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Abstract We investigate the problem of counting the number of frequent (item)sets—a
problem known to be intractable in terms of an exact polynomial time computation. In this
paper, we show that it is in general also hard to approximate. Subsequently, a randomized
counting algorithm is developed using the Markov chain Monte Carlo method. While for
general inputs an exponential running time is needed in order to guarantee a certain approxi-
mation bound, we show that the algorithm still has the desired accuracy on several real-world
datasets when its running time is capped polynomially.

Keywords Data mining · Frequent itemsets ·Approximate counting ·Markov chain Monte
Carlo

1 Introduction

Frequent pattern mining is considered one of the most influential methods in data mining as
compiled by Wu et al. [27], and recently it has even made the step into commercial database
systems [17,24,28]. It is used within several combinations of local pattern types and applica-
tion domains. A few examples for such combinations are association rules for market basket
data, frequent subgraphs for molecule prediction, and sequential patterns for time series data
(see [11] for an overview). Their unifying property is that patterns are only considered inter-
esting if they satisfy a (minimum) frequency constraint, i.e., a certain number of records of
the input dataset have to “contain” the pattern. In contrast to most other works devoted to
frequent pattern mining which deals with the development and evaluation of algorithms that
list all frequent patterns, in this study, we are interested in counting them quickly. Knowing
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the relationship between frequency threshold and the resulting number of frequent patterns
can, for instance, be used for computing a frequency-plot, i.e., a plot showing all possible
thresholds (x-axis) against the corresponding number of frequent sets (y-axis). Having such
a plot prior to the actual mining process can, for instance, be used within intelligent discov-
ery assistants (IDAs) [2] in order to either provide user guidance for setting the frequency
threshold or tune it automatically.

For this purpose it is essential that the involved computation is performed quickly. “Indeed,
the problem is precisely to predict a combinatorial explosion without suffering from it […]”,
as Geerts et al. [7] have put it in their related study of bounding the number of candidate
patterns that have to be processed within a BFS-listing of all frequent patterns. In particular,
for dense datasets, this requirement prohibits the use of any of the known exhaustive data-
mining algorithms that list all frequent patterns. Even though these algorithms have been
optimized to an impressive level in recent years, they have the number of frequent sets as an
inherent lower bound of their time complexity. While this does not pose a problem for sparse
datasets, in dense ones this number behaves in essence exponentially (for low frequency
thresholds). For that reason we are aiming for an algorithm counting the number of frequent
sets in a time that does not depend on that number. Since it is well known that no exact
deterministic algorithm with this property can exist (unless P = NP), we are aiming for a
randomized approximation algorithm using the Markov chain Monte Carlo method. More-
over, we restrict ourselves to the case of plain frequent (item)sets, which are used, e.g., for
generating association rules. In summary, we are aiming for an input polynomial algorithm
for solving the following computational problem:

Problem 1 (#-FREQUENT SETS) Given a transactional dataset and a frequency threshold,
compute the cardinality of the corresponding frequent set family.

We discuss the question of why all this is a worthwhile venture in some more detail in Sect. 2.
After some formal definitions (Sect. 3) that are needed for the subsequent technical content
we analyze theoretical limits in Sect. 4. As the main result of this section we show that
the number of frequent sets is hard to approximate. In addition, we interpret some known
complexity results in the context of our problem. We then develop a randomized approxima-
tion scheme in Sect. 5 that makes use of a sampling procedure presented in Sect. 6. Details
and speed-ups are presented in Sect. 7 resulting in a hybrid algorithm with an exhaustive
and an approximative counting phase. As indicated by the hardness result, we show that for
general inputs the algorithm’s correctness cannot be guaranteed or its time complexity is not
bounded polynomially. However, experiments we present in Sect. 8 constitute its applicability
on several real-world and synthetic datasets. A concluding discussion is given in Sect. 9.

2 Motivation

In order to raise business value of data mining or generally to make it more accessible to non-
expert users, approaches like intelligent discovery assistants (IDAs) [2] or Mining Mart [18]
have been proposed. Both assist a user in selecting a valid data-mining process for their data.
Still, once a user has decided on a valid process the next problem is to find good parameter
settings, and in case a frequent pattern mining step is part of the process this usually involves
a minimum frequency threshold. Knowledge about the relation between frequency threshold
and the corresponding number of frequent sets is very helpful in this context, as it allows to
control the output size and thus indirectly the output time, because frequent set mining algo-
rithms usually exhibit a time complexity that is roughly linear in the output. Consequently,
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quickly counting the frequent sets helps to make optimal use of the available time budget.
Moreover, as we will argue below, a computed frequency plot can also help semantically
to setup and interpret the whole process. It should be noted that the following discussion is
illustrative and motivating. A thorough investigation of how to choose a minimum frequency
threshold justifies a complete study in its own right.

2.1 Frequency plots

In order to explain the possible use of a frequency plot, let us assume we have a dataset
generated by the following illustrative and absolutely idealized underlying process.

Example 2 (Beginner’s Guide Process) There is a hobby shop carrying items for k different
hobbies. In particular there is a “beginner’s guide” ai for every hobby and a corresponding
“starter kit” consisting of items ci,1, . . . , ci,l(i) (1 ≤ i ≤ k). A usual (senior) customer pur-
chases every item independent from one another with probability pc except for the beginner’s
guides, which he will never purchase. However, with probability pa (per hobby independent
from one another) a customer will pick up a new hobby and buy the corresponding beginner’s
guide ai . In this case he will always also purchase items ci,1 to ci,l(i) and behaves like a usual
customer otherwise.

Clearly, the most (if not the only) interesting association rules for this underlying process are
the rules

ai → ci,1, . . . , ci,l(i)

for i ∈ {1, . . . , k}. All of these rules will have the maximum confidence1 of 1, which mea-
sures the actual semantical value of a rule, whereas their expected support is equal to the
probability pa . We generated three datasets using the above process for pa = 0.1, 0.13, 0.16
and pc = 0.6. Each of the datasets was generated with k = 5 implicant items, 10 different
consequence items for each implicant, and 5,000 transactions. Figure 1 shows their resulting
frequency plots. Depending on initial assumption on the generative process there can be
different strategies of inferring a good threshold from this plot. First, however, it is necessary
to clarify the motivation of introducing a minimum frequency threshold at all.

2.2 Frequency thresholds

The reasons for introducing a frequency constraint can roughly be subsumed under three
purposes:

(1) suppress statistically insignificant results that are a mere random fluctuation of the
underlying data generating process (for instance all antecedences occurring in only one
transaction will induce rules with maximum confidence),

(2) raise output pattern value in the sense that they are applicable to more data instances,
i.e., there are more records satisfying the rule’s antecedence, and

(3) allow additional pruning of search space thus making otherwise intractable tasks trac-
table.

