
Knowl Inf Syst (2008) 17:335–354
DOI 10.1007/s10115-008-0135-5

REGULAR PAPER

Finding cohesive clusters for analyzing knowledge
communities

Vasileios Kandylas · S. Phineas Upham · Lyle H. Ungar

Received: 29 October 2007 / Revised: 23 December 2007 / Accepted: 29 January 2008 /
Published online: 4 April 2008
© Springer-Verlag London Limited 2008

Abstract Documents and authors can be clustered into “knowledge communities” based
on the overlap in the papers they cite. We introduce a new clustering algorithm, Streemer,
which finds cohesive foreground clusters embedded in a diffuse background, and use it to
identify knowledge communities as foreground clusters of papers which share common cita-
tions. To analyze the evolution of these communities over time, we build predictive models
with features based on the citation structure, the vocabulary of the papers, and the affiliations
and prestige of the authors. Findings include that scientific knowledge communities tend to
grow more rapidly if their publications build on diverse information and if they use a narrow
vocabulary.

1 Introduction

A knowledge community [2] is an informal community of researchers who build on each
other’s ideas and share similar interests. Such communities usually consist of people doing
research on the same or closely related field. They are also known as intellectual commu-
nities, or schools of thought [19]. Belonging to such a community has the advantage for a
researcher of making it easier to disseminate and gather new knowledge. Papers of interest
are easier to find, new papers have an already existing audience and the content is familiar
and thus accessible.

Within a knowledge community, most of the work is related. New results build upon
previous discoveries, thus papers often cite other papers in the same community. Certain
high impact or historical papers will be frequently cited within the community. Papers from

V. Kandylas · L. H. Ungar (B)
Department of Computer and Information Science,
University of Pennsylvania, Philadelphia, PA 19104, USA
e-mail: ungar@cis.upenn.edu

V. Kandylas
e-mail: kandylas@seas.upenn.edu

S. P. Upham
Wharton School, University of Pennsylvania, Philadelphia, PA, USA

123

336 V. Kandylas et al.

related communities will also be cited occasionally. Since patterns of citation are shared
among papers in the same community, knowledge communities can be identified by cluster-
ing documents based on their citations.

Our goal is to discover and analyze knowledge communities. We wish to know what fea-
tures of a community predict whether it will grow or shrink. To do this, we cluster papers
based on the papers they cite. As explained in detail later, not every document is assigned
to a community; many documents are assigned to a background cluster. Once the knowl-
edge communities are discovered, we fit a supervised model and find which features of
the clusters are statistically significant in predicting cluster growth. Features used include
the citation patterns, (e.g., how many of the citations are to papers within or external to the
community), vocabulary usage (e.g., how unique are the words used to the cluster), and exog-
enous measures such as the fraction of authors who have an industrial rather than academic
affiliation.

We classify knowledge communities along a number of dimensions, including their knowl-
edge use, as measured by what papers or communities they cite, and rhetoric, as measured by
what vocabulary they use and how vocabulary changes over time or across communities. We
find that successful communities use knowledge and rhetoric in opposite ways. Successful
communities flexibly use broad knowledge. They have a unique area of focus, but cover new
areas and incorporate knowledge from multiple domains. Also, successful communities use
narrow, unchanging vocabulary, which is common across knowledge communities. Appar-
ently, novel work that is described with new terminology is harder to understand; standardized
terms can reduce this difficulty.

1.1 Foreground/background clustering for text mining

To reach these conclusions, we cluster papers into foreground clusters (knowledge commu-
nities), which cite many of the same papers, or into a more diffuse background. We take the
notion of foreground and background from vision, where there are often cohesive foreground
objects in front of a more diffuse background. In text mining, foreground clusters are cohesive
communities or topics. The background consists of lower density regions, where there are
fewer similar items. For example, when clustering documents, the foreground will consist of
documents in some specific area (e.g., that cite the same papers), while the background will
contain documents that cover several different areas on topics that are not widely cited.

Use of foreground and background is important for community analysis, where one wants
to find the tight groups of papers or people. Clustering published documents according to
what they cite, as we do in this paper, reveals knowledge communities, their sizes and how
they evolve in time by drifting in nearby areas of scientific research, expanding or dying
out. Co-citation analysis has long been used to systematically map and examine the network
structures of research papers or patents and to isolate and identify the structure of scientific
disciplines [9,20]. A wide variety of methods have been used since then to cluster docu-
ments based on citations, including k-means, co-clustering [3] and EM methods. However,
none of these co-citation-based clustering algorithms used for text mining find foreground
clusters against a background. Below, we propose and test two new algorithms aimed at
foreground/background clustering: background k-means, a simple modification to k-means;
and Streemer, a more elaborate algorithm.

This paper also differs from prior work in how it uses the clusters. Document clusters can
be used as an aid for information retrieval, or for looking at the growth of communities over
time [17]. We use the clusters that we find to build predictive models of community growth.

123

Finding cohesive clusters for analyzing knowledge communities 337

The properties of the clusters (e.g., size, growth rate, cohesiveness, etc.) are used both as
features and as values to be predicted.

1.2 Analysis framework

The paper consists of two main parts. In the first half of the paper, in Sects. 2 and 3, we
present the two clustering methods, background k-means and Streemer, and find foreground
clusters against a background, constituting our knowledge communities. We evaluate the
clusters in terms of their coherence, using external labelings of the clustered documents. In
the second half, in Sects. 4 and 5, we describe the features and the model used to predict the
future growth of the clusters from their past properties.

The Streemer1 clustering algorithm is designed to maximize the coherence of the clusters
found and to do so efficiently for large and high-dimensional data sets. Coherence is defined
in terms of the cluster size, separation (distance) from neighboring clusters and cluster den-
sity. After clustering the papers, we use the results to generate features and use a generalized
least squares model to predict the evolution of clusters over time. Data from different time
periods are clustered separately. Finally, we examine which features are significant in this
prediction and therefore are indicative of successful knowledge communities.

