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Abstract In this paper we present a novel methodology for sequence classification, based
on sequential pattern mining and optimization algorithms. The proposed methodology auto-
matically generates a sequence classification model, based on a two stage process. In the first
stage, a sequential pattern mining algorithm is applied to a set of sequences and the sequential
patterns are extracted. Then, the score of every pattern with respect to each sequence is cal-
culated using a scoring function and the score of each class under consideration is estimated
by summing the specific pattern scores. Each score is updated, multiplied by a weight and
the output of the first stage is the classification confusion matrix of the sequences. In the
second stage an optimization technique, aims to finding a set of weights which minimize an
objective function, defined using the classification confusion matrix. The set of the extracted
sequential patterns and the optimal weights of the classes comprise the sequence classification
model. Extensive evaluation of the methodology was carried out in the protein classification
domain, by varying the number of training and test sequences, the number of patterns and
the number of classes. The methodology is compared with other similar sequence classifica-
tion approaches. The proposed methodology exhibits several advantages, such as automated
weight assignment to classes using optimization techniques and knowledge discovery in the
domain of application.
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1 Introduction

Sequential data are sequences of ordered “events”, representing a situation, where each event
might be described by a set of predicates. Examples of sequential data include text, bio-
sequences (DNA, proteins), web-usage data, multiplayer games, and plan-execution traces.
Classification is the procedure in which given a collection of training records, each one con-
taining a set of attributes, with one of them being the class, to find a model for the class
attribute as a function of the values of other attributes. The result of the classification is that
new records are assigned to a class as accurately as possible.

Sequence classification is an important problem that arises in many real-world applica-
tions, such as protein function prediction, text classification, speech recognition, intrusion
detection, etc. [1]. Given a sequence (constructed from letters drawn from a finite alphabet;
i.e. 20-letter alphabet of amino acids in the case of protein classification; a vocabulary of
English words in text classification), a sequence classifier assigns a class label (typically
drawn from a finite set of mutually exclusive class labels) to the sequence. Data mining and
machine learning algorithms offer an effective approach to design sequence classifiers, when
a training set of labeled sequences is available [2].

The problem of sequence classification has been addressed in the past; however, it has not
received too much attention. The earliest approaches employed hidden Markov models [3],
finite automata and entropy based approaches [4]. The most recent techniques treat the prob-
lem of sequence classification as a feature mining problem [5-7], i.e. they mine sequential
patterns from a set of training sequences and then use these patterns for classification. The
FeatureMine algorithm uses these patterns as features; in this way the sequences are vec-
torized based on the matched sequential patterns and then standard classification algorithms
such as naive Bayes and winnow are applied to the vectorized sequences [5,6]. The Clas-
sify by Sequences (CBS) algorithm mines sequential patterns from the sequences and then
assigns a score to each sequence for each class, using a scoring function [7], which is based
on the length of the matched sequential patterns. Tseng et al. [7] presents two approaches, the
CBS_ALL and the CBS_CLASS. Experimental results show that CBS_CLASS outperforms
both CBS_ALL and FeatureMine [7].

Recently, many data mining techniques like association rules, sequential patterns, cluster-
ing and classification, emerged in various research topics [§—12]. Most of the existing data
mining methods are designed for solving some specific problem independently. On the other
hand, some few compound methods integrate two or more types of data mining techniques
to solve complex problems. These compound methods can effectively utilize the advantages
of each individual mining technique to improve the overall performance in the data mining
tasks. For example, the CBA [13] method delivers higher accuracy than traditional classi-
fication methods such as C4.5 [11]. Hence, it is a promising direction to integrate different
kinds of data mining methods to form a new methodology for solving complex data mining
problems.

In this work we propose a novel methodology for sequence classification that is able to
work in many sequential domains. The methodology can be considered as a compound data
mining method that uses sequential pattern mining for sequence classification. The input to
our methodology is a set of labeled training sequences, and the output is a function mapping
from a new, unknown sequence to a class. The classification of an unknown sequence is
realized automatically. The methodology employs a sequential pattern mining algorithm, a
scoring function that uses the sequential patterns for classification and an optimization tech-
nique, in order to automatically assign weights to the classes. The proposed methodology
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extends a previously reported sequence classification algorithm [7] by introducing a set of
weights and obtaining optimal values for them using optimization algorithms.

