
Knowl Inf Syst (2009) 18:29–59
DOI 10.1007/s10115-008-0129-3

REGULAR PAPER

Defining the notion of ‘Information Content’
and reasoning about it in a database

Kaibo Xu · Junkang Feng · Malcolm Crowe

Received: 5 February 2007 / Revised: 23 December 2007 / Accepted: 19 January 2008 /
Published online: 11 March 2008
© Springer-Verlag London Limited 2008

Abstract The problem of ‘information content’ of an information system appears elusive.
In the field of databases, the information content of a database has been taken as the instance
of a database. We argue that this view misses two fundamental points. One is a convincing
conception of the phenomenon concerning information in databases, especially a properly
defined notion of ‘information content’. The other is a framework for reasoning about infor-
mation content. In this paper, we suggest a modification of the well known definition of
‘information content’ given by Dretske(Knowledge and the flow of information,1981). We
then define what we call the ‘information content inclusion’ relation (IIR for short) between
two random events. We present a set of inference rules for reasoning about information con-
tent, which we call the IIR Rules. Then we explore how these ideas and the rules may be
used in a database setting to look at databases and to derive otherwise hidden information by
deriving new relations from a given set of IIR. A prototype is presented, which shows how
the idea of IIR-Reasoning might be exploited in a database setting including the relationship
between real world events and database values.

Keywords Information content · Reasoning · Data semantics · Semantic information
theory · Inference rules

K. Xu (B) · J. Feng
e-Business Research Institute, Business College,
Beijing Union University, Beijing, China
e-mail: kaibo.xu@bcbuu.edu.cn; kaibo.xu@uws.ac.uk

J. Feng
e-mail: junkang.feng@uws.ac.uk

K. Xu · J. Feng · M. Crowe
Database Research Group School of Computing,
University of the West of Scotland, Paisley, UK
e-mail: malcolm.crowe@uws.ac.uk

123

30 K. Xu et al.

1 Introduction

Information systems are constructed for storing and providing information. And yet, it would
appear that the notion of ‘information content’ of an information system is elusive. In the
field of databases, the information content of a database has been taken as the instance
of a database and the information capacity of a data schema as the collection of instances
of the schema [23,32,33]. We argue that this view misses two fundamental points. One is a
convincing conception of ‘information content’. To equate data with information overlooks
the fact that data in a database is merely raw material for bearing and conveying information.
Information must be veridical [5, p.10], that is, must relate to a contingent truth [18] while for
data there is no such requirement. The other is a framework for reasoning about information
content to reveal hidden information. In addressing this problem, our purpose is twofold. One
is that we want to reveal what machinery actually already exists with a database from the
perspective of reasoning about information content. The other is to look at the relationships
between information content, database structure and business rules, and thus discover how
tacit business knowledge can then be explicitly expressed and analysed.

We proceed to report our work in the rest of the paper as follows. We define the notion of
‘information content’ in Sect. 2. One seemingly unusual notion we put forward is the ‘par-
ticulars’ of a random event, for which we give Definition 3 with an example in Sect. 2, and
we give further examples in Sect. 4. In Sect. 3, we define the relation concerning information
content between two states of affairs called ‘information content inclusion’ relation (IIR for
short) and present a set of inference rules for reasoning about IIR. In Sect. 4, we address the
problem of how IIR reasoning might be exploited in a database setting by describing the main
components of a prototype. We would draw reader’s attention to the alignment between real
world events and database values in that section, which is one of the crucial points for IIR to
underpin a database. Then we give a brief comparison between our work and related works
that are concerned with applying the classic information theory (i.e., Theory of Shannon’s
[37]) to database problems in Sect. 5. Finally, we make concluding remarks in Sect. 6.

2 The notion of ‘Information Content’

The origin of the work presented here was an attempt to apply the semantic theory of informa-
tion presented by [13] to information systems design. One of the most fundamental notions
that would be needed within this endeavour is that of ‘information content’ of a sign, a random
event, and in the most general terms, a state of affairs, and to be able to reason about it. Let
us consider the following list:

Example 1 That there is smoke carries the information that there is a fire.

Example 2 That he is awarded a grade ‘A’ for his Programming course contains the infor-
mation that Jack Brown has gained 70% or above for that course.

Dretske[13, p.45] defines the notion of the ‘information content’ of a state of affairs as
follows:

A state of affairs contains information about X to just that extent to which a suitably
placed observer could learn something about X by consulting it.

Following Dretske, we take information as in the form of ‘de re’, rather than ‘de dicto’, that
is, in the form of ‘a’s being F carries the information that b is G’. Dretske [13] establishes
the following definition:

123

Defining ‘Information Content’ 31

Information Content: A signal r carries the information that s is F = The conditional
probability of s’s being F, given r (and k), is 1 (but , given k alone, less than 1).

In this definition, k stands for prior knowledge about information source s. Dretske’s
approach, which we will extend for our purposes, is based upon the notion of probabil-
ity [5, pp.14–18], which is concerned with characterising random events, we first give a
definition of random event:

Definition 1 Let s be a selection process under a set C of conditions, O the set of possible
outcomes of s, which are called states, and E the power set of O , X is a random event if
E ∋ X and there is a probability of X , i.e., P(X).

In our analysis the notion of ‘probability distribution’ will be relevant, which is concerned
with a probability space.

Definition 2 Let s be a selection process under a set C of conditions, O the set of possible
outcomes of s, E the power set of O and E ∋ Xi for i = 1, . . ., n, Ps is the probability space of
the random events Xi for i = 1, . . ., n if Ps = {P(X1),P(X2), . . .,P(Xn)} and�P(Xi) = 1.

Dretske’s definition quoted above sounds plausible. However, there are a few points to
note about it. First of all, it is particulars, i.e., individual things in the world that carry infor-
mation [5, p.27]. It is a particular map that carries information about a particular mountain.
It is the particular grading event that he is awarded a grade ‘A’ for his Programming course
that contains the information that Jack Brown has gained 70% or above for that course. It is
a particular smoke that carries information that there is a particular fire. So the two examples
above work on different levels—the first is concerned with a relation (which can be said as
an informational one) between two types of random events, namely smoke and fire taking
place, and the second a similar informational relation between two particulars of random
events, Jack Brown has an ‘A’ for ‘Programming’ and he scores 70% or more for it. We now
give a definition to the term particular of a random event below.

Definition 3 Let s be a selection process under a set C of conditions, X a random event
concerning s, Xi an instance of s, Xi is a particular of X if Xi is in a state �, written � =
state(Xi), and X ∋�.

The term particular was borrowed from Barwise and Seligman [5, p.27]. It could be mis-
leading if being taken to mean something specific. By particular, we mean an individual
occurrence of a random event. For example, s could be concerned with data values going
into an attribute, say, the Emp_Name column of a table; Xi is a data value in the Emp_Name
column at a time t , which happens to be ‘tony_wu’; the state of Xi , i.e., state(Xi) = ‘a value in
Emp_Name column being tony_wu’, which is�; X is the disjunction of two states, namely,
� and say, � = ‘a value in Emp_Name column being shirley_wu’. Then, Xi is a particular
of X .

Secondly, probability theory concentrates on the level of types. That a map happens to be
of a specific type is a random event, and therefore has a probability. Thus, Dretske’s definition
is concerned with types, and there is no concept of particulars in his theory as Barwise and
Seligman [5, p.26] correctly point out.

But there is a twist, and this is the third point that we are making, namely, that the very
capability of a particular to carry information comes from their belonging to types. It is the
aforementioned informational relation between types, which reflects some regularities in the
world, that is the basis for information to flow, i.e., for one thing to carry information about
another. Therefore, only particulars can carry information whereas their types determine what
sort of information can be carried.

123

32 K. Xu et al.

Finally, information, which has to be carried by particulars rather than types as argued
above, comes in the form of types [5, p.27] and not anything else. That is, it is something
that is concerned with a type, i.e., something that is common for all the instances of the type,
i.e., particulars of a random event (which is represented by the type), and not those that are
unique to a specific particular that can be carried. The map’s being a certain type of maps
carries information that the mountain is of some certain type of mountains [5]. The content of
the information itself is what the type of the mountain could tell us, e.g, a mountain with the
height of 1,000 ft above sea level, not anything unique to the mountain, such as its specific
shape.

Therefore, it would seem appropriate that the above definition of ‘the information content
of a state of affairs’ by Dretske [13] be modified as follows.

Definition 4 Let s be some selection process or mechanism the result of which is reduction
of possibilities, and therefore be an information source, and k prior knowledge about s;1

Let r be a random event, and ri a particular of r at time ti and location li ;
Let s’s being F be a random event concerning s, and s j some particular of s’s being F at
time t j and location l j ;

ri carries the information that there must be some s j existing at time t j and location l j ,
that is, the state of affairs of s is F at t j and l j , if and only if the conditional probability of
s’s being F given r is 1 (and less than 1 given k alone).

Definition 5 When a particular ri carries the information that a particular s j exists we will
say that the information content of ri includes s j , or in other words, s j is in the information
content of ri .

The notion of Shannon’s entropy can be used to measure the amount of information asso-
ciated with a random variable, which models a collection of messages but not an individual
message. To talk about the content of an individual message, we have to use the notion of
random event as above definitions show.

3 ‘Information content inclusion’ relation

Closely following the previous section, given two random events, say X and Y , there might
be a special type of relation between them, i.e., ‘the particulars of random event Y are in the
information content of the particulars of random event X ’. For brevity, we will also call such
a relation ‘random event Y is in the information content of random event X ’. We suggested
calling such a relation an ‘information content inclusion relation’ (IIR) [16]. Interestingly, it
happens that this term also appears in the literature, e.g., in her manuscript Duží [14], points
out that information content inclusion relations (in relation to attributes) are of partial order.

