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Abstract Similarity search over long sequence dataset becomes increasingly popular in
many emerging applications, such as text retrieval, genetic sequences exploring, etc. In this
paper, a novel index structure, namely Sequence Embedding Multiset tree (SEM-tree), has
been proposed to speed up the searching process over long sequences. The SEM-tree is
a multi-level structure where each level represents the sequence data with different com-
pression level of multiset, and the length of multiset increases towards the leaf level which
contains original sequences. The multisets, obtained using sequence embedding algorithms,
have the desirable property that they do not need to keep the character order in the sequence,
i.e. shorter representation, but can reserve the majority of distance information of sequences.
Each level of the tree serves to prune the search space more efficiently as the multisets utilize
the predicability to finish the searching process beforehand and reduce the computational
cost greatly. A set of comprehensive experiments are conducted to evaluate the performance
of the SEM-tree, and the experimental results show that the proposed method is much more
efficient than existing representative methods.
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1 Introduction

Indexing technologies, which were originally proposed to speed up data search performance,
have been successfully applied in many areas of data processing. Some of the index structures
have even been used in commercial database systems, e.g. B+-tree [3]. However, none of the
existing indexes is universally efficient since the performance of an index structure is highly
dependent on the underlying data.

Similarity search is an important common operation for many applications, such as text
retrieval, handwriting recognition, and multimedia search. Recently, similarity search over
long sequences attracts more attentions due to some new emerging applications. As illustrated
in [20], in computational biology, searching for specific sequences over DNA and protein
sequences appears as a fundamental operation for problems such as assembling the DNA
chain from the pieces obtained by the experiments, looking for given features in DNA chains
and determining how different two genetic sequences were. In such applications, the problem
of sequence similarity search is typically based on block edit distance with move [4]. Block
edit distance with move is the minimum cost transformation from one sequence to another
through a series of edit operations (insert, delete, move) on block characters. It is another
kind of distance metric except for character edit distance, and is widely used in computational
biology and text processing environments. Due to the great length of sequences which can
be up to thousands, similarity search is an expensive operation.

Many index structures have been proposed to handle similar sequence search problems,
such as suffix trees and vector space indexing. Suffix tree based index structures [10] have
been gaining favor as the methods for sequence search, but they consume too much memory
space. Classical indexing techniques can be used for sequence search, such as R*-trees [21],
X-trees [27] and SR-trees [31], etc. They typically perform well in low to medium dimen-
sional spaces (up to 20–30 dimensions), but their performance deteriorates drastically for
long sequence match. Differently, embedding based index techniques, such as FastMap [6],
have also been proposed to decrease computational cost. However, it has to scan the original
sequence dataset in order to construct embedded space. Since the distance computation in the
original string space is very expensive, the construction of the embedded space is impractical.
Furthermore, the approximate factor keeps increasing as the data size expands, rendering this
approach unworkable for large sequence databases.

In this paper, we proposed a novel index structure, namely SEM-tree, to facilitate effi-
cient similarity sequence search. Our strategy is to replace the expensive full sequence sim-
ilarity computation with the comparison over shorter multisets, which are embedded from
sequences. Thereafter, as a compressed representation of sequence, multiset enables much
faster distance computation. Moreover, the distance comparison is dependent on the number
of distinct characters that form the sequence set, instead of the length of the sequence. As a
sequence set usually has a finite set of distinct characters, it can be assumed that the compu-
tation is bounded by a constant. Another interesting characteristic is its predicability, which
means that query processing in an interval node can predict whether the sub-tree is included
in final results, so as to stop the recursion process beforehand. Lastly, although the distance
over multisets is an approximation of the real distance between original sequences, we can
exploit the boundary of the approximations [4] to avoid false negative. The main contribution
of this work is four-fold.

– To reduce the computational cost for long sequences’ comparison, we adopted sequence
embedding algorithm to convert the sequence to a multiset which has compressed
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representation. The distance computation among original sequences can be approached
on multisets with high approximate factor but in linear time.

– Just as the well-known PCA [11] and SVD [8] methods, sequence oriented dimension-
ality reduction method with predicability, named SDR, has been developed based on
sequence embedding. To the best of our knowledge, this is the first method using embed-
ded sequence for sequence search.

– A novel index structure, SEM-tree, is proposed by using SDR techniques developed to
efficiently shrink the search space and hence speed up the search process.

– A comprehensive simulation has been conducted to evaluate the performance of SEM-tree.
As experimental results indicate, search over proposed index structure shows superior
performance over other approaches in terms of efficiency.

A preliminary version of this paper appears in [25], where we presented the basic idea. In
this paper, we make the following additional contributions. First, we provide more detailed
description of the framework, including tree construction and query processing. Second, we
present the details of proof and analysis for applying SDB techniques in our work. Further-
more, we run a more comprehensive set of experiments to demonstrate the effectiveness of
the SEM-tree using different datasets.

The paper is organized as follows. In Sect. 2, we introduce related works. In Sect. 3, we
review the basic sequence embedding technique and design the sequence dimension reduction
mechanism based on multiset, followed by the structure of SEM-tree and detailed algorithms.
Experimental results are presented in Sect. 4. Finally, we conclude this paper in Sect. 5.

2 Related work

In this section, we first briefly review related work, and then analyze the limitations of the
existing data structures.

Many heuristic-based search methods have been developed to conduct sequence search.
They fall into two categories: hash-table based methods and suffix-tree-based methods. Some
of the important hash-table-based methods are FASTA [22] and BLAST [32]. These tech-
niques are similar in spirit: they construct a hash table on one of the strings, and insert all
substrings of a certain length l. The tools start by finding exactly matching substrings (known
as seeds) of length l using this hash table. In the second phase, the seeds are extended in both
directions, and combined, if possible, in order to find better alignments. Current hash-table-
based search tools handle short queries well, but become very inefficient, in terms of both
time and space, for long queries. Suffix trees were first proposed by Weiner [30] under the
name position tree. Later, efficient suffix tree construction methods [18] and variations [17]
were developed. However, there are two significant problems with the suffix-tree approach:
(1) suffix trees manage mismatches inefficiently, and (2) they are notorious for their excessive
memory usage [21]. The size of the suffix tree varies from 10 to 37 bytes per letter [27]. Some
indexing techniques and dimension reduction methods have also been proposed for dealing
with time-series dataset [12,14–16,23], however they are not much suitable for sequence
data comprised by character set.