The proposed methodology consists of two stages. In the first stage a sequence clas-
sification model based on sequential patterns is created. This first stage is similar to the
CBS_CLASS algorithm, which also builds a sequence classification model from the extracted
sequential patterns. The innovation of the proposed methodology is the introduction of
weights, which are applied to sets of sequential patterns, and their tuning through opti-
mization, during the second stage, which is proposed for the first time in the literature. The
methodology, through the optimization stage, assigns optimal values for these weights to
improve the sequence classification performance. The introduction and optimization of the
weights is motivated by the fact that the sequential patterns, extracted from the sequences,
do not describe all classes with the same adequacy; some classes are over described from
the sequential patterns while for some others this description is rather poor. The weights
are introduced to balance this trend, and subsequently, an optimization technique is used to
automatically calculate optimal values for them. In addition, the weights integrate the avail-
able information for each class, since the description of classes with more information (i.e.
having a large number of training sequences) is more reliable. The results indicate that the
employment of the optimal weights highly increases the classification accuracy of the simple
sequential pattern based classifier. Furthermore, the methodology provides to the domain
experts knowledge for their domain (by means of the extracted sequential patterns and the
optimal weights). Finally, the proposed methodology is generic and can incorporate different
algorithms/approaches in any of its stages.

The rest of the manuscript is organized as follows. In Sect. 2, the two stages of the proposed
methodology are described in detail. Section 3 presents the experiments from the protein clas-
sification domain used to evaluate the methodology, the comparative work and the obtained
results, for all experiments. Finally, in the discussion section, qualitative conclusions are
derived and quantitative comments concerning the obtained results are addressed.

2 Methods

The proposed methodology includes two stages (Fig. 1). In the first stage, a sequence clas-
sification methodology is defined. For the realization of the first stage, a dataset D =
{Si,ci}, i = 1,...,1s, where S; is a sequence and ¢; is its class, with [/, different clas-
ses (¢; = {1,...,1:}) and Ig is the number of sequences in the dataset (|D| = Is), and a
vector of class weights w(lw| = I.) are required. This stage is realized in four steps and
its outcome is the classification confusion matrix. The second stage is an optimization tech-
nique which is based on an objective function, defined by the classification confusion matrix,
aiming to find a set of weights, w, which minimize the objective function.

2.1 Stage 1: Sequence classification

Figure 2 presents the pseudo code for the realization of the four steps of the first stage. The
list of symbols used and their explanation is presented in Table 1.

Step 1 Sequential pattern mining

The training sequences are divided into /. subsets, each one containing all sequences
belonging to the same class (S-/ ,ji=1,..., lc). Then, sequential pattern mining (SPM)
[9] is applied to each subset, generating /. sets of sequential patterns (Pj ), satisfying the
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| Step 1: Sequential pattern mining | = _‘
Step 2: Pattern score matrix calculation |
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Fig.1 The two-stage methodology

Table 1 List of symbols used and their explanation

Symbol Explanation

D ={S;, ¢} Database of sequences

lg Overall number of sequences in D, (| D])

S; The ith sequence

¢ Class of the ith sequence

e Number of classes

w Vector of class weights. |w| = I

N The subset of sequences belonging to the jth class
SPM Sequential pattern mining procedure

PJ The jth set of sequential patterns. extracted from S J
PSMJ The jth pattern score matrix for the PJ

P,f; The mth pattern of the jth set of patterns

CSM The class score matrix

pci The predicted class of the ith sequence

cM The confusion matrix

w* The optimal vector of class weights

Dirain The training set

Drest The test set

I Different items in the sequences (alphabet)
min_sup Minimum Support (SPM algorithm)

max_gap Maximum Gap

min_gap Minimum Gap

supD (sq) The support of the s, sequence in the database of sequences D

user-defined constraints. The above is followed by the CBS_CLASS [7] algorithm reported
to outperform CBS_ALL, who mines the whole database of sequences for sequential pat-

terns. This
SPM is an
sequential

step closely resembles the feature mining problem [5,6]. For this reason, even if
unsupervised technique, we employ it in a supervised manner, since we generate
patterns for each class separately. The output of this stage is the sets of sequential