Definition 6 Let X and Y be a random event respectively, there exists an information con-
tent inclusion relation, IIR for short, from X to Y , if every possible particular of Y is in the
information content of at least one particular of X .

A random event may have an information content inclusion relation (IIR) with more than
one other random event. Every one of the latter provides the former with its set of particulars,

1 Note that k here goes only as far as what counts as a possibility involved in s, and it is not concerned with
whether an observer is able to learn and actually learns something about s by consulting something else such
as r .

123

Defining ‘Information Content’ 33

the whole collection of which is ‘what a suitably placed observer could learn by consulting’
the particulars of the former. Therefore this is the information content of the former. That is
to say, the information content of a random event is the set of random events with which the
former has an information content inclusion relation.

Definition 7 Let X be a random event, the information content of X , denoted I(X), is the
set of random events with each of which X has an information content inclusion relation.

Therefore, I(X) ∋ Y is a valid expression, which denotes that random event Y is in the
information content of random event X through the particulars of random event Y being in
the information content of the particulars of random event X (For the notion of ‘information
content’, see Definitions 4 and 5 above). For the sake of the completeness of the definition,
we allow I(X) ∋ X , which is a trivial case of I(X) ∋ Y , when X and Y are not distinct. Note
that in this paper we concern ourselves with the ‘information content inclusion’ relation as
just defined only between random events (and their particulars), not any other things. This
is because we observe that this random event based approach to information in databases is
helpful.

Given a set of IIR, such as the above I(X) ∋ Y , generally there are other IIR that are nested
within (i.e., logically implied by) them. Sometimes, we wish to derive such implied IIR log-
ically from those that we have already known somehow. ‘Logically’ here means that we use
domain independent inference only and do not use any of what we call ‘domain dependent
knowledge’. One example of domain dependent knowledge is a business rule that ‘if a sup-
plier supplies a part and the part is used by a project, then the supplier supplies the project’.
To this end, in the next section, we present and prove a set of domain independent inference
rules, which can be called IIR Rules.

3.1 Inference rules for IIR

Let P(Y |X) be the probability of Y under the condition X ; Let P(Y) be the probability of
Y without the condition X . We are now in the position to present a set of inference rules
for logically reasoning about information content. The proofs to be presented below contain
some comments on important steps: the comments are not formally part of the proof. We
borrow some terms from the well known Armstrong’s axioms [3] for functional dependency.
We will discuss the differences between IIR and functional dependency shortly.

Note that the inference rules to be presented below are not for the identification of the
original (i.e., before applying the IIR Rules) set of IIR except the trivial ones through the
Sum or Product rules shown shortly. Original non-trivial IIR have to be identified by directly
using the definition of information content that we gave earlier. In addition, other theories
such as Information Flow [5] and Formal Concept Analysis [42] can also be used for the
identification of IIR.

To facilitate the reader to understand the proofs of the rules, we re-iterate the following.
What is meant by ‘I(X) ∋ Y’?
It means that a suitably placed observer could learn that Y (particulars of Y) by consulting

the particulars of X.
A sufficient condition for ‘I(X) ∋ Y ’:

1) Both X and Y are random events, namely they could be contingently true and contin-
gently untrue, but are neither necessarily true nor necessarily untrue. Mathematically,
P(X) �= 1 and P(X) �= 0, and P(Y) �= 1 and P(Y) �= 0.

2) Whenever X is true, Y is always true. That is, P(Y |X) = 1. In other words, X ⊂ Y .

123

34 K. Xu et al.

Inference rule 0
‘Sum’: If Y = X1 ∪ X2 · · · ∪ Xn , then I(Xi) ∋ Y for i = 1, . . ., n
This rule says that if it is the disjunction of a number of random events, then a random

event X is in the information content of any of the latter. A trivial case is where X and Y
above are not distinct.

Proof

Assume Xi Assumption 1
(Comment: assume that Xi is true for i = 1,…,n.)
Y = X1 ∪ X2· · · ∪ Xn Premise 2
Y 1 and 2 3
P(Y |Xi) = 1 1 and 3 4
(Comment: If Xi is true, Y is always true. Thus Y ’s probability is 1
given Xi .)
P(Y) �= 1 Premise 5
(Comment: X , Y , W and Z are assumed random events.)
I(Xi) ∋ Y 4 and 5
(Comment: this is because P(Y) �=1 and P(Y |X) = 1.)

��
We will use the following example states of affairs2 to explain the IIR inference rules:

(ψ1) Someone a holds a colored (green, red, blue or yellow) ball in her hand.
(ψ2) Someone a holds a blue ball in her hand.
(ψ3) Someone a utters the words ‘she’, ‘is’ and ‘insane’ while pointing to Jane.
(ψ4) a utters the word ‘she’ while pointing to Jane.
(ψ5) Jane is insane at some moment t .
(ψ6) Jane’s behaviour is odd at t .
(ψ7) ψ4 and ψ5 above combined to form that someone a utters the word ‘she’ while
pointing to Jane at time t and Jane is insane at t .
(ψ8) Someone a is a PhD student and part time lecturer.
(ψ9) a is a PhD student.
(ψ10) a is awarded a grade ‘A’ for her/his Programming course.
(ψ11) a gains 70% or above for her/his Programming course.
(ψ12) the product of above ψ8 and ψ10.
(ψ13) the product of above ψ9 and ψ11.
(ψ14) a attends the Programming course.
(ψ15) the product of ψ11 and ψ14 above.

Example 3 The ψ1 above is a disjunction of a few others including the ψ2 above. Thus
according to the rule, ψ1 is in the information content of ψ2.

Inference rule 1
‘Product’: If X = X1 ∩ X2· · · ∩ Xn, Y = Xi for i = 1, . . ., n, then I(X) ∋ Y
This rule says that if a random event X is the conjunction of a number of random events,

then any of the latter is in the information content of the former. A trivial case is where X
and Y above are not distinct.

2 These states of affairs may be used by more than one example, and they retain their identifications throughout
the examples that use them.

123

Defining ‘Information Content’ 35

Proof

Assume X Assumption 1
(Comment: Assume that X is true.)
Y = Xi premise 2
(Comment: This is for i = 1, . . ., n as usual.)
Y 1 and 2 3
P(Y |X) = 1 1 and 3 4
(Comment: If X is true, Y is always true. Thus Y ’s probability is 1
given X .)
P(Y) �= 1 Premise 5
(Comment: X , Y , W and Z are assumed random events.)
I(X) ∋ Y 4 and 5
(Comment: this is because P(Y) �= 1 and P(Y |X) = 1.)

��
Example 4 (ψ3) Someone a utters the words ‘she’, ‘is’ and ‘insane’ while pointing to Jane.
(ψ4) a utters the word ‘she’ while pointing to Jane.

The ψ3 above is a conjunction of a few others including the ψ4 above, so according to the
rule, ψ4 is in the information content of ψ3.

Inference rule 2
Transitivity: If I(X) ∋ Y , I(Y) ∋ Z then I(X) ∋ Z
This rule says that if the information content of a random event X includes another random

event Y , and the information content of Y includes yet another random event Z , then the
information content of X includes Z .

Proof

I(X) ∋ Y Premise 1
(Comment: Information content of X includes Y , which is given.)
P(Y |X) = 1 Definition and 1 2
(Comment: Y ’s probability, under the condition X , is 1 by defini-
tion.)
I(Y) ∋ Z Premise 3
(Comment: Information content of Y includes Z , which is given.)
P(Z |Y) = 1 Definition and 3 4
(Comment: Z ’s probability, under the condition Y , is 1 by defini-
tion.)
Assume X Assumption 5
(Comment: Assume that X is true.)
Y 2 and 5 6
(Comment: Y is true.)
Z 4 and 6 7
(Comment: Z is true.)
P(Z |X) = 1 5, 7 8
(Comment: If X is true, then Z ’s probability is 1.)
P(Z) �= 1 premise 9
I(X) ∋ Z 8 and 9

123

36 K. Xu et al.

��
Example 5 (ψ3) Someone a utters the words ‘she’, ‘is’ and ‘insane’ while pointing to

Jane.
(ψ5) Jane is insane at some moment t .
(ψ6) Jane’s behaviour is odd at t .

Given that ψ5 above is in the information content of ψ3 (which would be the case if when
ψ3 is true, ψ5 is true, and if ψ3 is not certainly true, the state of ψ5 is uncertain), and ψ6

above is in the information content of ψ5, according to this rule, we get that ψ6 is also in the
information content of ψ3. That is to say, by observing ψ3, one could learn ψ6.

Inference rule 3
Union: If I(X) ∋ Y , I(X) ∋ Z then I(X) ∋ Y ∩ Z
This rule says that if the information content of a random event X includes another two

random events Y and Z respectively, then the information content of X includes random
event Y ∩ Z that is the product of Y and Z . ‘Union’ here indicates that whenever event X
happens, both event Y and event Z happen.

Proof

I(X) ∋ Y Premise 1
P(Y |X) = 1 Definition and 1 2
X ⊂ Y 2 3
(Comment: This follows probability theory.)
I(X) ∋ Z Premise 4
P(Z | X) = 1 Definition and 4 5
X ⊂ Z 5 6
(Comment: This follows probability theory.)
X ⊂ Y ∩ Z 3 and 6 7
P((Y ∩ Z)|X) = 1 7 8
(Comment: This follows probability theory.)
Y ∩ Z is a random event Premise 9
P(Y ∩ Z) �= 1 9 10
I(X) ∋ Y ∩ Z 8 and 10

��
Example 6 (ψ3) Someone a utters the words ‘she’, ‘is’ and ‘insane’ while pointing to Jane.
(ψ4) a utters the word ‘she’ while pointing to Jane.
(ψ5) Jane is insane at some moment t .
(ψ7) ψ4 andψ5 above combined to form that someone a utters the word ‘she’ while pointing
to Jane at time t and Jane is insane at t .
ψ4 and ψ5 above are in the information content of ψ3 above, respectively. Following this

rule, the product of ψ4 and ψ5 namely ψ7 is also in the information content of ψ3. That is to
say, by observing ψ3, one could learn ψ7.