The rest of the paper is structured as follows: Sect. 2 presents the Streemer and back-
ground k-means clustering algorithms. Section 3 describes the data and evaluates the results
of the clustering. Section 4 explains the generalized least squares model used for modeling
the growth of communities. Section 5 presents the results for community prediction and
analyzes the features that were most important. We conclude with a review of related work
in Sect. 6 and a discussion in Sect. 7.

2 Clustering

We want to cluster the data so that observations that are not assigned to a standard cluster
are assigned to a diffuse cluster that represents the background. This background will sur-
round all (or almost all) of the foreground clusters, which are embedded like islands in the
background. Thus, the background cluster is not only non-convex, but also non-compact,
i.e., it contains holes. Such clusters cannot be found by many widely used methods such as
k-means, which finds a tessellation of the space where every piece is defined by piecewise
linear boundaries. The resulting clusters are always convex, and cannot represent foreground
clusters embedded in a background.

As a simple example, consider the case where the data are generated from two mixture
components with similar means, but different variances. Assuming, as shown in Fig. 1 for
the 1-D case, that the separation between the cluster centers is small compared to the dif-
ference between the cluster variances, we would prefer the cluster with center µ1 = 0 to be
surrounded by the other cluster, in accordance with the posterior probabilities. The best that
we can expect from k-means, however, is to pick a decision boundary between the means
of the two distributions. This effectively assigns all negative points to the left cluster, even
though the probability of them belonging to the right cluster is higher.

Additionally, k-means implicitly assumes a prior belief of equal cluster sizes, which dis-
courages finding clusters that are very small or very big. This follows from the view of
k-means as a limiting case of a Gaussian mixture model with equal priors and equal cluster

1 StreEMer is named for streaming EM, but this paper does not describe the EM interpretation.

123

338 V. Kandylas et al.

Fig. 1 Two Gaussian
distributions with means µ1 = 0
and µ2 = 2 and very different
variances. Cluster 1 is surrounded
by cluster 2. k-means would
assign the point x = −3 to the
leftmost cluster, even though the
posterior probability of the
rightmost cluster is higher

variances, where k-means emerges in the limit of the variances going to zero [13]. However,
when clustering documents into knowledge communities, we do not expect all of the com-
munities to be of similar sizes. This is another argument for using some alternative clustering
method, instead of k-means or a k-means variant.

2.1 Streemer algorithm

The input to Streemer consists of the data to be clustered, the fraction b of points in the
background, and the number of clusters k. There are also some hidden parameters, which
will be described later, but the result is not sensitive in their values. Additionally, Streemer
requires a similarity function sim() between a data point and a cluster centroid, or between
two centroids.

Streemer is a three-step algorithm that gives better results than simple streaming cluster-
ing at minimal extra computational cost. Streemer initially finds a large number of candidate
clusters using streaming clustering. Then it selects k of them that are good in terms of size,
density and position with respect to the other clusters. In the last step, the points are assigned
to the k clusters, or to the background, if they are far enough from every cluster.

As described in detail in Fig. 2, Streemer performs streaming clustering in step 2 to gen-
erate a set of candidate clusters. Examining each point in sequence, it either adds it to an
existing candidate cluster, or it creates a new cluster and assigns the point to it. This typically
gives a large number of candidate clusters (a few thousand in our experiments). In steps
4–5, it selects k “good” clusters from the candidates, where “good” clusters are large and
also either cohesive or isolated. Finally, in steps 6–7 it assigns each point to a cluster if it
is sufficiently close to the cluster centroid, or otherwise to the background. The appropriate
threshold is chosen to give the desired fraction of points in the background.

Streemer was inspired by Clustering By Committee (CBC) [16]. However, CBC has many
parameters and there is no principled way to decide how to set them. The user of CBC ends
up doing a blind search in the parameter space, which is time-consuming and not guaranteed
to produce good results. Streemer, in contrast, has only the minimum number of parameters
that are required and all the parameters have an intuitive interpretation that makes setting
them easy.

Streemer is highly scalable. In its first pass over the data it performs streaming cluster-
ing, requiring time on the order of |S|N operations (|S| is the number of candidate clusters

123

Finding cohesive clusters for analyzing knowledge communities 339

Fig. 2 The Streemer algorithm

found and N the number of data points). The part of the algorithm filtering the candidate
clusters involves comparisons between themselves and is repeated approximately log(|S|)
times. Finally, the last step makes one more pass over the data making k N comparisons.
Overall, the complexity of Streemer is dominated by the first pass, which is that of streaming
clustering [10].

By design, Streemer achieves what k-means cannot; it gives clusters without a strong bias
towards equal sizes and variances. Also it can find a background cluster that can surround
the foreground clusters. This background cluster is optional, in that it is possible to configure
Streemer so that all the observations will be assigned to the foreground clusters. Streemer
compares favorably to standard clustering methods. It is significantly faster and more effi-
cient than EM. It is almost as fast as k-means, but it returns higher quality clusters with fewer
structural restrictions. It also requires fewer (and more meaningful) parameters than CBC.

2.2 Setting parameters

A general question with any streaming clustering algorithm is how to specify a threshold for
similarity (or distance). As each observation is examined, a decision is made whether to add
it to an existing cluster if it similar enough, or to start a new cluster and put it there. Being
a streaming algorithm itself, Streemer also requires a threshold on the similarity of items to
cluster centroids. We have empirically found that the final clustering result of Streemer is not
sensitive to the value of the threshold, θ . Varying θ from 0.0001 to 0.01 has almost no effect
on the number of candidate clusters for a given dataset. (This, even though the computer
science dataset yields about 4,500 candidate clusters while the management dataset yields

123

340 V. Kandylas et al.

Fig. 3 The background k-means algorithm

35,000). Small differences in the number of candidate clusters have no effect on the final
result, as steps 4–5 filter them out. In all of our experiments we used θ = 0.001.

