
Knowl Inf Syst (2010) 22:1–26
DOI 10.1007/s10115-008-0190-y

REGULAR PAPER

Effectiveness of NAQ-tree as index structure
for similarity search in high-dimensional metric space

Ming Zhang · Reda Alhajj

Received: 4 August 2008 / Revised: 12 November 2008 / Accepted: 22 November 2008 /
Published online: 23 January 2009
© Springer-Verlag London Limited 2009

Abstract Similarity search (e.g., k-nearest neighbor search) in high-dimensional met-
ric space is the key operation in many applications, such as multimedia databases, image
retrieval and object recognition, among others. The high dimensionality and the huge size
of the data set require an index structure to facilitate the search. State-of-the-art index struc-
tures are built by partitioning the data set based on distances to certain reference point(s).
Using the index, search is confined to a small number of partitions. However, these methods
either ignore the property of the data distribution (e.g., VP-tree and its variants) or produce
non-disjoint partitions (e.g., M-tree and its variants, DBM-tree); these greatly affect the search
efficiency. In this paper, we study the effectiveness of a new index structure, called Nested-
Approximate-eQuivalence-class tree (NAQ-tree), which overcomes the above disadvantages.
NAQ-tree is constructed by recursively dividing the data set into nested approximate equiva-
lence classes. The conducted analysis and the reported comparative test results demonstrate
the effectiveness of NAQ-tree in significantly improving the search efficiency.

Keywords Knn search · High dimensionality · Dimensionality reduction · Indexing ·
Similarity search

1 Introduction

Similarity search in high-dimensional metric space is the key operation in many applications.
It covers two types of queries: range queries and k-nearest neighbor queries (knn search).
Range queries may be expressed as follows: given a data set S, a query point q and range r ,
find all data points p ∈ S that satisfy D(p, q) < r , where D(p, q) gives the distance between
p and q . On the other hand, knn search may be specified as follows: given a query point q ,

M. Zhang · R. Alhajj (B)
Department of Computer Science, University of Calgary, Calgary, AB, Canada
e-mail: alhajj@ucalgary.ca

R. Alhajj
Department of Computer Science, Global University, Beirut, Lebanon

123

2 M. Zhang, R. Alhajj

find the k nearest points to q; knn search can be regarded as a dynamic range query with r
being constantly updated by the distance to the current kth nearest neighbor. A query that
only looks for nearest neighbors within certain distance to q is called radius-limited nearest
neighbor query.

In this study, we consider metric space, which is a pair (S, D), where S is a data space and
D is a distance metric defined on S; such that D satisfies the three properties: (1) ∀x ∈ S,
D(x, x) = 0; (2) ∀x, y ∈ S, D(x, y)= D(y, x)≥ 0; (3) ∀x, y, z ∈ S, D(x, y) + D(y, z) ≥
D(x, z). The third property is the metric triangle inequality.

In real world applications: (1) the number of data points is huge and they are usually stored
on disk; and (2) the dimensionality of data points is high and the distance computation is
expensive. Therefore, exhaustive search is unacceptable. Hence, index structures are needed
to prune the search space such that the number of disk accesses and the number or complexity
of distance computation can be reduced.

State-of-the-art indexes are constructed based on partitioning of the data set using dis-
tances of data points to certain reference points such that the query result falls into a small
number of partitions. Most of them follow the two approaches proposed by Burkhard and
Keller [7]. One type of methods (including VP-tree and its variants) produce disjoint par-
titions, but ignore the distribution properties of the data points. The other type of methods
(including M-tree and its variants) produce non-disjoint partitions, which greatly affect the
search performance.

In this paper, we study the effectiveness of a new index structure, called Nested-
Approximate-eQuivalence-class tree (NAQ-tree), that overcomes the above disadvantages.
It combines the advantages of the above-mentioned two types of methods. NAQ-tree is con-
structed by recursively partitioning the data set into nested disjoint approximate equivalence
classes. NAQ-tree greatly improves the search efficiency. In addition, NAQ-tree can answer
some radius-limited similarity search queries by visiting one leaf node. These properties of
NAQ-tree are supported by the conducted analysis and the reported comparative test results.
In the experiments, we used three data sets and compared NAQ-tree with state-of-the-art tree
structures described in the literature. The data sets used in the experiments are the Corel data
set [10], the Phy_train data set [18], and the data set used by the authors of iDistance [16].
The reported results show that NAQ-tree outperforms some of the major index structures
described in the literature, include iDistance, VP-tree and DBM-tree. All the reported results
support the following argument: with NAQ-tree less nodes are visited, number of disk acces-
ses is lower, and less distance computations are needed; NAQ-tree also demonstrated good
scalability.

The rest of the paper is organized as follows. Section 2 presents the related works. Sec-
tion 3 covers the different aspects of NAQ-tree. Section 4 reports the experimental results.
Section 5 is conclusions and future work.

2 Related work

As described in the literature, partitioning methods can be classified into two groups [32]: (1)
space-based partitioning methods [22], and (2) data-based partitioning methods. The former
methods partition the data space using coordinate planes; thus, the partitions are disjoint
hyper-rectangles. Space partitioning methods produce huge number of partitions (exponen-
tial in the number of dimensions) and some of the partitions may contain very few points
or may be even empty, so that the page storage utilization is very low [17]. Data-based par-
titioning methods overcome these demerits. R-tree and R∗-tree were originally designed to

123

Effectiveness of NAQ-tree as index structure 3

Fig. 1 Effect of the non-disjoint
partitions

index spatial objects, hence called spatial access methods (SAM). They produce non-disjoint
partitions. SS-tree [31], SR-tree [17], and X-tree [3] can be regarded as variations of the
R∗-tree; they try to reduce the overlapping of partitions.

VP-tree [27,33] and its variants, including MVP-tree [5] and dynamic VP-tree [14] follow
the first approach of Burkhard and Keller [7], and produce disjoint partitions. The original
VP-tree [27] selects the reference points randomly. Then, Yianilos [33] proposed to use sam-
pling techniques to select reference point. MVP-tree [5] stores the distances from each data
point to the reference points and uses them to avoid unnecessary distance computations in
the query search process. Further, MVP-tree was designed to reduce distance computations
for range queries only, not for actual knn queries. VP-tree and MVP-tree are both static,
no insert operations were introduced. Later, Fu et al. [14] proposed the insert and delete
operations for the VP-tree. Yianilos [34] proposed VP-forest (which is a set of modified VP-
trees) for radius-limited nearest neighbor search. The D-index proposed by Dohnal et al. [12]
employs an idea similar to the VP-forest. However, both VP-forest and D-index do not give
any performance guarantee for general nearest neighbor queries.

Gh-tree [27], GNAT [6], M-tree [9], Slim-tree [26], DBM-tree [29], and �+-tree [11]
follow the second approach of Burkhard and Keller [7]; they produce non-disjoint partitions.
These methods can be regarded as clustering-based methods, and none of them can com-
pletely remove the overlapping. Other recent works that worth mentioning are: Omni [13],
iDistance [16] and the method developed by Venkateswaran et al. [28].