Inference rule 4
Augmentation: If W =W1∩W2 · · ·∩Wn, Z is the product of a subset of {W1,W2, . . . ,Wn},

I(X) ∋ Y then I(W ∩ X) ∋ Z ∩ Y
This rule says that if W = W1 ∩ W2· · · ∩ Wn , random event Z is the product of a subset of

{W1,W2, . . . ,Wn}, and the information content of random event X includes random event

123

Defining ‘Information Content’ 37

Y , then the information content of the random event W ∩ X formed by the product of W and
X includes the random event Z ∩ Y formed by the product of Z and Y .

Proof

Given W Assumption 1
Z is the product of a subset of {W1,W2, . . .,Wn} Premise 2
I(W) ∋ Z Rule 1 3
Given X Assumption 4
W ∩ X Assumption 5
W is a factor of W ∩ X 5 6
I(W ∩ X) ∋ W Rule 1 7
(Comment: Information content of W ∩ X includes W
by Rule 1.)
I(W ∩ X) ∋ Z Rule 2 applied to 7 then 3 8
I(X) ∋ Y Premise 9
X is a factor of W ∩ X 5 10
I(W ∩ X) ∋ X Rule 1 11
I(W ∩ X) ∋ Y Rule 2 applied to 11 then 9 12
I(W ∩ X) ∋ Z ∩ Y Rule 3 applied to 8, 12

��
Example 7 (ψ8) Someone a is a PhD student and part time lecturer.
(ψ9) a is a PhD student.
(ψ10) a is awarded a grade ‘A’ for her/his Programming course.
(ψ11) a gains 70% or above for her/his Programming course.
(ψ12) the product of above ψ8 and ψ10.
(ψ13) the product of above ψ9 and ψ11.

In the above, ψ9 is a factor of ψ8, and ψ11 is in the information content of ψ10. Following
the rule discussed here, by consulting ψ12, one could learn ψ13.

Inference rule 5
Decomposition: If I(X) ∋ Y ∩ Z then I(X) ∋ Y , I(X) ∋ Z
This rule means that if the information content of random event X includes random event

Y ∩ Z that is the product of random event Y and random event Z , then Y and Z , as separate
random events, are in the information content of X , respectively.

Proof

I(X) ∋ Y ∩ Z Premise 1
P((Y ∩ Z)|X) = 1 1 2
(Comment: By the definition of ‘information content’.)
X ⊂ Y ∩ Z 2 3
(Comment: This follows probability theory.)
X ⊂ Y 3 4
X ⊂ Z 3 5
P(Y |X) = 1 4 6
P(Z |X) = 1 5 7
(Comment: This follows probability theory.)
Y , Z are random events Premise 8

123

38 K. Xu et al.

P(Y) �= 1 8 9
P(Z) �= 1 8 10
I(X) ∋ Y 6 and 9
I(X) ∋ Z 7 and 10

��
Example 8 (ψ10) a is awarded a grade ‘A’ for her/his Programming course.
(ψ11) a gains 70% or above for her/his Programming course.
(ψ14) a attends the Programming course.
(ψ15) the product of ψ11 and ψ14 above.

In the above, if it is given that ψ15 is in the information content of ψ10, then following the
rule discussed here, by consulting ψ10, one could learn ψ11 and ψ14 respectively.

3.1.1 Independence of the IIR rules

Similar to Armstrong’s inference rules on functional dependencies between attributes of a
relation [3] not all the inference rules are independent, and rules 1, 3 and 5 above can be
derived from the other three rules. Here is the proof for the Decomposition rule.

Proof

I(X) ∋ Y ∩ Z Premise 1
Y ∩ Z Assumption 2
Y is a factor of Y ∩ Z 2 3
I(Y ∩ Z) ∋ Y Rule 1 4
Z a factor of Y ∩ Z 2 5
I(Y ∩ Z) ∋ Z Rule 1 6
I(X) ∋ Y Rule 2 applied to 1, 4
I(X) ∋ Z Rule 2 applied to 1, 6

��
The Union rule can also be proved from other rules: we leave this to the reader.

3.1.2 The completeness of IIR inference rules

For the IIR inference rules to be complete, IIR that is logically implied by a set F of known
IIR must be deducible from F by using the rules. That a set of IIR, say F , logically implies
an IIR, say I I Ri , means that whenever F is true I I Ri is true.

The proof of the completeness of IIR inference rules is based upon the idea of ‘constructive
proof’. We take the approach similar to that of the ‘standard’ proof of the completeness of
Armstrong’s rules for functional dependencies [3]. We want to show that any IIR that cannot
be deduced from F by using the IIR inference rules is not logically implied by F , i.e., it is not
the case that whenever F is true the IIR is true. To this end, we only need to find an instance
of a set of random events under consideration against which F is true and the IIR is not.

Let R(X, Y, Z , . . .) be a set of random events under consideration, F be a set of IIR that
hold on R. Suppose I(X) ∋ Y cannot be deduced from F by the IIR inference rules. Consider
an instance of R, say r , with two tuples as follows that capture how the random events fare
at two different occasions (Table 1).

123

Defining ‘Information Content’ 39

Table 1 A relation r with two
tuples

X+ U − X+

t1 T T · · · T T T · · · T

t2 T T · · · T F F · · · F

In the table above, X+ is the closure of X with respect to F , namely within X+, for any
Xi (i = 1, 2. . . n), I(X) ∋ Xi can be deduced from F by the inference rules; ‘T’ indicates that
a random event happens to be true (i.e., to occur), and ‘F’ false (i.e., not to occur); and U is
the set of random events in R.

The instance r of R has the same truth value ‘T’ in the first tuple. In the second, it has a
‘T’ for all random events within X+ and ‘F’ for the rest, i.e., U − X+.

Firstly let us show that all IIR in F are satisfied by r .
Assume a relation I(V) ∋ W in F , we want to deduce that I(V) ∋ W holds on r . There are

only two possible different situations in terms of whether V is in X+ or not. These will now
be examined in turn.

• If V ⊆ X+ then I(X) ∋ V definition of X+ 1
I(V) ∋ W in F assumption 2
I(X) ∋ W 1, 2 and Transitivity 3
W ⊆ X+ definition of X+ 4

In r
When V is true assumption 5
V is in t1 and t2 definition of r 6
W is true definition of r 7
P(W |V) = 1 is not violated 5 and 7 8
I(V) ∋ W holds on r 8 and the Definition 9

• If V �⊂ X+ (note that
W can be either in X+
or in U − X+), then in
r

V is in U − X+ assumption 10
When V is true assumption 11
V can only be in t1 and not in
t2

definition of r 12

W is true definition of r 13
Comment: as only t1 needs to
be considered
P(W |V) = 1 is not violated 11 and 13 14
I(V) ∋ W holds on r 14 and the Definition 15
We have now shown that all
IIR in F are satisfied by r .
We will now show that
I(X) ∋ Y does not hold on r :
I(X) ∋ Y cannot be deduced by
the IIR inference rules with re-
spect to F

premise 16

Y �⊂ X+ (i.e., Y ⊆ R − X+) definition of X+ 17
X ⊆ X+ definition of X+ 18

123

40 K. Xu et al.

In r
When X is true assumption 19
X is in t1 and in t2 Definition of r 20
Y is either true (if int1)
or false (if in t2) Definition of r 21
P(Y |X) �= 1 19 and 21 22
So I(X) ∋ Y does not hold on
r .

Up to this point we have shown that all IIR of F hold on r but I(X) ∋ Y does not. So the
instance r that we set out to find has been found. We can now conclude that any I(X) ∋ Y that
cannot be deduced by the IIR inference rules from F is not logically imply by F . In other
words, any IIR that is logically implied by F can be deduced from F by using the IIR rules.
This proves that the IIR inference rules are complete.

Even though we have taken the same approach to proving the completeness of the IIR rules
as that for the completeness of Armstrong’s rules, there are a few fundamental differences
between functional dependencies and IIR as shown in Table 2.

3.2 IIR underpin a database

The notion of ‘information content’ of a state of affairs is essentially the same as that of
‘information flow’ in the sense that information is carried by a state of affairs in order
to flow. We agree with Barwise and Seligman [5, p.4], ‘Once one reflects on the idea of
information flowing, it can be seen to flow everywhere—not just in computers and along
telephone wires but in every human gesture and fluctuation of the natural world. Infor-
mation flow is necessary for life.’ In this section we explore how IIR underpin a
database.

3.2.1 Types of IIR and their sources

A database system is involved with two types of random events: those that are within the
database per se, which may be called database random events, and those that are in the real
world, which could be called real world random events. Consequently, there are four types
of IIR. The following table summaries the types of IIR and their sources (Table 3).

Table 2 The differences between functional dependencies and IIR

Functional Dependencies IIR

Objects concerned Attributes in a relation Events—members of power set of
outcomes of a selection process

Characterisation of objects
concerned (1)

Both random and certain ones are
covered

Random

Characterisation of objects
concerned (2)

Within a DB DB and the real world—altogether
four types (see Section 3.2)

What is based on Syntactic characterisation Syntactic, Semantic, Norms, Busi-
ness rules…

Veridicality N/A The veridicality of event X is a nec-
essary condition for X to be quali-
fied as information being carried

123

Defining ‘Information Content’ 41

Table 3 Types of IIR and their sources

Information inclusion relation: Information con-
tent of X includes Y

Sources

X, Y : both database random events Syntactic relations between data constructs and data
values

X : a database random event; Y : a real world ran-
dom event

Semantic values and information content of data

X : a real world random event; Y : a database ran-
dom event

Rules and processes of database design and database
operations

X, Y : both real world random events Relations between real world objects, Business rules

3.2.2 How IIR work for a database

We observe that constructing and using a database to carry and convey information involve
all the above four types of IIR.