The threshold minsize is used in step 4 to select the most cohesive candidate clusters.
Instead of setting it explicitly however, we perform binary search until the final number of
clusters is k. Finally, in the last step Streemer assigns all points to the nearest cluster or, if
no cluster is close enough, to the background. The algorithm selects the N (1 − b)th greatest
distance and uses that as a threshold to assign points to their nearest foreground cluster or
the background. Equivalently, the user could specify this threshold instead of b. In this case,
our choice to specify b was motivated by some intuition on the structure of communities and
a goal to understand the effect of belonging more closely to a community vs. being more
dispersed.

Streemer looks very much like a streaming clustering algorithm augmented with a final
step for generating a background cluster by trimming far points from the clusters. The dif-
ference is that Streemer finds a number of candidate clusters much larger than k, and uses
a second step to select k of those candidates as clusters. This makes Streemer less greedy,
which improves cluster quality. Additionally, in standard streaming clustering, users specify
a threshold, and thus cannot specify the desired number of clusters. We find it more intuitive
and useful to specify the desired number of clusters and let Streemer, by searching over the
threshold values, find that number of clusters.

2.3 Background k-means algorithm

We also evaluated a simple modification of the k-means algorithm to include a background
cluster (Fig. 3). We call this method background k-means. Like k-means, the first step in
every iteration is to assign each point to its nearest cluster. The second step, which is new,
moves to the background a pre-defined fraction of the points that have the greatest distance
from the centroid of their cluster. The third step then re-estimates the cluster centroids using
only the assigned points and the procedure repeats until convergence. As in k-means, all the
foreground clusters are convex and have piecewise linear boundaries.

123

Finding cohesive clusters for analyzing knowledge communities 341

3 Validation of clustering methods

To test and validate the clustering methods, we used two datasets, one consisting of papers
from computer science fields and the other from management. The computer science data
were drawn from CiteSeer, a digital library of papers from conferences and journals in com-
puter science. CiteSeer collects computer science papers posted on the Internet as well as by
linking directly to publishers, conference sites, and journals, and then parses these articles
to find the citations and descriptive information in each paper. We cross-referenced these
papers with the DBLP Computer Science Bibliography, a database that indexes a similar
group of computer science papers, in order to verify existing information and gather sup-
plemental information on journals and conferences. The majority of papers in the version of
these databases that we used were from between 1992 and 2003.

The management data were drawn from the Thomson ISI database. We selected 41 core
journals and conference proceedings in management and collected complete sets of all arti-
cles and their citations for these 41 journals/proceedings since 1956. The list includes within
the field of management both the macro (which is heavily influenced by economics and
sociology) and the micro (which is heavily influenced by psychology) specialties.

The documents in both datasets were represented as boolean vectors, i.e., vectors with
elements 0 or 1. The j th element of vector i is 1 if document i was cited by document j ,
and 0 otherwise. The vectors were L2-normalized before clustering, to give documents with
different number of citations equal weight. The computer science dataset consists of 341,458
documents, represented as boolean vectors of 197,163 dimensions. The vectors are sparse:
the average number of nonzero elements (i.e. number of times a document was cited) is
5.19. The management dataset consists of 114,450 documents in 1,082,729 dimensions with
21.12 citations per document on average. We also extracted the text of the paper titles and
keywords.

3.1 Validation method

We clustered our two data sets using k-means, background k-means, and Streemer and eval-
uated the clusters by computing two measures of how homogeneous are the class labels of
the points in the clusters. As labels we used the journals and conference proceedings where
the documents were published. Even though the mapping between journals/conferences and
knowledge communities is not one-to-one, there is some correlation between them (for exam-
ple, most researchers in computer architecture, graphics, and machine learning publish in
different venues). Citeseer provides publication information, but because the annotation is
automated, it contains many errors. To get more reliable publication data we mapped a sam-
ple of the papers to DBLP, which is of higher data quality. We found that the annotated
documents belonged to 1,495 journals/proceedings. For the management dataset we used the
titles of the 41 journals/proceedings where the documents were published.

We use two measures of cluster quality. The first is the weighted average entropy (WAE) [6]:

WAE =
C∑

i=1

ni

N
Ei

where ni is the number of points in cluster i , N is the total number of points and Ei is the
entropy of the distribution of labels (i.e., journals or proceedings) for points in cluster i . The
lower the WAE, the better the clustering matches the given data labels.

123

342 V. Kandylas et al.

Table 1 Evaluation of the CiteSeer and management clusters for the three clustering algorithms. (fg) means
that only the foreground clusters were used in the calculation. Better clusters have lower WAE and higher
NMI

k-means Background k-means Streemer

CiteSeer

WAE (fg) 7.004 6.513 6.876

WAE 7.344 8.294 8.306

NMI (fg) 0.110 0.139 0.144

NMI 0.102 0.078 0.103

Management

WAE (fg) 3.983 3.795 3.775

WAE 4.120 4.090 4.010

NMI (fg) 0.174 0.228 0.261

NMI 0.176 0.195 0.221

The second is the normalized mutual information (NMI) [22]:

NMI = I (Y, Ŷ)√
H(Y)H(Ŷ)

where Y and Ŷ are random variables taking the values of the external and the cluster labels
respectively. I (Y, Ŷ) is the mutual information between these two variables and H(X) is the
entropy of a random variable X . NMI is 1 when the clusters match the external labels exactly
and 0 for a random clustering.

3.2 Validation results and discussion

In the experiments we compared k-means, background k-means and Streemer using the
cosine as the similarity function. We used b = 0.67 for the computer science dataset and
b = 0.45 for the management dataset. θ was set to 0.001 and k to 22 for both datasets. These
values were deemed reasonable, based on our experience with the fields. In spite of doing an
extensive search over the user-specified values, we were unable to get CBC to give anything
close to the desired foreground/background split and number of clusters, so no CBC results
are given. For k-means, which does not explicitly find a background cluster, we used the
biggest of the clusters as background. Fortunately, for both datasets one cluster was much
larger and heterogeneous than the rest. The largest k-means cluster for the computer science
dataset contained 21% of the documents and for management 39%; all of the other clusters
were approximately of equal sizes in both cases.