Vector space based indexing is another kind of method. The VP-tree [31] partitions the
data space into spherical cuts by selecting random reference points from the data. A second
method, the MVP-Tree [9] (a variation of VP-Tree) uses more than one vantage point at each
level. Reference [24] uses the VP-Tree to index measures that are almost metric. In the recently
proposed reference-based sequence indexing methods [7,12,27], reference sequences are
selected from the convex hull of the dataset, which is done by selecting sequences that are
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far away from each other. All these methods are based on the original sequence space and
are still inefficient for high dimensional data.

Embedding based index techniques, such as FastMap [6] and MetricMap [29], have also
been proposed to decrease the computational cost. However, both approaches ask for a
distance-preserving mapping function. Finding a suitable mapping is a tough and time-con-
suming process, and no such function is available for block edit distance. Additionally, it
has to scan the original sequence space in order to construct embedded space, making the
construction of the embedded space impractical in our case.

Recently proposed indexing techniques, such as M-trees [2], Slim-tree [28] and DBM-tree
[26], can be used to support sequence search. The M-tree is a height-balanced tree, where the
data elements are stored in leaf nodes. The Slim-Tree is an evolution of the M-Tree, embody-
ing the first published technique to reduce the amount of overlap between tree nodes, which
leads to a smaller number of disk accesses to answer similarity queries. These two structures
are height balanced and attempt to reduce the height of the tree at the expense of flexibility in
reducing overlap between nodes. This constraint was released in the DBM-Tree by reducing
the overlap between nodes in high density regions, resulting in an unbalanced tree.

3 The SEM-tree

Handling similarity search over long sequence has always been a challenge to the data-
base research community because of the heavy computational cost. In this section, A new
Sequence Dimensionality Reduction method, named SDR, is proposed based on sequence
embedding for the construction of SEM-tree. Thereafter, the new index structure of SEM-tree
is presented to facilitate sequence similarity search on long sequence database.

3.1 SDR: sequence dimensionality reduction

In this section, we first introduce an existing sequence embedding technique [4]. Thereafter,
sequence dimensionality reduction (SDR) mechanism is developed to reduce the computa-
tional cost for sequence match, which is the basis of the proposed SEM-tree.

3.1.1 Review of sequence embedding

Embedding strategy helps to reduce the cost of expensive distance computation of long
sequences by transforming longer sequences to shorter multisets. Here, we use an exam-
ple to illustrate the embedding process proposed in [4], as shown in Fig. 1. The original
sequence s, also denoted as ET1(s) (the sequence before the first embedding iteration), con-
tains cabagehcadbba and it is partitioned into six blocks after first iteration, with each block
having 2 or 3 elements. Each block ET1(s)[cs, ce] (cs and ce are the start and end charac-
ter in this block respectively)is thereafter represented by an element based on a hashing
function h(ET (s)1[∗, ∗]) and all these new elements form ET2(s) (the sequence before the
second iteration). For example, the first block of ET1(s)[ca] is hashed to an element k. h is a
one-to-one Karp–Miller hash function [13] on sequences of length at most 3, therefore the
same sequence must correspond to the same sub-tree in ET (s). The partition and hashing
continues until at one level the sequence only contains one element. The time complexity of
the whole process is O(|s| log ∗|s|).1

1 This formula for time complexity was first introduced in [19]. Given an integer k, log∗k denotes, min{i ≥ 0:
log(i) k ≤ 1}, where log(i) k = log(log(i−l) k), and log(0)x = 0. In practice, log∗ n is never more than 5.
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Fig. 1 ET (s) (s = cabagehcadbba)

Given an ET (s), all the elements within the entire tree can be represented by a family
of multisets, denoted as T (s). ETi (s) is used to represent the sequence at the i th level, and
the set of the elements within ETi (s) is denoted by the sub-multiset Ti (s). Via Example 1,
it is easy to notice that ETi (s) and Ti (s) contain the same set of elements, while the order is
important in the former but irrelevant in the latter.

Based on above sequence embedding method, the multiset and sequence shown in Fig. 1
can be divided as follows2:

T (s) = {T1(s), T2(s), T3(s), T4(s)}
= {{a4, b3, c2, d1, e1, g1, h1}, {k2, m1, n1, o2},

{p1, q1, r1}, {z1}}
ET (s) = {ET1(s), ET2(s), ET3(s), ET4(s)}

= {{cabagehcadbba}, {komkno}, {pqr}, {z}}

3.1.2 The analysis of sequence dimensionality reduction

The work of [4] only focuses on how to embed sequences into multiset space using a sequence
embedding technique, while it does not consider any indexing structure and mine charac-
teristics of (sub-)multisets. The dimensionality reduction techniques, such as PCA, have
been widely used to facilitate similarity search in high-dimensional space. However, such
approaches cannot be applied in sequence matching domain due to the different distance
evaluation. The multisets generated by embedding technique motivate us to exploit the sub-
multisets for SDR.