In particular for the last purpose, the frequency threshold is often set to higher values than
it would be necessary for reasons (1) and (2) alone. Clearly, this can harm the analytical

1 The confidence of a rule is the fraction of transactions containing a rule’s consequence among those con-
taining its antecedence.
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Fig. 1 Frequency plots

value of the resulting patterns, because patterns that are interesting according to a primary
criterion (e.g., confidence) might be pruned without any statistical reason purely for the sake
of performance. Thus, it would be desirable to set the frequency threshold to the minimum
value that is reasonable with respect to reasons (1) and (2).

For the above example, observe that for all three datasets the interesting rules have an
expected support that lies before that point of when the plot finally turns to a purely exponen-
tial behavior. Thus, a user setting the frequency threshold to this point is expected not to miss
most of them. Although this may not always be the case, this strategy generally aims to find
the most conservative threshold that preserves most interesting rules while it suppresses most
of the statistically insignificant sets. Moreover, the plots lead to a small set of reasonable
candidate frequency points, namely the sockets before steep exponential slopes. Clearly, this
is an improvement when compared to the uninformed approach of trial-and-error parameter
twiddling.

2.3 Related work and objections

An important related approach to raise user control in frequent set mining is listing only
the top-K frequent sets proposed by Wang et al. [26]. While this approach takes care of
output size control and scheduling, it fails to provide the global overview of computing a
frequency plot for all possible frequency values—a task that cannot be done using a top-K
miner (in particular on dense datasets) because the same restrictions apply to them as stated
in the introduction for ordinary exhaustive miners. Moreover, the most frequent sets are not
necessarily the most interesting ones [6,23].

Still, this may inspire a general objection to the above motivation: Why is it useful to
compute regions of the plot that correspond to frequent set families so large that they are
impossible to list in a subsequent mining step? The answer to this lies in the fact that fre-
quency is usually only a subsidiary interestingness criterion. While the frequency plot shows
the effect of that criterion alone, the final pattern set may result from a conjunction of several
constraints, e.g., confidence or lift, many of which can be used for pruning already during
frequent set listing (see [10,19]). Thus, the resulting output family, albeit its low frequency
threshold, can in fact be listed effectively. Moreover, if effective knowledge post-processing
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is employed (e.g., based on visual analytics as in [3]) it is often reasonable to produce the
maximum number of frequent sets that can possibly be computed within a given time budget.

A different approach for replacing the minimum frequency threshold by a more intui-
tive parameter has been proposed by [29]. In their work, user-specified “fuzzy” thresholds
like “more or less frequent” or “highly frequent” are translated into traditional frequency
thresholds. This translation is based on an approximation to the average support that, in turn,
relies on an independence assumption for the distribution of single items. While this method
simplifies parameter setting for the user, it does not provide control over the output size and
the corresponding computation time.

3 Preliminaries

In this section, we recall and fix notions from frequent set mining, randomized approximation
algorithms, and Markov chains that are needed in the subsequent discussion.

3.1 Frequent set mining and prefix trees

Let E be a finite set. A dataset D over E is a finite multiset with D ⊆ E for all D ∈ D. In the
context of frequent pattern mining the elements of E are often called items and the elements of
D transactions. For a set F ⊆ E we define its support multiset as D[F] = {D ∈ D : D ⊇ F}.
Frequency thresholds can be specified as absolute or relative thresholds depending on what
is more convenient in a given situation. For an (absolute) integer threshold f ∈ {1, . . . , |D|},
F is called f -frequent (or frequent) in D if |D[F]| ≥ f , respectively, for a (relative) real
threshold f ∈ (0, 1), if |D[F]| ≥ f |D|. The family of all f -frequent sets in D is denoted
F(D, f ) or just as F when D and f are clear from the context.

Unless stated differently we denote the number of items by n and identify E with the set
{1, . . . , n} throughout this article. This allows use to use the natural order on {1, . . . , n} and
particularly to use the symbols max F and min F for F ⊆ E . In addition we assume without
loss of generality that the items are numbered in descending order of their frequency, i.e,
1 ≤ i < j ≤ n ⇒ |D[{i}]| ≥ |D[{ j}]|. For a set F ⊆ E and i ∈ {0, . . . , n} we denote
by Fi = F ∩ {1, . . . , i} the i -prefix of F . The prefix tree of D is a labeled directed tree
(arborescence) T = (V, E, φ) with nodes V = {Di : D ∈ D, 0 ≤ i ≤ n}, i.e., the set of
all prefixes occurring in D, edges E = {(Di , D j ) : D ∈ D, D j = Di ∪ { j}}, node labels
φ(X) = |{D ∈ D : ∃i, Di = X}|, and edge labels φ((Di , D j )) = j .

3.2 Probabilistic approximation algorithms

A bounded probability (BP) algorithm for a problem with instances X and possible solutions
Y specified by a correctness relation R ⊆ X × Y is a probabilistic algorithm A such that it
holds that P[(x, A(x)) ∈ R] ≥ 3/4 where A(x) denotes the output of A on input x . Now
we consider the case when Y is the set of natural numbers N. A randomized approximation
scheme for a mapping g : X → N is a BP-algorithm A taking arguments x ∈ X and ε ∈ (0, 1)

satisfying the relaxed correctness predicate Rε = {(x, y) : (1− ε)g(x) ≤ y ≤ (1+ ε)g(x)}
(this is sometimes just described by the phrase “y is ε-close to g(x)”), i.e., A satisfies

P[(1− ε)g(x) ≤ A(x, ε) ≤ (1+ ε)g(x)] ≥ 3/4. (1)

Such an algorithm is called fully polynomial if its time complexity is bounded in a polynomial
in size(x) and 1/ε. The constant 3/4 appearing in the definition has no significance other
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than being strictly between 1/2 and 1. Any two success probabilities from this interval can
be reached from one another by a small number of repetitions of the corresponding algorithm
and returning the median of the results (see [12]).

A weaker notion of approximation is given by the following definition: An algorithm A
is called an α-factor approximation of g (or said to approximate g within α) if it satisfies
the correctness relation Rα = {(x, y) : g(x)/α(x) ≤ y ≤ α(x)g(x)} where α : X → R is a
function that may grow in the size of x . Clearly, an efficient approximation scheme can act
as an efficient c-factor approximation algorithm for all constants c > 1.