The evaluation of the clusters appears in Table 1. In terms of the average entropy for all the
clusters (including background), k-means is either better or comparable to the background
k-means and Streemer. This is not surprising, as the background cluster found by background
k-means and Streemer is both big and of low cohesiveness by construction. Therefore its
entropy is quite high and, coupled with the big size, it contributes significantly in the overall
weighted entropy. The reason that background k-means and Streemer are worse for the com-
puter science case but about the same for management is that the background cluster was
bigger in computer science (67%) than in management (45%) and thus had a larger effect on

123

Finding cohesive clusters for analyzing knowledge communities 343

the overall entropy. In terms of NMI, k-means was about the same as background k-means
and Streemer for the CiteSeer data and worse for management.

A more relevant measure for the performance of the algorithms for our purposes is the
average entropy and NMI of the foreground clusters only, denoted with “(fg)” in the table.
Streemer is always best for NMI (fg), but background k-means is sometimes competitive
for WAE (fg). Excluding the large, diffuse background cluster from the calculation can
only improve the entropy; thus both background k-means and Streemer perform better than
k-means for both WAE and NMI. As hoped, including a background cluster always leads to
better foreground clusters.

4 Clustering over time

Most current popular clustering algorithms assume that clusters over time are static—that
is, that all clusters exist at the beginning and end of the time period under consideration and
that no new ones are formed in the interim [1,25]. This is a tolerable simplifying assumption
for short periods in stable environments but more troubling for data over time in a dynamic
environment where we must consider emerging clusters, merging clusters, and dying clusters.
The cluster structure of computer science documents in 1975 is very different from that of
1995.

To address this, we developed an iterative clustering scheme (“rolling clustering”) that
successfully resolves this temporal confounding. We built an iterated “overlapping” cluster-
ing methodology into our algorithm that re-clusters in overlapping 5-year blocks, stepping
forward by 1 year at a time. Therefore the elements in year 1990 would be clustered based
only on the elements in 1985 to 1990, papers in year 1991 would be clustered based only on
1986 to 1991, and so on. We then match up clusters over time using the overlapping years of
the two clustering runs (in the case above, 1986–1990). Our clustering algorithm looks only
backward in time to determine clusters in a given year; “linking” is only a done after the fact.
The temporal overlap ensures some consistency in cluster composition, while allowing new
clusters to be created and existing clusters to merge or wither away.

Figure 4 graphically displays a hypothetical series of time windows. Clusters A and C
appear throughout the three time windows. Cluster B disappears in the third time window.
Cluster D appears in the second time window. Throughout the time windows the slow dynamic
movement of the clusters as they change over time is visible. Essentially, we have chained
together a series of overlapping clusterings so that we can create continuity while allowing
for an evolving knowledge landscape.

This process allows all cluster assignments in each year to be backward-looking only, based
on the previous 5-year frame—an appropriate “context” for knowledge development. At the

Fig. 4 Illustration of rolling
clustering

123

344 V. Kandylas et al.

same time we find very high continuity between clusters, since the knowledge landscape we
created changes gradually. Another benefit of this method is that our measures of “centrality”
at the paper and cluster levels refer to the appropriate frame rather than an aggregate over
the entire time range, as with all other standard methods.

To do valid prediction of the success of knowledge community or of a paper, we need to
use only clusters (and cluster features) based on earlier data. Our process assures that clus-
ters at a given time only depend on prior history. The clusters capture what agents looking
at that intellectual landscape would see at that time (i.e., in real time without the benefits of
hindsight).

4.1 Analysis of clusters

The evolution of clusters over time can be seen as a result of the choices agents make as
they, in aggregate, position themselves on this landscape. The year 1992–2003 marked a
dramatic growth of computer science and radical evolution of its scope of use. To further test
the validity of our method we look at the knowledge communities we found and see if they
accurately reflect the changes in computer science during this period. Figure 5 and Table 2
give details on the 21 knowledge communities we identified. Figure 5 provides graphs of the
growth of each knowledge community over time, as well as a sense of each community’s
appearances and disappearances. Table 2 details our proposed names for each knowledge
community and also provides some details about them.

In 1992 we found 14 knowledge communities. Between 1992 and 1999 seven new knowl-
edge communities formed and none disappeared. From 1999 to 2001 five knowledge commu-
nities disappeared and none were created. This finding is in keeping with the dramatic growth
of computer science in the Internet boom and the subsequent collapse of the Internet bubble.
The movement and rates of change of clusters also reflect these changes, with more activity
during times of shake-up in 2000–2001 as knowledge communities collectively struggle to
readjust to and survive in a period of dramatic correction in the sector.

The insights from literature on paradigm shifts and disruptive technologies can be seen in
microcosm here. For example, clusters 5 and 21 are both on very similar topics—“machine
vision/graphics” and “image analysis/tracking”, respectively—but are very distinct com-
munities. In the mid-1990s the first experienced a steep decline as a research community
while the latter emerged from nowhere and became quite significant. Clusters 4 and 20 on
“design of cryptographic systems” and “cryptography”, respectively, experience the same
pattern, with cluster 20 seeming to emerge and grab cluster 4’s intellectual space. These
seem to be examples of established communities of researchers being unable to absorb
or compete with emerging research communities. During the mid-1990s as the Internet
grew exponentially and broadband allowed video to be more easily transferred and stored,
we also saw the emergence of two clusters on “congestion control” and “image analysis/
tracking”. At the same time we saw the decline of “distributed computing” and “shared
memory/parallel processing”. These trends seem to fit the intuitive understanding of trends
in computer science.

Other clusters merge and split, potentially representing a schism of a knowledge com-
munity or the absorption of one knowledge community by another. Our dynamic clustering
methodology allows some insight into how knowledge evolves and changes. For example, in
1996 the cluster representing the knowledge community researching “Internet traffic manage-
ment,” shattered to form several smaller clusters. Most fragments were below the threshold
of size and cohesiveness to be knowledge communities, but there did remain remnants of the
original cluster and a new cluster which represents “distributed computing”. Both are signif-

123

Finding cohesive clusters for analyzing knowledge communities 345

Fig. 5 Cluster evolution by year from 1993 to 2003 for clusters 1–22 (as % of in-cluster papers)

icantly smaller—38 and 16%, respectively, of the size of the original cluster. In 2000 there
was also a merger between the clusters representing the knowledge communities researching
“constraint satisfaction” and “optimization”, respectively. These fields are clearly related,
and both clusters were approximately the same size.