The IIR between real world random events (Row 4 of Table 1) is concerned with require-
ments analysis and query writing, among others. For example, in a business rule of ‘if a
supplier supplies a part and the part is used by a project, then the supplier supplies the pro-
ject’, ‘a supplier supplies a part and the part is used by a project’ is a random event, denoted
say X , and ‘the supplier supplies the project’ is another random event, say Y . The rule embeds
I(X) ∋ Y . Furthermore, due to this IIR, we need only embody (carry) X by using data and
not Y , as Y can be derived from X . Consequently to query about Y should be implemented
by querying X .

The IIR from a real world random event to a database random event (Row 3 of Table 1)
at least partly underpins database design. It remains uncertain whether an entity Supplier
should be placed in an ER schema until suppliers are identified in the application domain
for which the database is designed. Another example would be ad hoc constraints placed on
a relation being specified, which would not be certain until some relevant relation between
real-world objects is captured.

Row 2 of Table 1, i.e., IIR from a database random event to a real world random event, is
concerned with how to interpret data in order to obtain information. For example, in Fig. 1,
the connection between node s1 and node j1 may convey the information that supplier s1 sup-
plies project j1. This is possible only because this connection is a particular of the database
random event that entity Supplier and entity Project is connected, and supplier s1 supplies
project j1 is a particular of the real world random event that a supplier supplies a project, and
there is an IIR from the former to a latter.

Finally, the IIR between database random events indicated by Row 1 of Table 1 appears to
be the least understood of all. Such IIR are purely determined by the syntactic characteristics
of a database. More precisely, they are fully determined by the nomic constraints [12, p.81]
of a database. For example, in the path shown in Fig. 1, let σ1 be the connection between
node entity Supplier and node entity Part, σ2 entity Part and entity Project, and σ3 entity
Supplier and entity Project, there is a nomic constraint σ1, σ2 + σ3, which means that σ1

and σ2 conjunctively entails σ3. A constraint captures what information flows [5, p.29], and
therefore there is an IIR: I(σ1 ∩ σ2) ∋ σ3.

We observe that IIR now provides a framework for reasoning about a database in order to
obtain information. For example, let θ1 be a real world random event that a supplier supplies

123

42 K. Xu et al.

SUPPLIES
(1, n) (1, n)

SUPPLIER PART PROJECT
(n, m) (1, n)

PROJECTPARTSUPPLIER

USES

s1

s2

s3

p2

p1

p3
j2

j1

Fig. 1 A path in an ER schema

a part, θ2 a part is used by a project, and θ3 a supplier supplies a project. To obtain supplier
s1 supplies project j1 (which is a particular of θ3), either of the two chains of IIR is used:

1) I(σ1 ∩ σ2) ∋ σ3, I(σ3) ∋ θ3, through transitivity, we get θ3.
2) I(σ1) ∋ θ1, I(σ2) ∋ θ2, through augmentation and union, we get θ1 ∩ θ2, then apply I(θ1 ∩

θ2) ∋ θ3, we get θ3.

This example is simple and straightforward, but we hope that the reader is convinced that the
ideas presented in this paper so far represent a promising start of a theorization of the notion
of information content, and that its use in databases can lead to a sophisticated formulation
of the elusive notion of the information content of a database [6].

3.2.3 Meaning versus information content of a data construct

Information that data bear and convey is often confused with and taken as the meaning that
data may have, which we observe is the main obstacle that hampers a scientific study of
information for databases. We clarify the difference between them in this section.

Let f be a relation between objects in the real world, which may or may not be true.
Let e be a data construct, which can be defined as a node or a path in a graph. For example,
e could be, in Fig. 1, the nodes s1, p1 and the connection between them, which is termed
‘supplies’.

If f can be ‘read off’ directly by following some interpretation rule (called ‘semantic rule’
by Shimojima 1996) without any effort such as reasoning [38, p.21] from e then f is in the
primary meaning of e [43]. For example, the primary meaning of e is that suppler s1 supplies
part p1. Following the rule for interpreting an ER diagram in the notations shown in Fig. 1,
the data constructs shown in this diagram have a ‘type’ of primary meaning that a supplier
supplies a part, and a project uses a part as compared with the meaning of an individual data
construct.

If under certain conditions on both data and the part of the real world with which the data
are concerned, such as the structure and constraints of a data schema, on top of what can be
read off directly from the data, f can be derived from e, that is beyond the primary meaning,
then f is part of the implied meaning of e [43]. For example, the data constructs in Fig. 1 are
capable of giving the meaning that a supplier supplies a project if there exists a business rule
that ‘if a supplier supplies a part and the part is used by a project, then the supplier supplies
the project’.

Note that the meaning of an instance, such as the individual entities and links between
them shown in the lower half of Fig. 1, of a data construct is given by its type. Types are

123

Defining ‘Information Content’ 43

captured by the data schema, and types are concepts [13, p.214]. Data instances that follow
the schema inherit the meaning of their respective types. This is due to concepts being capable
of giving meaning to their instances [13, p.222]. Some relevant interpretation rule is then
applied to data constructs whereby meanings of them are produced.

The possible meanings of a data construct are not necessarily part of its information con-
tent. Information must be contingently true [18], but meaning does not. Suppose that f is
part of the meaning of e, only if it is also a particular of some real world random event say
Y with which a database random event say X , of which e is a particular, has an IIR, does f
qualify as part of the information that e bears and conveys. The IIR would make sure of the
veridicality [5, p. 10] required. The meaning of a data construct may happen to be part of its
information content. But this is only accidental, not essential.

4 Exploiting IIR-reasoning in a database setting

4.1 The architecture of a standalone system

To explore how the ideas of IIR and the rules for reasoning about IIR presented above may be
implemented and made use of for a database, we have developed a prototype of a standalone
system, which works with a database and a number of other elements as shown below. The
architecture of the prototype is shown in Fig. 2.

As shown in Fig. 2, we propose that a reasoning process about IIR consist of two major
steps: Clause Conversion and Reasoning. In the Clause Conversion step, we convert the
ontology, the database, relevant business rules and IIR inference rules into Prolog clauses,
which become either ‘facts’ or ‘rules’. These generated Prolog clauses are then reasoned
about by the Prolog Inference Engine3 whereby hidden and nested information is derived.

IIR-Reasoning provides us with a mechanism exploiting the notion of information content
inclusion relationship in a database setting, which helps reveal information that is carried
by the data in a database and yet is hidden in the sense that it is normally not accessible by
queries by using standard query languages such as SQL.

Notice that in the literature, most database-to-Prolog conversions [1,30,31,36] are more
concerned with the Prolog-based representation of individual data set than the Prolog-based
representation of IIR between them. Their approaches focus on the direct projection between
database elements and Prolog predicates. Our conversion looks at the IIR between database
elements and converts the IIR to Prolog predicates. This procedure is guided by ontology
and users’ perspective.

4.2 Prolog clauses conversion

4.2.1 Converting ontologies

Ontologies are useful because they encourage standardization of the terms used to rep-
resent knowledge about an application domain [24] or refer to a wide range of formal
representations from taxonomies and hierarchical terminology vocabularies to detailed log-
ical theories describing a domain [35]. Therefore, adding ontologies to our approach is use-
ful for deriving more new facts, namely new IIRs. For the first step, there are many known
Ontology-to-Prolog translators, which can deal with different ontology representation

3 It is included in Visual Prolog that is downloadable from http://www.visual-prolog.com.

123

http://www.visual-prolog.com

44 K. Xu et al.

Prolog to SQL Translator & SQL
interface for ordinary users

Ordinary users Technical users

Prolog to SQL Translator & SQL
interface for technical users

Reasoning
outcomes

IIR between data events

IIR between data events and real
world events

IIR between real world events

Prolog Inference Engine

Reasoning

IIR between data events

IIR between data events and real world events

IIR between real world events Inference
rules in IIR

format

IIR-based Prolog Clause Derivation

The
standalone

system

Database
Business

Rules
Inference
RulesOntology

Fig. 2 The architecture of a standalone IIR-based system

languages such as RDF [26], Ontolingua [15] and Protégé [20]. For example, there exist RDF-
to-Prolog, Ontolingua-to-Prolog and Protégé-to-Prolog translators. In our implementation,
we developed an in-house conversion tool that partially translates the employee ontology
written in OWL [40]. In the literature, some Ontology-to-Prolog translators (for instance, the
translator used in IF-Map [25]) ignores constructs such as documentation slots, template slots
and own slots used in KIF [19] or Ontolingua. The reason is that the absence of these con-
structs from the translated codes does not invalidate their meanings [25]. In our architecture,
these constructs are still useful for deriving hidden and nested information, and therefore they
must be captured by our system by representing them as IIR. This is legitimate because IIR
is suitable for representing the information inclusion relation between two objects whatever
forms these two objects have adopted and wherever they exist in the ontology.

4.2.2 Converting databases

The database conversion is divided into two parts: automatic conversion and manual con-
version. Automatic database conversion translates the basic database elements, for example,

123

Defining ‘Information Content’ 45

instances, into Prolog fact clauses. In the prototype, this automatic conversion is done explic-
itly: a production version would perform this step only in principle, and would integrate the
Prolog reasoner with the database. Firstly, we query the databases by SQL. Secondly, we
translate the result of a query, i.e., a data set into Prolog fact clauses in the form of iir(x, y),
which implements I(x) ∋ y and denotes that the information content of particular x includes
another particular y. In such an expression, x and y are particulars of random events in
the database, namely particulars of the types of individual data constructs or a collection
of individual data constructs, each of which happens to meet some conditions. In the Man-
ual conversion step the system administrator converts those relevant facts selected from a
database according to the user’s perspective [39].