3.3 Markov chains

A (discrete) Markov chain on state space � is a sequence of discrete random variables
M = X1, X2, . . . with domain � satisfying the Markov condition, i.e.,

P
[
Xn+1 = x |X1 = x1, . . . , Xn = xn

] = P
[
Xn+1 = x |Xn = xn

]

for all n ∈ N and x, x1, . . . , xn ∈ � satisfying P[X1 = x1, . . . , Xn = xn] > 0. In this
article we only consider finite state spaces �. Thus, given a probability distribution on
the initial state, M is completely specified by the state transition probabilities P(x, y) =
P
[
Xn+1 = y|Xn = x

]
of all x, y ∈ � that do not depend on n. The (|�|× |�|)-matrix

containing P(x, y) in column x and row y is a stochastic matrix we denote by P . The t th
power of this matrix contains the probability of going from x to y in t steps Pt (x, y) =
P
[
Xn+t = y|Xn = x

]
. We call a state y ∈ � reachable from a state x ∈ � if there is a t ∈ N

such that Pt (x, y) > 0. A Markov chain M is called aperiodic if for all x, y ∈ � with x is
reachable from y there is a t0 ∈ N such that for all t ≥ t0 it holds that Pt (x, y) > 0, and
it is called irreducible if any two states are reachable from one another. Finally, M is called
ergodic if it is irreducible and aperiodic.

Any ergodic Markov chain has a unique limiting stationary distribution π : �→ [0, 1],
i.e., for all states x, y ∈ � it holds that limt→∞ Pt (x, y) = π(y). Moreover, if there is a func-
tion π ′ : � → [0, 1] satisfying the detailed balance condition ∀x, y ∈ �,π ′(x)P(x, y) =
π ′(y)P(y, x) then π ′ is a stationary distribution. It follows that ergodic Markov chains with
symmetric transition probabilities always converge to the uniform distribution. The distance
from the t-step distribution of a Markov chain with X0 = x to its stationary distribution can
be measured by the total variation distance ‖Pt (x, ·), π‖tv = 1/2

∑
y∈�

∣∣Pt (x, y)− π(y)
∣∣.

Using this definition we can define the mixing time of M by

τ(ε) = max
x∈� min{t0 ∈ N : ∀t ≥ t0, ‖Pt (x, ·), π‖tv ≤ ε}

as the minimum number of steps one has to simulate M until the resulting distribution is
guaranteed to be ε-close to its stationary distribution. For more details and results about
Markov chains and their mixing time we refer to Randall’s survey [20].

4 Problem complexity

Gunopulos et al. [9] P = NP proved #P-hardness2 of #-FREQUENT SETS implying that
there is no exact algorithm for that problem unless. They did this using a reduction from
the #P-complete problem of computing the number of satisfying truth assignments of a

2 Essentially, #P is the class of problems asking to count the number of solutions where it is possible in
polynomial time to verify a single solution [25].
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given monotone 2-CNF formula, i.e., a conjunctive normal form formula containing only
two positive literals per clause. It was shown by Zuckerman [30] that this number and in fact
even its logarithm is hard to approximate within a factor of nε for instances of size n.

The reduction in [9], however, transforms a 2-CNF formula into a transaction dataset
with n items such that the number of satisfying truth assignments corresponds to the number
of sets that are not 1-frequent, and then it uses the fact that the number of infrequent sets
is equal to 2n minus the number of frequent sets. Hence, the construction is highly non-
parsimonious, i.e., the numbers usually change drastically without any reasonable bound.
As a consequence, relative approximation guarantees are not preserved by that reduction
and it does not lead to a hardness result for approximating #-FREQUENT SETS. Still, it is
an important side note that the two aforementioned theorems together do imply the strong
result that there is no efficient approximation algorithm for counting the number of infrequent
sets even if the (absolute) frequency threshold is fixed to 1. This is an interesting difference
to the same restriction for #-FREQUENT SETS: When restricted to frequency threshold 1
approximating the number of frequent sets becomes equivalent to approximating the num-
ber of satisfying assignments of a given DNF-formula, and for this problem there is a fully
polynomial randomized approximation scheme [15].

Now, for acquiring a hardness result for the number of frequent sets, we have to choose
a different starting point, namely the hardness of approximating a frequent set of maximum
cardinality. With this approach we can show the following result:

Theorem 3 Unless for all ε > 0 and for all problems in NP there is a BP-algorithm that
runs in time 2nε

for instances of size n, the following holds: There is a constant δ#F such
that there is no polynomial time BP-algorithm that, given a dataset D over n items and a
frequency threshold f , approximates log |F(D, f )| within nδ#F .

Proof It was shown in [5] that under the same assumption as in the claim there is no polyno-
mial time algorithm approximating a frequent set of maximum cardinality within nδBC . That
result was based on Khot’s seminal inapproximability result for Bipartite Clique, which in
fact ruled out BP-algorithms under the above assumption (see [16] where you can also find
more information about the magnitude of δBC). Furthermore, it is easy to prove that approxi-
mating only the maximum number k such that there is a frequent set of size k is polynomially
equivalent to the actual construction of a corresponding set. Thus, it is sufficient to show
that an algorithm for approximating the logarithm of |F | can be used to approximate this
number k.

Since all subsets of a maximizing frequent set F ∈ F with |F | = k are also frequent, it
holds that |F | ≥ 2k . On the other hand, all frequent sets are of size at most k and thus k also
induces an upper bound for |F |, namely nk . This can be seen as follows for the case k ≤ n/2
(the other case, only a little more complicated, is omitted here for the sake of simplicity).

|F | ≤
(

n

k

)
+

(
n

k − 1

)
+ · · · +

(
n

0

)
≤ k

(
n

k

)

= n(n − 1) . . . (n − k + 1)

(k − 1)! ≤ nk .

Now suppose a BP-algorithm A approximates log |F | within nδ . It follows that

k ≤ log |F | ≤ k log n

⇔ log |F | / log n ≤ k ≤ log |F |
⇔ A(D, f )/(nδ log n) ≤ k ≤ nδA(D, f ).
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Now observe that for any δ < δBC, the expression nδ log n is asymptotically dominated by
nδBC ; say starting from the constant n(δ). Choose δ#F to be any number strictly between 0
and δBC. Then modify A such that it looks up the true result of all (finitely many) instances
of size less than n(δ#F) in a hard-coded table. Then A is a BP-algorithm approximating the
maximum cardinality of a frequent set within nδBC as required. ��
Although the complexity assumption of this theorem is stronger than P �= NP it is still a
widely believed standard assumption. Moreover, non-existence of an α-approximation of the
logarithm of a number implies non-existence of an 2α-approximation to the actual number.
Thus, we have strong evidence that there is no reasonable approximation algorithm for the
general #-FREQUENT SETS problem and in particular no fully polynomial approximation
scheme.

That said, there may still be algorithms allowing a good approximation for a wide range
of practical relevant datasets. With this in mind, we are going to construct a randomized
approximation algorithm in the next section.

5 Monte Carlo estimation

The perhaps simplest Monte Carlo approach for counting the number of frequent set would
be the following: Uniformly generate an element F ⊆ E , return 1 if F ∈ F , and return
0 otherwise. The expected value of this experiment is |F | /2|E |. Thus, taking the mean of
sufficiently many independent repetitions and multiplying it by 2|E | is a correct randomized
approximation scheme. It is, however, not polynomial. This is due to the fact that |F | /2|E |
can be as small as 1/2n for an instance of size n. For such instances, the expected number
of trials before the first 1 turn-out appears is not bounded by a polynomial in n. But as long
as the returned result is 0, the solution does not satisfy any relative approximation guarantee
and in particular not Eq. (1).