Generally, the case of disjoint partitions is better than non-disjoint partitions in terms of
search efficiency. In the case of disjoint partitioning, the query point can fall in only one
partition. When the query range r is small enough, the whole query hyper-sphere is in one
partition. As we only need to search the partitions that intersect the query hyper-sphere, we
can prune all the other partitions. On the other hand, in the case of non-disjoint partitioning
(as shown in Fig. 1), if the query point q falls in the overlapped area, we need to search
all the three partitions no matter how small the range r is. However, it is worth noting that
the existing disjoint partitioning methods (VP-tree and its variants) are not always better
than non-disjoint partitioning methods. The former type of methods is implicitly based on
the assumption that data points are uniformly distributed, which usually does not hold in
real-world applications. In order to keep the tree balanced, they divide the data set into
equal-sized partitions, ignoring the inherent grouping of data points. On the contrary, the
non-disjoint partitioning methods (M-tree and its variants) capture this property by dividing
the data set by clustering. For example, in situations similar to the case illustrated in Fig. 2,

123

4 M. Zhang, R. Alhajj

Fig. 2 Sparsely distributed
clusters of data points

where the data point clusters are sparsely distributed, the clustering-based methods are better
as they may produce tighter partitions and improve the pruning rate.

To sum up, each of the two partitioning approaches described above has its advantages.
Fortunately, NAQ-tree is an index structure that combines the advantages of the two types
of methods (disjoint partitioning and non-disjoint partitioning). In NAQ-tree, a data set is
divided into disjoint partitions by respecting the data distribution. The test results reported
in this paper demonstrate the power of the NAQ-tree over the well-known and heavily cited
representatives of the other two types of approaches.

We have discussed the existing index structures for exact similarity search in generic met-
ric space. However, some index structures are designed for specific applications, e.g., the
Compact Multi-Resolution Index for time series databases [20]. Other techniques for simi-
larity search include: the Locality Sensitive Hashing scheme [2], which has been designed
for approximate nearest neighbor search; VA file [32] which uses vector approximation
to accelerates sequential scan; CVA [1] file which improves the VA file by incorporating
critical-value based dimension-reduction technique; the multi-step method [24] which uses
filter-refinement strategy to confine expensive distance computation in small filtered candi-
date set. Finally, Kailing [19] combines the multi-step method with the metric index structure
for range queries of complex objects.

3 NAQ-tree

Consider a set of objects O = {o1, o2, . . . , on} and a set of attributes A = {a1, a2, . . . , ad},
we first divide the objects into groups based on the first attribute a1, i.e., objects with same
value of a1 are put in the same group; each group is an equivalence class [23] with respect to
a1. In other words, all objects in a group are indistinguishable by attribute a1. We can refine
the equivalence classes further by dividing each existing equivalence class into groups based
on the second attribute a2; all objects in a refined equivalence class are indistinguishable by
attributes a1 and a2. This process may be repeated by adding one more attribute at a time
until all the attributes are considered. Finally, we get a hierarchical set of equivalence classes,
i.e., a hierarchical partitioning of the objects. This is roughly the basic idea of NAQ-tree,
i.e., to partition the data space in our similarity search method. In other words, given a query
object o, we can gradually reduce the search space by gradually considering the most relevant
attributes.

In our similarity search method, each object is a d-dimensional data point P =
(p1, p2, . . . , pd), p j ∈ R; attributes are the distances from data points to reference points
(selected using sampling-based method as described in [33]). At each level, we compute
the distances from the data points to a reference point. Each data point is represented by
its distance to the reference point. This is equivalent to mapping the data points into a
one-dimensional distance space (distances are scalar). This way, we cluster the data points

123

Effectiveness of NAQ-tree as index structure 5

Fig. 3 Example data points with different perspectives

in this one-dimensional space. Each cluster is a partition, called an approximate equivalence
class, in the sense that the data points in the same class have similar distances to the reference
point, and are hardly distinguishable by this attribute. We apply this strategy recursively in
the partitions until each partition is small enough to fit into one disk page. Finally, we get a
set of nested approximate equivalence classes, which is a hierarchical disjoint partitioning
of the data set.

As we partition the data points based on the distances to selected reference points, desir-
able reference points should give large variance of distances so as to better separate the data
points. Ideally, the selected reference point is expected to maximize the variance. However,
determining an “ideal” reference point is too expensive. Thus, we employ the sampling-based
method [33]: randomly select two sets of sampling data points, denoted by A and B; A works
as the candidate set of reference points; compute the distances from each points in A to the
points in B; the point (from A) with the largest variance of distances (to points in B) is
selected as the reference point. The conducted experiments show that the sampling-based
method works almost as well as selecting “ideal” reference point. More importantly, the
search performance is stable when repeating the experiments.

To explicitly highlight the novelty of NAQ-tree, herein we elaborate further on how
NAQ-tree benefits from and combines the advantages of both disjoint-partitioning meth-
ods and clustering-based methods. NAQ-tree partitions the data set based on the distances to
one reference point. As there exists a full order on the distances to the same reference point,
the partitions are disjoint. In this respect, NAQ-tree is like the disjoint-partitioning methods
(VP-tree and its variants). On the other hand, NAQ-tree does not partition the data set evenly.
It clusters the data points in one-dimensional space (based on distance, which is scalar); each
cluster is a partition. This partitioning strategy captures the data distribution, in the sense that
far away data points are separated into different partitions. In other words, data points are
classified into their natural groups. In this respect, NAQ-tree is similar to the clustering-based
method (M-tree and its variants). Therefore, NAQ-tree combines the advantages of the two
types of existing methods discussed in Sect. 2.

To illustrate the power of NAQ-tree, lets look at how NAQ-tree and the two types
of methods described in Sect. 2 handle the data set and the query shown in Fig. 3.
Clustering-based methods (M-tree and its variants) cluster the data set shown in Fig. 3 into

123

6 M. Zhang, R. Alhajj

three groups and use a bounding sphere (the dotted circle) to represent each cluster, usually
these bounding spheres do overlap. Given a query sphere as shown in Fig. 3, it intersects all
the three bounding spheres, thus requires searching all the clusters. Existing disjoint-parti-
tioning methods (VP-tree and its variants) map the data points to the X -axis based on their
distance to a reference point, and divide the points evenly into same-sized partitions. As
illustrated in Fig. 3, the two partitions are not separated and the partition boundary is in the
denser area. When mapped to the X -axis, the query sphere intersects both data partitions,
thus it is required to search both. NAQ-tree maps the data points to the N -axis and clusters
the points into two groups; the two clusters are separated by the natural space between them.
When mapped to the N -axis, the query sphere only intersects one of the partitions, thus
requires searching only one partition.