patterns P/, j=1,...,1., characterizing the /. classes.
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In the SPM procedure, we can incorporate several constraints, that allow for flexible gap
of the extracted sequential patterns. Several algorithms have been reported in the literature
which implement the SPM procedure [9, 14-16]. However, little work has been done on con-
strained SPM [17-20]. An algorithm that performs efficient and effective constrained SPM
is the cSPADE algorithm [17]. The cSPADE algorithm is based on the SPADE algorithm
[16] which uses efficient lattice search techniques and simple join operations on id-lists. As
the length of a frequent sequence increases, the size of its id-/ist decreases, resulting in very
fast joins. All sequences are discovered with only three database scans, one for frequent
1-sequences, another for frequent 2 sequences, and one more for generating all frequent
k-sequences. The performance of the cSPADE algorithm has been proven superior, com-
pared to other constrained SPM approaches [18,19].

Step 2 Pattern score matrix calculation

After the extraction of the sequential patterns, for each class we create a pattern score
matrix PSM/, j=1,...,1. (a PSM matrix is created for each class). Each PSM/ includes
a score that defines the implication of a pattern that belongs to class j with all S; sequences;
thus, its size is /; x [g. This implication is defined through a scoring function: if the Py,
pattern i.e. the mth pattern of the jth class is contained in the S; sequence then the (m, i)
element of the PSM/ matrix is equal to thp value length(P;,) — 1 divided by the number of
patterns describing the jth class. If the P, pattern is not contained in the S; sequence then
PSMJ (m,i)is equal to 0.

We subtract 1 from the length of the pattern, in order to assign the minimum score, which
is 1, to the minimal pattern, whose length is 2. The length of the pattern in the numerator
makes the longer sequential patterns more significant than shorter ones. Also, the score of
a sequence with respect to a class is divided by the number of sequential patterns extracted
from this class set. Thus, the smaller the number of patterns describing a class, the more
significant is each one of these patterns. The above scoring function assigns higher scores to
the longer sequential patterns, by adding their score along with the score of all their subse-
quences. This has been taken into consideration since, longer sequential patterns are much
more important than shorter ones.

Step 3 Class score matrix calculation and update

From the P.SM/ matrices, we derive the class score matrix (CSM ). Each (j, i) element
of this matrix is the score of the ith sequence for the jth class, and it is defined as the sum
of the scores of all patterns belonging to the jth class for the ith sequence. This is shown
schematically in Fig. 3. Since the score of a specific pattern for a sequence is 0 if this sequence
does not contain the pattern, only the patterns included in a sequence contribute to the class
score; thus, the size of the CSM matrix is [. x [g. Then, each row of the matrix CSM is
multiplied by a parameter, which denotes the weight of a specific class; thus the matrix CSM
is updated as follows: row; = w (j) - row;, where row; is the jth row of the C.SM matrix
and w (j) is the jth element of the class weight vector.

Step 4 Confusion matrix calculation

For each sequence S;, a class is predicted (pc;), based on the updated C SM matrix. This
predicted class is defined as the class that obtains the highest score for the ith sequence: pc; =
argmax;_p ;. (CSM (j,i)). Based on the real class ¢; and the predicted class pc;, the
confusion matrix (CM) for all the sequences is calculated, as it is shown in step 4 of the
pseudocode (Fig. 2).
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STEP 1: Sequential pattern mining (SPM)
= for j=1,..,I, (for each class)

o 8 ={s|c=j}
(select all sequences from the dataset that belong to the j” class)

o P =sPM(S’)
(perform SPM to these sequences and extract the sequential patterns which describe
this class; P’ is the set of these patterns)

" end

STEP 2: Pattern Score Matrix (PSM) calculation
= for j=1,..1 (for each class)

o form= 1,,..,lj. (for each pattern of this class,

P.f‘ — l/- )
= fori=1,..,I (for each sequence in the dataset)

o if P/ is contained in S. then

PSM (m,i)= (tength(P})=1) /|P"| else PSM” (m.i)=0.
(if the S, sequence contains the P/ pattern, i.e. the m"

pattern of the j” class, then it is assigned the value of
length(P”f )—1 divided by the number of patterns describing

the j” class, else it is assigned the value of 0).