123

346 V. Kandylas et al.

Table 2 Cluster descriptions

Cl. Size Proposed name Five most common words (frequency)

1 7892 Machine learning/neural networks Learn (1390), Network (691), Robot (649), Neural
(606), Model (506)

2 9368 Object oriented languages Type (835), Object (821), Program (800), System
(709), Language (624)

3 7022 Model verification System (1267), Time (826), Model (783), Verification
(435), Specification (434)

4 4144 Design of crypto-graphic systems System (557), Distribute (524), Protocol (279), Base
(222), Fault (220)

5 6053 Machine vision/graphics Image (717), Model (506), Base(483), Recognition
(350), Motion (327)

6 6070 Constraint satisfaction Model (471), Constraint (425), System (398), Base
(389), Algorithm (380)

7 3968 Real time networks Time (1146), Real (908), System (731), Schedule
(638), Network (302)

8 7743 Programming languages Logic (756), Program (700), System (595), Proof
(485), Type (445)

9 9002 Internet traffic management System (1253), Distribute (743), Network (651),
Mobil (474), Perform (461)

10 10180 Database mining Data (887), Queries (886), System (777), Base (767),
Database (762)

11 5890 Network routing Network (1060), Multicast (750), Service (444), Base
(407), Protocol (404)

12 5990 Parallel computing Parallel (1212), Perform (553), Distri-Computing
(524), bute (533), System (458)

13 9566 Machine learning/SVM, boosting Learn (1226), Model (911), Network (664), Base
(597), Data (543)

14 3818 Shared memory/parallel processing Parallel (479), Memory (466), Cache (297), Perform
(281), Share (255)

15 950 Optimization Algorithm (134), Genet (104), Problem (64), Optimi-
zation (57), Network (56)

16 2297 Congestion control Network (514), Tcp (347), Control (324), Service
(273), Congest (194)

17 2743 Distributed computing Network (379), Web (352), Traffic (253), Cache
(213), Service (196)

18 2428 Datamining/web Mine (366), Data (342), Web (229), Base (206), Algo-
rithm (197)

19 472 Rewrite systems Rewrite (44), System (43), Program (42), Constraint
(36), Logic (31)

20 3289 Cryptography Secure (413), Key (238), Protocol (200), Computing
(195), Scheme (184)

21 3043 Image analysis/tracking Base (304), Image (298), Model (290), Recognition
(245), Track (216)

We also see the emergence of a number of clusters that were not present at the start of our
study. In 1996 a new cluster emerged on “Datamining/Web”. One of its top three most cited
papers is by Larry Page and Sergey Brin, the founders of Google. In 1996 the knowledge

123

Finding cohesive clusters for analyzing knowledge communities 347

community representing “Datamining/Web” comprised only 0.23% of our computer science
papers—in 2003 it represents 7.20%. Our main goal, however, is not to give us insight into
what happened historically, but to predict what will happen going forward in an area of
research and to define the attributes of knowledge communities that lead to their differential
success. For the rest of the paper we analyze the computer science dataset. The same analyses
on the management dataset gave qualitatively similar results [24].

5 Predicting knowledge community growth

In this section, we use the foreground and background clusters found previously as the basis
for analyzing the growth of knowledge communities. We ask how the knowledge content,
as measured by their citations, and the rhetorical content, as measured by the vocabulary
they used, affect the success of these communities. We also examine the effect of community
characteristics of cohesion, uniqueness, and adaptability, as described below.

5.1 Model for community growth

Our goal is to investigate the significance of a number of factors in explaining the success
of a knowledge community. We look at attributes such as the cohesiveness and uniqueness
of their vocabulary and the knowledge they draw on. Our dependent (predicted) variable is
a measure of the vigor or performance of a community/cluster at a given time, as measured
by the number of papers presented at conferences or published in journals in a cluster each
year.

We used a generalized least squares (GLS) model, including robust standard errors for
determining statistical significance, which allowed us to investigate the time trends within
our data while also adjusting the standard errors for intra-group correlations. This is nec-
essary because we believe the performance measures of any cluster will be correlated over
time. Since the knowledge communities were clustered based on their similarity of citations,
larger communities will tend to contain more diverse citations. We included a 1-year lag in
the regression as well, thus controlling for the size of the cluster the previous year; this means
that the results presented below are not due to community size.

More formally, we estimate our model as follows:

yit = βxit + bi zit + eit

where i indexes the clusters, t indexes years (time), yit denotes the number of papers in a
cluster presented or published each year, xit is the vector of features with corresponding
coefficients β capturing effects that are the same across all clusters (the fixed effects), zit the
features with coefficients bi which capture the variation across clusters (the random effects),
and eit represents the error term.

We describe below the features that we used: cohesiveness, uniqueness, flexibility, lead-
ership/coordination controls, prestige controls and industry/academia controls.

Cohesiveness: We are interested in seeing if the intellectual “cohesiveness” of both the
shared knowledge (papers cited) and shared rhetoric (words) of the knowledge community are
significant for predicting its performance. Knowledge cohesiveness represents how widely
(or narrowly) authors in the cluster searched for knowledge during that year.2 It was com-
puted as the average similarity between the citations of each paper and the overall citations

2 Since clusters vary year to year, cohesiveness is for a given year.

123

348 V. Kandylas et al.

of the cluster:

nc∑

i=1

sim (xi , µc)

nc

where µc represents the centroid of cluster c for a given year; nc is the number of papers in
cluster c, xi is the i th paper in c and sim() is the measure of similarity, which in our exper-
iments was the cosine function. Rhetorical cohesiveness measures how similarly authors in
a cluster use vocabulary. It was computed as the similarity of the stemmed words in the title
and keywords of each paper to the average for its cluster. As is common, stop words were
removed.