At the end, it is worth mentioning that as we do not partition the data evenly, NAQ-tree
is unbalanced, which may be considered as another advantage of NAQ-tree. We show next
in Proposition 3.1 that for similarity search in high dimensional space, unbalanced tree may
provide better performance than balanced tree. Further, Proposition 3.2 shows that having a
balanced tree does not provide any advantage for uniformly distributed data in general.

Proposition 3.1 For similarity search in high dimensional space, unbalanced tree may pro-
vide better performance than balanced tree.

Proof We know that, if there exists a full order on the search key, then the exact search
follows a single root-to-leaf path, and range search looks into extra consecutive leaf nodes.
In this case, the search cost is determined by the tree height and a balanced tree minimizes
the height. However, for similarity search in high dimensional space, there does not exist
a full order on the search key; so the search has to follow many branches. The number of
branches to be searched is determined by the search radius and the data distribution. That
is, the search cost is determined by the pruning rate of the search space, not by the tree
height. The pruning rate of the search space is determined by how the data set is separated.
The balanced tree partitions the data set into equal-sized parts, ignoring the data distribution.
NAQ-tree partitions the data set by the data distribution; thus it is better separating the data
set than balanced partitioning. For more detailed justification of the benefits of unbalanced
tree in similarity search, refer to [8]. ��

Proposition 3.2 The balance of a tree does not provide any advantage for uniformly distrib-
uted data.

Proof Beyer et al. [4] proved that under certain broad conditions of the data and query distri-
butions (uniform distribution is one of them), nearest neighbor query becomes unstable with
the increase of dimensionality. Specifically, as the dimensionality increases, the difference
between the distance to the nearest neighbor and the distance to the farthest neighbor does not
grow as fast as the distance to the nearest neighbor. That is, the contrast between the distance
to the nearest neighbor and the other points is diminishing. Shaft and Ramakrishnan [25]
extended the result of Beyer et al. [4] by proving that the expected performance of any Convex
Description Index structure converges to the performance of linear scan as the dimension-
ality increases. Convex Description Index includes a large group of existing indexes, e.g.,
R-tree and its variants, M-tree and its variants, etc. The result of these two theoretic works
shows that we cannot expect an index structure to work well for uniformly distributed data
in high dimensional space. Therefore, the balance of tree does not provide any advantages
for uniformly distributed data. ��

123

Effectiveness of NAQ-tree as index structure 7

Fig. 4 Internal node structure in NAQ-tree

Algorithm 1 Tree-construct(U, d, N)

1: /*U is a pointer to the d-dimensional data set with N data points*/
2: Root=Node-construct(U, d, N); /*invoke Algorithm 2.*/

3.1 Tree construction

As described in Definition 3.1, NAQ-tree is an unbalanced index structure representing the
hierarchical disjoint partitions of the data set. Leaf nodes of the tree store data points and
non-leaf (internal) nodes contain the partition information. In the remaining part of the paper,
we may interchangeably use the terms non-leaf and internal node.

Definition 3.1 (Characteristics of NAQ-tree) NAQ-tree is an unbalanced tree with these
properties:

1. Only leaf nodes store data points;
2. For any non-leaf node X , all the data points in its descendant leaf nodes are said to be

covered by X ;
3. Each non-leaf node X records:

(a) One reference point f ;
(b) m pairs of partition boundaries [ai L , ai R] (i = 0..(m−1)) of the data points covered

by X , where the partitions are obtained based on the distances from the data points
to reference point f ;

(c) m pointers child[i] (i = 0..(m −1)) to the child nodes, where child[k] (0 ≤ k < m)
points to the child node that covers the data points in [akL , ak R]. ��

An internal node in the NAQ-tree looks as shown in Fig. 4.
The tree construction process is performed in a top-down fashion starting from the root

node, which covers all the data points. We select a reference point (using sampling-based
method as described in [33]) for the root node, compute the distances from all the data points
to the selected reference point and cluster the data points based on these distances. Each
cluster (partition) is covered by one child node of the root. This process is carried out recur-
sively in the child nodes until each partition can fit into a disk page; this requires invoking
Algorithm 1 that calls Algorithm 2 to complete the tree construction process.

In Algorithm 2, as each data point is represented by its distance to the reference point, the
clustering is performed in one-dimensional space. We consider the data set as a degenerated
weighted tree with each data point being a node, and edge weight is the distance between
neighboring data points in one-dimensional space. Thus, clustering is performed simply by
breaking the (m − 1) highest weighted edges. As a result, each set of linked data points form

123

8 M. Zhang, R. Alhajj

Algorithm 2 Node-construct(U, d, n)

1: /*U is a pointer to the d-dimensional data set with n data points, C is the leaf node capacity*/
2: if n < C then
3: /*this is leaf node*/
4: Node=Initialize_leafnode();
5: Insert all points in Node;
6: Return address of Node;
7: else
8: /*this is internal node*/
9: find the reference point f ;
10: compute the distance from each data point to f ; /*complexity O(dn)*/
11: sort the data points based on the distances; /*complexity O(nlogn)*/
12: cluster the data points, clusters’ boundaries are [ai L , ai R], i = 0, . . . , (m −1); /*invoke Algorithm 3.*/
13: Node = Initialize_node();
14: Node.reference= f ;
15: for each cluster with boundary [ai L , ai R], i = 0, . . . , (m − 1) do
16: Node.left_bound[i]= ai L ;
17: Node.right_bound[i]= ai R ;
18: Node.child[i]=Node_construct(Ui ,d, ni); /*Ui is the pointer to the ni data points in cluster i */;
19: end for
20: Return the address of Node;
21: end if

Algorithm 3
1: Compute the distances (edge weights) between the neighboring data points;
2: Sort the edges in descending order of weights;
3: do
4: /*check the edges in descending order of weights*/
5: if by breaking the current edge, the resulting two clusters are both larger than the minimum page size then
6: break the edge;
7: else
8: move to the next edge;
9: end if
10: while (less than m − 1 edges have been broken);

Fig. 5 The hierarchical disjoint partitions

a cluster. The clustering process is performed by invoking Algorithm 3. The if condition
(line 5) in Algorithm 3 guarantees the minimum space utilization of leaf nodes.

After the tree is constructed, we get hierarchical disjoint partitions of the data set as
shown in Fig. 5. At each internal node, the data points are divided into disjoint partitions by
their distances to the reference point. In the next section, we will show how the NAQ-tree
(constructed as described in this section) helps in similarity search.