o end
= end
o end
" end

STEP 3: Class Score Matrix (CSM) calculation and update
= for j=1,..,1 (for each class)
o fori=1,..,l (for each sequence in the dataset)

,J
* CSM (j.i)=Y,PSM’ (m.i)

m=1
= CSM (j.i)=wc(j)-CSM (j.i)
(The CSM value for the i sequence for the j

th

class, which denotes the
score of the i" sequence for the j” class, is the sum of the scores of all
patterns belonging to j” class contained in the i sequence. Each element

of the columns of the CSM is updated, by multiplying it with a class
weight).
o end
= end

STEP 4: Confusion matrix (CM) calculation
= fori=1,..,I (for each sequence in the dataset)

o pec =argmax(CSM (j.i))
J=ld,

( pc, is the predicted class for the i" sequence, defined as the row that exhibits the
maximum score in the i column)
o CM (c,,,pci)z CM (c,, pc;)+1

= end

Fig. 2 Pseudocode which describes the first stage of the proposed methodology
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Fig. 3 Calculation of the class score matrix (CSM) from the pattern score matrix (PSM). The columns of
each PSM are summed in order to create the rows of the CSM

2.2 Stage 2: Optimization

In the second stage, we try to calculate a set of weights w that derive the highest classification
accuracy of the sequences in the dataset. Initially, a cost function is defined, based on the
CM:

f(D,w)=1lg —trace (CM). (1)

Equation (1) can be formulated as an optimization problem, minimizing f (D, w) with respect
to w. Different values for the weights have an impact on the cost function, since they affect
CM. This cost function has been selected since its minimum value is 0, and this value is
obtained if (with the appropriate w) all sequences are correctly classified (/s = trace (CM)).
Local optimization strategy is preferred, since an initial point is available (w = 1) and it
is significantly faster than global optimization. In addition, it is very difficult to calculate
analytically the derivatives of the objective function. Based on the above, we employed
the Nelder-Mead simplex search method [21] to solve the optimization problem. This is a
direct search method for multidimensional unconstrained minimization which does not use
numerical or analytic gradients.

The Nelder-Mead simplex search method initially defines a simplex ® € R" in the—n
dimensional space, which is characterized by the n 4 1 distinct vectors which are its vertices.
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At each step of the search, a new point in or near the current simplex is generated. The
function value at the new point is compared with the function’s values at the vertices of the
simplex and, usually, one of the vertices is replaced by the new point, giving a new simplex.
This step is repeated until the diameter of the simplex is less than a specified tolerance. The
result of the optimization procedure is a set of optimal class weights w*.

3 Results

The proposed methodology has been evaluated using an appropriate sequence dataset. Results
of the proposed methodology are presented for both cases with and without the use of the
optimization stage (w = 1) [22,23]. Our methodology is also compared with a previously
reported sequence classification method, the CBS algorithm [7].

3.1 Dataset

The sequence classification domain that was selected is the classification of protein primary
structures into folds and classes. The formulation of SPMcovers almost any categorical
sequential domain [24]. In order to apply SPM to a specific domain, the following notions
are required: a database of sequences D, a set of items (alphabet) 7, a definition of the trans-
action id (tid) and a definition of an itemset. In what concerns our problem, the database D
consists of protein primary structures and each one of them has a sequence id. The set of
items / is the 20 amino acids that compose the protein primary structures plus one for the
unknown amino acid. An itemset in a transaction consists of a single item (one of the 21
letters) while the fid is the position of the amino acid in the protein primary structure, rather
than the time.

A group of primary protein sequences were taken from the Protein Data Bank (PDB)
[25]. All members of this group correspond to a specific fold of the Structural Classification
of Proteins (SCOP) database [26]. Specifically the 17 SCOP folds, with at least 30 mem-
bers, from classes A and B were used to derive the training and test data. From the resulted
1,000 proteins, the two thirds from each category were used for training, while the rest for
evaluation.