5.1 Estimator

The standard solution to the problem above is to partition the result into a number of factors,
each of which having a reasonable lower bound (see [13]). In our case such a partitioning
can simply be done as follows. For i ∈ {1, . . . , n} let

Fi = {F ⊆ Ei : |D[F]| ≥ f }
be the family of frequent sets containing only elements from the first i items (recall that we
denote the i-prefix of a set F ⊆ E by Fi ). With this we can rewrite the quantity to compute
|F | = |Fn | as the product

|Fs |
n∏

i=s+1

|Fi |
|Fi−1| = |Fn | (2)

with some starting index s ∈ {1 . . . , n− 1}. It follows directly from the definition that for all
i ≤ n it holds that Fi−1 ⊆ Fi . Let us denote the i th reciprocal ratio of the product in Eq. (2) by

ri = |Fi−1| / |Fi | .
A constant non-zero lower bound for the ratios ri is implied by the following observation: For
distinct sets F �= F ′ with F, F ′ ∈ Fi\Fi−1 the sets F\{i} and F ′\{i} are distinct elements of
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Fi−1. Hence, |Fi\Fi−1| can be mapped injectively into |Fi−1| implying |Fi\Fi−1| ≤ |Fi−1|,
and thus it holds that

1 ≥ |Fi−1| / |Fi | = ri ≥ 1/2. (3)

With this we can design a Monte Carlo algorithm as follows: Approximate each of the ratios
ri , count |Fs | for an appropriate s exhaustively, and then compute |F | through Eq. (2).

A trivial solution for counting the starting factor |Fs | is to set s = 0 resulting in |F0| =
|{∅}| = 1. There are, however, better choices in practice as we will discuss in Sect. 7.1. The
ratios ri are approximated as follows: assume we can sample a set F from Fi according to a
distribution Di satisfying

∣
∣PF∼Di

[
F ∈ Fi−1

]− ri
∣
∣ ≤ b (4)

Note that this condition is, for instance, satisfied by the uniform distribution U(Fi ) or by a
distribution D having a total variation distance of at most b from the uniform distribution, i.e.,
‖D, U(Fi )‖tv ≤ b. The latter approach is commonly referred to as almost uniform sampling.
Let Zi denote the random variable that takes on value 1 if F ∈ Fi−1 and 0 otherwise. Then

Z̄i = (Z (1)
i + · · · + Z (t)

i )/t

with t ≥ 1 and Z ( j)
i independent copies of Zi is a (biased) estimator of ri satisfying∣∣E

[
Z̄i

]− ri
∣∣ ≤ b. With this we can write our final estimator for |F | as |Fs | Z−1 where

Z denotes the product of all ratio estimators

Z = Z̄s+1 . . . Z̄n .

It is easy to see that if Z is ε-close to the product of all ratios ri then this implies the
same for the complete estimator |Fs | Z−1 and |F |, i.e., an algorithm simulating it is a correct
randomized approximation scheme. Moreover, as the maximum bias b approaches 0 and
the number of independent trials t of each Bernoulli experiment Zi approaches infinity that
guarantee will eventually hold.

5.2 Performance

In this subsection, we discuss for what values of b and t an algorithm that simulates the
estimator |F | Z−1 is a correct randomized approximation scheme for |F | as specified by
Eq. (1).

We start with the bias b and the relative deviation it causes for the mean of the ratio esti-
mators Z̄i . It follows from the absolute deviation as specified in Eq. (4) and the lower bound
of ri from Eq. (3) that

(1− 2b)ri ≤ E
[
Z̄i

] ≤ (1+ 2b)ri .

This can be used to bound the deviation of Z ’s mean from the product r = ∏n
i=s+1 ri of all

reciprocal ratios from Eq. (2). Suppose we enforce a maximum absolute bias

b ≤ bias(n, s, ε) = ε/12(n − s).

Then using the independence of the random variables Zi and basic bounds of the exponential
function we can deduce:

E[Z ] =
n∏

i=s+1

E
[
Z̄i

] ≤
(

1+ ε

6(n − s)

)n−s

r ≤ exp
(ε

6

)
r ≤

(
1+ ε

5

)
r
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If in addition Z ≤ (1 + ε2/3)E[Z ] we arrive at the required upper bound for the deviation
of Z from r

Z ≤
(

1+ 1

5
ε

)(
1+ 2

3
ε

)
r <

(
1+ 2ε

3
+ ε

5
+ 2ε

15

)
r = (1+ ε)r

and the lower bound follows similarly.
It remains to assure that Z is 2ε/3-close to its mean with probability at least 3/4. The

required number of trials t can be calculated by instantiating Chebycheff’s inequality as
follows

P

[
|Z − E[Z ]| ≥ 2

3
εE[Z ]

]
≤ 9V[Z ]

4ε2E[Z ]2 . (5)

So a bound on this probability can be established by appropriately bounding the ratio of Z ’s
variance to the square of its expectation. For the estimator of each factor Z̄i we know that

V
[
Z̄i

]

E
[
Z̄i

]2 =
E
[
Z̄i

]
(1− E

[
Z̄i

]
)

tE
[
Z̄i

]2 = 1

t
(E

[
Z̄i

]−1 − 1)

≤ 1

t

((
1

2
− b

)−1

− 1

)

= 1+ 2b

t (1− 2b)

where the first equality uses the fact that Z̄i follows a normalized binomial distribution, and
the last inequality follows from Eqs. (3) and (4). Thus, if we set the number of trials t to

t = trials(s, ε) =
⌈

10(n − s)(1+ 2b)

(1− 2b)ε2

⌉

we can deduce for the product:

V
[
Z̄s+1 · · · Z̄n

]

(E
[
Z̄s+1

] · · ·E[
Z̄n

]
)2
= E

[
(Z̄s+1 · · · Z̄n)2

]

(E
[
Z̄s+1

] · · ·E[
Z̄n

]
)2
− 1 = E

[
Z̄2

s+1

] · · ·E[
Z̄2

n
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)n−s − 1 ≤ exp (ε2/10)− 1

≤ (ε2/9).

Plugging this bound into Eq. (5) it follows that Z is 2ε/3-close to its mean with probability
at least 3/4 as required.

Note that there is a tradeoff between the constant appearing in the minimum number of
trials and that in the bias bound. Thus, in case one can assure a stricter bias bound for a
similar cost it is worthwhile to recompute the corresponding trial number.