123

Effectiveness of NAQ-tree as index structure 9

3.2 Similarity search algorithms

Given a range query (q, r), where q is the query point and r is the range, it is required to find
all points s that satisfy D(s, q) < r , where D(s, q) is a metric that gives the distance between
s and q . First, we compute the distance D(q, f) between q and the selected reference point
f . If ai L ≤ D(q, f) ≤ ai R , i.e., q falls into the partition [ai L , ai R], we first search (using
depth-first search) the partition [ai L , ai R] ; in case q falls in the gap between two partitions,
this step can be skipped; and then search (again using depth-first search) the partitions in the
left and right directions. In both directions, we compare D(q, f) with the partition bound-
aries; in the left direction we compare with the right boundaries, and in the right direction
we compare with the left boundaries. We can prove that we only need to search a small set
of consecutive partitions. Specifically, the search can halt if the condition in Proposition 3.3
is satisfied.

Proposition 3.3 (Stop searching condition:)

1. In the right direction, if for certain a j L , we have a j L − D(q, f) > r , then we do not
need to search partitions to the right of a j L ; i.e., we can prune partition [a j L , a j R] and
all the partitions to the right of it.

2. In the left direction, if for certain at R, we have D(q, f)−at R > r , then we do not need
to search partitions to the left of at R; i.e., we can prune partition [at L , at R] and all the
partitions to the left of it.

Proof In the right direction, suppose we have a j L − D(q, f) > r , choose an arbitrary data
point s that falls to the right of a j L , i.e., D(s, f) > a j L .

Since D is a metric, we have the inequality:
D(s, q) + D(q, f) ≥ D(s, f)

That is, D(s, q) ≥ D(s, f) − D(q, f) > a j L − D(q, f) > r
Since s is arbitrarily chosen, we know that all the data points to the right of a j L are far

away from q than the query range r , i.e., fall outside the query range.
By the same way, we can prove the stop condition for the left direction. ��
The above description shows that, at each level, we can restrict the search space to a set

of consecutive partitions (Approximate eQuivalence classes) based on the distance to one
reference point. Within each partition, we can further reduce the search space based on the
distances to another reference point.

The knn query is a dynamic range query with r being the distance of the current kth
nearest neighbor; at the beginning, r is set to infinity. During the search process, r is updated
(decreased) when a new nearest neighbor is found. From the stop condition in Proposition 3.3,
we know that the smaller the r is, the smaller the search space will be.

Algorithms 4 and 5 are invoked for performing range queries and knn search, respectively.
Algorithm 4 answers the range query: given query point q and query range r, look for all
data points p that satisfy Dist (p, q) ≤ r , where Dist (p, q) denotes the distance between
p and q . Algorithm 5 answers the knn query: given query point q, find the k-nearest points
to q . In Algorithms 4 and 5, m is the number of partitions (in one internal node).

Note that for range queries, the search order (of partitions) does not affect the search effi-
ciency; we may search in either direction first. In our algorithm, we search all the partitions
to the left of query point q before searching the partitions to the right of q . However, for knn
queries, the search order is important. The chances that nearest neighbors exist are higher in
the partitions closer to q than in the partitions far away from q; hence, the best search order

123

10 M. Zhang, R. Alhajj

Algorithm 4 Search_rq(q, r, Node)

1: /*Initially Node=Root*/
2: Compute Dq = Dist (q, Node.re f erence);
3: if Node is not a leaf node then
4: if q falls in a partition x then
5: Search_rq(q, r, Node.child[x]);
6: end if
7: Let i and j be, respectively, the left and right partitions adjacent to q;
8: while i ≥ 0 and Dq − Node.right_bound[i] ≤ r do
9: /*search the left direction*/
10: Search_rq(q, r, Node.child[i]);
11: i = i − 1;
12: end while
13: while j ≤ (m − 1) and Node.le f t_bound[j] − Dq ≤ r do
14: /*search the right direction*/
15: Search_rq(q, r, Node.child[j]);
16: j = j + 1;
17: end while
18: else
19: Search the leaf node, add all the data points p that satisfy Dist (q, p) ≤ r into the result set;
20: end if

Algorithm 5 Search_KNN(q, Dk , Node)

1: /*Dk is the current kth nearest distance to q, initially Dk = ∞*/
2: Compute Dq = Dist (q, Node.re f erence);
3: if Node is not a leaf node then
4: if q falls in a partition x then
5: Dk = Search_K N N (q, Dk , Node.child[x]);
6: end if
7: Let i and j be the left and right partitions adjacent to q, respectively;
8: while i ≥ 0 or j ≤ (m − 1) do
9: if i ≥ 0 and Dq − Node.right_bound[i] ≤ Dk then
10: /*search in the left direction*/
11: Dk = Search_K N N (q, Dk , Node.child[i]);
12: i = i − 1;
13: end if
14: if j ≤ (m − 1) and Node.le f t_bound[j] − Dq ≤ Dk then
15: /*search in the right direction*/
16: Dk = Search_K N N (q, Dk , Node.child[j]);
17: j = j + 1;
18: end if
19: end while
20: Return Dk ;
21: else
22: Search the leaf node sequentially, update the result set and Dk each time a point q is found that satisfies

Dist (q, p) ≤ Dk ;
23: Return Dk ;
24: end if

is from close to far with respect to q . In our implementation, we iteratively search one left
partition followed by one right partition, starting from the partitions close to q .

Another advantage of NAQ-tree is that it can perform some limited-radius similarity
search very efficiently. Specifically, NAQ-tree can give the answer by visiting one leaf node
as shown next in Proposition 3.4.

123

Effectiveness of NAQ-tree as index structure 11

Proposition 3.4 Let s denotes the minimum length of the gaps between partitions at all
levels, for any r < s

2 , for range query (q, r) and nearest neighbor query within radius r ,
NAQ-tree can give the answer by visiting at most one leaf node.

Proof As s is the minimum length of the gaps between partitions, any two neighboring par-
titions are at least s apart. With r < s

2 , at each level, the query range (q, r) could intersect at
most one partition, thus only needs to follow one path. If at certain level, the query range does
not intersect any partition, it can report an empty answer set. For a nearest neighbor query
within radius r , the radius r is non-increasing in the search process; so the above description
still holds. ��

For radius-limited nearest neighbor queries within radius r < s
2 , we invoke Algorithm 5

with the initial radius set to r , and it can give the answer by visiting at most one leaf node.
VP-tree and its variants do not satisfy this property because neighboring partitions are not sep-
arated by a gap. Also, non-disjoint partitioning methods (M-tree and its variants) do not have
this property because of the overlapping between the partitions. In the test results reported in
Sect. 4.2, we will show that the B+-tree based iDistance method does not satisfy the property
stated in Proposition 3.4. Note that when r = 0, the radius limited nearest neighbor query
becomes exact match query. The iDistance method requires visiting a large number of leaf
nodes even for exact match queries.

4 Experiment

To demonstrate the performance and effectiveness of the proposed NAQ-tree, we con-
ducted experiments to compare NAQ-tree with (1) VP-tree as a disjoint partition method;
(2) DBM-tree, which may be considered as the best known non-disjoint partition method,
and in [29] it has been shown to perform better than M-tree and Slim-tree; and (3) iDistance,
which is the latest B+-tree based similarity search index, and in [16] it has been shown to
perform better than both Omni method and M-tree.