The notion of random event in databases can be defined as:

A random event is a set of outcomes A that denotes the occurrence of a set of values in
a certain data construct in a database with the probability P.

For example, a set of values {v0, v1, v2} happens to appear in attributes StudentID, Grade,
Course in table CourseResult respectively, and the probability for this to happen is (say) P0.
This is a random event (say) A0 in the database.

The notion of a particular of a database random event can be defined as:

An individual occurrence of a set of values in a data construct, for which the appear-
ance of the set of values in the data construct has been defined as a random event in a
database.

For example, that the set of values {‘001’, ‘A’, ‘Programming’ } happens to appear in a
tuple in table CourseResult at a certain time ti and location li , which is part of a certain
database state, is a particular of the above database random event A0.

Here is an example of automatic conversion. Suppose we have a table Employee (Emp_no,
Emp_name, Emp_age, Emp_gender, Emp_tel), which contains some personnel information
(Table 4).

After querying this table, we convert the results into Prolog fact clauses in the form of
IIR(x, y) as follows:

iir(Employee, Emp_no_is(0001)).
iir(Employee, Emp_name_is(0001, Jack Smith)).
iir(Employee, Emp_age_is(0001, 29)).
iir(Employee, Emp_gender_is(0001, male).
.

Table 4 A table
Employee(Emp_no, Emp_name,
Emp_age, Emp_gender,
Emp_tel)

Employee

Emp_no Emp_name Emp_age Emp_gender Emp_tel

0001 Jack Smith 29 male 01065940656

0002 Morag Black 24 female 01081196443

0003 David Brown 60 male 02159832889

· · · · · · · · · · · · · · ·

123

46 K. Xu et al.

4.2.3 Converting particulars of ‘Relevant’ database random events using the notion of
‘Context-awareness’

In the process of manual conversion, someone could generate a fact clause like this:

IIR(Employee, tel_starts_with(0001, 010)).

This illustrates a problem about translating particulars of relevant database random events
and their granularity. This is because in addition to atomic data values and ‘normal’ data
constructs such as ‘entity’, ‘tuples’, and combinations of these that are useful from the user’s
perspective, infinitely many other (redundant) combinations of data constructs can give rise
to IIR. For example, a particular of a relevant database random event formulated by IIR
(Employee, (Emp_no_is(0001), Emp_name_is(tony_wu), Emp_tel_is(0001, 01087534245)))
means that:

There is a tuple in table Employee, whose information content includes:
A data value 0001 appears in the Emp_no column of the tuple.
A data value tony_wu appears in the Emp_name column,

A data value 01087534245 appears in the Emp_tel column.

Our solution to this problem is to follow the idea of context-awareness[12]. It is within the
context of user requirements that information and/or services are relevant to the user, and
therefore should be considered. That is, the process of converting database random events is
context-aware. In the literature, there are approaches to dealing with context-aware behav-
iours by representing user information context with different tools such as ontologies [39] or
by offering a framework for the development of context-aware applications [12].

In [39], the user interacts with the ontology by selecting concept nodes that are relevant
to their information needs and by deselecting concept nodes that are not relevant. Concept
nodes are selected where they contribute to information content (what can be learned from
them), whereas concept nodes that are redundant are deselected, thus selection of concept
nodes is positive evidence whereas de-selection is a kind of negative evidence. The user
context is represented as a pair of elements: ci =< P, N > where P is a term vector for an
element that represents positive evidence and N negative evidence. Operations min and max
are used to represent the meet (Greatest Lower Bound) and the join (Least Upper Bound)
operations and induce a concept lattice whose elements represent various combinations of
concepts in the original concept hierarchy. The min and max operation is the extension of set
intersection and set union operation to vectors, respectively.

P = n1 ∧ n2 ∧ · · · ∧ nk, N = n1 ∨ n2 ∨ · · · ∨ nk

The nodes that are involved in selection and de-selection may not be in the ontology. New
nodes can be added into this concept lattice by user’s interactions. This approach shows a
way of representing the user information context as an extension of the concept hierarchy
that is maintained and updated incrementally, based on user’s interactions with concepts in
the ontology.

Figure 3 shows an example following the idea of [39] on representing the user information
context for the above database example. To find out what the user information context is, an
original ontology of the relevant domain is used. Users can select and deselect the nodes in
it to show what they are relevant or unnecessary (respectively). The selected nodes will be
treated as positive evidence by min operations whereas the deselected nodes will be treated
as negative evidence by max operations. For the example of Table 2, assume that the user is
interested in the telephone number starting with ‘010’ or ‘021’.

123

Defining ‘Information Content’ 47

……

ntelephone

nage

nstartswith

‘010’

nmobile
nlandline

nstartswith

‘021’

nemployee

nfull-time npart-time

nendswith

‘00’

nvodafone no2

min(nlandline,nstartswith ‘010’,nstartswith ‘021’)

……

max(nmobile,nvodafone,no2)

Fig. 3 An example on the selection and de-selection of nodes

Then we derive facts according to the context and if needed using additional business
rules to derive more information through reasoning. A user may be interested in various
nodes in the original ontology such as position, age of an employee. As shown below, an
information context can be described as c =< P, N >. P = min(m1,m2, . . . ,mk). N =
max(n1, n2, . . . , nk), where m1 . . .mk are user-selected concept nodes and n1, . . . , nk are
user-deselected concept nodes.

In order to derive the fact clause within the user context c =< P, N >, the following
condition has to be satisfied. That is, assume Xi , Yi are individual concepts of the particulars
x, y in a clause iir(x, y),

The clause iir(x, y) is within c if and only if P ∋ Xi , Yi and N �
 {Xi , Yi }.

With our running example, only facts related to ‘landline’ and telephone numbers starting
with ‘010’ or ‘021’ are taken from the database and translated into IIR clauses.

4.2.4 Converting business rules

Similar to ontologies and databases, business rules and inference rules can also be converted
into Prolog clauses. For example, a business rule ‘A person lives in Beijing if her/his tele-
phone number starts with “010”’ can be described as IIR that the information content of a
real world random event ‘the telephone number of A starts with “010” includes another real
world random event ‘A lives in Beijing’, namely:

iir(tel_starts_with(A, 010), livesinBeijing(A)).

If there were a database random event that code ‘010’ appears in attribute Telephone, then
there would be an IIR between this and tel_starts_with(A, 010). This shows the link between
a data random event and a real world random event through IIR. Through such a link, infor-
mation about real world random event (which is what really matters) is conveyed to the user
by means of some database random event(s).

123

48 K. Xu et al.

Another example of business rules is ‘A person A is retired if her/his age exceeds sixty’,
which can be written as a Prolog rule clause:

iir(age_exceeds(A), is_retired(A)).

Note that in the above two IIR expressions, the operands are random events, not their particu-
lars. That is to say, for the sake of implementing information content inclusion relations (i.e.,
IIR), we use iir(X, Y) to represent I(X) ∋ Y , the meaning of which was given in Sect. 3.1.

4.2.5 Converting inference rules

Following the same idea the inference rules can be translated as:

Sum Rule:

iir(Z, Y) :- sum((X, A), Y), iir(Z, X).

Product Rule:

iir(X, Y):- product((A, Y), X).

Augmentation Rule:

iir(A, B) :- product((W, X), A), product((Z , Y), B), product((C, Z),W), iir(X, Y).

Union Rule:
iir(X, S) :- product((Y, Z), S), iir(X, Y), iir(X, Z).

Decomposition:
iir(X, A) :- product((A, B), S), iir(X, S).
iir(X, B) :- product((A, B), S), iir(X, S).

Transitivity:
iir(X, Z) :- iir(X, Y), iir(Y, Z).

‘sum’ and ‘product’ are two predicates. ‘sum((A, X), Y)’ means that Y is the random
event which is formed by the disjunction of A and X . ‘product((W , X), A)’ means that A is
the random event which is formed by the product of W and X .

As we mentioned in Sect. 3, three of the six rules are independent and ‘basic’ rules in that
they cannot be derived from the rest of the rules. In our experimentation, we found that there
is no difference between using three basic rules and using all six rules.

Part of the pseudocode for the conversion algorithm is as follows:
//− − − − − − − − − − −−Database conversion− − − − − − − − − − −−
For each table T in a database

//Extract IIR among grids in each table
For each possible set of tuples ti in T

For each possible set of attributes ai in ti
Extract IIR between ai and ti , namely iir(ti , ai).

End for
For each possible pair of attribute sets ai and a j in ti

123

Defining ‘Information Content’ 49

Extract information content inclusion relationship between ai and a j , namely
iir(ai , a j).

End for
End for

End for
For each possible pair of attributes ai and a j between two tables tm and tn in a database

Extract IIR between ai and a j , namely iir(ai , a j).
End for

//− − − − − − − − − − −−Ontologies− − − − − − − − − − −− conversion
For each possible pair of objects (i.e., nodes, instances) oi and o j among ontologies

Extract IIR between oi and o j , namely iir(oi , o j).
End for

4.3 Inference engine

In our implementation, we use PIE (Prolog Inference Engine) as the inference engine. It uses
the standard Prolog syntax and releases the most popular set of predicates.