3.2 Evaluation

From the above sequences, four datasets were derived and four different classification exper-
iments were performed. Each dataset was divided into training and test sets.

e In the first experiment (Exp. 1) we used sequences from 17 categories (class A and class
B folds). The training and test sets consist of 666 and 334 proteins, respectively.

e In the second experiment (Exp. 2) we use sequences from 10 categories (class B folds).
The training set consists of 406 proteins and the test set of 203 proteins.

e In the third experiment (Exp. 3) we use sequences from 7 categories (class A folds). The
training set consists of 260 proteins and the test set of 131 proteins.

e In the fourth experiment (Exp. 4) we use sequences from 2 categories (All sequences of
class A folds belong to the first category and all sequences of class B folds belong to the
second category). A total of 666 proteins form the training set and 334 proteins form the
test set.

In all experiments, we set the minimum support to 50%, meaning that a pattern should
be present in at least half of the training sequences, as values greater than that should
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indicate a propensity towards the correct description of this class. Also, for each of the
above experiments, we varied the number of max_gap from 1 to 5, since values greater than
5 made the number of the extracted sequential patterns prohibitively large. Thus we created
20 experiments; in all experiments, the training set was used for sequential pattern mining
and for calculating w*. In the testing phase, the sequential patterns and w* are used to classify
the sequences of the test set.

3.3 Comparative work

The CBS algorithm has also been tested using the same experimental procedure. We have
implemented the CBS_CLASS variation of the CBS algorithm. In the CBS_CLASS

Table 2 Number of extracted sequential patterns and accuracy results for the training and test sets for the
three approaches (CBS, SPM, OSPM)

Exp. 1: | Diain| = 660, | Diest| = 334 and [ = 17

max_gap  # Patterns CBS* SPMP  OSPM® CBS SPM OSPM
1 1568 Training 365 365  40.8 Test 222 225 225
2 3670 320 384 608 192 183 320
3 7404 227 544 658 141 270 380
4 17542 338 691 779 25 359 413
5 38557 425 616 781 246 305 392

Exp. 2: | Digain| = 406, | Dest| = 203 and [ = 10

1 1142 Training  43.8 44.1 66.8 Test  28.1 30.1 38.9
2 2444 28.1 34.2 65.8 16.8 18.2 38.4
3 5035 15.3 61.6 70.9 12.8 335 41.9
4 12456 229 78.6 82.8 19.2 438 46.3
5 27603 31.8 78.3 83.0 2377 409 42.4

Exp. 3: [ Dypain| = 260, | Diest| = 131 and [0 =7

1 426 Training  59.2 59.2 63.9 Test 428 428 46.6
2 1226 61.2 67.3 78.1 374 336 43.5
3 2369 65.4 61.9 71.3 504 420 51.9
4 5086 719 75.0 85.4 534 443 53.4
5 10954 735 74.6 84.6 512 420 534

Exp. 4: | Digain| = 666, | Diest| = 334 and [o = 2

1 1568 Training  61.4 62.3 82.1 Test 59.6  60.2 76.1
2 3670 512 53.0 85.3 494 512 75.8
3 7404 49.1 66.8 84.4 485 620 71.5
4 17542 56.8 71.6 84.5 557 659 78.4
5 38557 62.2 71.0 84.8 584  65.6 79.0

| Dirain| and | Dyest| denote the sizes of the corresponding training and test sets, respectively

4CBS: Accuracy of the classify by sequence algorithm

bSPM: Accuracy of the approach without the use of the optimization stage. Sequential pattern matching
€OSPM: Accuracy of the proposed methodology. Optimized sequential pattern matching
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algorithm the training set is divided into subsets of sequences belonging to the same category.
These subsets are mined using sequential pattern mining and a set of sequential patterns is
derived for each class. Then, the score of every sequential pattern for each sequence is calcu-
lated, as follows: if the P, pattern, is contained in the S; sequence then the (m, i) element of
the PSM/ matrix is equal to the value length(P,ﬁ) / zzzl length(Pnﬁ), else it is equal to O.
After the creation of the P.SM matrix, the CBS_CLASS algorithm employs the same steps
with the stage 1 of the proposed methodology, for the creation of the C SM matrix and the
classification of a sequence in a predicted class.

In addition, we compared our method with a well known and widely used method for
sequence classification, which is based on hidden Markov models, the Sequence Alignment
and Modeling method, SAM [27,28]. SAM employs the Baum-Welch algorithm [29] for
training a hidden Markov model and classifies sequences using two approaches: either rank-
ing of the scores obtained for each sequence (SAM_1) or ranking of the E-values obtained
for each sequence (SAM_2). Currently, we tested both SAM_1 and SAM_2, with the same
training and test sets with the proposed methodology.