We decided on using VP-tree instead of MVP-tree in the comparison because the only
advantage of MVP-tree over VP-tree is that MVP-tree stores (in the leaf nodes) the distances
of each data point to the reference points and uses these distances to reduce the number of
distance computations. This technique has nothing to do with data partitioning; in general,
it does not reduce the number of disk accesses. Further, MVP-tree [5] did not report any
performance improvement over VP-tree in terms of disk accesses. MVP-tree technique to
reduce the number of distance computations can also be adapted to the NAQ-tree. It is left
as future work because in this paper we want to concentrate more on showing how our new
data partitioning method improves the performance in terms of disk accesses. Actually, the
test results reported in this paper reflect indirect comparison of NAQ-tree and MVP-tree in
terms of distance computations because we report the improvement that NAQ-tree achieves
in terms of distance computations over VP-tree; this is a good indicator of how comparable
NAQ-tree and MVP-tree are when we compare the improvement each achieves compared to
VP-tree.

We conducted the experiments using two real data sets: (1) Corel Image Features [10],
which has 68,040 32-dimensions data points, and (2) the Phy_train [18], which has 50,000 78-
dimensional data points. For each data set, a query set of 500 points are randomly selected
from the data set. The query set is divided into two parts, each contains 250 points. We
removed the second part from the data set. Thus, half of the query set is in the data set and
the other half is not. In the remaining part of this section, if not indicated otherwise, all the

123

12 M. Zhang, R. Alhajj

Fig. 6 Comparison of visited
nodes using Corel data set

performance measurements represent the average over the 500 queries. All the experiments
were performed on a computer with Intel Core(2) 2.4 GHz CPU and 3GB RAM running
Kubuntu Linux 7.04.

4.1 NAQ-tree versus VP-tree

We used the VP-tree implementation (special visiting order) available at [30]. In order to
make a fair comparison, we set the parameters of NAQ-tree to be the same as VP-tree:
(1) tree fanouts is 10; (2) leaf node capacity is 100 points; (3) both methods select the refer-
ence points by sampling with the same sampling rate. Further, for knn queries, we tested the
performance from k = 2 to k = 20. We choose this range because most real applications look
for nearest neighbors within the range [2, 20]. For example, in the work of Lowe [21], two
nearest neighbors of the query feature vector are found in the database, the second nearest
neighbor is used to verify if the most nearest neighbor is distinctive.

As we know, the number of disk accesses (per query) is determined by (but not necessarily
equal to) the number of visited nodes (per query). In the worst case that each node resides in
its own page, the number of disk accesses equals to the number of visited nodes. Figures 6
and 7 show the number of visited nodes for knn queries using Corel (32 dimensions) and
Phy_train (78 dimensions), respectively. For Corel, NAQ-tree saved 38–46% of the node vis-
its; and for Phy_train, NAQ-tree saved 32–41% of node visits. This confirms Proposition 3.1
that the unbalanced tree (e.g., NAQ-tree) may outperform the balanced tree (VP-tree) because
NAQ-tree separates the data better, and hence the pruning rate is improved.

In both VP-tree and NAQ-tree, internal nodes are much smaller than leaf nodes. In our
parameter setting, the size of an internal node is less than 1/50 of the size of a leaf node.
Further, the size of the internal node is fixed (for fixed fanouts). In most cases, many internal
nodes can be kept in one page, and in some cases all internal nodes can fit into main memory
because the total number of internal nodes is much smaller than the number of leaf nodes.
Therefore, the number of disk accesses (per query) can be estimated by the number of visited
leaf nodes (per query). In this case, the performance improvement of NAQ-tree is even better.
Figures 8 and 9 give the number of disk accesses (visited leaf nodes) for knn queries using
the two data sets, respectively. For Corel, NAQ-tree reduced 53–65% of the disk accesses;
and for Phy_train, NAQ-tree saved 42–52% of the disk accesses.

123

Effectiveness of NAQ-tree as index structure 13

Fig. 7 Comparison of visited
nodes using Phy_train data set

Fig. 8 Comparison of disk
accesses using Corel data set

Fig. 9 Comparison of disk
accesses using Phy_train data set

123

14 M. Zhang, R. Alhajj

Fig. 10 Comparison of distance
computations using Corel data set

Fig. 11 Comparison of distance
computations using Phy_train
data set

The number of distance computations is equal to the number of visited data points plus
the number of visited reference points. Figures 10 and 11 display the number of distance
computations for knn queries using the two data sets Corel and Phy_train, respectively. For
Corel, NAQ-tree saved 55–66% of distance computations; and for Phy_train, NAQ-tree saved
22–35% of the distance computations.

For range queries, we tested the range from 0.01 to 0.08 for Corel. We chose this range
because there is no point found when the range is expanded below 0.01. When the range
r = 0.08, the average number of points in the answer set is approximately 22. For Phy_train,
we tested the range from 0.6 to 1.2 as there is no point found when the range is below 0.6;
and when the range reaches 1.2, the average number of points in the answer set is over 20.

Figures 12 and 13 illustrate the number of visited nodes for the two data sets. Figure 12
shows that, for Corel, when the range is 0.01, VP-tree visits a little less nodes than NAQ-tree,
which is due to the fact that NAQ-tree is unbalanced, so it visits more internal nodes than
leaf nodes when the range is very small. For range r ≥ 0.02, on the other hand, NAQ-tree
visits less nodes than VP-tree and the performance difference becomes larger as the range

123

Effectiveness of NAQ-tree as index structure 15

Fig. 12 Comparison of visited
nodes using Corel data set

Fig. 13 Comparison of visited
nodes using Phy_train data set

increases. As illustrated in Fig. 12, NAQ-tree can save up to 54% of the node visits. For
Phy_train, NAQ-tree saved 32–51% of the node visits.

Recall that the number of internal nodes is small and only a leaf node occupies one disk
page, hence we can estimate disk accesses by the number of visited leaf nodes. Figures 14
and 15 give the number of disk accesses for the two data sets Corel and Phy_train, respec-
tively, where it can be easily seen that NAQ-tree reduced 74–80% of disk accesses for Corel;
and NAQ-tree saved 43–62% of disk accesses for Phy_train. Figures 16 and 17 illustrate the
number of distance computations, which demonstrate that NAQ-tree can save up to 80% of
the distance computations for Corel, and saved up to 49% for Phy_train.