Here is an example of our implementation. Assume that t is a table in a database. In t there
are two employee records e1 and e2 whose telephone number starts with ‘010’. Following
the informational relation captured by the above IIR expression, we get:

iir(t , telstarts(e1, 010)). 1
iir(t , telstarts(e2, 010)). 2

1 and 2 are two IIR between two particulars of random events, which shows the informa-
tion content of a data item t includes another data item telstarts(e1, 010) (telstarts(e2, 010)
respectively).

Assume that there is also a business rule that ‘A person lives in Beijing if her/his tele-
phone number starts with “010”’, which links a real world random event (i.e., a person
lives in Beijing) and a database random event (i.e., telephone number recorded starting with
‘010’). Better still, there should be another IIR linking the database random event that the
data value in attribute Telephone Number starts with ‘010’ and the real world random event
that someone’s telephone number starts with ‘010’.

To test our example, we raise a goal (a term in Prolog) of ‘Who lives in Beijing?’ The
converted clauses (including the Transitivity rule) are as follows:

1. iir(telstarts(A, 010), livesinBJ(A)). 3
2. iir(X , Z) :- iir(X , Y), iir(Y , Z). 4

The 3 above is an IIR between two real world random events that represents the above
business rule and 4 the IIR Transitivity inference rule.

To make these clauses acceptable by our inference engine and enable them to be terminated
by the inference engine, we have to slightly change them to:

iir(t , telstarts(e1, 010)).
iir(t , telstarts(e2, 010)).
iir(telstarts(A, 010), livesinBJ(A)).
startiir(X , Y) :- iir(X , Y).
startiir(X , Z) :- iir(X , Y), iir(Y , Z).

Through inference, the system gives the following answers to our question (i.e., the goal):

123

50 K. Xu et al.

Fig. 4 A prototype written in C#

startiir(t , livesinBJ(A))
A = e1

A = e2

2 Solutions

4.4 A Prototype based upon C#

We developed a prototype for Prolog clause conversion, which is based upon C#. In the exam-
ple, it derives facts and rules from different sources and converts them into the form of IIR
(see Fig. 4). After having copied the derived Prolog clauses to the Prolog Inference Engine,
we can consult them in the engine and derive more information by queries that cannot be
answered without our inference mechanism (see Figs. 5, 6). We tested the prototype against
a number of real world databases such as a small-scale employee database (Access-based)
and a medium-scale finance database (Oracle-based). These real world databases contain
various data types, attributes and relationships. The IIR in the databases in which the user is
interested were extracted by the prototype. In the prototype, some slight changes are made
to the Transitivity rule to suit the needs of Prolog programming. The test shows that the
inference procedure works as expected.

As shown in the example above, a query ‘who are retiring?’ gets no answer without import-
ing other rules. After adding a business rule ‘A data construct X tells us that an employee A
is retiring if her/his age B equals or is greater than 60’. We obtained from the prototype that
315 employees in total were retiring by raising a query ‘iir(employee, isretired(A))’ in PIE.

123

Defining ‘Information Content’ 51

Fig. 5 Reasoning on facts only

Fig. 6 Reasoning with both facts and additional inference rules

123

52 K. Xu et al.

The test results match what we expect of the system. For example, assume that a user were
provided the extra knowledge that an employee is retired if her/his age equals or is greater
than 60, then the user could execute a SQL query ‘SELECT Employees.* FROM Employees
WHERE 2007 - YEAR(DOB)>= 60’, which would give the same 315 results. Note that our
system does not require the user to have this extra knowledge, as this knowledge has already
been captured as a business rule in the system.

Another example is as follows:
If we want to find out who in the Marketing Department has become a VIP member and

whether she/he wants to keep her/his VIP membership, then we submit to Prolog Inference En-
gine a query: iir(employee, dept_is(A, ‘Marketing’)), iir(hasmembership, wannakeepvip(A)).

To answer this query, a number of business rules are used, which are:
/*− − − − − Business Rule 1 − − − − −*/
/*− − − − − If a member has a membership number which is greater than 1000 and less

than 3000, then this member is a ‘gold member’. − − − − −*/
iir(hasMembership, goldmember(A)) :- iir(hasMembership, membershipnumber_is(A)),

A>=1000, A<3000.
/*− − − − − Business Rule 2 − − − − −*/
/*− − − − − If an employee A is either a ‘gold member’ or a ‘platinum member’, then

A is a ‘VIP member’. − − − − −*/
sum((goldmember(A), platinummember(A)), vipmember(A)).
/*− − − − − Business Rule 3 − − − − −*/
/*− − − − − If an employee A is a VIP member, then A has 200 pounds voucher on

her/his training. − − − − −*/
iir(hasMembership, hasvoucher(A, ‘200 pounds’)) :- iir(hasMembership, vipmember(A)).
/*− − − − − Business Rule 4 − − − − −*/
/*−−−−− If a member A has a 200 pounds voucher, then she/he must attend a general

training course. − − − − −*/
iir(teachesworkshoprun, mustattend(PAYROLLNUMBER, ‘general’)) :- iir(hasMember-

ship, hasvoucher(A, ‘200 pounds’)), iir(hasMembership, payrollnumber_is(A, PAYROLL-
NUMBER)).

/*− − − − − Business Rule 5 − − − − −*/
/*−−−−− If her/his identity is recorded in table teachesworkshoprun and in the record

the value for attribute workshop is ‘general’, then an employee has attended a general training
course. − − − − −*/

iir(teachesworkshoprun, attended(PAYROLLNUMBER, ‘general’)) :- iir(teacheswork-
shoprun, workshopname_is(PAYROLLNUMBER, ‘general’)).

/*− − − − − Business Rule 6 − − − − −*/
/*− − − − − If she/he must attend and has attended a general training course, then an

employee wants to keep her/his VIP membership. − − − − −*/
iir(hasMembership, wannakeepVIP(PAYROLLNUMBER)) :- iir(teachesworkshoprun,

mustattend(PAYROLLNUMBER, ‘general’)), iir(teachesworkshoprun, attended(PAYROLL-
NUMBER, ‘general’)).

Our test shows that the reasoning procedure for the above query is consistent with what
we expect in terms of how facts are used and how rules fire. For the above example, the trace
monitor of PIE shows the reasoning procedure as follows (we added some comments):

Query: iir(employee, dept_is(A, ‘Marketing’)), iir(hasmembership, wannakeepvip(A))
.

/*−−− Match A to check whether iir(employee, dept_is(A, ‘Marketing’)) can be satisfied.
− − −*/

123

Defining ‘Information Content’ 53

Trace: >> CALL: iir(employee, dept_is(_,Marketing))
Trace: >> RETURN: iir(employee, dept_is(110092,Marketing))
/*− − − A = 110092 is found. − − −*/
/*− − − Check iir(hasmembership, wannakeepvip(A)) − − −*/
Trace: >> CALL: iir(hasmembership, wannakeepvip(110092))
/*− − − Check according to Business Rule 6 − − −*/
Trace: >> CALL: iir(teachesworkshoprun, mustattend(110092, general))
/*− − − Check according to Business Rule 4 − − −*/
Trace: >> CALL: iir(hasmembership, hasvoucher(_,200 pounds))
/*− − − Check according to Business Rule 3 − − −*/
Trace: >> CALL: iir(hasmembership, vipmember(_))
/*− − − Check according to Business Rule 2 − − −*/
/*− − − Check according to Sum rule iir(Z, Y) :- sum((X, A), Y), iir(Z, X). − − −*/
/*− − − Check sum((X, A), Y) − − −*/
Trace: >> CALL: sum(_ , _, vipmember(_))
/*− − − sum((X, A), Y) is matched − − −*/
Trace: >> RETURN: sum(goldmember(_), platinummember(_), vipmember(_))
/*− − − Check iir(Z, X) when X = goldmember(_), Z = hasmembership − − −*/
Trace: >> CALL: iir(hasmembership, goldmember(_))
Trace: >> CALL: iir(hasmembership, membershipnumber_is(_))
Trace: >> RETURN: iir(hasmembership, membershipnumber_is(2371))
Trace: >> CALL: 2371 > = 1000
Trace: >> RETURN: 2371 > = 1000
Trace: >> CALL: 2371 < 3000
Trace: >> RETURN: 2371 < 3000
/*− − − iir(Z, X) is matched − − −*/
Trace: >> RETURN: iir(hasmembership, goldmember(2371))
/*− − − Backtrack− − −*/
Trace: >> RETURN: iir(hasmembership, vipmember(2371))
Trace: >> RETURN: iir(hasmembership, hasvoucher(2371,200 pounds))
Trace: >> CALL: iir(hasmembership, payrollnumber_is(2371,110092))
Trace: >> RETURN: iir(hasmembership, payrollnumber_is(2371,110092))
Trace: >> RETURN: iir(teachesworkshoprun, mustattend(110092,general))
Trace: >> CALL: iir(teachesworkshoprun, attended(110092,general))
Trace: >> CALL: iir(teachesworkshoprun, workshopname_is(110092,general))
Trace: >> RETURN: iir(teachesworkshoprun,workshopname_is(110092,general))
Trace: >> RETURN: iir(teachesworkshoprun, attended(110092,general))
Trace: >> RETURN: iir(hasmembership, wannakeepvip(110092))
/*− − − Got the results − − −*/
A = 110092
.

Our test results show that the inference rules and business rules help the prototype answer
many types of queries that are otherwise impossible. This is because the system derives
new IIR from a given set of IIR, which enables hidden information from the database to be
revealed.

Through prototyping, we find that the reasoning procedure takes a long time (a few min-
utes) when a large number of data facts are involved or derived. The translation procedure
could be complex. A possible solution to this problem of efficiency is to only derive the data
facts that are relevant to the user. There can be redundancies and conflicts in new data facts

123

54 K. Xu et al.

derived or reasoned about. A further problem is concerned with the matching order of Prolog
clauses. All these will be further investigated in the near future.