Uniqueness: We are also interested in how different an intellectual community is, either
in the knowledge it generates or in the rhetoric (vocabulary) it uses, from other intellectual
communities. Uniqueness of rhetoric represents how different the vocabulary of a knowledge
community is at a given point in time compared to other clusters. Similarly, uniqueness of
knowledge measures how different the sources of knowledge of a knowledge community
are at a given point in time. For this feature we compare the average citations or vocabulary
for a cluster to all other clusters’ average citations or vocabulary. For example, if a cluster
generally uses the same keywords or cites the same papers, it will have a low “uniqueness.”

Flexibility: Flexible, or adaptable, clusters are defined as those that change more over time
relative to other clusters. Change in vocabulary is measured by how much the word usage in
a cluster changes from one year to the next; change in knowledge is measured by how much
a cluster’s average use of citations changes. In both cases, we compute the cosine similarity
between the 3-year running averages of the citation structure and language centroids for each
cluster and itself in the previous year.

Leadership/coordination controls: We test for the effects of leadership (or coordination)
on three levels—from members of the community, for concentration of the institutions the
members identify with, and for concentration in the venues the community publishes in.
Space precludes a full description of these features; for details, see [24].

Prestige controls: We wish to test whether prestige is a powerful factor in explaining
differential performance in knowledge communities. We control for prestige on the member,
journal/conference, and employer/university levels. For members we wish to control for the
prestige that would result from the “top” members of a field preferring to publish in some
knowledge communities, leading to superior performance. We constructed a variable by
counting the number of authors who were fellows of IEEE, ACM or the National Academy
of Engineering and published in any of our communities. Next we constructed a variable that
counted the number of papers coming from the 20 most prestigious universities in computer
science as ranked by the US News and World Report graduate school rankings. By doing
this we control for the tendency of some communities to be associated with prestigious insti-
tutions. Lastly, we constructed a variable that counted the number of papers published in
the top ten most prestigious journals as ranked by impact factor in Thomson ISI’s Impact
Factors and the top ten most prestigious conferences, as ranked by citation impact by DBLP.
We ranked these counts within year by cluster. The ranked list of clusters by year indicated
the relative prestige of knowledge communities on multiple levels.

Industry/academia controls: Each author of each paper is coded as being affiliated with
a firm or academic/research institution. We then code each paper as “academic” if all of its
authors are affiliated with academic/research institutions, “industry” if all of its authors have
firm affiliations, and “mixed” if some of its authors are affiliated with firms and some with

123

Finding cohesive clusters for analyzing knowledge communities 349

Table 3 Time series GLS
Estimation (The dependent
variable is the number of papers
published by a community in a
given year)

(*** p < 0.001; ** p < 0.01;
* p < 0.05)

Cohesiveness

Knowledge −1.032∗∗
Rhetoric 1.169∗∗

Uniqueness

Knowledge −4.040∗
Rhetoric 1.494∗∗∗

Flexibility

Knowledge 0.293∗
Rhetoric −0.272∗

Control variables

Lagged response

One year 0.557∗∗∗
Leadership controls

Journal leadership −3.240

School leadership −0.394

Member leadership (eigenvector) −0.004∗
Prestige controls

Journal prestige −0.002

School prestige −0.019∗∗∗
Member prestige 0.011∗∗

Industry/academy affiliation controls

Pure industry affiliation 0.599∗
Mixed industry/academy affiliation −0.858∗

Constant 0.108

N 231,000

χ2 2,213.746

R2 0.835

academic/research institutions. We entered this information into the regression by including
the two categorical variables “mixed” and “industry”.

We arrive at our full model by analyzing variables systematically to examine their marginal
effects as well as the end joint effects.

6 Community prediction results

Our model examines the effects of all of the features discussed above on knowledge commu-
nity performance (Table 3). We find that cohesive rhetoric (low variance of vocabulary within
a cluster) is associated with improved performance, while a broad use of knowledge (high
variance of citations within a cluster) maximizes performance. Also, a knowledge commu-
nity maximizes performance when it uses vocabulary that is similar to that of other clusters,
while knowledge, as represented by citations, that is gathered from diverse sources predicts
superior community performance. Community flexibility in citations predicts community
growth, while changing vocabulary has the opposite effect (significant at p < 0.05).

123

350 V. Kandylas et al.

Examining the coefficients of industry affiliation, we see that community performance
is enhanced by a high percentage of purely industry-affiliated papers. On the other hand, a
higher percentage of mixed industry-affiliated papers indicated a negative impact on commu-
nity performance (p < 0.05). Clusters with higher proportions of purely industry-affiliated
papers were associated with higher performance than clusters with elevated proportions of
either purely academic or mixed-affiliation clusters, but the direction of causality is unclear.

Since our hypotheses examine the use of citations and rhetoric for the same three mea-
sures, we also examined the correlation between rhetoric and citation structures for each
pair of similar variables. There was a significant, positive relationship between citation and
rhetoric measures for all three knowledge community measures. It is not surprising that use
of language and citations are related to each other, since authors are citing papers they learned
from. On the other hand, they are not identical—a paper, while it relies on citations, is not
only a function of them. Analysis shows that all the effects described above are unchanged,
and remain statistically significant when correlation is taken into account.

In summary, successful knowledge communities have systematic characteristics. They
use knowledge and rhetoric in diametrically opposite ways:

– Successful use of knowledge means using broad, rapidly repositioned and community-
specific knowledge.

– Successful use of rhetoric means using narrow, unchanging language, which is common
to many communities.

We also ran the same analysis on the management data set and found consistent results
[24].

6.1 Discussion

We focus on the way knowledge communities use knowledge and rhetoric to help explain
why some of these knowledge communities flourish and grow. We find that the patterns for
knowledge and rhetoric use are very different. A broad-searching, far-ranging, and flexible
use of knowledge maximizes community performance, while a shared, common, and stable
rhetoric is most beneficial to community performance. We did not find support for the prop-
osition that the use of unique knowledge benefits knowledge communities. Increased work
by authors associated with firms had an overall positive effect on knowledge community
performance, but an increase in work done jointly by researchers from firms and academic
institutions led to an overall negative effect on knowledge community performance.