6 Frequent set sampling

In the naive Monte Carlo algorithm sketched in the beginning of Sect. 5 the necessary number
of trials was prohibitive, while the required uniform sampling from the power set did not
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pose a problem. Now the situation is different: The required number of trials is polynomi-
ally bounded, but it is unclear how to sample from the frequent set families Fi (D, f ) for
i = s + 1, . . . , n according to a distribution Di satisfying Eq. (4) for b = ε/12(n − s) as
required for estimating the factors ri . In fact a general sampling algorithm satisfying this
condition—in particular uniform or almost uniform sampling algorithms—with a worst-case
polynomial running time cannot be expected to exist in the light of Theorem 3 and the reduc-
tion of counting frequent sets to sampling them from the previous subsection. Therefore, we
design a sampling algorithm that performs well in practice while its worst-case convergence
time is exponential.

6.1 Markov chain

We approach this problem by setting F0 = ∅ and then repeatedly applying the following
randomized perturbation procedure Fj �→ Fj+1:

1. set F ′ to Fj

2. uniformly draw an k ∈ {1, . . . , i}
3. if k ∈ F ′ set F ′ to (F ′\{k}); otherwise:
4. if (F ′ ∪ {k}) ∈ F then set F ′ to (F ′ ∪ {k}).
5. with probability 1/2 set Fj+1 to Fj ; otherwise: set Fj+1 to F ′

This procedure simulates one step of a Markov chain Mi on Fi with state transition
probabilities

Pi (F, F ′) = 1/2i for F, F ′ ∈ F with
∣∣F�F ′

∣∣ = 1

where � denotes symmetric difference. All “remaining” probability is assigned to the self-
loops, i.e., Pi (F, F) = 1− ∣∣{F ′ ∈ F : ∣∣F�F ′

∣∣ = 1}∣∣ /2i . So the transition probabilities and
thus the corresponding state transition matrix Pi as well as the reachability relation of Mi

are symmetric.
Together with the fact that F is closed under taking subsets, this implies that Mi is

irreducible because all states are reachable from ∅. Moreover, there are non-zero self-loop
probabilities for every state. This implies that Mi is also aperiodic and together with irre-
ducibility this means that Mi is ergodic.

For an ergodic Markov chain we know that there is a unique distribution π that it con-
verges to and that is stationary, i.e., Piπ = π . Since Pi is symmetric, π must be the uniform
distribution on Fi . Hence, simulating Mi for sufficiently many steps can be used to sample
a frequent set from Fi uniformly at random as sufficient for satisfying Condition (4).

The question is, however, for how many steps l we have to simulate Mi until Pl
i (∅, ·) is

“close enough” to the uniform distribution. The standard approach in approximate counting
(by almost uniform sampling) is to derive an upper bound on the mixing time τ(ε/12(n− s))
and then use this upper bound to compute the necessary number of simulation steps. The
resulting distribution is guaranteed to satisfy Condition (4) because the total variation distance
from the uniform distribution is an upper bound to the maximum bias b. As stated earlier, for
our problem this approach is infeasible: in line with Theorem 3, a good worst-case bound to
the mixing time τ cannot be expected. Indeed, we can observe the following:

Proposition 4 For n ∈ N the Markov chain M2n with frequency threshold f = 1 and
D = {{1}, {2, . . . , n}, {n + 2, . . . , 2n}} on items E = {1, . . . , 2n} has mixing time τ(ε′) of
at least 2n−1 log(1/2ε′).
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Proof Let P(X) denote the power set of a set X . For n ∈ N the 1-frequent sets of the dataset
given in the claim are

F = {{1}} ∪ P({2, . . . , n}) ∪ P({n + 2, . . . , 2n})
with the cardinality |F | = 2n . It is a well-known fact (see for instance [20]) that the conduc-
tance of a Markov chain induces a lower bound on its mixing time. The conductance of M2n

is defined as

	 = min{	S : S ⊆ F(D, 1), π(S) ≤ 1/2}
where 	S = (1/π(S))

∑
x∈S,y∈F\S π(x)P(x, y) is the probability according to the station-

ary distribution of leaving S given the current state is an element of S. The mixing time is
then bounded from below as follows:

τ(ε) ≥ 1

4	
log

1

2ε
. (6)

Now choose S = {{1}}∪P({2, . . . , n})\{∅}. Then |S| = 2n−1 and consequently π(S) = 1/2.

	 ≤ 	S =
∑

x∈S,y �∈S π(x)P(x, y)

π(S)
= 2

∑

x∈{{1},...,{n}}
π(x)P(x,∅)

= 2n
1

2n

1

2(2n)
= 1

2n+1

Plugging this bound into Eq. (6) yields the claim. ��
Intuitively, the reason for the slow mixing time on these instances is that the probability

of crossing over from one of the two “blocks” P({2, . . . , n}) and P({n + 1, . . . , 2n − 1}) to
the other is very low compared to their sizes.

6.2 Heuristic step bound

In order to circumvent the negative implications of Proposition 4, we will simulate the Markov
chain only for a heuristic number of steps—a number much smaller than the best theoreti-
cal worst-case bound on the mixing time would yield. The justification for this approach is
twofold:

– The situation constructed in the proof of Proposition 4 is obviously rather artificial and
it is a reasonable assumption that most real-world datasets do not possess such strictly
separated blocks.

– The mixing time is equal to a guaranteed number of steps such that the total variation
distance is close to the uniform distribution. This distance, however, is only an upper
bound to the bias term, and, as we will see below, in practice the bias can be much smaller
than the total variation distance.

The heuristic for the number of steps we simulate the chain Mi is

steps(i, ε) = 2ε−1i ln i,

i.e., we use Pl
i (∅, ·) with l = 2ε−1i ln i in place of the distributions Di . This is of the same

order as the expected number of steps until each item has been drawn at least once (coupon
collector’s theorem)—a reasonable minimum requirement. Clearly, there are other possible
choices for steps(i, ε); in particular when there is prior knowledge of the input dataset.
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Fig. 2 Biases

We evaluated this heuristic using ε = 0.5 on several test datasets (see Sect. 8 for a descrip-
tion of these datasets). The relative thresholds used and the resulting numbers of frequent sets
are 0.62/166581 (chess), 0.81/375384, (connect), 0.03/420 (bms webview), and 0.2/22021
(pc60pa10), respectively. These moderate state space sizes allowed us to explicitly com-
pute the distributions Pt (∅, ·). Figure 2 shows the results. The exact resulting biases (blue
crosses) are compared to the required maximum bias b = 1/24n (blue line) for each of the
ratios ri . Also, these figures show the total variation distance from the uniform distribution
(red crosses). Indeed we can observe a significant gap between the quantities for some of
the factors. Consequently, the total variation distances sometimes violate the maximum bias
requirement while the actual biases do always satisfy this condition.