4.2 NAQ-tree versus iDistance

The iDistance implementation has been obtained from the author’s home page at [15]. We
set the node capacity of NAQ-tree to be the same as the capacity used for iDistance. And the
minimum space utilization of leaf node is set to 50%, which is the same as iDistance (50%

123

16 M. Zhang, R. Alhajj

Fig. 14 Comparison of disk
accesses using Corel data set

Fig. 15 Comparison of disk
accesses using Phy_train data set

Fig. 16 Comparison of distance
computations using Corel data set

123

Effectiveness of NAQ-tree as index structure 17

Fig. 17 Comparison of distance
computations using Phy_train
data set

Fig. 18 Comparison of disk
accesses using Corel data set

is the guaranteed space utilization rate of B+-tree). The other parameters of iDistance (i.e.,
the number of reference points, initial search radius, and radius increment at each step) are
set to the same values as those reported in [16]. In iDistance implementation, it is assumed
that all internal nodes can be placed in main memory so that the number of the disk accesses
is the number of leaf nodes visited.

Here, we run the experiments for three data sets. In addition to Corel and phy_train, we
also tested using the data set (together with the query set) obtained from the iDistance author’s
home page [15]. Hereafter, the third data set will be referred to as the iDistance data set.

Figures 18 and 19 show the number of disk accesses for Corel and Phy_train, respectively.
These figures show that NAQ-tree saved 10–35% of the disk accesses for Corel, and saved
46–57% of the disk accesses for Phy_train.

Figure 20 illustrates the disk accesses for the iDistance data set, which shows that
NAQ-tree can save 18–48% of disk accesses.

Although not described in the original paper, the iDistance implementation provides an
option to post-process the B+-tree to compact the leaf nodes so that the space utilization of
leaf nodes can be improved to a user defined rate. Figure 21 shows the disk accesses after

123

18 M. Zhang, R. Alhajj

Fig. 19 Comparison of disk
accesses using Phy_train data set

Fig. 20 Comparison of disk
accesses using iDistance data set

Fig. 21 Comparison of disk
accesses after compaction using
iDistance data set

123

Effectiveness of NAQ-tree as index structure 19

Fig. 22 Comparison of disk
accesses after compaction using
Phy_train data set

compacting to rate 90% for the iDistance data set. It shows that the compaction saved the
disk accesses and made its performance closer to (still not as good as) NAQ-tree. However,
the compaction does not always work so well; this is illustrated in Fig. 22, which compares
the disk accesses of iDistance before and after compaction with NAQ-tree using Phy_train.
For Phy_train, the number of disk accesses of iDistance after compaction is almost the same
as that before compaction.

From Proposition 3.4, NAQ-tree can answer radius-limited similarity queries by one disk
access if the radius is small. On the other hand, the number of disk accesses iDistance requires
for such queries have been reported on Corel, Phy_train and idistance data set as 277, 99 and
241, respectively. In other words, if given a query, there exists in the database a perfectly
matching point (or very close point), which is the most desirable one, NAQ-tree can get that
point much faster than iDistance.

4.3 NAQ-tree versus DBM-tree

To compare the performance of NAQ-tree with DBM-tree as given in [29], we adjusted
the parameters of NAQ-tree to be the same as those reported in [29] to produce the best
performance of DBM-tree. The data set we used (Corel [10]) is the same as reported in [29].

Table 1 shows the number of visited nodes and visited leaf node of NAQ-tree for knn
queries. Recall that an internal node is small and has fixed-size; it does not need to reside
in its own page. The actual number of disk accesses can be less than the number of total
visited nodes. The number of total visited nodes and the number of visited leaf nodes can be
regarded as the upper and lower bounds of the disk accesses, respectively.

Figure 23 compares the disk accesses of the best case of DBM-tree with the disk accesses
(upper and lower bounds) of NAQ-tree for knn queries. The curves plotted in Fig. 23 show
that DBM-tree requires nearly 600 disk accesses for k = 2 and 780 disk accesses for k = 20,
i.e., even in the worst case (that each node resides in one disk page), NAQ-tree can save
16–34% of the disk accesses.

For range queries, the work described in [29] tested ranges from 0.01 to 10% of the largest
distance between pairs of data points in the data set. The number of disk accesses increases
with ranges. The reported result showed that even for the smallest range (0.01%), the best
DBM-tree requires over 260 disk accesses. This is caused by the inherent disadvantage of the

123

20 M. Zhang, R. Alhajj

Table 1 NAQ-tree performance k Visited nodes Visited leaf-nodes

2 387 190

4 470 253

6 513 287

8 542 310

10 566 328

12 586 345

14 605 359

16 622 373

18 637 385

20 651 396

Fig. 23 Comparison of disk
accesses

non-disjoint partitioning as discussed in Sect. 2. The query point may fall in the overlapped
area of many partitions; all these partitions have to be searched no matter how small the query
range is.

As the developers of DBM-tree did not give in [29] the value of the largest distance, we
use the upper bound of the largest distance (in order to save time as it is very time-consuming
to compute the actual largest distance for a data set of over 6 × 104 points); we tested ranges
from 0.01 to 10% of the upper bound. (The method for computing the upper bound of the
largest distance is presented in the appendix at the end of this paper). The results reported
in Table 2 show that for the range from 0.01 to 4%, NAQ-tree visited from 43 to 256 nodes,
i.e., the upper bound of disk accesses is less than 260. The best case of DBM-tree requires
over 260 disk accesses even for the smallest range 0.01%. This highlights another advantage
of NAQ-tree.

4.4 Scalability of NAQ-tree

To test the scalability of NAQ-tree as compared to VP-tree and iDistance, we decided to avoid
using synthetic data in order to eliminate any possible bias in the testing. Consequently, we

123

Effectiveness of NAQ-tree as index structure 21

Table 2 Range query
performance of NAQ-tree

Range (%) Visited nodes No of points in answer set

0.01 43 0

0.10 44 0

0.50 51 1

1 63 1

1.50 78 2

2 100 4

2.50 128 6

3 165 8

3.50 203 10

4 256 13

Fig. 24 Scalability of NAQ-tree
versus iDistance

used real data, which we obtained by combining the two 32-dimensions data sets from [10]
into one data set; then we divided the combined set into ten equal-sized parts. We started the
experiment by using one of the ten parts as the data set and gradually added the remaining
nine parts one by one until all the parts were included. We used the same set of queries to
perform k-nearest neighbor search at each of the ten steps of the experiment. The achieved
results are reported next in this section.

4.4.1 Scalability of NAQ-tree versus iDistance

To compare NAQ-tree with iDistance, we set the page capacity of NAQ-tree to be the same
as that of iDistance; the developers of iDistance recommended using 64 reference points. We
tested the number of disk accesses for k-nearest neighbor search by increasing the data set
size from one part to ten parts. Figure 24 illustrates the number of disk accesses (for k = 20)
required by NAQ-tree and iDistance. The curves plotted in Fig. 24 demonstrate that the num-
ber of disk accesses required by iDistance increases faster that NAQ-tree as the data set size
increases. When the size of the data set is small (up to around 50K data points), iDistance
performs a little better than NAQ-tree; however, as the data set size increases beyond 50K, the
number of disk accesses required by NAQ-tree increases slower compared to iDistance, i.e.,

123

22 M. Zhang, R. Alhajj

Fig. 25 Number of visited
points: NAQ-tree versus VP-tree

NAQ-tree performs better than iDistance when the data set is larger than 50K. More impor-
tantly, the performance advantage of NAQ-tree over iDistance increases with the growth of
data set. For example, using the data set with 135,580 points, NAQ-tree visits less than 650
pages, but iDistance requires visiting over 850 pages.