Fig. 4 Graphical representation 90 -
of the accuracy of the proposed 80 -
methodology for the four oo ¢
. - 70 +
experiments for various values of =
max_gap. The best accuracy for £ 60 —*—Exp.1
Exp. 1, Exp. 2 and Exp. 3 is § 50 - ‘\/—‘—‘ —a—Exp. 2
obtained for max_gap=4 while 5 40 4 —a—Exp. 3
for Exp. 4, the best accuracy is § 30 - —e—Exp. 4
obtained for max_gap=>5 20 |
10 -
O T T T T T 1
0 1 2 3 4 5 6
max_gap

Table 3 Accuracy results (%) for SAM_1, SAM_2, CBS, SPM and OSPM in test sequences

Exp. 1: | Digain| = 666, | Diest| = 334 and [o = 17

SAM_1 SAM_2 CBS SPM OSPM

29.4 35.0 24.6 359 413

Exp. 2: | Dirain| = 406, | Diest| = 203 and I = 10

36.5 404 23.7 43.8 46.3

Exp. 3: | Digain| = 260, | Dest| = 131 and Io = 7

42.0 42.8 53.4 44.3 534

Exp. 4: | Dgain| = 660, | Dest| = 334 and [, =2

59.0 63.8 58.4 65.6 79.0

The accuracies of CBS, SPM and OSPM are derived as the maximum ones for each different experiment
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3.4 Classification performance

Table 2 presents the obtained results for all experiments and for all the different values of
the max_gap. It is mentioned that the accuracy results are presented both for the training and
the test sets. In the first experiment, the number of patterns varies from 1,568 to 38,557 for
max_gap =1-5. Similarly, in the second experiment the number of patterns varies from 426 to
10,954, in the third experiment this number varies from 1,142 to 27,603 while for the fourth
experiment, the number of patterns varies as in the first experiment since the patterns from
the 17 classes were used as patterns for the two classes. Figure 4 presents the classification
accuracies (for the test set) for all 4 experiments and for all 5 different values of max_gap.
Table 3 presents the accuracy results in the test sequences for SAM_1, SAM_2, CBS, SPM
and OSPM. It should be mentioned that in Table 3, the accuracies of CBS, SPM and OSPM
are the maximum ones for each different experiment (Exp. 1, Exp. 2, Exp. 3 and Exp. 4) for
the corresponding max_gap value of Table 2.

4 Discussion

In the current work we presented a novel methodology for the automated generation of
sequence classification models. Initially, sequential patterns are extracted from a set of (train-
ing) sequences. The scores for each sequential pattern and each class are computed. In addi-
tion, optimal weights for each class are calculated, using an optimization technique. The
obtained optimal class weights along with the extracted sequential patterns compose the
sequence classification model, which is used to classify the test sequences.

The proposed methodology introduces several innovative features. To our knowledge,
the automatic assignment of weights to sets of sequential patterns using optimization tech-
niques, for classification purposes is proposed for the first time in the literature. Other similar
approaches use the extracted sequential patterns either as input features [5,6] to standard
classification algorithms, or employ a scoring function, similar to the one reported in the cur-
rent work [7]. The weight assignment to the classes and their tuning through optimization,
is a major advantage of our methodology, since it adjusts the descriptive ability of the set
of patterns for each class, thus leading to high classification accuracy, superior to previous
works. Also, the results of the simple sequential pattern based classifier are significantly
improved, when the optimal weights are applied.

The methodology can be applied to other domains of application; the application of the
methodology is straightforward, since only fundamental information related to the domain
of application is needed: the dataset, consisting from the set of sequences, the class of each
sequence, and the alphabet that is used to form the sequences. For example, in the domain
of document classification where there exists a set of documents, each of them belonging
to a predefined class, our methodology can be applied as follows: the alphabet is defined
as the total number of (stemmed) words existing in all documents and thus, each document
is considered as a sequence of words. Then, based on the class of each document, the set
of documents is divided into subsets, where each subset contains documents of the same
class. After that, sequential pattern mining (step 1 of the first stage) is applied to each of the
subsets of documents (sequences) to generate a set of sequential patterns describing each
one of the document classes. Steps 2—4 of the first stage are then applied. In these steps,
each set of sequential patterns describing a document class is considered of equal importance
with all others; the importance of each set is defined through the introduction of the weights
(one weight for each class) and initially the values of all weights are set to 1 (i.e. they are
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considered of equal importance). Finally, Stage 2 is applied to assign optimal values to each
weight in order to increase the correctly classified documents. This is performed by defining
an appropriate objective (error) function, in our case based on the document classification
confusion matrix, and then minimizing its value using an optimization technique/strategy.