To give an idea of how conservative the heuristic is, we created another diagram, which is
presented in Fig. 3. Here, the minimum number of steps that is resulting in order to satisfy the
bias requirement (red crosses) is compared to the number of steps computed by the heuristic
(green line). We can observe that the heuristic is much less conservative for the first factors
as it is for the later factors. This is due to the fact that the heuristic number of steps does not
depend on the overall total number of factors while the maximum allowed bias does. Instead
the heuristic only depend on the index of the ratio to be approximated, which is approaching
the number of factors only for the later ratios. As we will see below this is no problem for
our method, because finally we will end up with a hybrid counting algorithm that does not
approximate the first factors at all.
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Fig. 3 Required steps

7 Algorithmic details and improvements

The basic algorithm assembled from the partitioning from Sect. 5 and the sampling from
Sect. 6 has on overall time complexity of O

(
ε−3mn3 ln n

)
if we denote by m the number of

transactions |D| and account O(mn) for one frequency check. While this time complexity
does not depend on the number of frequents sets as desired, it performs rather poorly with
respect to the input size. In this section, we present several techniques that lead to a substantial
performance improvement in practice. That said, they do not affect the overall asymptotic
behavior.

A pseudocode incorporating all ideas is given with Algorithm 1. Note that the requirement
stated here is a little stronger than necessary in that it demands the bias bound to hold for
all ratios. In fact, the bound is only needed for those ratios ri that are actually approximated,
i.e., for i > s, and usually s is chosen larger than 0 (see Sect. 7.1).

7.1 Hybrid counting

Our estimator requires a starting factor |Fs | that has to be counted exhaustively. As indicated
in Sect. 5.1 there are more effective choices for s than just choosing |F0| = 1. This is due to
the fact that exhaustive counting of Fs replaces the estimation of the ratios r1, . . . , rs , each of
which having a time complexity that depends on the complete number of items n. In contrast
exhaustive counting of Fs only runs on a reduced dataset and has to enumerate at most 2s

frequent sets. This is more efficient as long as s is sufficiently small.
Deciding what choice for s will result in the minimum total running time requires some

analysis of the involved time complexities. For that we regard one frequency check as unit
step. For ease of notation we will drop all symbols that are constant throughout one call of
the algorithm from the parameter lists of trials(·) and steps(·).

Estimating ri requires at most trials(s)steps(i) frequency checks. On the other hand,
counting |Fs | exhaustively can take up to 2s frequency checks in case all subsets of Es are
frequent. This rough bound can be used to make an initial choice for s by choosing it such
that it minimizes the estimated overall running time 2s + Tapx(s) with

Tapx(s) = trials(s)
n∑

i=s+1

steps(i)
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Algorithm 1 Frequent set counting

Input : dataset D on items E = {e1, . . . , en},
frequency threshold f ∈ {1, . . . , |D|},
accuracy ε ∈ [0, 1]

Require:

∣
∣∣∣PF∼Pl

i (∅,·)
[
F ∈ Fi−1

]− ri

∣
∣∣∣ ≤ ε/12n with l = steps(i, ε)

Output : q with P[(1−ε) |F | ≤ q ≤ (1+ε) |F |] ≥ 3/4

main:
1: //exhaustive phase

2: s ← argmins′≤n(2s′ + Tapx(s′))
3: S← exhaustive(D|s , f )

4: while S < Tapx(s)− Tapx(s + 1) do
5: S← S + exhaustive(D[{s + 1}] |s , f )

6: s ← s + 1

7: //approximative phase:
8: I ← ∅
9: for i = s + 1, . . . , n do
10: ri ← 0
11: for k = 1, . . . , trials(s, ε) do
12: if i �∈ sample(i) then ri ← ri + 1
13: ri ← ri /trials(s, ε)
14: return S

∏n
i=s r−1

i

sample(i):
1: F ← ∅;
2: buffer← generateRandString(steps(i, ε))
3: for j = 0, . . . , “last index of i in buffer” do
4: e← buffer[ j]
5: if e ∈ F then
6: F ← F\{e}
7: else if frequencyCheck(F, e) then
8: if j = “next to last index of i in buffer” then return F
9: F ← F ∪ {e}
10: return F

frequencyCheck(F, e):
1: L ← node list of max{F ∪ {e}}
2: if |F | ≥ minI∈I |I | ∧ |L| > costEst(I, I ) then
3: if F ∈ I then return true
4: if |D[F ∪ {e}]| ≥ f then
5: return true
6: else
7: I ← I ∪ {F ∪ {e}}
8: return false

denoting the expected time for approximating all remaining factors. Clearly, more knowledge
about the used implementations—in particular that of the exhaustive miner—is likely to lead
to an improvement of this choice.

Additionally, we can further improve our choice of the starting index s. Denote the index
found by the considerations above as s∗. The loose a priori bound used there can be improved
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once we have counted Fs∗ . We know that |Fs∗+1\Fs∗ | ≤ |Fs∗ | [see Eq. (3)]. Thus, in case

|Fs∗ | < Tapx(s
∗)− Tapx(s

∗ + 1)

we can increase s to s∗ + 1 and add |Fs∗+1 \ Fs∗ | counted exhaustively to |Fs |. Clearly, as
long as the above condition remains true for the new s it amortizes to repeat this step. The
resulting algorithm counts Fs for the final s “chunk-wise” as

|Fs | = |Fs∗ | + |Fs∗+1\Fs∗ | + · · · + |Fs\Fs−1| .
For the exhaustive counting tasks it is desirable to use one of the existing highly optimized
frequent set listing algorithm. Let D|i denote the dataset in which all transactions have been
restricted to the first i items. Observe that |F(D[{s}] |s−1)| is equal to |Fs(D)\Fs−1(D)|.
Thus, one external call of the exhaustive miner with the dataset D[{s}] |s−1 suffices to com-
pute the latter quantity.

7.2 Basic chain simulation speedups

The central part of the approximative phase of Algorithm 1 are the Markov chain simulations.
As a first optimization it is possible to do better than just simulating Mi for i = s+ 1, . . . , n
naively. Instead, we first buffer the required number steps(i, ε) of random items for a single
random walk. Since the result F of a random walk is only used to evaluate the Bernoulli
experiment Zi of whether item i is an element of F , we can simply stop the Markov chain
simulation after the last occurrence of i in the buffer, because afterwards the outcome of
the experiment cannot change anymore. Similarly, if i was put into F due to the next to last
occurrence of i we can also stop the chain simulation at that point. Since in this case the last
occurrence of i will surely cause the item to be removed from F again, we can directly report
that result.

The really dominant operation, however, is the test of whether a set I = F ∪ {e} that is an
augmentation of a frequent set F with a single item e remains frequent. This corresponds to
step 4 of the Markov chain (see Sect. 6). Since this test has to be performed roughly every
second step of each random walk, it is crucial for the overall performance of our algorithm.
In order to decrease the cost of this operation, our implementation makes use of the data
compression that is enabled by representing the dataset D as an fp-tree [11]. An fp-tree is
a prefix tree T = (V, E, φ) where, in addition, there are node lists Li containing all nodes
corresponding to prefixes X ∈ V with max X = i . Since overlapping transactions share a
prefix-branch, this usually achieves a significant compression.