Suppose we have two sequences, s1 and s2, in the sequence dataset. Let T (s1) = ⋃l1
i=1

Ti (s1) and T (s2) = ⋃l2
j=1 Ti (s2) denote the transformed multisets, where l1 and l2 are

the heights of trees ET (s1) and ET (s2) respectively. Its original distance, d̂(s1, s2), is a
edit distance with moves [4], which can only be approximated by the sequence embedding
method. We develop the novel SDR mechanism with the following nice properties:

1. Since the order of the elements does not affect the multiset, the distance between two
multisets is only determined by the number of the different elements σ in the multisets,
where they share a common character set � = {a1, a2, . . . , aσ }.
The sub-multisets T i (s) can be defined as the union of all the sub-multisets in the first
i levels of T (s), denoted as T j (s) = ⋃ j

k=1 Tk(s), thus the formal definition of distance

2 In this example, a4 means that character ‘a’ occurrence ‘4’ times.
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between two sub-multisets, T i (s1) and T i (s2), is provided by Eq. 1.

de(T
i (s1), T i (s2)) = card(T i (s1) � T i (s2)) + card(T i (s2) � T i (s1)) (1)

To facilitate the distance comparison between two sequences with different length,
normalized standard distance between two multisets is defined in Eq. 2. The distance
computation between two multisets can be finished within O(σ ).

d̂e(T
i (s1), T i (s2)) = de(T i (s1), T i (s2))

card(T i (s1) ∪ T i (s2))
(2)

2. Contractness property for the construction of index is satisfied with d̂e(T i (s1), T i (s2)) ≤
d̂e(T j (s1), T j (s2)) ∀i, j with i ≤ j ≤ max(l1, l2), which will be further proved by
Lemmas 1 and 2.

3. Predictability is another important characteristic of sequence embedding, which can
quicken the query processing with such ability: known which sub-tree(s) of index to be
included in the final result beforehand when querying the internal node, which will be
proved by Lemma 3. The idea behind is that if we know the distance on a sub-multiset,
e.g. de(T i (s1), T i (s2)), we can estimate upper bound of the real distance between s1

and s2. This promising property makes it different from other dimensionality reduction
methods, such as PCA. These methods can reduce the complexity of data, but they cannot
quantify the distance information loss.

Next, we will present the details of proof for embedded sequence properties. The basic
operations on the multiset are introduced in the Appendix, such as �, card(), ∩ and ∪, etc.

Lemma 1 Given two sequences s1 and s2, ∀i, j with i ≤ j ≤ max(l1, l2), we have:

d̂e(Ti (s1), Ti (s2)) ≤ d̂e(Tj (s1), Tj (s2))

Proof Suppose r1 = Ti (s1)∩Ti (s2), r2 = Ti (s1)�Ti (s2), and r3 = Ti (s2)�Ti (s1). Accord-
ing to Eq. 2, d̂e(Ti (s1), Ti (s2)) = |r2|+|r3|

2|r1|+|r2|+|r3| . When ETi (s1) and ETi (s2) are embedded
into ETi+1(s1) and ETi+1(s2), let us suppose r ′ as the common subsequence of ETi+1(s1)

and ETi+1(s2), i.e. r ′ 	 ETi+1(s1) and r ′ 	 ETi+1(s2). Since sequence embedding adopts
the hash-function which is deterministic, the common subsequence r ′(such as ‘k’) can only
be produced by the common subset r1(such as ‘{a, c}’). However, sequences that share the
same set of elements r1 may not be embedded into the same sequences(except for h(ac) = k,
we can have h(ca) = q), i.e. |r ′| ≤ |r1|

k , with k = |ETi (s1)||ETi+1(s2)| .
Therefore, d̂e(Ti+1(s1), Ti+1(s2)) = (2|r1|+r2|+r3|)/k−|r ′|

(2|r1|+r2|+r3|)/k ≥ d̂e(Ti (s1), Ti (s2)). The
Lemma is proved. 
�

Based on Lemma 1, the contractiveness of the distance between sub-multisets is further
identified by Lemma 2.

Lemma 2 (Contractness) Given any two sequences s1 and s2, for any i ≤ j we have:

d̂e(T
i (s1), T i (s2)) ≤ d̂e(T

j (s1), T j (s2)).

Proof Assume ai = de(Ti (s1), Ti (s2)) and bi = card(Ti (s1) ∪ Ti (s2)), according to
Lemma 1, we have: a1

b1
≤ a2

b2
≤ · · · ≤ al

bl
, with ai

bi
= d̂e(Ti (s1), Ti (s2)). We have follow-

ing induction process:
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Basic step: Based on Lemma 1, we have a1
b1

< a2
b2

. Therefore, a1
b1

≤ a1+a2
b1+b2

≤ a2
b2

, i.e.,

d̂e(T 1(s1), T 1(s2)) ≤ d̂e(T 2(s1), T 2(s2)).

Inductive step: Suppose the Lemma is satisfied when j equals i+1 (i ≥ 1), i.e., Ai
Bi

≤ Ai +ai+1
Bi +bi+1

with Ai = ∑i
k=1 ak and Bi = ∑i

k=1 bk . Therefore, we have Ai ∗ bi+1 ≤ Bi ∗ ai+1 ⇒
Ai
Bi

≤ Ai +ai+1
Bi +bi+1

≤ ai+1
bi+1

. Based on Lemma 1 we have ai+1
bi+1

≤ ai+2
bi+2

. In other words, Ai
Bi

≤
Ai +ai+1
Bi +bi+1

≤ Ai +ai+1+ai+2
Bi +bi+1+bi+2

≤ ai+2
bi+2

, i.e. Ai
Bi

≤ Ai+1
Bi+1

≤ Ai+2
Bi+2

.
Therefore, the Lemma is also satisfied for j equals i + 2, and the proof is completed. 
�

Lemma 3 (Predictability) For any two sequences s1 and s2, upper bound of distance
d̂e(T i (s1), T i (s2)), denoted as Bu(d̂e(T i (s1), T i (s2)))(>d̂e(T (s1), T (s2))), can be estimated
based on sub-multiset T i (s1) and T i (s2)) as follows:

Bu(d̂e(T
i (s1), T i (s2))) = card(T i (s1) � T i (s2)) + v

card(T i (s1) ∪ T i (s2)) + v

where v = card(Ti (s1) ∪ Ti (s2))

Proof According to the definition of distance computation in Eq. 2.