4.5 Future work

With the development of the Semantic Web, many RDF-based tools are becoming available.
RDF includes the notion of entailment, and has inference rules similar to Prolog. Recent work
in SWI-Prolog [41] includes RDF parsers and an interface to SPARQL servers. Our group
has also developed a novel database architecture, Pyrrho DBMS [9], with its own semantic
web capabilities, but which also presents database data directly to the SWI-Prolog inference
engine, thus avoiding the step discussed in the previous section of importing database data
as Prolog assertions.

The production version of the current work envisages combined use of these tools, to
realise a part of Tim Berners-Lee’s vision of the Web [7] as an almost limitless semantic
graph, with many constructs, including relational databases, providing inferable elements of
a virtual graph.

In this vision, a semantic query takes its points of reference (similarly to the context-aware
notion above) from the terms and vocabulary used in the query, and the namespaces referred
to in the current environment. It then uses inference, based on explicit and implicit semantic
rules, to navigate through both local and remote repositories of semantic data. Semantic serv-
ers supply RDF triples on request from inference graphs whose members never need all to be
instantiated, and databases supply semantic triples based on their contents, but instantiated
only as required by the currently executing query.

We treat the IIR as a minimum atomic unit to be used in an inference engine because this
kind of relation under ‘Semantic Information Theory’ is easy and acceptable for people to
understand and use.

5 Comparisons with related work

Several approaches concerning the ‘information content’ of databases have been reported
in the literature. As we mentioned in Sect. 1, one of the approaches is the theory of rela-
tive information capacity (RIC) [23]. [32,33] redefine the notions of absolute and internal
dominance and put forward the Schema Intension Graph (SIG) data model. This RIC- or
SIG-based approach is widely accepted and used for measuring the correctness of data schema
transformation. The limitation of this approach has been discussed in Sect. 1.

Another approach is based upon Formal Language Theory [29]. The information content
of a hypernode database is formalised as the language generated by the context-free gram-
mar, which is defined by Formal Language Theory. This approach is on the data content
level because its main point is to execute accurate data value matching when evaluating the
equivalence of information content.

To tackle other information content problems such as information content measure [2],
information dependency [10], information preserving [27] and information structures [28],
Shannon’s notion of entropy has been used. This notion was widely used in the analysis of
the quantity aspect of information such as information relevance [8], the analysis of Neural
Network Learning (Ng et al. 2000), cluster analysis [21] and many other areas. [2] define a
measure of information content of elements in a database with respect to a set of constraints
in terms of Shannon’s mathematical information theory [37]. Their basic idea is to use the
notion of entropy to measure how much information we can gain if the value of an assumed

123

Defining ‘Information Content’ 55

lost position gets restored. In this way, only the quantity aspect of information is considered.
A similar example is in [10]. The notion of Information Dependency measure (InD measure)
characterizes the uncertainty remaining about the values for a set of attributes N when the
values for another set of attributes M are known. Their measure is based upon the calculation
of entropy also.

It appears that Shannon’s entropy is recognized as the most important notion of his theory,
and information-theoretic seems to mean ‘entropy-theoretic’. But [13] points out that Shan-
non’s entropy is concerned with a collection of messages and the amount of information in-
volved, and it is not capable of addressing the information content of a single message. In other
words, entropy can be used to measure the quantity of information associated with a random
variable, but neither the quantity nor the content of information that a random event carries.

Our notion of ‘information content’ is based upon [13], which we extended for our pur-
poses by including [5] idea of duality of ‘token’ and ‘type’; it is on individual messages
(individual data instances), rather than on many messages (for example, all data instances
such as all tuples in a database under study) with which others’ works are in fact concerned.
They look at the amount of information associated with a set of attributes and measure it by
using entropy. Their basic idea would seem to use this concept to formulate data dependen-
cies such as functional, multivalued, and acyclic join dependencies [27,28] by identifying
conditions in terms of entropy that are equivalent to the definitions of data dependencies.

In the database setting, individual messages with which our notion of information content
is concerned could be various. For example, a set of attributes having a certain set of values
is a random event, an instance of which is a particular of it. Similarly individual tuples are
particulars of the random events that the whole set of attributes of a relation have various
sets of values respectively. IIR formulates the situation where the realisation of one random
event can tell us truly about the existence of another. For example,

1) In iir(Employee, Emp_no_is(0001)), ‘Employee’ is a random event in that a table
selected happens to be Employee among other tables, which could possibly be selected.
‘Emp_no_is(0001)’ is also a random event in that a set of tuples whose employee number
happens to be ‘0001’ among other possible tuples.

2) In iir(tel_starts_with(A, 010), livesinBeijing(A)), ‘tel_starts_with(A, 010)’ is a random
event in that a set of tuples whose telephone number happens to start with ‘010’ among
other possible tuples. ‘livesinBeijing(A)’ is a random event in that a person happens to
live in Beijing.

An attribute in a relation is, in our notion, an information source, and the average amount of
information associated with it, which is called self-information cited by [27], is the entropy.
The amount of information that an attribute carries about another is termed mutual-informa-
tion, which in our terminology extended from [13], is the average amount of information that
is the information that a carrier carries about an information source.

Our focus is on the content of information that is carried by individual messages (indi-
vidual data instances), not only the (average) amount of information that many messages
carry, which is the concern of others’ work. This definition is closely related to Shannon’s
information-theoretic terms, especially ‘entropy’, in that entropy is the weighted average
amount of information (called ‘surprisal’) that individual messages carry. Surprisal quanti-
fies the amount of information that a message carries, and therefore places constraints on
what information (i.e., the information content) a message can carry. Our definition of the
information content of a state of affairs satisfies the requirements on both ‘amount’ and
‘content’ of information.

123

56 K. Xu et al.

Therefore, our notion may be seen as extending others’ work that applies information the-
ory to database problems into a fundamentally different dimension in terms of the following:

• Not only the quantity (amount) of information that data carry, but also the content of
information that data carry are addressed.

• Not only the statistical characterisation of data’s carrying information, but also how
individual piece of data carries information are addressed.

• Above all though, what we are concerned with is ultimately the provision of an account
for the phenomenon that data in a database carry and convey information to the user,
which includes the relationship between data and what the data can tell us truly about the
real world. We do not concern ourselves with dependencies between data constructs for
their own sake. One example of those works is how ‘information-lossless’ decomposition
of a relation into several sub-relations can be achieved by preserving mutual information
between data.

• To this end, we look at IIR between data constructs, which may be seen stemming from
one of the inclusion-exclusion identities put forward by [27], namely H(Y |X) = 0 (i.e.,
Entropy of Y given X), which means that once X is known, Y carries no uncertainty.
That is, X carries all the information about Y . Our extensions to this notion are: (1) we
look at individual data values, rather than all data values in X put together. For example,
we take X = a as a random event and look at what its information content might be;
(2) we look at how one individual data value carries information about another data
value, and moreover we look at how one individual data value carries information about
individual objects in the real world, and vice versa. We envisage that existing work on
information-theoretic relationships between data constructs can be incorporated into our
overall framework for looking at the phenomenon of ‘information’ within databases.

• In order to ground our endeavour on sound theories, not only Shannon’s ideas, but also
ideas in the program of semantic information and information flow, which may be seen
started from Dretske [13] and includes Barwise and perry [4], Devlin (1991), and Barwise
and Seligman [5], are drawn on and Dretske’s ideas are extended.

The main extension to Dretske’s notion of ‘information content’ of a state of affairs that is
reported in the paper is as follows: apart from these known entropy-based measurements, Bar-
wise and Seligman put forward a mathematical model called ‘information flow’ as an account
for the laws that govern how and what information flows within a distributed system. In this
paper, we extend (which we believe is necessary) Dretske’s notion of information content
by including the ideas of the duality between ‘types’ (one kind of which is random events,
which we address in this paper) and ‘tokens’ (one kind of which is particulars of random
events, which we address in this paper) that is put forward by Barwise and Seligman [5].

6 Conclusions

In this paper, we have investigated how the notion of information content of a message, a
state of affairs, or a data construct may be used to explore the information carried by data in
a database. We have proposed to define the notion of ‘information content’ by following the
approach represented by Dretske’s [13] semantic theory of information and complementing
it by drawing on the ideas of the duality of ‘tokens’ (particulars) and ‘types’ (random events)
put forward by Barwise and Seligman [5]. We have thus extended the classic definition of
information content by Dretske [13] by incorporating the role that particulars play and conse-
quently the role that the random events (types) play in it. We hope that this makes the notion

123

Defining ‘Information Content’ 57

more accurate and more comprehensive than Dretske’s. Based upon this extended definition
of information content, we have defined the ‘information content inclusion relation’ between
two random events, and then formulated a set of inference rules for reasoning logically about
such relations.

Then we showed how these ideas and rules might be applied within a database setting
including distinguishing the information content from the linguistic meaning of a data con-
struct. We described how reasoning about information content might be exploited with a
database by experimenting with a prototype, which includes, among other things, the archi-
tecture of the prototype, the use of the idea of ‘context-aware‘ systems and the exploitation of
relevant ontologies and business rules. We showed that our approach is a general one. Simi-
lar to Armstrong rules [3], inference rules are domain-independent, which can be applied to
application domains. No interpretation of the rules that are specific to an application domain
is needed. Original sets of IIR (i.e., those derived from database facts and business rules) are
domain-dependent, the identification of which would require domain knowledge.

Our main conclusions through this work are: the program of semantic information theory
represented mainly by the work of Dretske [13], Barwise and Seligman[5], and Devlin [11]
is insightful and helpful in addressing the problem of information content and how it fares in
information systems and databases. Based on these sources, our work offers the machinery
for a systematic approach to the problem, which can bring benefits in identifying previously
inexplicit business information in databases.