Additionally, the methodology is generic since different components can be used for any
of its stages, i.e. different SPM algorithm, alternative objective function and/or optimization
method (local or global). Also, the scoring function could be modified to integrate different
preferences, e.g. in case the sequences are composed by itemsets with multiple items, the
scoring function could be modified to use either the length (number of itemsets) or the size
(number of items) of the pattern in the numerator (currently, itemsets are composed by single
items and thus the length and the size of a pattern are the same) of the scoring function.

The SPM approach, employed in this work, is suitable for analyzing sequences and is
able to discover strong sequential dependencies (patterns). In addition, the use of sequential
pattern mining leads to pattern discovery in the specific sequential domain of application.
Furthermore, the training phase of the method, i.e. the determination of the sequential pat-
terns, is a fast procedure due to the use of the cSPADE algorithm. In general, SPM is a time
consuming process and requires high computational load which is increased exponentially
as longer sequences need to be mined. The lattice search techniques and the simple joins that
the cSPADE algorithm employs, handle the two above aspects effectively.

It should be mentioned that the employed scoring function is selected heuristically,
obtained after a series of experiments. Its basic design (i.e. provide higher score to sequential
patterns of higher length by adding their score along with the score of all their subsequences)
was obtained from the CBS algorithm. In addition, we utilized also as scoring function (in the
numerator) the times a sequential pattern is contained in the sequence raised in the power of
n(n = 1,2,...), the logarithm of the length of the pattern, the length of the pattern raised in
the power of n(n = 1,2, ...), the support of the pattern and others. All the above, including
the scoring function of the CBS algorithm, reported lower classification results when they
were used in our sequence database. More specifically (Table 2), the accuracy obtained in
almost all classification problems (in 19 out of 20 experiments) is improved during training,
when the proposed scoring function is employed, instead of the one used in the CBS algo-
rithm. This improvement also holds in the testing (in 15 out of 20 experiments). The average
accuracy for all experiments is 46.1% for training using the CBS algorithm and 61.3% using
SPM (improvement of 15.2%), while the average accuracy in testing is 35.5% for the CBS
and 40.5% for SPM (improvement of 5%).

The proposed methodology has been evaluated systematically, using 20 different eval-
uation experiments (four datasets multiplied by five different values of the max_gap). In
the design of the classification experiments, special attention was given to create classifi-
cation experiments with different properties and classification difficulty; the length of the
employed sequences ranges from 36 to 590 letters, using a 21 letter alphabet, while the num-
ber of classes, is 17, 10, 7 and 2. Also the number of sequential patterns extends from 426
to 38,557. This large number of different evaluation experiments resulting from the wide
range of parameters, ensures the reliable evaluation of the proposed methodology in protein
classification domain.

Comparing the computational complexity and the running times of the three algorithms
(SPM, OSPM and CBS), SPM and CBS have the same computational complexity and run-
ning time both in training and in testing, since for every different value of max_gap, the
same number of sequential patterns are both mined in training and matched in testing. OSPM
presents higher computational complexity and running time than the other two algorithms
in the training, since it employs two stages, the first stage which is common with SPM and
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CBS and the second stage, which employs an optimization technique. Thus, the additional
complexity and running time of the OSPM is due to the optimization stage and depends on
the selection of the optimization technique. In the current work, the Nedler-Mead simplex
search method is employed, which is a local optimization technique with low computational
complexity. This complexity and training time depend on the number of classes, since its
value defines the number of parameters for optimization. The running time for testing depends
only on the classification difficulty of the experiment (number of patterns, number of classes,
number of test sequences) and thus all three algorithms report the same running time in terms
of each different experiment. It should be mentioned that the number of extracted sequential
patterns, highly depends on the max_gap value, thus as max_gap increases the number of
sequential patterns and subsequently the running time for all three algorithms, increase.