d̂e(T
i (s1), T i (s2)) = card(T i (s1) � T i (s2))

card(T i (s1) ∪ T i (s2))

Obviously, this distance value is bounded by d̂e(T (s1), T (s2)),

d̂e(T
i (s1), T i (s2)) < d̂e(T (s1), T (s2))

= a + card(∪l1
j=i+1Tj (s1) � ∪l2

j=i+1Tj (s2))

b + card((∪l1
j=i+1Tj (s1)) ∪ (∪l2

j=i+1Tj (s2)))

<
a + card(∪l1

j=i+1Tj (s1) ∪ (∪l2
j=i+1Tj (s2)))

b + card((∪l1
j=i+1Tj (s1)) ∪ (∪l2

j=i+1Tj (s2)))

where a = card(T i (s1) � T i (s2)) and b = card(T i (s1) ∪ T i (s2)).
Since the scale of the union ∪l1

j=i+1Tj (s1) and ∪l2
j=i+1Tj (s2) will be smaller than that of

Ti (s1) and Ti (s2), card((∪l1
j=i+1Tj (s1))∪(∪l2

j=i+1Tj (s2))) can be bounded by card(Ti (s1)∪
Ti (s2)).

In other words, Bu(d̂e(T i (s1), T i (s2))) can be approximated by card(T i (s1)�T i (s2))+v

card(T i (s1)∪T i (s2))+v
,

where v = card(Ti (s1) ∪ Ti (s2)). The proof is finished. 
�
3.2 The index structure

It has been pointed out that the distance computational cost of multiset is much cheaper than
that of the full sequences as we can reduce the length by transformation. Given the fact that
the distance between two multisets, T (s1) and T (s2), approximately preserves the distance
between original sequences s1 and s2, the similarity search among sequences can be replaced
by the search over corresponding (sub-)multisets. Furthermore, multisets have some very
attractive features, like contractiveness, which can facilitate the search process.

The basic idea of SEM-tree is based on the characteristic of distance preservation and
contractibility. Each node stands for one cluster represented by a sub-multiset which serves
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Fig. 2 The structure of SEM-tree

as the center and the radius, and the multisets whose sequences located in this cluster form the
children nodes. The tree structure based on multisets not only keeps the original clustering
characteristics of sequences, but also eases the construction of index and query processing.

3.2.1 The structure of SEM-tree

Given a sequence dataset SD, we apply sequence embedding process on SD to transform
the sequences into a new space, named SEM-Space. Consider a sequence s ∈ SD, we define
SEM(s, l) to be an operator that projects sequence s on its first l-level sub-mulitiset in ET (s)
(1 ≤ l ≤ L), denoted as:

SEM(s, l) =
l⋃

i=1

Ti (s) (i.e. T l(s))

where l is called an embedding level and L is the maximum level.
The SEM-tree is a multi-tier tree and tries to partition the space into clusters and refine the

clustering process as tree grows. Figure 2 shows an example. However, the indexing keys at
each level of the tree are different—nodes closer to the root use the keys with lower embed-
ding level, i.e. shorter sub-mulitiset, and the keys at the leaves are the original sequence data.
At the root node of SEM-tree, only the sub-multisets from the first embedding level of the
sequences contribute to the partition. Take the sequence cabagehcadbba in Sect. 3.1.1 as an
example, we may use T1 in level 1, T1 ∪ T2 (i.e. T 2) in level 2, and full sequences in leaf level.
Note that, we can select different levels of sub-multiset for each level during tree construction.
However, the lengths of the sub-multisets are in non-descending order from root to leaf.

The entry in the internal node of SEM-tree is a vector, denoted by cluster vector cv, which
corresponds to a cluster at the SEM-Space. All the vectors within an internal node form a
larger cluster, which refers to an entry in the parent level. We name the vectors within a
certain node vector set (V S). Each cv is a 3-tuple vector (sm, r, cptr), as shown in Fig. 2.
For a cv at i th level, the sub-multiset sm represents the center of the cluster, and r is the
radius of this cluster such that any sequence s in this cluster satisfies d̂e(sm, T m(s)) ≤ r ,
where m is the embedding level of multisets of the node. Pointer cptr points to the child node
formed by all the immediate child vectors of cv. Different from the internal node, the leaf
node simply stores the original sequences within a certain cluster.

The SEM-tree can be used to prune the search space effectively. Recall (in Lemma 3) that
the distance between two sequences with a shorter embedding level in the embedding space is
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always smaller than the distance between two sequences in a longer embedding level. Thus,
we can use the distance at a shorter embedding level to prune away sequences that are far away
(i.e. if the distance between a database sequence and the query sequence at a shorter embed-
ding level is already larger than the specified range query threshold, it can be pruned away).
More importantly, the shorter embedding level at upper levels of the tree not only decreases the
distance computational cost, but also saves storage space due to its condense characteristics.

For the SEM-tree to be effective, we need to determine the optimal number of fanout
F (or the number of cv) in each internal node. The index key in the upper level of the
SEM-tree utilizes a shorter sub-multiset, but we increase the embedding level of sub-mul-
tisets when traversing down the tree, till the original sequences are stored at the leaf node.
In this manner, if each node corresponds to a page with a fixed page size PageSize (for
example PageSize = 4 KB), fan-out is large at the upper levels but small in lower level.
Assume that the size of sub-multisets in the lth level internal node is denoted by avSizel ,
the fan-out of lth level internal node is:

Fl = � PageSize

avSizel
�

3.2.2 The construction of SEM-tree

Algorithm 1 shows in detail the process of constructing a SEM-tree for a given dataset.
We adopt a top down approach to get better clustering effect. At first, We use the sequence
embedding routine SEM() to transform the original sequences into the SEM-Space (line 1).
Then we initialize the root node (in line 2). We treat the whole sequence dataset as a cluster
and refer to these new points as M S. After that, we call the recursive routine Insert(Node,
MS, l) that essentially determines the content of the entries of the node at level l—one entry
per sub-cluster. Note that we are dealing with sequences in the transformed space (i.e. MS),
and that l determines the sub-multiset in MS that this node is handling.