NAQ-tree performs better than iDistance because they differently handle the search
radius r for k-nearest neighbor search. NAQ-tree starts with search radius r = ∞, and
gradually decreases the value of r to the current kth nearest neighbor. On the other hand,
iDistance starts from a small initial search radius r , and gradually increases r until k neigh-
bors are located. In iDistance, the choice of the initial value of radius r and the increment
at each step greatly affect the performance (i.e., setting the initial value of r to be close to
the distance to the kth nearest neighbor will lead to good performance; however, the latter
distance is unknown before the search). In iDistance, both parameters are determined based
on the distance from query q to the nearest reference point. For fixed number of reference
points, when the data set size increases, the distance between query q and the nearest ref-
erence point fails to give any insight for estimating appropriate values for both the initial
radius r and the increment.

4.4.2 Scalability of NAQ-tree versus VP-tree

To compare NAQ-tree with VP-tree, we set the page capacity of NAQ-tree to be the same
as that of VP-tree. We tested the number and percentage of visited points (for k-nearest
neighbor search) as the data set size increases. Figures 25 and 26 compare NAQ-tree and
VP-tree in terms of the number and percentage of visited points, respectively. Figure 25
shows that, when the data set size increases from 13,558 to 135,580, the number of points
visited by NAQ-tree increased from around 9,000 to 17,000 (i.e., the increase is less than
two times); whereas the number of points visited by VP-tree increased from around 10,000
to nearly 40,000 (i.e., increased by almost four times). This demonstrates the performance
advantage of NAQ-tree over VP-tree increases as the data set size increases. Figure 26 shows
that both VP-tree and NAQ-tree visit decreasing percentage of points as the data set grows;
the performance advantage of NAQ-tree over VP-tree is consistent.

NAQ-tree performs better than VP-tree because NAQ-tree deals better with the partitions.
In the data partitioning, at each level, NAQ-tree maximizes the gaps between neighboring
partitions; whereas in VP-tree, neighboring partitions are not separated. For a given search

123

Effectiveness of NAQ-tree as index structure 23

Fig. 26 Percentage of visited
points: NAQ-tree versus VP-tree

radius r , NAQ-tree is more likely to search less partitions than VP-tree at each level. When
the data set size increases, the height of the tree increases, thus the performance difference
between NAQ-tree and VP-tree aggregates.

5 Conclusions and future work

In this paper, we proposed NAQ-tree as a new reference-based index structure for similarity
search in high-dimensional metric space. NAQ-tree employs the idea of partitioning the data
set into a set of nested approximate equivalence classes and confining the search space to
small subset of partitions. NAQ-tree combines the advantages of the two types of differ-
ent reference-based data partitioning methods (disjoint partition method like VP-tree, and
non-disjoint cluster-based method like M-tree and DBM-tree). NAQ-tree partitions the data
set in a disjoint way (so that no overlapping exists), while captures the inherent clustering
property of the data distribution. The conducted tests demonstrate that NAQ-tree gives better
performance than the major similarity search methods described in the literature.

For knn queries, all the index structures transform the query to range query with dynamic
range. Given a query point q , if we know the distance rk from q to its kth nearest neighbor,
we may achieve the optimal performance by performing range query (q ,rk) to get the kth
nearest neighbor. However, it is impossible to know rk before the search is completed. In
iDistance, search starts from a small range and iteratively increases until the range reaches
rk (i.e., until k or more nearest neighbors are obtained). The initial search range and the
increment value at each step are independent of the query, they are fixed for a given data
set. However, for different queries, the distance to its kth nearest neighbor may vary greatly.
Thus, it is impossible to find a fixed value of initial search range and fixed increments to
provide good performance for any query. In the other hand, NAQ-tree starts the search from
infinite range and the range is reduced to the distance of the current kth nearest neighbor
at each step until the range reaches rk . The search is guided by a heuristic that considers
not only the data set, but the query as well. The current NAQ-tree can be regarded as using
pessimistic heuristics that would not miss any nearest neighbors, but often over-estimates the
search range such that it requires visiting more nodes than necessary. We are trying to further
improve the performance of NAQ-tree by using more optimistic heuristics. In addition, the

123

24 M. Zhang, R. Alhajj

current NAQ-tree uses fixed search order of partitions at each level without considering the
distance between partitions and the density of the partitions. We believe that it is possible to
optimize the search order at each level and hence further improve the NAQ-tree performance.
We are also working on extending the capabilities of the proposed approach to support for
the deletion and insertion in the NAQ-tree. Although the current NAQ-tree is constructed
using the full data set, it can easily be converted to a dynamic index by adding an insertion
operation. As we do not need to keep the balance of the tree, in the insertion operation, one
leaf node split will not propagate the change up to the root as it is the case with balanced
trees, like the dynamic VP-tree and M-tree. Therefore, the insertion operation of NAQ-tree
would be simpler and more efficient than insertion in balanced trees.

Appendix

Given a data set S with N d-dimensional points, and D is a distance metric defined on S

1. Compute the mean point M of the data set S; (time complexity is O(d N))
2. Find the data point X that has largest distance to M ; (time complexity is O(d N))
3. Let L = 2 × D(X, M);

L is not less than the largest distance between the pairs of points in S. Formally, ∀A, B ∈ S,
we have D(A, B) ≤ L .
Proof

As X is the farthest point to M , we have:
D(A, M) ≤ D(X, M) and D(B, M) ≤ D(X, M)

Thus, D(A, B) ≤ D(A, M) + D(B, M)

(metric triangle inequality)
≤ D(X, M) + D(X, M) = L

Computing L is more efficient than computing the actual largest distance. In the experi-
ments, we used L to calculate the query range (when comparing with DBM-tree).