Acknowledgments This work is partly sponsored by the Chinese BMEC (Beijing Municipal Education
Commission) under the grant number KM200311417153 for the Project of ‘The Research on Information
Bearing Capability’. The second author is also supported by a Senior Visiting Fellowship from the Royal
Academy of Engineering, UK, 2005 and a grant for Distributed Information Systems Research from the
Carnegie Trust for Universities of Scotland, 2007.

References

1. Amble T (1987) Logic programming and knowledge engineering. Addison Wesley, Reading
2. Arenas M, Libkin L (2005) An information-theoretic approach to normal forms for relational and XML

data. J ACM 52:246–283
3. Armstrong WW (1974) Dependency structures of database relationships. In: Proceedings of IFIP 74,

North- Holland Pub. Co., Amsterdam, pp 580–583
4. Barwise J, Perry J (1983) Situations and attitudes. MIT Press, Cambridge
5. Barwise J, Seligman J (1997) Information flow: the logic of distributed systems. Cambridge University

Press, London. ISBN 0-521-58386-1
6. Batini C, Ceri S, Navathe SB (1992) Conceptual database design—an eitity–relationship approach. The

Benjamin/Cummings Publishing Company, Inc., USA
7. Berners-Lee T (1998) What the semantic web can represent, http://www.w3.org/DesignIssues/RDFnot.

html. Accessed Jan 2007
8. Chachoua M, Pacholczyk D (2002) Qualitative reasoning under ignorance and information-relevant

extraction. Knowl Inf Syst 4:483–506
9. Crowe MK (2007) The Pyrrho database management system, computing and information systems tech-

nical reports, 38, University of Paisley, UK. http://www.pyrrhodb.com
10. Dalkilic MM, Roberston EL (2000) Information dependencies.In: Proceedings of the nineteenth ACM

SIGMOD-SIGACT-SIGART symposium on principles of database systems, Dallas, Texas, USA pp 245–
253

11. Devlin K (1991) Logic and information. Cambridge University Press, London
12. Dey AK, Abowd GD (2000) Towards a better understanding of context and context-awareness. In the

Workshop on The What, Who, Where, When, and How of Context-Awareness, as part of the 2000 Con-
ference on Human Factors in Computing Systems (CHI 2000), The Hague, The Netherlands, 3 April
2000.

13. Dretske FI (1981) Knowledge and the flow of information. Blackwell, Oxford

123

http://www.w3.org/DesignIssues/RDFnot.html
http://www.w3.org/DesignIssues/RDFnot.html
http://www.pyrrhodb.com

58 K. Xu et al.

14. Duží M (2001) Logical foundations of conceptual modelling. In: VŠB-TU Ostrava.
15. Farquhar A, Fikes R, Rice J (1997) The ontolingua server: a tool for collaborative ontology construction.

Int J Hum Comput Stud 46(6):707–727
16. Feng J (1998) The ‘Information Content’ problem of a conceptual data schema, SYSTEMIST, vol 20,

No.4, pp 221–233, ISSN:0961-8309
17. Feng J, Crowe M (1999) The notion of ‘Classes of a Path’ in ER schemas. In: Proceedings of third East

European Conference on advances in databases and information systems, ADBIS’99. Springer, Berlin.
18. Floridi L (2005) Is semantic information meaningful data. Philos Phenomenol Res 70(2):351–370
19. Genesereth MR, Fikes RE (1998) Knowledge interchange format (KIF). Draft proposed American

National Standard, NCITS. T2/98-004
20. Grosso W, Eriksson H, Fergerson R, Gennari J, Musen M (1999) Knowledge modelling at the millennium

(the design and evolution of Protégé-2000). In: 12th Workshop on knowledge acquisition, modeling and
management, Banff, Alberta, Canada.

21. Hu T, Sung S (2006) Finding centroid clusterings with entropy-based criteria. Knowl Inf Syst 10(4):505–
514

22. Hu W, Feng J (2002) Some considerations for a semantic analysis of conceptual data schemata. In: Rags-
dell E et al (eds) Systems theory and practice in the knowledge age. Kluwer Academic/Plenum Publishers,
New York. ISBN 0-306-47247-3

23. Hull R (1986) Relative information capacity of simple relational database schemata. SIAM J Comput
15(3):856–886

24. Jurisica I, Mylopoulos J, Yu E (2004) Ontologies for knowledge management: an information systems
perspective. Knowl Inf Syst 6:380–401

25. Kalfoglou Y, Schorlemmer M (2003) IF-Map: an ontology mapping method based on information flow
theory. J Data Semant I. Lecture Notes in Computer Science 2800, pp 98–127

26. Lassila O, Swick R (1999) Resource description framework (RDF) model and syntax specification.
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/. W3C Recommendation.

27. Lee TT (1987a) An information-theoretic analysis of relational databases—part I: data dependencies and
information metric. IEEE Trans Softw Eng 13(10):1049–1061

28. Lee TT (1987b) An information-theoretic analysis of relational databases—part II: information structure
of database schemas. IEEE Trans Softw Eng 13(10):1061–1072

29. Levene M (1998) On the information content of semi-structured databases. Acta Cybern 13:257–275
30. Li D (1984) A Prolog database system. Research Studies Press, New York
31. Lucas R (1988) Database applications using Prolog. Halsted Press, New York
32. Miller RJ, Ioannidis YE, Ramakrishnan R(1993) The use of information capacity in schema integration

and translation. In: Proceedings of the International Conference on very large data bases, Dublin, Ireland,
pp 120–133

33. Miller RJ, Ioannidis YE, Ramakrishnan R (1994) Schema equivalence in heterogeneous systems, bridging
theory and practice. Inf Syst 19(1):3–31

34. Ng G, Chan K, Erdogan S, Singh h (2000) Neural network learning using entropy cycle. Knowl Inf Syst
2:53–72

35. Noy N, Klein M (2004) Ontology evolution: not the same as schema evolution. Knowl Inf Syst 6:428–440
36. Nurcan S, Kouloumdjian J (1991) An advanced knowledge base management system based on the inte-

gration of logic programming and relational databases. In: Proceedings of IEEE, CompEuro ’91, Bologna,
Ital, pp 740–744

37. Shannon CE (1948) A mathematical theory of communication. Bell Sys Tech J 27:379–423,623–656
38. Shimojima A (1996) On the efficacy of representation. Ph.D. Thesis, The Department of Philosophy,

Indiana University
39. Sieg A, Mobasher B, Burke R, Prabu G, Lytinen S (2005) Representing user information context with

ontologies. In: Proceedings of the 3rd International Conference on universal access in human–computer
interaction, Las Vegas, NV

40. Smith MK, Welty C, McGuinness DL (2004) OWL web ontology language guide. http://www.w3.org/
TR/2004/REC-owl-guide-20040210/. W3C Recommendation

41. Wielemaker J (2007) SWI-Prolog semantic web library, HCS, University of Amsterdam. http://www.
swi-prolog.org. Accessed on Jan 2007

42. Wille R (1997) Introduction to formal concept analysis. In: Negrini G (ed), Modelli e modellizzazione.
Models and modelling. Consiglio Nazionale delle Ricerche, Instituto di Studi sulli Ricerca e Document-
azione Scientifica, Roma, 39-51

43. Xu H, Feng J (2002) Towards a definition of the ‘Information Bearing Capability’ of a Conceptual
Data Schema. In: Systems theory and practice in the knowledge age. Ragsdell E et al (eds) Kluwer
Academic/Plenum Publishers, New York. ISBN 0-306-47247-3

123

http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
http://www.w3.org/TR/2004/REC-owl-guide-20040210/
http://www.w3.org/TR/2004/REC-owl-guide-20040210/
http://www.swi-prolog.org
http://www.swi-prolog.org

Defining ‘Information Content’ 59

Author Biographies

Kaibo Xu is a Ph.D. candidate in the School of Computing at
the University of the West of Scotland (the UWS). He received his
B.Sc. in Computer Science from the Beijing University of Chemical
Technology, China and his M.Sc. in Information Systems Devel-
opment from the UWS. He works as a Lecturer at the Business
College of Beijing Union University, China. His interests include seman-
tic information theories and systems, database theory and systems.

Junkang Feng graduated from the Institute of Military Engineering of
the People’s Liberation Army, China. He received his M.Phil. from the
University of Portsmouth, UK and Ph.D. from the University of the West
of Scotland (the UWS) UK both in Information Systems. He worked as
a Research Associate in the Department of Computer Science at the
University of Manchester, UK before becoming a Lecturer and then
Senior Lecturer at the UWS. He currently heads the Database Research
Group of the UWS. His interests include qualitative information and
information flow theories, distributed information systems and database
theory.

Malcolm Crowe changed from an early career in Mathematics
(B.A.Mod. Dublin 1969 and D.Phil. Oxford 1978), gaining a Chair in
Computing at Paisley College in 1985, and is now a senior academic
in the School of Computing at the University of the West of Scotland.
He has published public-domain software tools for the .NET frame-
work: for programming languages, network management and database
management. His interests extend from semantic information systems to
web technology, and his current project is in open graphic editing. His
most recent book (with John Atkinson) is on Interdisciplinary Research
(Wiley 2006).

123

	Defining the notion of `Information Content'and reasoning about it in a database
	Abstract
	1 Introduction
	2 The notion of `Information Content'
	3 `Information content inclusion' relation
	3.1 Inference rules for IIR
	3.2 IIR underpin a database

	4 Exploiting IIR-reasoning in a database setting
	4.1 The architecture of a standalone system
	4.2 Prolog clauses conversion
	4.3 Inference engine
	4.4 A Prototype based upon C#
	4.5 Future work

	5 Comparisons with related work
	6 Conclusions
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