Algorithm 1 SEM-tree Construction
Input: SD: sequence datasets;
Output: SEM-tree;
Procedure:
1: M S=SEM(SD); /*Embedding SD into SEM-Space*/
2: Init(root);
3: Insert(root , M S, 1);

Proc Insert(Node Nd , Multiset ms, level l)
1: if sizeof(sequences represented by ms)≤ PageSize then
2: lea f =New-leafNode(ms);
3: Nd = lea f ;
4: else
5: Nd =New(internal−node);
6: avSizel = sizeof(msl );/*msl means the first l level multiset*/

7: Fl = � PageSize
avSizel

�;
8: seqClusters=k-means(ms, Fl );
9: for each strClti ∈ seqClusters do
10: cvi = new(cluster vector); cvi−1.cptr=cvi ;
11: cvi .sm=strClti .center ; cvi .r=strClti .radius;
12: Insert(cvi .cptr , strClti , l + 1);
13: end for
14: end if
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Fig. 3 An example of SEM-tree

Table 1 Sequence dataset Sequences Embedded sub-multisets

T1(s) T2(s) T3(s)

s1 = aaachakee {a4, c1, e2, h1, k1} {b1, r1, g1} {i1}
s2 = aaachaeke {a4, c1, e2, h1, k1} {b1, r1, l1} { j1}
s3 = aachaeke {a3, c1, e2, h1, k1} {x1, r1, l1} {m1}
s4 = babanavae {a4, b2, e1, n1, v1} {s1, w1, z1} {o1}
s5 = babanavea {a4, b2, e1, n1, v1} {s1, w1, y1} {q1}
s6 = babana {a3, b2, n1} {s1, w1} {u1}

At the beginning of Insert(Node, MS, l), we check whether a leaf node can be generated.
If the sequences represented by (sub-)multiset MS can fit in a disk page, then a leaf node is
created (line 1–3), otherwise an internal node should be generated (in line 5). The number of
clusters (or cv), Fl , is calculated using the sub-multiset length in level l in line (6–7), and then
we partition the data of the cluster ms into Fl sub-clusters by K-means (in line 8).3 However,
this partitioning is performed only on the first l levels sub-multiset. For each sub-cluster, we
fill the information on the center and radius into the corresponding entry in node, and then
recursively invoke routine Insert() to build the next level of the tree (in line 9–12).

In order to illustrate the construction algorithm, a running example is provided in Fig. 3.
Suppose each of these sequences has already been partitioned into three sub-multisets,
denoted by T1(s), T2(s), and T3(s) in Table 1. In the first level, we got two clusters by
using the distance computation based on the first level sub-multiset T 1(.). One cluster take
T1(s2) as the center and 1/9 as the radius. The other take T1(s5) as cluster centered with radius
of 1/3. Similarly, at the second level, we follow the same principle for each sub-cluster based
on the sub-multiset T 2(.). In the leaf level, we index the full sequences if we assume each
node can store two sequences.

We note that the SEM-tree can be made balanced by generating equal sized clusters by
using the method in [5]. However, such a balanced tree has not achieved better performance,
since it increases the radius of small clusters, which leads to more overlap and more page
accesses. Thus, for efficiency reason, we do not require the SEM-tree to be height-balanced.

3 Other related clustering algorithms can also be adopted here, but K-means is preferred because it can provide
K clusters directly.
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Since the data may be skewed, it is possible that some clusters may be large, while others
contain fewer points.

Note that SEM-tree is a dynamic index structure, which can facilitate the data update based
on the properties of multiset. For example, when a new sequence is inserted, we simply trans-
form the original sequence to SEM-Space, and insert it into the appropriate sub-cluster from
root. Due to the space constraint, we omit the details here.

3.3 Query processing on SEM-tree

In this section, we investigate the distance property of multisets, and introduce a novel
approach to accelerate the node filtering process. Finally, we present the whole algorithm of
range query in the SEM-tree.

3.3.1 Double bounds of real distance between sequences

While the proposed SEM-tree can conduct efficient similarity search over long sequences, it
cannot guarantee absolute accuracy. This is because the search is conducted according to the
distance between corresponding multisets rather than real sequences in the internal levels of
the tree. As mentioned in Sect. 3.1.2, the distance between two multisets can approximate the
real distance between two sequences with certain error, but such error has not been taken into
consideration during tree construction. In this section, we develop a double-bound theory to
make sure that the searching process can cover all candidate sequences and complete query
results can be returned.

According to [4], for sequences s1 and s2, the real distance can be bounded by the distance
on embedding space as follows:

α ∗ d̂e(T (s1), T (s2)) ≤ d̂(s1, s2) ≤ β ∗ d̂e(T (s1), T (s2)) (3)

whereα = m
8nlognlog∗n ,β = 2m

n ,n = max(|s1|, |s2|) and m = max(card(T (s1)), card(T (s2))).
Based on Eq. 3, the real distance between any two sequences can be limited by double

bounds [α ∗ d̂e(T (s1), T (s2)), β ∗ d̂e(T (s1), T (s2))].
Based on the predictability of multiset in Lemma 3, such double-boundary can be applied

on the transformed sub-multiset for each internal node of SEM-tree, and we have the follow-
ing revised boundary to support search process.

Lemma 4 For sequences s1 and s2, the real distance d̂(s1, s2) can be approximated by
clustering vector at i th level based on the double boundaries.

d̂(s1, s2) ≥ α ∗ Bl

(
d̂e(T

i (s1), T i (s2))
)

d̂(s1, s2) ≤ β ∗ Bu

(
d̂e(T

i (s1), T i (s2))
)

Here, the lower boundary of d̂e(T i (s1), T i (s2)), i.e. Bl

(
d̂e(T i (s1), T i (s2)), is itself.