References

1. An J, Chen H, Furuse K, Ohbo N (2005) CVA file: an index structure for high-dimensional datasets.
Knowl Inform Syst 7:337–357

2. Andoni A, Indyk P (2008) Near-optimal hashing algorithms for approximate nearest neighbor in high
dimensions. Comm ACM 51(1):117–122

3. Berchtold S, Keim D, Kriegel HP (1996) The X-tree: an index structure for high-dimensional data. In:
Proceedings of VLDB

4. Beyer K et al (1999) When is “Nearest Neighbor” meaningful? In: Proceedings of IEEE ICDE
5. Bozkaya T, Ozsoyoglu M (1997) Distance-based indexing for high-dimensional metric spaces. In: Pro-

ceedings of ACM SIGMOD, pp 357–368
6. Brin S (1995) Near neighbor search in large metric spaces. In: Proceedings of VLDB, pp 574–584
7. Burkhard WA, Keller RM (1973) Some approaches to best-match file searching, Comm ACM 16(4):230–

236
8. Chavez E, Navarro G (2005) A compact space decomposition for effective metric indexing. Pattern Rec-

ognit Lett 26(9): 1363–1376
9. Ciaccia P, Patella M, Zezula P (1997) M-Tree: an efficient access method for similarity search in metric

spaces. VLDB J 426–435
10. Data set is available at: http://kdd.ics.uci.edu/databases/CorelFeatures/CorelFeatures.html
11. Cui B, Ooi BC, Su J, Tan T (2005) Indexing high-dimensional data for efficient in-memory similarity

search. IEEE Trans Knowl Data Eng 17(3): 339–353

123

http://kdd.ics.uci.edu/databases/CorelFeatures/CorelFeatures.html

Effectiveness of NAQ-tree as index structure 25

12. Dohnal V et al (2003) D-index: distance searching index for metric data sets. Multimedia Tools Appl
21(1)9:33

13. Filho RFS, Traina AJM, Traina C, Faloutsos C (2001) Similarity search without tears: the OMNI family
of all-purpose access methods. In: Proceedings of IEEE ICDE, pp 623–630

14. Fu AW-C et al (2000) Dynamic VP-tree indexing for N-Nearest search given pair-wise distances. VLDB J
15. Source code is available at http://www.cs.mu.oz.au/~rui/code.htm
16. Jagadish HV, Ooi BC, Tan KL, Yu C, Zhang R (2005) iDistance: an adaptive B+-tree based indexing

method for nearest neighbor search. ACM Trans Database Syst 30(2):364–397
17. Katamaya N, Satoh S (1997) The SR-tree: an index structure for high-dimensional nearest neighbor

queries. In: Proceedings of ACM SIGMOD
18. Data set is available at: http://kodiak.cs.cornell.edu/kddcup/datasets.html
19. Kailing K, Kriegel H-P, Pfeifle M, Schonauer S (2006) Extending metric index structures for efficient

range query processing. Knowl Inform Syst 10(2):211–227
20. Kadiyala S, Shiri N (2008) A compact multi-resolution index for variable length queries in time series

databases. Knowl Inform Syst 15:131–147
21. Lowe DG (2004) Distinctive image features from scale invariant features. IJCV 60(2):91–110
22. Nievergelt J, Hinterberger H, Sevcik KC (1984) The grid file: an adaptable, symmetric multikey file

structure. ACM Trans Database Syst 9(1)
23. Pawlak Z (1991) Rough sets theoretical aspects of reasoning about data. Kluwer, Dordrecht
24. Seidl T, Kriegel HP (1998) Optimal multi-step k-nearest neighbor search. In: Proceedings of ACM

SIGMOD
25. Shaft U, Ramakrishnan R (2005) When is nearest neighbors indexable? In: Proceedings of ICDT,

pp 158–172
26. Traina C, Traina AJM, Seeger B, Faloutsos C (2000) Slim-trees: highet performance metric trees mini-

mizing overlap between nodes. In: Proceedings of EDBT, pp 51–65
27. Uhlmann JK (1991) Satisfying general proximity/similarity queries with metric trees. Inform Process

Lett 40:175–179
28. Venkateswaran J, Lachwani D, Kahveci T, Jermaine C (2006) Reference-based indexing of sequences

databases. In: Proceedings of VLDB
29. Vieira MR, Traina C, Chino FJT, Traina AJM (2004) DBM-tree: a dynamic metric access method sensitive

to local density data. In: Proceedings of SBBD, pp 163–177
30. Source code is available at: http://www.cse.cuhk.edu.hk/~kdd/program.html
31. White DA, Jain R (1996) Similarity indexing with the ss-tree. In: Proceedings of IEEE ICDE
32. Weber R, Schek HJ, Blott S (1998) A quantitative analysis and performance study for similarity-search

methods in high-dimensional space. In: Proceedings of VLDB
33. Yianilos P (1993) Data structures and algorithms for nearest neighbor search in general metric spaces.

In: Proceedings of ACM-SIAM symposium on discrete algorithms, pp 311–321
34. Yianilos P (1999) Excluded middle vantage point forests for nearest neighbor search. In: Implementation

challenge, ALENEX’99

Author Biographies

Ming Zhang received the Master’s degree in computer science
from University of Regina, Canada, in 2005. He is currently a Ph.D.
candidate in the Department of computer science at the Univerisity
of Calgary. He published over ten papers in reputable international
conferences and journals. His research interest includes database,
data mining, XML and image processing. He is a recipient of
NSERC Postgraduate Scholarship and iCore Postgraduate Scholarship.

123

http://www.cs.mu.oz.au/~rui/code.htm
http://kodiak.cs.cornell.edu/kddcup/datasets.html
http://www.cse.cuhk.edu.hk/~kdd/program.html

26 M. Zhang, R. Alhajj

Reda Alhajj received his B.Sc. degree in Computer Engineering in
1988 from Middle East Technical University, Ankara, Turkey. After he
completed his B.Sc. with distinction from METU, he was offered a full
scholarship to join the graduate program in Computer Engineering and
Information Sciences at Bilkent University in Ankara, where he received
his M.Sc. and Ph.D. degrees in 1990 and 1993, respectively. Currently,
he is Professor in the Department of Computer Science at the University
of Calgary, Alberta, Canada. He published over 275 papers in refereed
international journals and conferences. He served on the program com-
mittee of several international conferences including IEEE ICDE, IEEE
ICDM, IEEE IAT, SIAM DM; program chair of IEEE IRI 2008, OSIWM
2008, SONAM 2009, IEEE IRI 2009. He is editor in chief of Interna-
tional Journal of Social Networks Analysis and Mining, associate editor
of IEEE SMC- Part C and he is member of the editorial board of the Jour-
nal of Information Assurance and Security; he has been guest editor for
a number of special issues and edited a number of conference proceed-
ings. Dr. Alhajj’s primary work and research interests are in the areas of

biocomputing and biodata analysis, data mining, multiagent systems, schema integration and re-engineering,
social networks and XML. He currently leads a research group of seven Ph.D. and nine M.Sc. candidates.
Dr. Alhajj recently received with Dr. Jon Rokne donation of equipment valued at $5 million from RBC and
Teradata for their research on Computational Intelligence and Bioinformatics research.

123

	Effectiveness of NAQ-tree as index structurefor similarity search in high-dimensional metric space
	Abstract
	1 Introduction
	2 Related work
	3 NAQ-tree
	3.1 Tree construction
	3.2 Similarity search algorithms

	4 Experiment
	4.1 NAQ-tree versus VP-tree
	4.2 NAQ-tree versus iDistance
	4.3 NAQ-tree versus DBM-tree
	4.4 Scalability of NAQ-tree

	5 Conclusions and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