The frequency test for a set is done by selecting its least frequent item max I , following
its node list in the fp-tree, and adding the counts φ(X) of all nodes X ∈ Lmax I = L with
X ⊇ I , i.e., those corresponding to a prefix that contains I . The traversal of the node list can
be stopped already after an initial part L ′ ⊆ L in case the frequency state of I can already
be determined by L ′, that is either if l =∑{φ(X) : X ∈ L ′, X ⊇ I } ≥ f returning “true”,
or if l +∑{φ(X) : X ∈ L \ L ′} < f returning “false” where the last sum can be computed
by |D[max I ]| −∑{φ(X) : X ∈ L ′}.
7.3 Infrequent set cache

Even with the representation of D by an fp-tree, frequency checks remain an expensive
operation. In order to reduce the computational effort for these operations one can store the
infrequent sets that are visited throughout the various random walks. The thus created cache
can then be used to quickly check whether I = F ∪ {e} is a superset of an already visited
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infrequent set I ′—possibly avoiding the expensive frequency check. This test is invoked in
line 2 of the frequency check procedure of Algorithm 1. Below we discuss how this step can
be implemented.

Let us denote the family of visited infrequent sets by I. Again it is useful to represent
this family by a prefix tree. A superset test can then be implemented as a depth first search
traversal of the tree that recurses only into child nodes via edges corresponding to items that
are contained in I . Moreover, we can ignore edges corresponding to items e′ > e as long as
the current node does not contain item e. Below this edge we can only find sets not containing
e, none of which can be a subset of I . This is because we know that I\{e} = F is frequent
and, thereby, can never be superset of an infrequent set.

It is, however, not always reasonable to perform this infrequency check. There are candi-
date sets I that require only very few nodes in the fp-tree to be checked using the standard
frequency check; those with a relatively small max I . As we assume the items to be ordered
according to their frequency, these candidates are in addition rather unlikely to be infrequent.
In order to decide for what candidate sets infrequency should be checked against I it is
necessary to estimate the expected look-up time. For that observe that the recursion depth of
the DFS is bounded by min{|I | , d} where d = maxI ′∈I

∣
∣I ′

∣
∣ is the depth of the prefix tree.

Moreover, in a node X with outgoing edges δ+(X) at level i the number of recursive calls
is limited by min{|I | − i,

∣∣δ+(X)
∣∣}. The overall cost for looking up the set I in the cache I

can then be estimated as follows:

costEst(I, I) =
min{|I |,d}∏

i=1

min{�, |I | − i}

where � is the average outdegree of the prefix tree representing I. This quantity is compared
to the number of nodes corresponding to max I in the fp-tree of D in line 2 of the frequency
check procedure of Algorithm 1.

8 Evaluation

In this section, we present experiments contrasting the Markov chain Monte Carlo algorithm
with counting via exhaustive enumeration. The experiments are performed with respect to
performance as well as accuracy (ε = 0.5 was used throughout all experiments). As a rep-
resentative exhaustive miner, we used the modified FPgrowth [11] algorithm by Grahne and
Zhu [8], whose C++ implementation is publicly available. This implementation has shown
to rank among the fastest exhaustive miners in the competitive workshop FIMI [1]. In the
following, we will refer to this implementation as “FpZhu”. The benchmark datasets are
also taken from the FIMI repository supplemented by synthetic datasets generated according
to the beginner’s guide process (Example 2) with different choices for the probabilities pa

and pc each of which with 5,000 transactions. We refer to these dataset as pc60pa10 and
pc90pa10, because they are generated by instantiations of this general process with prob-
abilities pa = 0.1 and pc = 0.6, respectively, pc = 0.9. For Algorithm 1 we used a Java
implementation that is available online together with the artificial datasets (http://www-kd.
iai.uni-bonn.de/index.php?page=people_details&id=16 or corresponding main page). Dur-
ing the exhaustive phase the external miner called is again FpZhu. The experiments were
performed on an Intel Core 2 Duo E8400 with 3 GB of RAM running Windows XP. All
figures below use relative frequency thresholds.

123

http://www-kd.iai.uni-bonn.de/index.php?page=people_details&id=16
http://www-kd.iai.uni-bonn.de/index.php?page=people_details&id=16


82 M. Boley, H. Grosskreutz

Fig. 4 Relative deviation from exact solution

8.1 Accuracy

We now report a series of accuracy experiments that are summarized in Fig. 4. Our algorithm
was applied 100 times to each combination of one of eight test datasets with one of four
frequency thresholds, resulting in a total of 400 runs per dataset. A run “fails” if the reported
result deviates from the true number of frequent sets by more than ε = 0.5, which we used as
accuracy parameter throughout all experiments. If the overall approximation guarantee holds
we expect the fraction of failed runs to be below 1/4 (Eq. 1). As desired, this was the case on
all of the eight test datasets. In fact, we had no failed runs among all experiments. Thus, the
observed success rate was consistent with the probabilistic approximation guarantee for all
datasets, and in fact we experienced much better error bounds. The table also shows the upper
quartile (“up. qrt.”), median (“median”), lower quartile (“lw. qrt.”), and maximum (“max.”)
of the experienced relative deviation.

These results may lead to the impression that the upper absolute bias bound b and the
number of trials t have been chosen to conservative in Sect. 5.1 and less restrictive numbers
would still yield the overall approximation guarantee. But in fact this good performance is
partially caused by mutual cancellation of the actual bias terms, i.e., some of them are nega-
tive and some are positive. Moreover, the number of trials t takes into account the worst-case
ri = 1/2. For the test datasets, however, many of the ratios ri are close 1.

Figure 5 shows accuracy results on chess in more detail. For different frequency thresh-
olds, it shows on a logarithmic scale the exact number of sets (“exact count”) computed
exhaustively, the upper and lower 0.5 deviation limits (“upper limit” and “lower limit”), as
well as the result of the randomized algorithm in a series of 15 runs (“mcmc count”). The
figure shows that in all randomized runs, the approximated result lies in the desired devia-
tion interval. The figure does not contain the exact number of sets for the lowest thresholds,
because these could not be computed by the exhaustive miner.

We close this subsection by presenting approximated frequency plots computed for four
of the datasets. The results are shown in Fig. 6 together with the exact curve. They illustrate
that the randomized algorithm provides an adequate approximation of the exact plot, which
was one motivating goal of this study (see Sect. 2).