How do these characteristics lead to the functioning of knowledge communities? We spec-
ulate that in situations of large-scale collaboration and low coordination, a shared technical
language helps minimize the cost and complexity of communication. Using a unified and
consistent vocabulary, we believe, allows researchers to more efficiently exchange ideas and
collaborate. Using terms that other communities know, makes it easier to be understood by
these communities, too.

The search/positioning literature (S/P) for knowledge development [14] suggests that there
is a tradeoff between exploration (searching for new ideas as measured by citing papers in
diverse communities) and exploitation (making contributions based on papers central to one’s
own community). The data here indicate that knowledge communities which search broadly
and remain intellectually nimble perform best. Particularly in the face of very diverse ideas,
expressing these innovations in a unified rhetorical and intellectual framework allows many
ideas to be absorbed by a successful community and translated into a unified, efficient and
shared rhetorical framework.

123

Finding cohesive clusters for analyzing knowledge communities 351

7 Related work

Clustering has been used extensively for text mining [21]. In many cases it is based on the
actual words of the text, but it has also been used to cluster documents based on their citation
structure. Citation (and co-citation) analysis is quite old [23]. More recent research uses newer
clustering algorithms, including spectral [4], information theoretic [3] or Bayesian models.
Latent Dirichlet allocation (LDA) is also increasingly used to cluster documents, including
their evolution over time [1]. Other papers deal with the similar problem of clustering web
pages, where the links take the role of citations [7,8].

A well-known algorithm for clustering large datasets is BIRCH [26]. Streemer falls into
the category of distance-based methods, as defined in [26]. By going over the points twice and
finding a background cluster, Streemer avoids the problems mentioned there of frequently
scanning the points and of treating them all equally. Much like BIRCH, Streemer first finds
a large number of clusters which it later reduces. The difference is that Streemer does not
employ an external clustering algorithm to do that. In [26] the authors use agglomerative
hierarchical clustering. Additionally, Streemer can use any provided distance function, as
opposed to BIRCH, which is limited to distances that can be computed by its “clustering
feature” (CF) vectors.

Another algorithm with many similarities to Streemer is DBSCAN [5]. It finds clusters
by repeatedly adding points that are close together and have a large number of neighbors.
DBSCAN can find clusters of arbitrary shapes, but it requires the specification by the user of
the parameters Eps and MinPts and is very sensitive to their values. Streemer also requires
similar parameters, but we found that it is not sensitive to them. Furthermore, DBSCAN can
suffer from robustness problems, because it operates on the whole set of points and does not
do some form of preliminary clustering. If there is a string of points connecting two clusters,
DBSCAN will merge the clusters. Streemer, on the other hand, first finds candidate clusters
and then only merges them if the resulting cluster is highly cohesive.

A detailed analysis of streaming clustering algorithms appears in [10]. The paper examines
several variations, such as sampling and finding first a large number of clusters which are then
clustered down to the requested number k, which is reminiscent of Streemer’s second step.
The idea of cluster cohesiveness in Streemer was inspired by the clustering by committee
(CBC) algorithm [16]. CBC finds a set of cohesive clusters, called committees, that are well
separated and which initially include only a subset of the points. The algorithm proceeds by
assigning points to their most similar committee.

Trying to identify communities or clusters and how they evolve with time has, of course,
been studied in the past. This paper is unique in using clusters to build predictive models of
how communities evolve, and how location in a cluster or in the background predicts how
widely cited a paper will become. Agglomerative clustering is used in [11] to find co-citation
communities that are strong and others that are essentially random, but they do not specifically
use the notion of background in their clustering, and do not use their clusters in predictive
models. Similarly, in [17] the authors search for temporal trends in hyper-linked document
databases using clustering, but do not build predictive models of community growth. The
authors in [15] identify research communities (and make paper acceptance predictions) from
the citation patterns and text of papers, using relational learning techniques, but do not study
the communities themselves.

This paper also differs from the prior work in that we cluster using foreground and back-
ground clusters, an idea that has been used in vision [12,18], but is rare when looking at docu-
ments. A common alternative algorithm with a similar property is a Gaussian mixture model
with non-uniform variances. Estimating such a mixture model provides soft assignments

123

352 V. Kandylas et al.

of items to clusters, but is significantly more computationally demanding than Streemer or
background k-means.

8 Conclusions

We have presented a new clustering algorithm, Streemer, with several useful characteristics.
Streemer finds dense foreground clusters embedded in a more diffuse background cluster.
It requires only two passes through the data, and unlike k-means or its variant, background
k-means, Streemer is particularly good at avoiding local minima, and is able to find clusters
of widely divergent sizes. This is useful, among other applications, for clustering documents
into scientific communities.

Using a model in which many papers are not part of clusters (but rather fall in a back-
ground cluster) gives cleaner foreground clusters and allows important insights to be made.
Knowledge communities, as defined by our clusters, produce a disproportionate amount of
the knowledge in computer science. In our dataset of computer science publications in techni-
cal journals and conferences, 57% of citations are received by papers in clusters even though
only 44% of papers are in clusters. Even more dramatically, 76% of citations of papers in a
cluster refer to another paper in a cluster. On the other hand, papers not in a cluster cite almost
proportionately to the ratio of papers in and out of clusters, with 41% of citations going to
the 44% papers in a cluster and 59% of citations going to the 56% papers in the background.

We fitted a model to predict the evolution of the knowledge communities that were found
from clustering. The coefficients of the features for the fitted model describe the properties
of successful knowledge communities. We found that in order for a community to grow, its
members should use broad, flexible and unique information in their publications. At the same
time the vocabulary they use should be narrow, unchanging and common. This perhaps is
not surprising; introducing new terms and definitions at the same time as novel ideas can
make it hard for the readers to absorb such a large amount of information at once. New
jargon obfuscates the content and limits its spreading. Further research into the differential
success of knowledge communities can provide a better understanding of what guides the
development and direction of innovation.