3.3.2 Node filtering based on predictability

One promising feature of SEM-tree is that some of the final results can be determined before-
hand when visiting the internal node. Although the query range is extended by using approxi-
mate distance in the internal nodes, we can quicken the query processing greatly based on the
predicability property of sequence embedding. To the best of our knowledge, this mechanism
has not been explored before.
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Lemma 5 For a query sequence q, a clustering vector cv in an internal node at level i
and query range γ , all sequences covered by cv are included in the results if the following
inequation holds:

βd ∗ Bu(d̂e(T
i (q), cv.sm)) + βr ∗ radu(cvi ) ≤ γ

where βd is the β value for d̂e(T i (q), cv.sm), and the same with the βr for radu(cvi ).
This lemma means that if the summation of upper bound distance βd ∗ Bu(d̂e(T i (q),

cv.sm)) and upper bound distance βr ∗ radu(cvi ) is less than specified range γ , then all
sequences covered by cv must be included in the final results. Bu(d̂e(T i (q), cv.sm)) has
been proved in Lemma 4, and we have Lemma 6 for radu(cvi ).

Lemma 6 For a clustering vector cv at level i in SEM-tree, if T i (s) is the center of cv, and
r is the radius, then the upper bound of radius cv in multiset can be estimated as:

radu(cvi ) = |T i (s)| ∗ r + (2 − r) ∗ |Ti (s)|
|T i (s)| + (2 − r) ∗ |Ti (s)|

Proof Assume a sequence s′ within cv has the distance r from s. According to the definition
of distance computation in Eq. 2, there are many possible choices for sequences within cv
satisfying such constraints. To make sure that all sequences within cv are covered by the dis-
tance d̂e(T (s), T (s′)), we choose one representative sequence s′ satisfying the constraints:
T i (s′) ⊃ T i (s) with d̂e(T i (s), T i (s′)) = r .

Obviously, the radius r is the maximal distance among the whole multiset between s and
s′, which is bounded by

d̂e(T (s), T (s′)) =
|T i (s)|∗r

(1−r)
+ card(∪l1

j=i+1Tj (s) � ∪l2
j=i+1Tj (s′))

|T i (s)|
(1−r)

+ card(∪l1
j=i+1Tj (s) ∪ (∪l2

j=i+1Tj (s′)))

<

|T i (s)|∗r
(1−r)

+ card((∪l1
j=i+1Tj (s)) ∪ (∪l2

j=i+1Tj (s′)))
|T i (s)|
(1−r)

+ card((∪l1
j=i+1Tj (s)) ∪ (∪l2

j=i+1Tj (s′)))

where l1 and l2 are the height of ET (s) and ET (s′) respectively.
Since the scale of the union ∪l1

j=i+1Tj (s) and ∪l2
j=i+1Tj (s′) is smaller than that of

Ti (s) and Ti (s′), card((∪l1
j=i+1Tj (s)) ∪ (∪l2

j=i+1Tj (s′))) can be bounded by card(Ti (s) ∪
Ti (s′))= (2−r)∗Ti (s)

(1−r)
. In other words, radu(cvi ) can be approximated by |T i (s)|∗r+(2−r)∗|Ti (s)|

|T i (s)|+(2−r)∗|Ti (s)| .
The proof is finished. 
�

Thus, query processing can be accelerated with the following filtering strategy: At a par-
ticular internal node at level i , all irrelevant clustering vectors should be filtered out. First, for
each cv, the double of the real distance between cv.sm and query sequence q can be obtained
directly based on Lemma 4. Then, a filtering step will prune unqualified cv according to the
following criteria.

− As depicted in Fig. 4a, if βd ∗ Bu(d̂e(T i (cv.sm), T i (q))) + βr ∗ radu(cvi ) ≤ γ , cv
does not need further checking. In such situation, no sequences contained by cluster cv
need to be further checked, because they belong to the final results with the guarantee of
upper-bound, and only need to be refined from the leaf nodes.
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Fig. 4 The filtering strategy of query processing

− As depicted in Fig. 4b, if αd ∗ Bl(d̂e(T i (cv.sm), T i (q))) − βr ∗ radu(cvi ) > γ , cv will
not be further checked. The sub-tree rooted in cv will be filtered out, because it has no
chance of being included in the result set with the guarantee of lower-bound.

− After filtering out above cvs, remaining cv set will be the results for further checking at
the next level of the tree.

3.3.3 Query processing over SEM-tree

With the above preparations, we now discuss how to process similarity search efficiently
over SEM-tree. We only present the algorithm for range query, but the algorithm can support
k-NN query with minor change.

A range query QRange = 〈q, γ 〉 retrieves all sequences s in the sequence datasets that
satisfy the range condition d̂(q, s) ≤ γ , where γ is the query range specified by the user and
d̂(∗) is the distance measurement in original sequence space. To improve the efficiency of
search, (sub-)multisets have been adopted as index keys in internal nodes of the SEM-tree.
The detailed algorithm is provided in Algorithm 2.

Firstly, the query sequence q will be embedded into a multiset T (q) and a search starting
from the root of SEM-tree based on T (q) is thereafter conducted. For each clustering vector
in an internal node, those irrelevant clustering vectors will be first filtered out based on pro-
posed filtering principe (in line 3). Otherwise, for each qualified clustering vector cv, it will
be determined based on the proposed multiset predictability whether all sequences covered
by the sub-tree rooted by cv belong to the final results(in line 4). If so, all these sequences will
be appended to the final result RS and this subtree will not be further checked. Otherwise,
the left clustering vectors need to be further checked by calling search process RangeSear-
chOnTree(*) recursively(in line 8). At the leaf node, each candidate sequence needs to be
examined based on real distance function in original sequence space to determine whether
they belong to final result set RS.