8.2 Runtime

Next, we compare the runtime of our randomized algorithm with that of FpZhu on sev-
eral datasets. We start with the results on chess, which are presented in Fig. 7a. In order to
give an idea of the quality of FpZhu we also added the performance curve of an Apriori
implementation [4], which was another contender in the FIMI workshop. But most important
the diagram shows that while on higher thresholds FpZhu is faster than our randomized
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Fig. 5 Accuracy on ‘chess’

Fig. 6 Frequency plots

algorithm, the latter outperforms the exact algorithm when the threshold becomes smaller.
A similar behavior can be observed for connect (Fig. 7b), pc60pa10 (Fig. 7c), and pumsb
(Fig. 7e). On pc90pa10 (Fig. 7d), which is extremely dense and as a result has a very high
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Fig. 7 Runtime comparisons

number of frequent sets, the randomized approach outperforms the exhaustive miner on all
threshold. In fact, for all but the highest thresholds the runtime of the exhaustive miner
becomes unacceptable.

However, the sparser the dataset is the later the randomized algorithm catches up to the
exhaustive miner. On mushroom (Fig. 7f) it is even dominated on all thresholds. Hence, it
heavily depends on the dataset’s density (the number of frequent sets) whether the randomized
or the exhaustive approach performs better. This can roughly be explained and summarized
as follows: while the complexity of the Monte Carlo algorithm, in contrast to any exhaustive
miner, does not depend on the output size, it does not scale as well as the latter in the input
size (see also the discussion in Sect. 9).
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Fig. 8 Runtime using different improvements

We close the performance study with the comparison of Algorithm 1 to implementations
that (a) do not use the infrequent set cache and (b) that do neither use hybrid counting nor
the infrequent set cache. Figure 8 shows the impact of these two speedups.

9 Conclusion

In this section, we give a summarizing discussion of our study that emphasizes both: its
contributions as well as its current limitations. Thereafter, we conclude by presenting ideas
for future research. In this course, we outline promising directions to overcome the said
limitations.

9.1 Summary and discussion

In this paper, we developed a randomized approximation scheme for counting the number
of frequent sets using the Markov chain Monte Carlo method. It relies on sampling frequent
sets in a way that satisfies a certain bias bound. We gave a corresponding sampling procedure
that, albeit meeting this bound, in worst case does so only after an exponential number of
iterations. For that reason, we switched to a heuristic but polynomially bounded number
of steps that we validated on several test datasets. Although this heuristic approach works
well on these datasets, by applying it, the overall counting algorithm loses its worst-case
approximation guarantee. We have shown, however, by giving a negative complexity result
that a general polynomial algorithm with a good approximation guarantee is unlikely to
exists. Moreover, we experienced very good approximation rates on real world and artificial
dataset. In order to improve the performance of our method we described several techniques
that can significantly speed up its running time when compared to a naive implementation.
We demonstrated that for dense datasets/low frequency thresholds the randomized algorithm
remains well applicable while exhaustive counting is infeasible.

Altogether, our study should be regarded as an initial work on a computational problem
that so far has seen little to no attention. As such its practical applicability, for instance as a
general preprocessing method to frequent set mining, still suffers from serious limitations:

(1) The method scales very badly in the number of items, i.e., super-cubic, which makes it
already inapplicable on current personal computers as that number approaches 1,000.
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(2) Even on datasets with a small number of items it is often outperformed by exhaustive
counting. Particularly this is the case for sparse datasets and/or high frequency threshold.

While the first point appears to be inherent to the method and its circumvention is likely to
require fundamental additional ideas, the second can probably be solved by some straight-
forward additions (see the paragraph about integrated exhaustive counting below). Beside
larger constant factors in its complexity the relative weakness of the current implementation
on some datasets/thresholds can be explained as follows: exhaustive mining is a systematic
process that can optimally make use of reduced data portions. In contrast, for randomized
counting it is inherent that the part of the data that is needed next is unpredictable. Con-
sequently, the randomized method suffers more from the size of the input data (here, in
particular from the number of transactions) than the exhaustive method does.

9.2 Directions for future research

9.2.1 Integrated exhaustive counting

In principle issue (2) above is addressed by the hybrid counting technique presented in
Sect. 7.1. But the approach of “plugging in” any exhaustive miner in our current implemen-
tation is causing a lot of unnecessary overhead by external calls and disk accesses. Clearly,
this can be tackled by an integrated and well implemented exhaustive counting algorithm
that, in addition, should have an internal enumeration order compatible to the subfamilies
F1, F2, . . .. Such an algorithm could pass on control to the approximative algorithm as soon
as the cost of the next search level would outweigh the cost of approximating the next factor,
thus finding an optimal starting index s. It is likely that this improvement alone leads to a
hybrid counting algorithm that is never significantly outperformed by any exhaustive miner.

9.2.2 Improved lower bounds

Finding better lower bounds for the means of the random variables Z̄i , respectively, for
the ratios of their variance to their squared expectation would allow to reduce the required
number of trials, and thus to reduce the constants. This can either be done by monitoring
these quantities empirically in a sequential sampling fashion (cp. [21]) or by an exhaustive
analysis of certain parts of the input dataset. Specifically for the task of computing the com-
plete frequency plot, i.e., solving #-FREQUENT SETS for all thresholds, one can acquire a
lower bound for Fi ( f )/Fi+1( f ) already while sampling from Fi+1( f − 1) during the run
for threshold f − 1.

9.2.3 Better scaling in the number of items

One approach to achieve a better scaling in the number of items is to reduce the data in a
way that (approximately) preserves the number of frequent sets. An example for this is the
sketch matrix technique of Jin et al. [14]. Essentially, this method performs a bi-clustering
on the items and transactions, and then approximates the number of frequent sets only based
on statistics that are computed for each bi-cluster.

Another approach is to redefine the partitioning such that not only one but also a block
of k items is introduced at each level, i.e., Fi = {1, . . . , ik}. While this results in weaker
lower bounds per factor, which ideally should be addressed by empirical estimates (see the
paragraph above), it divides the number of factors by k and consequently, also reduces the
requirement on the maximum bias.
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9.2.4 Using more structural properties

It is important to point out that both, the Monte Carlo framework as well as the Markov chain
used for sampling, do not specifically rely on the fact that F is the family of frequent sets of
a transactional dataset. Instead the top-level analysis only uses the property that F is closed
“downward”, i.e., under taking subsets. This is also true for most of the speedups presented
in Sect. 7. Thus, the major part of Algorithm 1 is applicable to other pattern mining tasks
that use an anti-monotone interestingness predicate. On the other hand this is a strictly more
general problem as there are anti-monotone set families (independence systems) that cannot
concisely be represented as the family of frequent sets of a transactional dataset [22]. Conse-
quently, for the specific task of counting frequent sets a major route for potential improvement
is to investigate whether there are partitionings as well as sampling methods that exploit more
structural properties of the problem.

9.2.5 Beyond frequent sets

On a more global scale, an important next step is to investigate whether the randomized
counting approach can be extended to other pattern classes like closed sets or graph mining.
The first one induces set systems that are not closed downward, and the second is not even
representable as sets at all. Thus, a straightforward application of the techniques discussed
in this paper is impossible. This extension, however, promises to be both, challenging and
beneficial, as the cost of exhaustive mining generally increases with the pattern complexity.
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