Acknowledgments Vasileios Kandylas was supported in part by the Greek State Scholarship Foundation
(IKY).

References

1. Blei D, Lafferty J (2006) Dynamic topic models. 23rd ICML, 113–120
2. Crane D (1972) Invisible colleges: diffusion of knowledge in scientific communities. University of

Chicago Press
3. Dhillon I, Guan Y (2003) Information theoretic clustering of sparse cooccurrence data. ICDM 517–520
4. Dhillon IS (2001) Co-clustering documents and words using bipartite spectral graph partitioning. KDD,

pp 269–274, ACM Press, New York
5. Ester M, Kriegel H, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large

spatial databases with noise. KDD, AAAI Press, Portland, OR, pp 226–231
6. Fern X, Brodley C (2003) Random projection for high dimensional data clustering: a cluster ensemble

approach. ICML, pp 186–193
7. Flake G, Lawrence S, Giles C (2000) Efficient identification of Web communities. KDD pp 150–160
8. Gibson D, Kleinberg J, Raghavan P (1998) Inferring web communities from link topology. ACM Press,

New York

123

Finding cohesive clusters for analyzing knowledge communities 353

9. Griffith B, Small H, Stonehill J, Dey S (1974) The structure of scientific literatures II: toward a macro-
and microstructure for Science. Sci Studies 4(4):339–365

10. Guha S, Meyerson A, Mishra N, Motwani R, O’Callaghan L (2003) Clustering data streams: theory and
practice. IEEE Trans Knowledge Data Eng 15(3):515–528

11. Hopcroft J, Khan O, Kulis B, Selman B (2003) Natural communities in large linked networks. KDD,
pp 541–546

12. Huang Q, Dom B, Steele D, Ashley J, Niblack W (1995) Foreground/background segmentation of color
images by integration of multiple cues. IEEE Int Conf Image Process 1:246–249

13. Kearns MJ, Mansour Y, Ng AY (1997) An information-theoretic analysis of hard and soft assignment
methods for clustering. UAI, pp 282–293

14. McGann A (2002) The advantages of ideological cohesion a model of constituency representation and
electoral competition in multi-party democracies. J Theor Politics 14(1):37–70

15. McGovern A, Friedland L, Hay M, Gallagher B, Fast A, Neville J, Jensen D (2003) Exploiting rela-
tional structure to understand publication patterns in high-energy physics. SIGKDD Explor Newslett
5(2):165–172

16. Pantel P, Lin D (2002) Document clustering with committees. SIGIR ’02, ACM Press, New York,
pp 199–206

17. Popescul A, Flake G, Lawrence S, Ungar L, Giles C (2000) Clustering and identifying temporal trends
in document databases. Advances in digital libraries, 2000. ADL 2000. proceedings. IEEE, pp 173–182

18. Savakis A (1998) Adaptive document image thresholding using foreground and background clustering.
Proceedings of international conference on image processing ICIP98

19. Small H (2003) Paradigms, citations, and maps of science: a personal history. J Am Soc Informat Sci
Technol 54(5):394–399

20. Small H, Crane D (1979) Specialties and disciplines in science and social science: an examination of
their structure using citation indexes. Scientometrics 1(5):445–461

21. Steinbach M, Karypis G, Kumar V (2000) A comparison of document clustering techniques. KDD work-
shop text mining 34:35

22. Strehl A, Ghosh J (2002) Cluster ensembles—a knowledge reuse framework for combining multiple
partitions. JMLR 3:583–617

23. Sullivan D, White DH, Barboni EJ (1977) Co-citation analyses of science: an evaluation. Social Studies
Sci 7(2):223–240

24. Upham SP (2006) Communities of innovation. PhD thesis, University of Pennsylvania
25. Wang X, McCallum A (2006) Topics over time: a non-Markov continuous-time model of topical trends.

KDD, pp 424–433
26. Zhang T, Ramakrishnan R, Livny M (1996) BIRCH: an efficient data clustering method for very large

databases. Proceedings of the 1996 ACM SIGMOD international conference on Management of data,
pp 103–114

Author Biographies

Vasileios Kandylas received a B.E. degree from Aristotle University
of Thessaloniki, Greece and an M.S. degree from University of Penn-
sylvania, USA. He is currently a graduate student at the Department
of Computer and Information Science, University of Pennsylvania. His
research interests include clustering, data mining and machine learning.

123

354 V. Kandylas et al.

S. Phineas Upham earned his PhD from the Wharton School at the
University of Pennsylvania and is currently a visiting scholar at Colum-
bia University. He also holds an MBA from the Wharton School and a
BA with honours from Harvard University. In addition to journal articles,
he has edited three books published by academic and popular presses.
His interests are in the study of schools of thought, paradigm develop-
ment, the evolution of technical and organisational knowledge, and in
the social construction of meaning.

Dr. Lyle H. Ungar is an Associate Professor of Computer and
Information Science (CIS) at the University of Pennsylvania. He also
holds appointments in several other departments in the Engineering,
Medicine, and Wharton Schools. Dr. Ungar received a B.S. from Stan-
ford University and a Ph.D. from M.I.T. He has published over 100
articles, and is co-inventor on nine patents. His current research interests
include machine learning, data and text mining, and bioinformatics.

123

	Finding cohesive clusters for analyzing knowledge communities
	Abstract
	1 Introduction
	1.1 Foreground/background clustering for text mining
	1.2 Analysis framework

	2 Clustering
	2.1 Streemer algorithm
	2.2 Setting parameters
	2.3 Background k-means algorithm

	3 Validation of clustering methods
	3.1 Validation method
	3.2 Validation results and discussion

	4 Clustering over time
	4.1 Analysis of clusters

	5 Predicting knowledge community growth
	5.1 Model for community growth

	6 Community prediction results
	6.1 Discussion

	7 Related work
	8 Conclusions
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