To conclude, the proposed sequence searching strategy can be summarized as following:
space-efficient multiset and related time-efficient distance function have been used to filter
out those irrelevant sequence in internal nodes. Classical edit distance will be used in leaf
nodes to refine the final results accurately.
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Algorithm 2 RangeQuery(q ,γ )
Input: q: query sequence, γ : searching radius specified by user;
Output: RS: all the sequences that have a distance to q shorter than γ ;
Procedure:
1: RS = ∅;
2: RangeSearchOnTree(root, T (q), RS, 0);

Proc RangeSearchOnTree(Node Nd , multiset T (q), SET RS, level l)
1: if T is not a leaf node then
2: for each cv ∈ Nd do
3: if αd ∗ d̂e(T l (cv.sm), T l (q)) − βr ∗ radu(cvi ) ≤ γ then
4: if βd ∗ Bu(d̂e(T l (q), cv.sm)) + βr ∗ radu(cvi ) ≤ γ then
5: /*Node filtering based on predictability proposed;*/
6: RS = RS∪ {all sequences in sub-tree rooted by cv};
7: else
8: RangeSearchOnTree(cv.cptr, T (q), RS, l + 1);
9: end if
10: end if
11: end for
12: else
13: for each tp ∈ Nd do
14: if d̂(q, tp.seq) ≤ γ then
15: RS = RS ∪ {tp.seq};/*filtering based on real distance*/
16: end if
17: end for
18: end if

4 Experiments

In order to evaluate the performance of proposed SEM-tree, we conducted extensive empir-
ical study. We compared our method with several other existing global sequence indexing
methods: (1) the M-Tree [2], (2) the DBM-Tree [28] and (3) the Slim-Tree [26]. The C++
implementations of the M-Tree, the DBM-Tree and the Slim-Tree, were obtained from Arbo-
retum MAM library. All the implementations are running on a PC with Intel P4 CPU 1.5
GHz and 1 G MB memory. The performance metric query cost, i.e. I/O and time cost, is
taken into consideration. All the indexes are stored on disk, and the disk page size is set to
4 KB. Therefore, I/O cost stands for the number of page readings for each query. On the other
hand, time cost is the overall response time required to navigate the index and return the
answers. The results shown in this section are the average performance of 200 range queries.
The query sequences are randomly selected from the dataset.

Both synthetic and real datasets are employed in the experiments. Specifically, two data-
sets have been used in our experiments:

Synthetic Dataset: Dataset simulator SUMATRA [33] is employed to generate the synthetic
sequence dataset. It is a popular data simulator in mobile environments, which produces the
moving trajectory sequences with various length and scale.

GENE Dataset: We also employ a real human GENE dataset comprising of four characters
A, C, G and T, from GenBank [1].

The detailed parameter setting of the performance study is shown in Table 2 with default
setting denoted by bold texts, where the character set size represents the number of distinct
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Table 2 Query parameters

Param Description Default value

sl Average length of the sequence dataset 50, 100, 150, 200

s The number of sequences 5k, 10k, 15k, 20k

γ Query range 0.0001, 0.001, 0.01, 0.1

τ The character set size (for SUMMTRA) 5, 10, 15, 20, 25

Fig. 5 Average number of I/O(s) and total running time(s) for SEM-tree, M-tree, Slim-tree and DBM-tree on
SUMATRA and GENE for queries with varying ranges from 0.0001 to 0.1. The default values are (sl = 100,
s = 10,000 and τ = 15 for SUMATRA)

characters in the database. In each experiment, we only change the value of one parameter
with all the rest adopting the default values.

4.1 Impact of query range (γ )

The goal of our first experiment is to compare the performance of our method with existing
methods for different query ranges on SUMATRA and GENE datasets with the range varying
from γ = 0.0001 to 0.1. The results are shown in Fig. 5, where the plots on x-axis are given
in log-scale.

With the increase of query range, query cost (including both I/O and running time)
increases for all the methods, but SEM-tree always performs better than three existing meth-
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ods, i.e. DBM-tree, Slim-tree and M-tree. All these three indexes use cluster information
over the full sequence length in the internal nodes, therefore, the computational cost of dis-
tance is high. The small tree fan-out also incurs heavy overlaps between nodes. Among
three existing methods, DBM-tree always performs better than others (M-tree and Slim-
tree). The DBM-Tree is unbalanced, which makes it reduce the overlap between nodes in
high density regions. Compared with the DBM-tree, average running times of the SEM-tree
are 33 and 47% for SUMATRA and GENE datasets. Regarding the I/O cost, SEM-tree
saves around 50 and 69% of the cost of DBM-tree. The SEM-tree enables the distance com-
putation between (sub-)multisets (notthe original sequences) finished within linear time
in the internal levels of the tree. The distance on the short (sub-)multisets can effectively
filter most irrelevant sequences in the database. On the other hand, we can reduce the I/O
cost greatly by storing more entries in each internal node, as each entry is represented by
(sub-)multisets with small length. Additionally, the multiset representation can increase the
fanout of the SEM-tree, thus reducing the overlap between nodes. Furthermore, according
to the predictability of SEM-tree, some query processes in a certain query can be finished
beforehand in internal node levels without accessing the leaf nodes, which can further reduce
query cost.

We also consider the Sequential Scan approach as the base-line solution which does not
employ any index, however the Sequential Scan method yields much worse performance
compared with all the index based approaches since it has to access all the sequence data
for any query, and hence we omit the results in the figures. For example, the I/O cost for
Sequential Scan on SUMATRA dataset is 1,000 given the default parameters, which is 2-6
times higher than index based methods.

4.2 Scalability in sequence length (sl)

The resilience to the increase of sequence length is one of the most critical features for an index
structure targeting long sequence dataset. The goal of this experiment is to compare the per-
formance of our method with existing methods for increasing lengths of sequences. Figure 6
presents the results with sl(sequence length) varying from 50 to 200 under SUMATRA
dataset and GENE dataset. Query range γ is 0.1.