In addition, the proposed optimization stage significantly improves the ability of the
sequential patterns to classify sequences, by adjusting the relative importance of each class
according to the obtained optimal weights. More specifically, in all 20 experiments, both in
training and testing, the proposed methodology (mentioned as OSPM in Table 2) presents
higher accuracy. The average accuracy for all experiments is 75.2% in training and.50.8%
in testing, improving the accuracy of the CBS in training by 29.1% and SPM (which is the
first stage of the OSPM methodology) by 13.9%. The respective improvement in testing is
15.3% and 10.3%, compared to the CBS and the SPM, respectively. It should be noted that
the best accuracy for OSPM in Exp. 1,2,3 experiments is achieved for max_gap=4, while
for Exp. 4, the best accuracy is achieved for max_gap=5 (Fig. 4). Thus, patterns with up to
3 intervening amino-acids between two consecutive amino-acids constituting a pattern are
the most descriptive in the cases of Exp. 1, Exp. 2 and Exp. 3, while patterns with up to 4
intervening amino-acids between two consecutive amino-acids, are more suitable for Exp. 4.
This can be attributed to the higher homology between the folds in Exps. 1-3, since Exps.
1-3 are fold prediction problems. On the other hand, Exp. 4 is a class prediction problem,
and between classes, there exists lower homology. Thus, a lower value of max_gap (4) is
more appropriate for (higher homology) fold recognition, while for (lower homology) class
prediction, a higher value of max_gap (5) reports the best results.

The proposed methodology is compared with the Sequence Alignment and Modeling sys-
tem [27,28], which is a well known and widely used method for sequence classification that
is based on hidden Markov models (Table 3). The comparison shows that the proposed meth-
odology outperforms both SAM_1 and SAM_2 in terms of accuracy in the test sequences, for
all experiments. The average accuracy in Table 3 is 41.7, 45.5, 40, 47.4 and 55% for SAM1,
SAM2, CBS, SPM and OSPM, respectively. It should be mentioned that the methodology
and all comparative methods, provide low classification results in terms of “raw accuracy
numbers” in Exp. 1, Exp. 2 and Exp. 3. However, the performance of all methods becomes
evident when compared with the respective performance of a classifier that makes random
predictions. In this case, the proposed methodology and all comparative methods report an
accuracy of more than 50% accuracy in Exp.4, where there are two classes, and the accuracy
of a classifier that makes random predictions is 50%. In Exp.1, Exp. 2 and Exp. 3, the num-
ber of classes is 17, 10 and 7 respectively, and thus the accuracy of a classifier that makes
random predictions is 5.89, 10 and 14.29%, respectively. It is worth mentioning that, the
relative literature presents comparable results when the number of the target classes (folds)
for prediction is similar [30].

The proposed methodology is based on sequential pattern mining. A drawback of the
methodology is that a large number of patterns is discovered which increases exponen-
tially with max_gap. Although, the extraction of sequential patterns is relatively fast (due
to the cSPADE algorithm), the overall processing time increases. In addition, SPM, besides
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discovering valid and causal relationships in the sequential data, will also find spurious and
particular relationships among the data in the specific dataset. The above issues could be
treated by employing a pattern reduction/selection algorithm; this feature will be addressed
in the future. Additionally, the optimization stage, although significantly improves the classi-
fication accuracy of the approach without the optimization stage, increases the computational
effort and the overall time for the training. For this reason, a local optimization strategy was
selected, which however does not ensure the best results.

5 Conclusions

A novel sequence classification methodology has been presented along with an extensive
evaluation in the domain of protein classification and the obtained results indicate its effec-
tiveness. Application of the methodology in other discrete sequential domains will fully
reveal its potential. Our work in the future must focus on: (1) using different techniques for
sequential pattern mining (i.e. mine sequential patterns with sequence alignment [31,32]),
(2) using methods for sequential pattern selection, or the use of specific types of patterns
like closed [33] or maximal [34] sequential patterns, or minimal distinguishing sequential
patterns [35], (3) employing different scoring function, and/or optimization strategies and
(4) extending the methodology in order to handle time series.
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