then in the last level
(i = h) only the number of generated candidates will be different, but this will not affect the
outcome as much, due to the very small difference. Moreover, the generated extra candidates
could not be distinct from the candidates already included in the list. This is exactly what
happens here. Starting from k > 42 the last two levels produce more distinct candidates, so
an increase in the overall number of generated candidates is noticeable (see Fig. 11a). An
increase of the value of k will affect more levels of the SASH. In particular, for every node
from a level above the affected levels, the number of distinct children sought will be more
than 1

2 pc = 32. This, obviously, affects the overall result.
We alert the reader that the scale of the y-axis in Figs. 10a, b, 11a, b and 12a is logarithmic.

Figure 12b collates all the data for the SASH with logarithmic performance.
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Fig. 12 Distinct candidates generation while performing k-NN queries for Database 5 and all five databases

Thus, the number of SASH candidates is much better than the number of Fagin’s A0 can-
didates (at least several orders of magnitude). This demonstrates the efficiency of the SASH
approach.

6 Final remarks

If we accept the theoretically secure Yao-comparisons protocol with shares, this paper
provides formally secure solutions to computing all the metrics discussed including all
Minkowski metrics. Moreover, our Protocol 7 is a formally secure protocol for k-NN in
the semi-honest model (Theorem 7) when no parties collude. In particular, Protocol 7 is
totally secure for two parties. This is a first contribution that is fulfilling in the theoreti-
cal sense. However, the protocols for metrics and Protocol 7 would be impractical by the
many limitations of the theoretical solutions about Yao-comparisons with shares and because
Protocol 7 requires quadratic complexity on the size of the database. We have described a
Yao-comparison protocol that is secure in the formal sense (Theorem 1); however, because it
uses real numbers, for its implementation we must trade-off security for efficiency. We have
identified all the security risks and discussed how they can be minimized while maintaining
very useful properties, like constant number of messages, and linearity on the number of bits
involved (which makes it much faster than any other implementation we are aware of). As a
result, we obtain an implementable version that is parameterized to achieve statistical secrecy.

While the relevance of k-NN queries have been recognized for many data-mining tasks, it
has not been accepted that the current solutions for privacy-preserving computation of these
queries are impractical. We have shown that the current alternative, the privacy-preserving
adaptation of Fagin’s AO algorithm is essentially unfeasible because of its reliance on the-
oretical generic solutions for Yao-comparison with shares and the assumption that the size
of the union generated by Fagin’s is affordable. We have shown that this option is not viable
and as an alternative we provided the SASH for logarithmic performance on the size of the
database (as opposed to linear). We believe this generic privacy-preserving version of the
SASH is the best trade-off between privacy and computational requirements. Along the way,
we converted secure algorithms for the computation of metrics into practical solutions to be
used in k-NN queries (we swap into them our efficient implementation of Yao-comparisons
with shares and remove the theoretical Yao-comparison). Solving k-NN queries is central
for many data mining tasks. Doing so separately, rather than the union of the databases risk
accuracy of results. For example, it has been shown before [21,53], for vertically partitioned
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data, that the results of each party clustering separately can be radically different, and in fact
incorrect, if each party clusters in their own projection. Since we have made the only element
needed a dist function, the applications of our approach go beyond objects codified with an
id and an attribute-vector per party to unstructured data, like video and audio.

Why is the SASH less accepted in the context of data mining? One issue that remains
to be elegantly solved for the SASH are altering insertions and deletions (that is a graceful
dynamic behavior). Accumulating insertions and marking deleted items as such while peri-
odically rebuilding the SASH may be considered sufficient for dynamic behavior. However,
for privacy-preserving this is not satisfactory as some queries would be repeated on the same
elements and the risk of information leak increases then.

Acknowledgments We would like to thank Joel Fenwick for valuable discussions and contributions to
clarify the notation.
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