As sl increases, each sequence has more characters, which results in higher tree and more
expensive distance computation. However, the SEM-tree is based on the multiset, which is a
compact representation of the real sequence. A multiset only records the distinct characters
of sequence and corresponding occurrence times, not the orders. Therefore, an increased sl
does not deteriorate the performance of the SEM-tree obviously as depicted in Fig. 6.

Our SEM-tree can be about 23% (46%) faster than the other three methods in SUMATRA
dataset (GENE dataset), especially when the sequence is long. The SEM-tree has two advan-
tages over other three indexes. Firstly, the SEM-tree reduces the number of I/O(s) compared
to other three indexes (represented by DBM-tree). Because we index different levels of mul-
tisets of the dataset, the length of sub-multisets in the upper levels is much smaller than that
of the original sequence. Besides, the fanout of SEM-tree in upper levels is much larger than
other methods, making the index size of the SEM-tree smaller. With the default parameters
of the datasets, the height of SEM-tree is only 3 for GENE data and 4 for SUMATRA data,
while the other three trees have 6 levels. Secondly, the computational cost of SEM-tree is
smaller than DBM-tree. The reason is that in the internal levels, the distance computation is
much faster because of reduced length of multisets.
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Fig. 6 Average number of I/O(s) and total running time(s) for SEM-tree, M-tree, Slim-tree and DBM-tree
on SUMATRA and GENE for queries with varying sequence length from 50 to 200. The default values are
(γ = 0.01, s = 10,000 and τ = 15 for SUMATRA)

4.3 Scalability in database size (s)

In this experiment, we test the scalability of performance with respect to the data size. We fix
the length of sequences at 100 and query range γ at 0.01, and vary the dataset size from 5,000
to 20,000 sequences. The performance of range queries on SUMATRA and GENE datasets
for SEM-tree, M-tree, DBM-tree and Slim-tree, including an average number of I/O(s) and
total running time, has been shown in Fig. 7.

Generally, with the increase of data size, more sequences will be covered for the fixed
query range γ , which not only incurs the increment of distance computation but also leads to
more I/O operations involved. Therefore, the performances of all indexes decrease as depicted
in Fig. 7. However, the SEM-tree is still about 40–50% better than other methods for range
query on SUMATRA and GENE dataset. These results clearly show the efficiency of the
SEM-tree over the three compared indexes. This is because SEM-tree uses (sub-)multisets
rather than the full length in the internal nodes, and the latter can lead to more I/O operations
and distance computational cost.

4.4 Impact of character set size (τ )

In the last experiment, we evaluate the performance of our method using different character
set sizes. Here, we compare the performance of SEM-tree with other three indexes by fixing
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Fig. 7 Average number of I/O(s) and total running time(s) for SEM-tree, M-tree, Slim-tree and DBM-tree
on SUMATRA and GENE for queries with varying datasize from 5,000 to 20,000. The default values are
(γ = 0.01, sl = 100 and τ = 15 for SUMATRA)

the query range (γ = 0.01) for a varying character set size τ = 5, 10, 15, 20 and 25 under
SUMATRA data. Based on the sequence embedding technique, we know that the length of
multiset (or sub-multiset) highly depends on the character set size τ . Therefore, the perfor-
mance of SEM-tree may be influenced by the changing of τ , which has been proved in these
experiments.

As shown in Fig. 8, as the number of character set size increases, the performance of
SEM-tree degrades gradually. The reason is that the effectiveness of sequence embedding is
deteriorated, as we need to use longer multiset to represent the original sequence. However,
the SEM-tree still performs better than other schemes for a relatively large τ , e.g. 20. Note
that, the performances for DBM-tree, Slim-tree and M-tree are kept unchanged because the
query processing is unrelated with τ but only influenced by the length of sequence sl.

The result of this experiment also justifies the superiority of the proposed SEM-tree for
the sequence datasets with a small number of distinct characters, such as DNA sequences.

5 Conclusion

With numerous emerging applications requiring efficient similarity search over sequence
datasets, there is a high demand for a scalable index structure that can serve long sequence
datasets. In this paper, we proposed a ‘dimensionality reduction’ like mechanism based on

123



Accelerating sequence searching: dimensionality reduction method 319

Fig. 8 Average number of I/O(s) and total running time(s) for SEM-tree, M-tree, Slim-tree and DBM-tree
on SUMMTRA for queries with varying character set size from 5 to 25. The default values are (γ = 0.01,
s = 10,000 and sl = 100)

sequence embedding technique to minimize the expensive distance computational cost. As
an application of the derived properties, a novel index structure, SEM-tree was presented
to index sequences. In a SEM-tree, each level represents the sequence data with different
compression level of multisets, whose sizes increase from root to leaf level. As demonstrated
by the comprehensive simulations, SEM-tree shows a much better performance than existing
schemes, in terms of CPU cost and I/O cost.
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Appendix: Multiset and related operations

Definition 1 (Multiset) A multiset is a pair (X , f ), where X is a set, and f is a function
mapping X to the cardinal numbers greater than zero. For any x ∈ X , f (x) is called the
multiplicity of x .

Definition 2 (card()) Suppose that A = 〈A, f 〉 is a multiset, then its cardinality, denoted
card(A), is defined as: card(A)=

∑
x∈A( f (a)).

Definition 3 (A � B) Suppose that A = 〈A, f 〉 and B = 〈A, g〉 are two multisets, then the
removal of multiset B from A, denoted A � B, is the multiset C = 〈A, h〉, where for all
a ∈ A: h(a) = max( f (a) − g(a), 0).

Definition 4 (A ∪ B) Suppose that A = 〈A, f 〉 and B = 〈A, g〉 are two multisets, then
their union, denoted A ∪ B, is the multiset C = 〈A, h〉, where for all a ∈ A: h(a) =
max( f (a), g(a)).

Definition 5 (A ∩ B) Suppose that A = 〈A, f 〉 and B = 〈A, g〉 are two multisets, then
their intersection, denoted A ∩ B, is the multiset C = 〈A, h〉, where for all a ∈ A: h(a) =
min( f (a), g(a)).
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